
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

SIMULATING BINARY FLUID-SURFACTANT DYNAMICS BY A
PHASE FIELD MODEL

Chun-Hao Teng

Department of Applied Mathematics, Center of Mathematical Modeling and Scientific Computing
National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan

I-Liang Chern

Department of Mathematics, Taida Institute of Mathematical Sciences
National Taiwan University, Taipei 10617, Taiwan

Ming-Chih Lai

Department of Applied Mathematics, Center of Mathematical Modeling and Scientific Computing
National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan

Abstract. In this paper, the dynamics of a binary fluid-surfactant system
formulated by a phenomenological phase field model is investigated through
analytical and numerical computations. We first consider the case of one-
dimensional planar interface and prove the existence of the equilibrium solu-
tion. Then we derive the analytical equilibrium solution for the order parameter
and the surfactant concentration in a particular case. The results show that the
present phase field formulation qualitatively mimics the surfactant adsorption
on the binary fluid interfaces. We further study the time-dependent solutions
of the system by numerical computations based on pseudospectral Fourier com-
putational framework. The present numerical results are in a good agreement
with the previous theoretical study in a way that the surfactant favors the
creation of interfaces and also stabilizes the formation of phase regions.

1. Introduction. Due to the amphiphilic nature, surfactant molecules in binary
fluid tend to migrate to fluid interfaces, and consequently alter the interfacial tension
causing significant changes on the interfacial properties of the fluid mixture. Such
a delicate property has many applications, for instance, facilitating the breakup of
large droplets into smaller ones [6, 10], preventing the coalescence of smaller droplets
[10], and reducing the risk from bubbles formed in blood due to rapid decompression
[1].

Since 1990’s, a number of research studies [11, 12, 13, 14, 18] related to the
surfactant in mixture have been conducted. Investigating such a complex system
requires modelling the evolution behavior of the binary fluid, the mass transporta-
tion of surfactant in fluids, and the interactions between surfactant and binary fluid
interfaces. Generally, the fluid mixture is described by the Cahn-Hilliard type of
energy [2, 17] while the behavior of surfactant in fluids can be modelled either by a
microscopic or macroscopic approach. In [11, 13], cell dynamical systems are used
to account for the positions and the amphiphilic nature of surfactant molecules in
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fluids. The macroscopic approach of modelling the role of surfactant in fluids is
by specifying a mixing energy law to provide a mechanism of the adsorption of
surfactant on binary fluid interfaces such as in [12, 19].

In this paper, we investigate the equilibrium and dynamical behavior of the bi-
nary fluid-surfactant system through a phase field model. The present formulation
is adopted from the model introduced by Perkins et. al. [7], with a slight mod-
ification. The resulting energy law consists of three parts: (1) the Cahn-Hilliard
free energy [2, 17] describing the behavior of binary fluid, (2) a surfactant-interface
coupling energy adopted from the energy law in [7], and (3) an entropy term speci-
fying the ideal mixing manner of surfactant in fluids. Both analytical and numerical
approaches are employed to study the solutions of the system.

In the theoretical part, we first consider the case of one-dimensional planar in-
terface and prove the existence of the equilibrium solution. Then we derive the
analytical equilibrium solution for the order parameter and the surfactant concen-
tration in a particular case. The effect on the interfacial tension due to the presence
of surfactant is also discussed for this particular solution. The results show that
the present phase field formulation qualitatively mimics the surfactant adsorption
on the binary fluid interfaces observed in experiments.

Numerical methods are also employed to investigate the time evolution of the
system formulated by a system of partial differential equations consisting of a Cahn-
Hilliard type of equation for the order parameter and a Fickian-diffusion type of
equation for the surfactant. These time-dependent equations are discretized by
the pseudospectral Fourier method in space and the backward Euler method in
time. It is shown that the scheme preserves the mass conservation of the discrete
solutions, and the discrete energy of the scheme decreases as time evolves. The
present numerical results are in a good agreement with the previous theoretical
study [7] in a way that the surfactant favors the creation of interfaces and also
stabilizes the formation of phase regions.

The rest of the paper is organized as follows. In Section 2, we present the formu-
lation of the proposed phase field model followed by the analysis of the equilibrium
solution for the one-dimensional planar interface with surfactant. We then describe
the time evolutional equations to study the dynamics of the binary fluid-surfactant
system. Section 3 describes the numerical method for the time-dependent equations
in detail. Numerical results and discussions are provided in Section 4 followed by
some concluding remarks in Section 5.

2. Mathematical formulation.

2.1. Free energy of the system. Consider a binary fluid-surfactant system in a
domain Ω ⊆ R2 or R3 formulated by a phase field model. Let u : Ω → R be an
order parameter where u = 1 and u = 0 correspond to different fluid phases, and
ρ : Ω → R be the surfactant concentration. The total free energy of the phase field
system is defined as

G(u, ρ) =
∫

Ω

f(u)
ε

+
ε

2
|∇u|2 +

α

2
(ρ− |∇u|)2 + βh(ρ) dx, (1)

f(u) =
1
4
u2(1− u)2, h(ρ) = ρ ln ρ + (1− ρ) ln(1− ρ),

where ε, α, and β are all small positive parameters. To have the equally competing
effect, here we choose both α and β to be O(ε). Notice that, the present energy
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model is motivated by [7] but differs from that by adding the last energy term in
Eq. (1). We now briefly describe how those energy terms make the contributions to
the whole system.

