

由考古發現看中國古代數學的演化(下)

從《數》、《筭數書》到《九章算術》

作者: 道本周 Joseph W. Dauben 譯者: 林倉億

道本周(Joseph W. Dauben)哈佛大學博士,曾訪問普林斯頓高等研究院、劍橋大學,現在是紐約市立大學勒曼學院的科學史傑出教授。 研究興趣廣泛包括科學史、數學史、科學社會學、中國科學史。著有兩本知名數學家傳記:Georg Cantor(《康托》)與Abraham Robinson(《羅賓森》)。 2012 年獲美國數學學會懷特曼數學史獎。

- ▶檢視《筭數書》中「負炭」、「盧唐」、「羽矢」三個「工作分擔」問題,作為探討文本、註釋、詮釋差異的案例。
- ▶介紹《阿基米德羊皮書》精采的重現經過,得以一窺阿基 米德的數學思維,並比較東西大師劉徽與阿基米德在圓與球 上的研究成果。
- ▶雖然數學結果相同,但中國與西方古代的數學論證取徑卻頗有不同,是否反映了兩種文明某種更深刻的文化差異。

「負炭」、「盧唐」、「羽矢」

這三個問題有許多共同特徵,而且乍讀之下,並非每個特徵都顯而易見。它們是《筭數書》中連續的三個問題,也就是第46、47和48題,因此它們彼此之間有某種關聯,應不令人意外。這三題中最令人費解的就是「負炭」,所以我們從它開始。接下來的兩個問題,將提供解讀這個問題的最佳線索。「盧唐」題中的正確數據有許多爭議,因此我們將它擺在解讀的第二順位。最後才是「羽矢」,該顯解法提供解讀前兩顯的重要線索。

(第46題)負炭 ▲

負炭山中,日為成炭七斗到車,次一日而負炭道車到官一石。今欲道官往之,負炭中,負炭遠到官,問日到炭幾何。曰:日得炭四斗「十七」分升二。術曰:取七斗者十之,得七石,七日亦負到官,即取十日與七日并為法,如法得一斗。

其白話翻譯如下:

運送炭

從山中背炭到車上,每日可背7斗,次日可將1石 的炭用車運到官驛。現在要前往官驛,從山中將炭 背到車上,再將炭遠送到官驛,問每日可送到多少 炭? 答曰:每日得炭42/[17]斗。❸

術曰:將7斗乘以10倍得到7石,需要7日才能運送到官驛,即將10日與7日合併作為除數,[7石作為被除數],相除後就得到每日得炭的斗數。◆

乍讀之下,此題內容並不清楚,正如洪萬生教授 領導的通訊團隊所言 ⑤,原文中的第二句「意義不明」(見[通訊])。但所有註釋者都同意的部分, 則是原本寫在竹簡上的分數錯誤,應改為 2/17 斗。 然而在嘗試進一步解讀此題之前,先檢視接下來的 兩個問題,將會提供我們很大的幫助。

(第47題) 盧唐 @

程曰:一日伐竹六十箇,一日為盧唐十五,一竹為三 盧唐。欲令一人自伐竹因為盧唐,一日為幾何?曰: 為十三盧唐四分之三。術曰:以六十為法,以五十五 乘十五為實。

其白話翻譯如下:

竹勺/竹器皿

規定的標準是:1天砍60枝竹,1天[可]做15個 盧唐,1枝竹相當於3個盧唐。若命令是1個人要 自己砍竹做盧唐,那1天可做幾個?

[答]曰:13又3/4個盧唐。

術曰:以60為除數,以55乘以15為被除數。

此題的答案或計算方法意見分歧。通訊團隊表示依這個算法得到的答案有問題,更何況「各個數字在此術中並沒有特別說明」(見[通訊])。(算法照原題文看來是(55×15)/60=13 3/4個盧唐。)