Cahn-Hilliard free energy [2]: f(u)/ε+ε|∇u|2/2. The double-well potential f(u)/ε,
termed as the bulk energy density, takes on the minimum value (f = 0) at u = 0 or
u = 1, which drives the system to two phases. This effect leads to the separation
of fluid domains into pure phases, and thus creates diffusive interfaces of width
characterized by ε, connecting different phase domains. The interfacial energy is
characterized by the gradient term, ε|∇u|2. Minimizing the gradient energy density,
thus, minimizes the total perimeter of interfaces. These two combined energetic
mechanism leads to the coarsening of separated phase domains.

Entropy for ideal mixing of surfactant: h(ρ) = ρ ln ρ+(1−ρ) ln(1−ρ). The energy
density h(ρ) is an entropy term and the purpose of this term is twofold. The first one
is to model the ideal mixing of surfactant in fluids which induces a Fickian type of
equation for ρ by choosing the mobility Mρ ∝ ρ(1−ρ) [16], see the time evolutional
equation (22b) in detail. The second purpose is to restrict the value of ρ to be in the
range (0, 1); ρ ln ρ ensures the value of ρ to be positive and (1−ρ) ln(1−ρ) enforces
ρ < 1. Notice that the upper bound for ρ also models the saturation of surfactant
at interfaces. This entropic part of free energy is also adopted in literature such as
in [19, 4] to study the kinetics of surfactant adsorption.

Surfactant-interface coupling energy: (ρ− |∇u|)2. In order to describe the adsorp-
tion behavior of the surfactant near the binary fluid interface, we must add a cou-
pling energy in the whole energy system. This surfactant-interface coupling term
is often constructed as −ρ|∇u|2 in previous literature such as [12, 18, 19]. At an
interface where |∇u| takes on a larger value, the more surfactant is adsorbed on
the interface, so the more the energy decreases. However, on a pure phase region
where |∇u| vanishes, this coupling term does not imply whether the surfactant
should move or not since no matter what value of ρ takes this surfactant-interface
coupling term vanished. Thus, an additional energy term needs to be introduced
to the total energy to prevent surfactant clustering in pure phase regions [12, 18].
In [7], Fonseca, Morini, and Slastikov added the present surfactant energy into the
Cahn-Hilliard free energy and studied the role of surfactant in the formation of bub-
bles in foam. Through a sophisticated mathematical analysis, it was qualitatively
shown that the surfactant segregates to the interfaces and enhances the creation
of fluid interfaces. Here, we shall quantitatively demonstrate the above surfactant
segregation behavior by numerical simulations.

2.2. Equilibrium solution. When the system is in equilibrium, the chemical po-
tentials defined as the functional derivatives of energy G with respect to u and ρ
become some constants. From the calculus of variations, those chemical potentials
denoted by δG/δu and δG/δρ can be written as

δG

δu
=

1
ε
f ′(u)− ε∇2u + α∇ ·

(
(ρ− |∇u|) ∇u

|∇u|
)

, (2)

δG

δρ
=α (ρ− |∇u|) + βh′(ρ), (3)

where ′ denotes the differentiation with respect to the argument.
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Let us assume the interface to be one dimensional planar interface (in yz plane)
with normal along the x direction so that u = 0 and u = 1 while x tends to negative
and positive infinity, respectively. We seek the solution profiles of u and ρ, with
ux ≥ 0 so the equations (2)-(3) can be simplified as

µu =
1
ε
f ′(u)− εuxx + α (ρ− ux)x , (4)

µρ = α(ρ− ux) + β ln
(

ρ

1− ρ

)
, (5)

where the subscript x denotes the derivative with respect to x, and µu = δG
δu and

µρ = δG
δρ are the constant chemical potentials. The far field conditions of u and ρ

are

x → −∞, u = 0, ux = 0, ρ = ρb, (6)

x → +∞, u = 1, ux = 0, ρ = ρb, (7)

where 0 < ρb < 1 denotes the surfactant concentration in the bulk regions.

2.2.1. Existence of an equilibrium solution. We first briefly discuss the existence of
a solution for Eqs. (4)-(7). From Eq. (5) and the far field conditions (6)-(7), we
have

ux = φ(ρ)− φ(ρb), φ(ρ) = ρ +
β

α
ln

(
ρ

1− ρ

)
. (8)

Similarly, from Eq. (4) and the far field conditions, we obtain µu = 0 (see also the
detailed derivation in next subsection) so Eq. (4) becomes

ρx = ψ(u, ρ) =
f ′(u)

ε((ε + α)φ′(ρ)− α)
, (9)

where we use uxx = φ′(ρ)ρx resulting from differentiating Eq. (8). Consider the
solution region

R := {(u, ρ)| 0 ≤ u ≤ 1, 0 < ρb ≤ ρ < 1},
so in this region, we have

φ′(ρ) > 0, ψ(u, ρ)
{

> 0 for 0 < u < 1
2

< 0 for 1
2 < u < 1.