郭世榮對原文多所修改,並以兩種不同方式解

讀,得出的結論是這個問題一定是將兩個不同的問題錯置而成的問題。郭世榮的其中一種解讀方式是接受問題中的數據,但更改算法得到不同的答案:(60×15)/65 = 13 11/13 個盧唐。他也做了另一種假設,也就是以此題給定的答案為基礎,那麼就需要另一組問題的數據,以符合(55×15)/60 = 13 3/4 個盧唐的算法。他得到的結論是存留在《筹數書》中的版本,是以這兩個問題錯置而成的版本,也就是採用前者數據,卻用了後者答案的版本。他的論證結果,指出必須重建這兩個在《筹數書》之前即已存在,但錯置於《筹數書》中的問題(見「郭世榮」,第 34 題「盧唐」的註釋)。

郭書春基本上同意郭世榮對這個題目的處理,但沒有採用他「由兩個不同問題錯置而成」的假設,而是將原文修改成郭世榮的第一種解讀,包括答案也改成 13 11/13 個盧唐(見[郭書春 2001],「盧唐」的註 1、2、3)。

另一方面,彭浩相信「盧唐」與「負炭」兩者解 法應該相同的假設,原文稍作修改即可。因此,彭 浩接受了《筭數書》中該問題的數據,但不接受其 解法。他認為正確的算法及答案,應該是(60×15) /(60 + 15) = 12 個盧唐(見[彭浩 2001])。張 家山 247 號漢墓竹簡整理小組對此題的解讀,實際 上和彭浩一樣,而且也對原文做了一樣的修改,但 沒有提供解說,也沒有說明這算法何以成立。

各家對此題數據與正確答案的歧異程度,著實令 人吃驚。因為只要小心順著題目,算出砍 1 枝竹、 做 3 個盧唐需花一天的幾分之幾,那麼答案就會完 全如此題所給的,也就是一個人獨自工作一天,可 以做出 13 3/4 個盧唐。 那麼為何眾人會對這個問題意見分歧呢?一種可能的說法是這個問題陳述的方法與數字,即(55×15)/60=13 3/4個盧唐,原理並非眾人可一眼看穿。然而若題目中提及的每件事都對,那麼弄清楚表述這個問題的數學家原先心中的想法,才是比較可取的做法,而不是更改題目的數據。

在努力查明《筭數書》「盧唐」解法背後的邏輯 推理之前,我們應先確認問題中數據無誤的依據, 特別是為何答案不該是 13 11/13 或簡單的數字 12。事實上,這個問題有個直接了當的解法,但並 非從其「術曰」中可一眼看出。而「術曰」乍看之

- 譯註:此題原先只有英文翻譯,譯者根據彭浩《張家山漢簡《筹數書》註釋》提供原文。後面「盧唐」、「羽矢」二題,亦作同樣處理。
- ②此三題翻譯皆參考 [WW 2000]、[彭浩 2001]、[ZJS]。
- 編註:《筹數書》中原文的答案為4斗2/11升,按照大家都接受的計算,這裡有兩個錯,首先正確的答案是42/17斗,11要改成17;另外,這時不能說是4斗2/17升(「十七分升二」),如果要以「升」為單位,應是20/17升(1斗等於10升),後文依此修改。
- ◆雖然題目中沒有說清楚,但顯然算法中需要7石。或更精確地說,需要將7石換成的斗數作為被除數,以求得答案。彭浩是所有註釋者中唯一注意到需要明確指出被除數的人,因此他以方括號短句增補,以完成整題的解法,且與之前的敘述一致([彭浩2001])。此題或許可用更簡單的方式指出被除數,也就是在「負炭」原文中的「七石」後加上「為實」二字即可。不過原文最後一句「如法得一斗」仍缺少彭浩增補的「實」字,事實上最後一句應是「實如法得一斗」。(編按:「法」即除數,「實」即被除數,「實如法」即被除數除以除數。)
- 譯註:「通訊團隊」指的是 2000 年由臺灣師大數學系洪萬生 教授領導的一群博、碩士班學生及中學數學教師。他們對《筹數 書》的校勘與研究,刊載在《HPM 通訊》上。
- ⑥ 盧唐是用於煮食或裝盛的竹製器皿,可能是一種勺子或大湯 匙。見[彭浩 2001]。