To show the existence of a solution for Eqs. (4)-(7), it is sufficient to show that there
exists an orbit satisfying Eqs. (8)-(9) and connecting from (0, ρb) to (1, ρb) in the
region R. In fact, this orbit satisfies the following separable ordinary differential
equation

du

dρ
=

ε [(ε + α)φ′(ρ)− α] (φ(ρ)− φ(ρb))
f ′(u)

,

which can be integrated to obtain

f(u) + C =Ψ(ρ)

=
ε2

2
ρ2 +

βε2

α
(ρ ln ρ− ρ + (1− ρ) ln(1− ρ)− (1− ρ))− ε2φ(ρb)ρ

+
(

ε2β

α
+ βε

) [
− ln (1− ρ) +

β

2α

(
ln

(
ρ

1− ρ

))2

− φ(ρb) ln
(

ρ

1− ρ

)]
,

(10)
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where the constant C = Ψ(ρb) is chosen to satisfy the far field condition. So
finding the solution for Eqs. (8)-(9) becomes solving the algebraic equation f(u) =
Ψ(ρ) − Ψ(ρb) in the region R. It can be easily checked that for α, β, ε > 0 and
0 < ρb ≤ ρ < 1, we have Ψ(ρ)−Ψ(ρb) ≥ 0 since

(Ψ(ρ)−Ψ(ρb))′ = ε [(ε + α)φ′(ρ)− α] (φ(ρ)− φ(ρb))

= ε

[
ε +

(ε + α)β
αρ(1− ρ)

](
ρ− ρb +

β

α
ln

(
ρ(1− ρb)
ρb(1− ρ)

))

> 0.

We also notice that f(u) = u2(1 − u)2/4 is symmetric about u = 1/2 and it maps
[0, 1/2] to [0, 1/64] strict increasingly, so to solve the algebraic equation f(u) =
Ψ(ρ)−Ψ(ρb), for u ∈ (0, 1) and ρ ∈ (ρb, 1), we only need to solve this equation for
u ∈ (0, 1/2) and ρ ∈ (ρb, 1). Now let u ∈ (0, 1/2) which corresponds f(u) = ξ ∈
(0, 1/64). In order to guarantee that the equation ξ = Ψ(ρ)−Ψ(ρb) has a solution
for some ρ ∈ (ρb, 1), it requires that Ψ(1) − Ψ(ρb) ≥ 1/64. One can easily see
that the above condition is always satisfied since Ψ(ρ) is a continuous and strictly
increasing function of ρ ∈ (ρb, 1) with Ψ(1) = ∞. Therefore, we prove the existence
of an equilibrium solution for Eqs. (4)-(7).

2.2.2. Quantitative behavior of the solution. Although Eq. (10) relates the values of
u and ρ in equilibrium implicitly, it does not show the profiles of u and ρ quantita-
tively. In the following, we first derive the exact solution for the case of α > 0, β = 0,
and then we compute the numerical profiles of u(x) and ρ(x) for the general case
α > 0, β > 0. Before we proceed, we need the following equality

µuu =
1
ε
f(u)− ε

2
u2

x −
α

2
(ux − ρ)2 + β ln(1− ρ) + C, (11)

which is derived in detail in Appendix A.
Case(1), α > 0, β = 0. Substituting the far field condition (7) into Eqs. (11) and
(5) with β = 0, we obtain

µu = 0, µρ = αρb, C =
α

2
ρ2

b .

Therefore, the equations of u and ρ become
1
ε
f(u)− ε

2
u2

x −
α

2
(ux − ρ)2 = −α

2
ρ2

b , (12)

ρ− ux = ρb. (13)

One can further simplify Eq. (12) by substituting the equation of ρ into the equation
of u, so we have

ε2

2
u2

x = f(u) =
u2(1− u)2

4
. (14)

This gives the exact form of u as

u(x) =
1
2

+
1
2

tanh
(

x

2
√

2ε

)
. (15)

which immediately leads the solution of ρ as

ρ(x) = ρb +
1

4
√

2ε
sech2

(
x

2
√

2ε

)
. (16)

It is interesting to note that under this case, despite the presence of surfactant,
the order parameter u still has the same profile as the case of without surfactant
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(α = 0). Nevertheless, the absorption of the surfactant does appear in the diffusive
interfacial region (near x = 0) where the concentration ρ has significantly larger
values than the buck value ρb.

To see how the surfactant at the interface alters the interfacial tension, we adopt
the approaches from [9, 15] and define the interfacial tension as

σ =
∫ ∞

−∞

ε

2
u2

x + g(ρ, u)− g(ρb, 0)− gρ(ρb, 0)(ρ− ρb) dx, (17)

g(ρ, u) =
f(u)

ε
+

α

2
(ρ− ux)2, gρ(ρ, u) = α(ρ− ux), (18)

where g(ρb, u = 0) and gρ(ρb, u = 0) denote the value of g and gρ as x → −∞,
respectively. Substituting the solutions of u and ρ into Eq. (18), we have

g(ρ, u)− g(ρb, 0) =
f(u)

ε
, gρ(ρb, 0) = αρb.

Therefore, the interfacial tension can be calculated as

σ =
∫ ∞

−∞
ε
u2

x

2
+

f(u)
ε

− αρbux dx =
√

2
12

− αρb. (19)

One can immediately see that the presence of surfactant in the diffusive interfacial
region reduces the interfacial tension by the magnitude of αρb.
Case(2), α > 0, β > 0. Substituting the far field condition (7) into Eqs. (11) and
(5), we obtain

µu = 0, µρ = β ln
(

ρb

1− ρb

)
+ αρb, C =

α

2
ρ2

b − β ln(1− ρb).