下,也與題目本身沒有明顯關聯,除了它的確給出 正確答案之外。但是,首先要指出的事實是,其他 所有註釋者不是懷疑原本問題的數據有誤,就是從 原數據給出各種答案,那麼我們如何確知原來問題 所給的答案正確呢?這題的基本邏輯推理應如下:

如果1天可以砍60枝竹,那麼砍1枝竹需要1/60天;同樣地,做1個盧唐需要1/15天。既然1枝竹可做成3個盧唐,那麼砍1枝竹再做成3個盧唐((1/15)×3天)所需的天數就是13/60,即(1/60+3/15)=13/60。4組這樣的時間就是52/60,可以砍4枝竹並做成12個盧唐。還剩下8/60天,砍1枝竹用掉1/60天後,剩下7/60天。做1個盧唐要1/15=4/60天,所以可以完成的盧唐總數為13個,剩下3/60天。既然做1個盧唐要4/60天,那剩下的時間只能做成3/4個盧唐,所以1天可以做的盧唐總數就是133/4。

因此,我們沒有理由更改問題中的數據,也沒有理由認為這個題目是兩個不同的問題遭不當錯置合成一題,才造成數據與答案不一。儘管對其解法仍有疑問,但題目的數據與答案完全一致。對其解法仍有的疑問則是,《筭數書》中的解題程序出自何處?雖然此處答案尚未令人滿意,但它仍足以幫助我們檢視這三個「工作分擔」(task-sharing)問題的最後一題,也就是《筭數書》中的第48題「羽矢」。

(第48題) 羽矢

程:一人一日為矢卅、羽矢廿。今欲令一人為矢且羽之,一日為幾何?曰:為十二。術曰:并矢、羽以為法,以矢、羽相乘為實。

其白話翻譯如下:

將箭裝上羽毛

規定的標準是:1個人1天做30枝箭,或20枝裝 上羽毛的箭 •。現在若要命令1個人做箭並裝上羽 毛,那1天可做多少?

[答]曰:12。

術曰:將箭和裝上羽毛之數合併作為除數,箭和裝 上羽毛之數相乘作為被除數。

在這三個相關的問題中,此題最一目了然也最易懂。事實上,關於此題的解讀與求解並無歧異,除了解釋羽矢是把羽毛裝在箭桿尾端的過程——據題意每枝需要 1/20 天。通訊團隊只給出根據題目的術、答得出的算法: (30×20)/(30 + 20) = 12 (見[通訊])

郭世榮和郭書春對此題都沒有任何評論,而彭浩 則提出每一個解題步驟(見[彭浩 2001])。張家 山 247 號漢墓竹簡整理小組除了對「羽矢」提出 很簡短的註釋之外,也沒有更進一步的評論(見 [ZJS])。

此題可解讀如下:如果1天可做30枝箭,或將20枝箭裝上羽毛,那麼做1枝箭再裝上羽毛總共需要1/30+1/20天,也就是5/60天。因此,1天就可做出有羽毛的箭的枝數是:

 $1/(1/30 + 1/20) = (30 \times 20)/(30 + 20)$ 也就是 12 枝。這就是此題的術所言,所求出的 答案也正是此題的答案。

探討「盧唐」的問題

然而,為何此題解法不能應用在第47題上呢?

彭浩說這三題可用相同的方法解決(見[彭浩2001],「負炭」的註5),但並非完全如此。如果解題方法都一樣,那麼「盧唐」就要依照類似算式,也就是彭浩建議的:(60×15)/(60 + 15)=12,但我們知道這是錯誤答案。為了解決這個不一致,彭浩僅僅更改題目答案以符合其算式,但這很難令人滿意。知道正確答案實際上就是133/4個盧唐,那麼彭浩對此題的解讀出了什麼問題?困難的地方在於第47題不全然是非此即彼的問題——它不是說每天只能砍60枝竹,或是只能做15個盧唐,而是這兩種工作彼此有關。