Then, the equations of u and ρ become

0 =
1
ε
f(u)− ε

2
u2

x −
α

2
(ux − ρ)2 +

α

2
ρ2

b + β ln
(

1− ρ

1− ρb

)
, (20)

ln
(

ρb

ρ

(1− ρ)
(1− ρb)

)
=

α

β
(ρ− ρb − ux). (21)

For this case, it is unlikely to find analytical solutions for u and ρ since the above
equations are fully nonlinear and coupled. Thus, we solve the equations numerically.
We simply discretize Eqs. (20-21) by finite difference method so that the resultant
nonlinear equations are solved by Newton’s method. The computational domain
is chosen as Ω = [−5, 5], and the mesh size is chosen fine enough to resolve the
interfacial region. The parameters ε = α = β = 0.02, and ρb = 0.1. The tolerance
of stopping criteria for Newton’s iteration is 10−8.

Figure 1 shows the initial guess (dashed line) and the final computed equilibrium
solution (solid line) for the order parameter u (left column) and the surfactant
concentration ρ (right column). We perform three different runs (shown by different
rows in the figure) by using three different initial guesses for ρ with the same initial
guess for u. One can see that the sharp interface eventually forms near the center
of the domain x = 0 and the surfactant absorption appears almost in the same
interfacial region despite the different initial surfactant distributions.

We also compare the above equilibrium solutions (as shown in the first row of
Figure 1) with the one obtained by solving the algebraic equation (10) with the
same parameters ε = α = β = 0.02, and ρb = 0.1. Figure 2 shows the u − ρ plot
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Figure 1. The equilibrium solutions of u and ρ. Initial guess:
dashed line. Final solution: solid line.

of those solutions in which we can see that both solutions coincide with each other
very well.

2.3. Time evolutional equations. As in [3], we assume a generalized Fick’s law
so that the mass fluxes of u and ρ are proportional to the gradient of the correspond-
ing chemical potentials. Thus, the Cahn-Hilliard type of equations in the domain
Ω can be written as

∂u

∂t
=∇ ·

(
∇δG

δu

)
=

1
ε
∇2f ′(u)− ε∇4u + α∇2

(
∇ ·

(
(ρ− |∇u|) ∇u

|∇u|
))

(22a)

∂ρ

∂t
=∇ ·

(
Mρ(ρ)∇δG

δρ

)
= β∇2ρ + α∇ · (Mρ∇(ρ− |∇u|)), Mρ = ρ(1− ρ)

(22b)

u =u0(x), ρ = ρ0(x), at t = 0 (22c)
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Figure 2. The u− ρ plots of the equilibrium solutions by solving
Eqs. (20-21)(denoted by dashed line) and by solving Eq. (10) (de-
noted by solid line) with the same parameters ε = α = β = 0.02,
and ρb = 0.1.

where u0 and ρ0 are the initial conditions for u and ρ, respectively. The mobility Mρ

is a function of ρ and is chosen to obtain a Fickian equation for ρ [16]. Under suitable
boundary conditions for the u, ρ and their corresponding chemical potentials δG

δu

and δG
δρ , one can easily derive that both u and ρ satisfy the mass conservation.

Throughout the rest of this paper, we assume the periodic boundary conditions are
used.

Moreover, the above Cahn-Hilliard formulation leads to the total free energy G
defined in (1) is decreasing as time evolves. This can be shown by taking the time
derivative of G as

dG

dt
=

∫

Ω

f ′(u)
ε

∂u

∂t
dx +

∫

Ω

(
ε∇u− α(ρ− |∇u|) ∇u

|∇u|
)
· ∇∂u

∂t
dx

+
∫

Ω

(α(ρ− |∇u|) + βh′(ρ))
∂ρ

∂t
dx.

Applying integration by parts on the second integral and using the periodic bound-
ary conditions, we have

dG

dt
=

∫

Ω

(
f ′(u)

ε
− ε∇2u + α∇ ·

(
(ρ− |∇u|) ∇u

|∇u|
))

∂u

∂t
dx

+
∫

Ω

(α(ρ− |∇u|) + βh′(ρ))
∂ρ

∂t
dx.

Substituting Eqs. (22) into the above equation and using the divergence theorem,
we obtain

dG

dt
=−

∫

Ω

∣∣∣∣∇
δG

δu

∣∣∣∣
2

dx−
∫

Ω

Mρ

∣∣∣∣∇
δG

δρ

∣∣∣∣
2

dx ≤ 0, (23)

provided that Mρ ≥ 0.
Before closing this section, we shall address an issue related to the range of

the surfactant concentration ρ as time evolves. From the energy law, the range
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of ρ in equilibrium is restricted in (0, 1) which we have verified this numerically in
Figure 1. Whether the value of ρ can still be in the range (0, 1) for the time evolution
of Eq. (22b) is beyond the scope of present study and needs further theoretical
investigation. Nevertheless, as shown later in Section 4, our numerical results in
Figure 4-6 indicate that the range of ρ is indeed in (0, 1) which ensures the mobility
function Mρ is positive.

3. Numerical scheme.

3.1. Pseudospectral Fourier method.

3.1.1. Basic Concepts. We start by reviewing some basic concepts of the pseudospec-
tral Fourier method [8]. Let I = [0, 2π], Z be the set of integers, and N > 0 be
an even integer. Denote the 2π periodic function space by H = span{einx|n ∈ Z}.
Define BN = span{(cos nx, 0 ≤ n ≤ N/2) ∪ (sin nx, 1 ≤ n ≤ N/2 − 1)}, BN ⊂ H.
Introduce the grid points

xj = 2πj/N, j = 0, 1, ..., N − 1.