我們已經分析過這個問題的邏輯合理,數據與答案也都正確無誤,那麼,解法是怎麼來的?從問題本身的敘述,我們可以知道答案是來自計算(55×15)/60 = 13 3/4 個盧唐/天的結果。這裡我們可以看到60是每天可以砍的竹子數,15是每天可以做的盧唐數,那麼55是怎麼來的?這在第47題的脈絡中有什麼意義呢?這裡我受惠於徐義保的建議,從中獲得非常巧妙的答案。他的論述如下:每天最多只能做15個盧唐,需要5枝竹的話,就需要以5/60天砍所需的竹子。若花掉5/60天去砍竹,那麼就剩下55/60天用來做盧唐。完整的一天可做15個盧唐,但現在我們只剩下55/60天,所以在這段時間,每天能做的盧唐數為

 $(55/60) \times 15 = (55 \times 15)/60 = 13 3/4$ 這恰恰符合《筭數書》第 47 題的解法與答案。

如果這讓「盧唐」一題變得合理,那麼藉由上述 處理經驗,就可以輕易回去解決第一個問題,也就 是《筭數書》第46題「負炭」。回想一下該題, 此題中我們再次面臨的是工作分擔的問題,也就是 有兩個不同的任務。唯一要解決的問題是第 46 題中的這兩個任務,是像第 48 題「羽矢」那樣彼此獨立,或如第 47 題「盧唐」那樣彼此有關?

回想一下通訊團隊對此題的註解。雖然他們說「負炭」題意陳述不清,不過仍根據題目的解法,將答案中原本的數字 11 改成 17。那麼依照題目解法的敘述,此題正確的計算過程會是:

(7斗×10)/(7天+10天)=42/17斗/天。然而,該團隊並沒有提供該如何理解此題的解讀(見[通訊])。郭世榮在對此題的評論中,只根據題目的敘述與解法指出答案錯誤,並提出和通訊團隊一樣的更正,沒有對這題更進一步評論,或說明該如何解讀(見[郭世榮]文中第33題)。郭書春的狀況也類似。他提出與郭世榮一樣的更正,但沒有進一步加以評註(見[郭書春2001])。

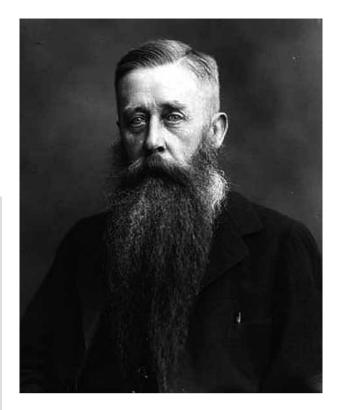
彭浩分析此題的篇幅,不但比這裡提到的任何一位註釋者都多,而且解釋了此題中所指為每天從山中揹7斗的炭到車上,或是運1石=10斗的炭到官驛(見[彭浩2001],「負炭」的註5)。按照和「羽矢」相同的推理,這代表將1斗的炭背到車上需要1/7天,而如果1天能將10斗的炭運到官驛,那麼運1斗就需要1/10天(我們忽略不計這其中明顯的不合效率)。因此,如「羽矢」一題,要同時執行兩件任務,需要1/7+1/10天才能將1斗的炭背到車上並載到官驛。那麼,1天中就有1/(1/7+1/10)斗的炭能運到官驛,也就是(7×10)/(7+10)=42/17斗,這確實如題目所述。

[→] 譯註:依作者後續說明,應為「可將20枝箭裝上羽毛」之意。

因此,在最後的分析中,《筹數書》的這三個工作分擔問題都可以妥善解釋,而且只有一個小小的錯誤要更正,就是「負炭」一題答案中的 2/11 斗應改作上述的 2/17 斗。這樣是最合適的了,因為沒有數學推理或計算錯誤,只有一個抄寫者在抄錄時誤讀的錯誤。這錯誤很可能來自中文字的「七」很容易被誤認為「一」,畢竟「七」與「一」的唯一差別,就是「七」多了一筆「豎彎勾」。如果該筆劃在抄錄的原稿中不是很清楚,那麼很可能就會漏看,結果就是誤抄為「一」(實際上在《筹數書》中類似錯誤至少還有一次,是在第 27 題「稅田」中「卅一」誤抄為「卅七」。見 [WW 2000]、[彭浩 2001]、[ZJS]。關於這時期文件中的數字 7(七)與 10(十)有多麼容易混淆,見羅威(Michael Loewe)對破城子出土文件的研究([Loewe]))。

《筹數書》中的這三個工作分擔題,合起來給中國古代或 21 世紀數學家上了寶貴的一課,就是在能找到正確解法求得適當的解之前,一定要充分明白與理解題目用詞。不當應用錯誤方法雖可得到答案,但正確的答案取決於是否正確理解數據及問題本身邏輯。數學無論用於世上哪個地方,總是會留下數學創造天賦的標記——知道如何在特別棘手或巧妙的問題中設計或應用合適的方法。直接使用解「工作分擔」問題的方法,就可求得「負炭」與「羽矢」的答案,而「盧唐」很可能是刻意安排在這兩題間,希望藉此找出粗心大意者。這些粗心大意者很可能只是直接應用相同的方法,而未明瞭「盧唐」的情況需要稍微不同的處理。

《筹數書》竹簡是迄今擁有的最早例子,說明中國古代數學家對設計聰明問題及以巧妙方法求解是



多麼熟練。而且與同時期那些同樣成為中國數學史 經典的問題相較,它的變化更豐富也更細緻。

阿基米德羊皮書

必須在此視為中國古代數學非凡成就的最後一個例子,就是劉徽對圓面積及球體積的分析,而且二者都讓人與古希臘數學家阿基米德的相似成就相比。事實上,其中與阿基米德有關的部分始於一起神秘事件:一本消失已久的阿基米德著作手抄本在19、20世紀之交重新露面,讓丹麥數學史家海伯格(Johan Ludvig Heiberg)不僅為這份著作鑑定、拍照,最終並得以抄寫阿基米德的「方法」(The Method),及其他幾部與數學有關的作品。

海伯格出身富裕家庭,是醫生之子,在哥本哈根大學攻讀古典語文學 ●,後來成為哥本哈根大學古典語文學教授。他在西元 1879 年完成論文《關於阿基米德的問題》(Quaestiones Archimedeae),致力傳播阿基米德生平、工作成果,以及文本。接著出版了歐幾里得的《作品集》(Opera, 1883-1895)、阿波羅尼斯(Apollonius)的《圓錐曲線論》(Conics, 1890-1893),以及丹麥哲學家齊

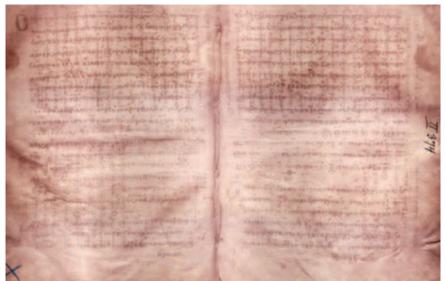


圖 2 阿基米德再生羊皮書中典型的一頁。(華爾特博物館,維基)

圖 3 提申多夫帶走的書頁。

克果(Søren Kierkegaard)的作品全集。不過,他生平最大的成就,是重建 1906 年於君士坦丁堡 發現的阿基米德的《方法》(*Ephodos*,亦即 *The Method*)。

由於海伯格澈底了解阿基米德,他才能在好友數學家兼古希臘數學史家佐伊騰(H. G. Zeuthen)的協助下,辨識出這本很難閱讀的再生羊皮書大部分內容。但很奇特地,海伯格的著述很少出自純數學觀點,他主要的興趣是在數學文本的傳播、保存,以及這失落已久的再生羊皮書中有那些不凡內容。重新發現這部重要作品的詳細經過,在內茲(Reviel Netz)和諾爾(William Noel)最近出版的《阿基米德寶典——失落的羊皮書》(The Archimedes Codex)有詳細描述。(Netz&Noel)

在此將故事主要內容簡短概述如下:大約在西元 10世紀時,某位拜占庭希臘人把一本更早期的《方法》手稿抄錄到羊皮紙上,地點也許就在數學家李奧(Leo)用小寫草體抄錄許多古代文本的君士坦丁堡。1229年4月14日,可能是在耶路撒冷,麥隆納斯(Ioannes Mylonas)完成了再生羊皮版祈禱書,使用的正是刮除了阿基米德文本的羊皮紙(圖 2)。後來這本祈禱書從耶路撒冷移到附近的聖撒瓦修道院(Monastery of Saint Sabbas)。