To approximate u ∈ H, we seek a function INu ∈ BN of the form

INu(x) =
N∑

j=0

lj(x)u(xj), lj(x) =
1
N

sin
(

N(x− xj)
2

)
cot

(
x− xj

2

)
,

where lj(x) is the Lagrange interpolating function satisfying lj(xi) = δij with δij

being the Kronecker delta function. The symbol IN : H → BN is a projection
operator, satisfying the properties: (i) ∀u ∈ H, INu ∈ BN , and (ii) ∀v ∈ BN , INv =
v, and IN is interpreted as an interpolation operator since INu(xi) = u(xi).

To approximate the first and high-order derivatives of u, we take the following
approach

du

dx
≈ d

dx
INu =

N∑

j=0

l′j(x)u(xj),
dmu

dxm
≈

(
d

dx
IN

)m

u, m ≥ 1.

The pseudospectral differentiation formulas ensure that IN

(
d
dxIN

)m
u ∈ BN−1.

The order reduction is due to the fact that sin(Nx/2) resulting from differentiating
cos(Nx/2), the basis function of BN , is projected out of BN−1, after applying IN

on d
dxINu.
In addition to approximating the derivatives of u, we also need a quadrature rule

to compute the integral of u:

∀u ∈ B′2N ,
1
2π

∫

I

u(x) dx =
1
N

N−1∑

j=0

u(xj). (24)

where B′2N = span{(cos nx, 0 ≤ n ≤ N − 1) ∪ (sinnx, 1 ≤ n ≤ N)}.

3.1.2. Two-dimensional framework. The above one-dimensional pseudospectral Fourier
method can be extended directly into a two-dimensional framework for functions
defined on Ω = [0, 2π] × [0, 2π]. Let Nx and Ny be positive even integers. Define
the two-dimensional grid points xij = (xi, yj) by

xij = (xi, yj) = 2π (i/Nx, j/Ny) , i/j = 0, 1, ..., Nx − 1/Ny − 1.
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Let u(xij) = uij . To approximate u, we seek an approximation of the form

INu(x) =
∑

ij

Lij(x)uij , Lij(x) = li(x)lj(y),
∑

ij

=
Nx−1∑

i=0

Ny−1∑

j=0

.

where IN is the interpolation operator on the grid points xij . One can also define
the discrete version of the gradient, Laplace and the bi-harmonic operators as

∇N =î
∂

∂x
IN + ĵ

∂

∂y
IN , ∇2

N = ∇N · ∇N , ∇4
N = ∇2

N∇2
N , (25)

where î and ĵ are unit vectors along x and y directions, respectively. These discrete
vector differential operators satisfy the following properties. Consider a vector-
valued function F (x) and scalar functions u(x) and v(x) defined on Ω. Then, from
Eq. (25) and Eq. (24) one can show that

∑

ij

u
∣∣∣
ij

(∇N · F )
∣∣∣
ij

=−
∑

ij

(∇Nu)
∣∣∣
ij
· F

∣∣∣
ij

, (26)

which is the summation by parts for 2π-periodic grid functions. Note that, the
above formula immediately leads to the following identities

∑

ij

∇N · F
∣∣∣
ij

= 0,
∑

ij

∇Nu
∣∣∣
ij
· ∇Nv

∣∣∣
ij

= −
∑

ij

v
∣∣∣
ij
∇2

Nu
∣∣∣
ij

. (27)

The first one is obtained by taking u = 1 in Eq. (26), while the second one is
obtained by substituting F = ∇Nv into Eq. (26).

3.2. The semi-discrete scheme. To solve the phase field model formulated by
Eqs. (22), we seek numerical solutions uN and ρN of the form

uN (x, t) =
∑

ij

Lij(x)uij(t), ρN (x, t) =
∑

ij

Lij(x)ρij(t),

satisfying the collocation scheme

∂uN

∂t

∣∣∣
ij

= ∇2
N

δGN

δu

∣∣∣
ij

(28a)

∂ρN

∂t

∣∣∣
ij

= ∇N ·
(

ρN (1− ρN )∇N
δGN

δρ

) ∣∣∣
ij

(28b)

uN (xij , t) = u0(xij), ρN (xij , 0) = ρ0(xij) (28c)

where
δGN

δu
=

1
ε
f ′N (uN )− ε∇2

NuN + α∇N ·
(

(ρN − |∇Nu|) ∇NuN

|∇NuN |
)

, (28d)

δGN

δρ
= α (ρN − |∇NuN |) + βh′N (ρN ), (28e)

with f ′N (uN ) = INf ′(uN ) and h′N (ρN ) = INh′(ρN ).
Multiplying Eq. (28a) by ∆V = 4π2/(NxNy) and performing a summation over

the whole grid points, then applying the first identity of Eq. (27), we have

d

dt


∆V

∑

ij

uN

∣∣∣
ij


 = ∆V

∑

ij

∇N ·
(
∇N

δGN

δu

) ∣∣∣
ij

= 0.
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Thus, we derive the semi-discrete analogue of the mass conservation for the order
parameter uN . The mass conservation for the surfactant concentration ρN can also
be derived similarly.

The collocation scheme of (28) leads to the semi-discrete analogue of energy
decreasing as in Eq. (23). The discrete energy functional is defined as

GD =∆V
∑

ij

(
fN (uN )

ε
+

ε

2
|∇NuN |2 +

α

2
(ρN − |∇NuN |)2 + βhN (ρN )

) ∣∣∣
ij

where fN = INf(uN ) and hN = INh(ρN ). Taking the time derivative of GD yields

dGD

dt
= ∆V (S1 + S2)

where

S1 =
∑

ij

f ′N (uN )
ε

∣∣∣
ij

∂uN

∂t

∣∣∣
ij

+
∑

ij

(
ε∇NuN − α(ρN − |∇NuN |) ∇NuN

|∇NuN |
) ∣∣∣

ij

(
∇N

∂uN

∂t

) ∣∣∣
ij

,

S2 =
∑

ij

(
α(ρN − |∇uN |) + βh′N (ρN )

∣∣∣
ij

∂ρN

∂t

) ∣∣∣
ij

.

Using the second identity of Eq. (27) and then employing Eqs. (28a-b), S1 and S2

become

S1 =
∑

ij

δGN

δu

∣∣∣
ij

(
∇2

N

δGN

δu

) ∣∣∣
ij

S2 =
∑

ij

δGN

δρ

∣∣∣
ij
∇N ·

(
ρN (1− ρN )∇N

δGN

δρ

) ∣∣∣
ij

.

Then, applying second identity of Eq. (27) again, we obtain

S1 = −
∑

ij

∣∣∣∇N
δGN

δu

∣∣∣
2

ij
, S2 = −

∑

ij

(ρN (1− ρN ))
∣∣∣
ij

∣∣∣∇N
δGN

δρ

∣∣∣
2

ij
,

indicating that GD is decreasing in time provided that 0 ≤ ρN ≤ 1.

3.3. Fully-discrete scheme and computational techniques. To advance the
solution in time, we adopt the semi-implicit time discretization as follows. For
clarity, we omit the subscript N and denote un

ij and ρn
ij the numerical solutions uN

and ρN evaluated at the collocation point xij and at time tn. The fully-discrete
scheme for Eq. (22) is

un+1
ij − un

ij

∆t
=

1
ε
∇2

Nf ′(un
ij)− (ε + α)∇4

Nun+1
ij + Fn

ij , (29a)

ρn+1
ij − ρn

ij

∆t
= β∇2

Nρn+1
ij + Hn

ij , (29b)

where

Fn
ij = F (un

ij , ρ
n
ij) = α∇2

N

(∇N · F (un
ij , ρ

n
ij)

)
, F (u, ρ) = ρ

∇Nu

|∇Nu| ,
Hn

ij = H(un
ij , ρ

n
ij) = α∇N ·H(un

ij , ρ
n
ij), H(u, ρ) = ρ(1− ρ)∇N (ρ− |∇Nu|) .
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Generally speaking, to march an implicit scheme in time often requires the matrix
inversion, which can be expensive. However, for the present semi-implicit scheme,
there is an efficient way to advance the solution in time. Recall that the collocation
points are chosen so that the discrete Fourier coefficients of an approximate function
can be efficiently computed through the Fast Fourier Transform (FFT). Taking the
discrete Fourier transform of the scheme Eq. (29), we have

ûn+1
pq =(1 + ∆t(ε + α)|ω|4)−1

(
ûn

pq + ∆t

(−|ω|2
ε

f̂ ′
n

pq + F̂n
pq

))
, (30a)

ρ̂n+1
pq =(1 + ∆tβ|ω|2)−1(ρ̂n

pq + ∆tĤn
pq), (30b)

where |ω|2 = p2 + q2 and the symbol (̂·)n
pq is the discrete Fourier coefficient of the

grid function (·)n
ij . The Fourier coefficients f̂ ′

n

pq, F̂
n
pq, Ĥ

n
pq are computed through

pseudospectral technique. For instance, the coefficient F̂n
pq can be obtained by

following steps:
1. Calculate the Fourier coefficients ûn

pq by the FFT from the values of un
ij .

2. Multiply ip and iq to ûn
pq and perform the inverse FFT to obtain ∇Nu.

3. Use the grid functions for ∇Nu, and ρ to construct the grid function F (u, ρ).
4. Compute the discrete divergence ∇N ·F , where the derivatives are computed

as in Step 2.
5. Perform FFT on ∇N · F and multiply the coefficients by −α|ω|2 to get F̂n

pq.

Once the Fourier coefficients ûn+1
pq and ρ̂n+1

pq are computed in Eqs. (30), then the
grid functions un+1

ij and ρn+1
ij can be obtained by taking the inverse FFT.

Notice that, the backward Euler method is only applied to the fourth-order
derivative and other lower order derivatives of nonlinear terms are still treated
explicitly. Thus, a CFL number constraint for numerical stability is required. In
general, since the diffusion operator applied on the nonlinear term f ′(u) is treated
explicitly, we have to choose the time step size like N−2, i.e.,

∆t = CFL

(
2π

N

)2

,

where CFL = O(1). However, for the present study where the parameter ε ranges
from 0.02 to 0.05, we found that (after a series numerical experiments) the time
step size chosen as

∆t = CFL
2πε

N
, (31)

still works for stable computations.

4. Numerical results.

4.1. Convergence test. We start our numerical simulations by performing the
convergence test for the present scheme. The convergent rate between two consecu-
tive L2 errors is computed as log2

‖uref−uN‖2
‖uref−u2N‖2 , where uN is the numerical solution

obtained by the grid number N = Nx = Ny while uref is the reference solution
obtained by a larger grid number N = 4096. The initial conditions are given as

u0(x, y) = 0.5 + 0.1 cos(6x) cos(6y), ρ0(x, y) = 0.1,

and the solutions are computed up to time T = 0.01. Table 1 shows the discrete
L2-errors and the convergent rates for different values of N . One can see that the
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Table 1. Grid convergence test for uN and ρN .

N ‖uref − uN‖2 rate ‖ρref − ρN‖2 rate
256 4.0527E-02 - 6.4483E-04 -
512 1.9173E-02 1.07 3.0053E-04 1.10
1024 8.2892E-03 1.20 1.3296E-04 1.17
2048 4.1446E-03 1.00 5.1467E-05 1.36

Time
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Figure 3. (Left): |U(t)−U(0)| and |Θ(t)−Θ(0)| versus the time.
(Right): Discrete energy G versus the time. N = 512.

rate of convergence approaches to one, which indicates the first-order of accuracy
of the temporal discretization.

In the previous section, we have shown that the present semi-discrete scheme
does preserve the mass conservations of uN and ρN , and the discrete total energy
of the system decreases as time evolves. To demonstrate those properties, we define
the discrete mass of u and ρ as

U(tn) =
(

2π

N

)2 ∑

ij

u(xij , tn), Θ(t) =
(

2π

N

)2 ∑

ij

ρ(xij , tn),

and the discrete free energy as

G(tn) =
(

2π

N

)2 ∑

ij

(
fN (uN )

ε
+

ε

2
|∇NuN |2 +

α

2
(ρN − |∇NuN |)2 + βhN (ρN )

) ∣∣∣
ij

.

The time evolution of |U(t) − U(0)|, |Θ(t) − Θ(0)| and G(t), are shown in Fig. 3.
One can see that the discrete mass of u and ρ are conserved and the errors are
within the machine accuracy. It is also shown that the energy decreases during the
time evolution and eventually reaches an equilibrium state.

4.2. One-dimensional phase separation and surfactant absorption. In this
subsection, we simulate the one-dimensional phase separation and surfactant ab-
sorption for the binary fluid-surfactant system. The initial profiles for u and ρ are
chosen as

u0(x) = 0.3 + 0.01 cos(6x), ρ0(x) = 0.2.
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For comparison, we also simulate the case of without surfactant in which only the
equation of the order parameter u needs to be solved with the parameter α = β = 0.
Figure 4 shows different time plots for the order parameter u and the surfactant
concentration ρ.

For the case of without surfactant (left column of Fig. 4), we observe that the
order parameter u forms multiple separated phase regions of u = 0 and u = 1
immediately. For convenience, in what follows, we refer the regions of u = 1 and u =
0 to the 1-phase and 0-phase regions, respectively. As time evolves, the coarsening
behavior continues and eventually (at t = 100) decomposes the domain into the one
with only two 1-phase regions left.

For the case of with surfactant (right column of Fig. 4), we also observe that
multiple separated 1- and 0-phase regions are formed within a very short time
interval. Meanwhile, the ρ profile starts to form peaks indicating that the surfactant
is absorbed into the binary fluid interfaces. Around t = 3.2, u starts to change its
profile again. As the result, the surfactant located at those gradually disappeared
fluid interfaces diffuse and merge into the neighboring two lumps in the regions of
x ∈ [1.6, 2.6] and x ∈ [4.8, 5.8] (see the second and third panels of t = 11.8 and
t = 20.0). During the time period 50 ≤ t ≤ 100, we have observed no significant
changes on the solution profiles, indicating that the system arrives at a low energy
state.

From the simulation results, it is shown that the surfactant-interface coupling
term, indeed, models the surfactant absorption near the interfacial region, and the
entropy term restricts the value of ρ to be in the range of (0, 1). In addition, we
also observe that the surfactant delays the coarsening process eventually so that
the number of interfaces for the system with surfactant may be larger than the one
without surfactant as shown in last panel of Fig. 4. The above numerical results
are in a good agreement with the theoretical study [7] regarding that the surfactant
favors the creation of interfaces and also stabilizes the formation of phase regions.

4.3. Two-dimensional phase separation and surfactant absorption.

4.3.1. Surfactant uniformly distributed initially. Figure 5 illustrates the evolution
of u and ρ fields with the surfactant uniformly distributed over a two-dimensional
domain initially. The initial profiles for u and ρ are chosen as

u0(x, y) = 0.3 + 0.01 cos(6x) cos(6y), ρ0(x, y) = 0.1 + 0.01 cos(6x) cos(6y).

As in the 1D result, we can see that the u field forms multiple separated regions
in the beginning (see Fig. 5(a)). Then the coarsening dynamics inherent in the
Cahn-Hilliard equation soon drives the apparent phase separation which results in
a smaller 1-phase region generally shrinks and disappears, while a larger 1-phase
domain expands its area, due to the mass conservation of u. As time evolves, the u
field eventually becomes a circular 1-phase region surrounded by 0-phase region, as
shown in Fig. 5(j). Driven by the interfacial energy term, the surfactant is absorbed
into the binary fluid interfaces so that higher concentration of ρ appears near the
interfaces. When a binary fluid interface disappears due to further coarsening, the
surfactant adherent on that interface diffuses to other nearby interfaces which causes
the maximum value of the surfactant concentration inside the remaining area to be
temporally higher due to the mass conservation of the surfactant. Nevertheless, the
surfactant will be diffused away and eventually absorbed in the interfaces.
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Figure 4. Evolution of u and ρ fields. Right and left columns
correspond to the evolutions with and without surfactant, respec-
tively. The plots on the left column are taken at t=0.5, 11.8, 20.0,
100.0 (top to bottom) and the plots on the right column are taken
at t=0.5, 3.2, 5.0, 100.0 (top to bottom). N = 512, ε = 0.02,
α = 0.02, β = 0.02.

4.3.2. Surfactant locally distributed initially. The evolution of the system with the
surfactant distributed locally at the center of the domain initially is shown in Fig. 6.
The initial profiles for u and ρ are chosen as

u0(x, y) = 0.3 + 0.01 cos(6x) cos(6y),

ρ0(x, y) = 0.8 exp
(
− (x− π)2 + (y − π)2)

1.252

)
.

Similar to the previous case, the u field is gradually coarsen into a circular 1-phase
region surrounded by the 0-phase region. However, the absorption behavior of
the surfactant is completely different from the previous one. Since the surfactant
is initially concentrated at the center region of the domain, it takes time for the
surfactant to diffuse away from this center region. Consequently, during the early
stage of the evolution, the higher concentration of surfactant only appears around
the center area of the domain. When there is enough amount of surfactant diffused
over the domain, the surfactant concentration field starts to form multiple rings at
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Figure 5. Field evolution plots with uniformly distributed surfac-
tant initially. The u field plots are placed in the left two columns,
and the associated ρ field plots are placed in the right two columns.
ε = 0.02, α = 0.02, β = 0.02, N = 256.

binary fluid interfaces, as shown in Fig. 6(g-j). This behavior of surfactant diffusing
into binary fluid interfacial regions is qualitatively in agreement with the result
shown in [12].

In this simulation, we have seen many interesting phenomena caused by the
highly concentrated surfactant, and it is worth to discuss in more details. As pointed
out in [7], the surfactant favors the creation of interfaces. Besides, the surfactant
also stabilizes the formation of a phase region, in a way of resisting phase separation.
This creation of interfaces can be seen in Fig. 6(a). Notice that, the initial profile
for the order parameter u is nearly a flat surface (0.29 ≤ u ≤ 0.31). At t = 0.01
which is just in the beginning of the evolution, we see a fast creation of binary
fluid interfaces resulting from the rapid formation of small multiple 1-phase regions
around the center area, where the surfactant is highly concentrated but not yet
diffused away. The stabilizing phenomenon is visualized from the evolution of the
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Figure 6. Field evolution plots with surfactant given initially at
the center of the domain. The u field plots are placed in the left
two columns, and the associated ρ field plots are placed in the right
two columns. ε = 0.02, α = 0.02, β = 0.02, N = 256

center most located at 1-phase region shown in Fig. 6(d-j). In these u field plots,
we see that the center 1-phase region residing in the area containing a large amount
of surfactant, maintains its phase state and gradually expands its area, during the
entire evolution.

The stabilizing argument has the following consequence. For two 1-phase regions
of nearly equal size, the one in the domain with more surfactant is more stable.
In other words, the one with less surfactant is likely to shrink and disappear first.
The u field illustrated in Fig. 6(d) shows nine 1-phase regions (a 1-phase region
surrounded by eight 1-phase regions) of nearly equal size in the center area of the
domain, which the central 1-phase region contains more surfactant. The subsequent
u field plots (see Fig. 6(e-f)) show that the surrounding 1-phase regions shrink
gradually and disappear one by one but the central one remains still. This 1-phase
region finally resides at the center of the domain due to the chain reaction of the
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creation mechanism followed by the stabilizing one, but not due to the initial u
profile. Hence, for a random initial profile for u, distributing the surfactant in a
localized manner can be used to control the final stable phase regions.

5. Conclusion. In this paper, the dynamics of a binary fluid-surfactant system
formulated by a phenomenological phase field model is investigated through ana-
lytical and numerical computations. We first consider the case of one-dimensional
planar interface and prove the existence of the equilibrium solution. Then we de-
rive the analytical equilibrium solution for the order parameter and the surfactant
concentration in a particular case. The results show that the present phase field
formulation qualitatively mimics the surfactant adsorption on the binary fluid inter-
faces to that the interfacial tension is reduced. We further study the time-dependent
solutions of the system by numerical computations based on pseudospectral Fourier
method. The present numerical results are in a good agreement with the previous
theoretical study in a way that the surfactant favors the creation of interfaces and
also stabilizes the formation of phase regions.
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Appendix. We now derive Eq. (11) from Eqs. (4-5). Taking the derivative of
Eq. (5), multiplying ρ to both sides of the resultant equation, and then integrating
with respect to x, we have∫

αρuxx dx =
∫

βρx

1− ρ
+ αρρx dx.

Applying the integration by parts to the left hand side and performing the exact
integration to the right hand side, we obtain∫

αρx ux dx = β ln(1− ρ)− α

2
ρ2 + αρux + C (32)

where C is a constant.
Multiplying ux to Eq. (4) and integrating the equation with respect to x, we have∫

µuux dx =
∫

1
ε
f ′(u)ux dx−

∫
εuxuxx dx +

∫
uxα(ρ− ux)x dx

which leads to

µuu =
1
ε
f(u)− ε + α

2
u2

x + α

∫
uxρx dx.

Substituting the integral identity of Eq. (32) into the last term of the above equation,
we thus obtain

µuu =
1
ε
f(u)− ε

2
u2

x −
α

2
(ux − ρ)2 + β ln(1− ρ) + C.
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