這本祈禱書在19世紀中葉被轉到耶路撒冷聖墓

教堂在君士坦丁堡的分堂(Metochion),置於 其耶路撒冷牧首(Greek Patriarch in Jerusalem) 圖書館中。約在此時,日耳曼學者提申多夫 (Constantine Tischendorf)在某趟到希臘修道院圖 書館的旅行中見到此書,並在1846年提到它。他還 帶走了一張書頁作為紀念品!(圖3)6。

1876年,這張書頁被賣給劍橋大學圖書館,但要到1971年,才由威爾森(Nigel Wilson)鑑定是阿基米德著作手抄本。不過在阿基米德羊皮書被再次發現之前,斎藤憲(Tohru Sato)就已經靠著分析劍橋大學圖書館的這張書頁,重建了《方法》中的命題14與18([Sato])。我們稍後會再回到《方法》中的命題。

就在君士坦丁堡,這本再生羊皮書被希臘學者克 拉模斯(Papadopoulos Kerameus)編入書目,並

- 3 譯註:原文將 classical philology 誤作 classical philosophy。
- 這部消失已久的作品幾乎全毀,成為另一本再生羊皮書(palimpsest)這本羊皮書上原有的阿基米德文本已遭刮除,以便抄寫一部中世紀祈禱書,而且抄寫的文字就覆蓋在阿基米德手稿上,其故事見本文後續說明。另作者以較長篇幅討論書名《方法》的妥適性,請見〈數理人文資料網頁〉http://yaucenter.nctu.edu.tw/periodical.php。
- 譯註:可參見《阿基米德寶典》(曹亮吉譯),頁164-165。 簡而言之,本來在君士坦丁堡的羊皮書因避戰禍移到耶路撒冷,在該處被重製為祈禱書後,再作為分堂的藏書回到君士坦丁堡。

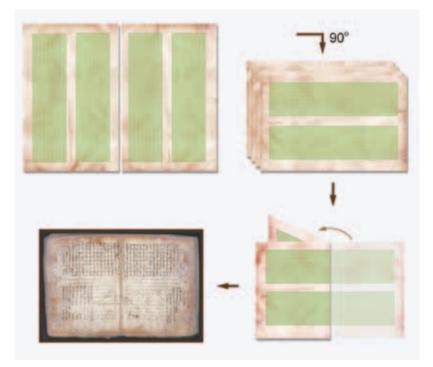


圖 4 原先阿基米德著作手抄本,是用小寫草體抄寫在一大書頁的左右兩頁,每頁面兩直欄。製作羊皮書時,先從中割開(左上),將每一頁旋轉 90 度疊在一起(右上),每幾頁對折在一起,作為新的祈禱書書頁(右下),書寫裝訂,這讓辨讀羊皮書宛如拼圖(左下)。

前,也就是第 105 書頁的左頁,阿 基米德的正文才會再次出現。不過, 前幾行字又藏在書中間的凹槽,這幾 行就是海伯格未能見到的文字。接續 下去的阿基米德正文,則會出現在第 158 書頁。

筭數書與羊皮書

鑑定其中一部分為阿基米德著作——這點顯然提申 多夫沒注意到(事實上,在19世紀晚期,克拉模 斯總共為牧首圖書館收藏的900多份手稿編目)。 海伯格就是因此得知阿基米德羊皮書。

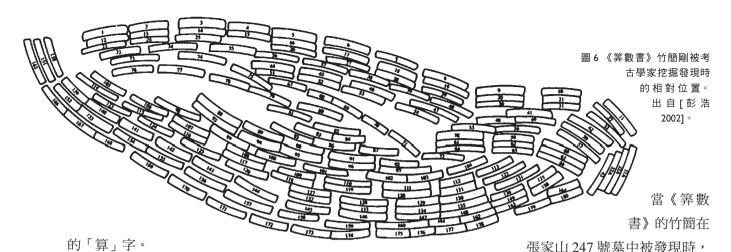
要做一本再生羊皮書,首先要將一疊羊皮原稿拆開,再將每張羊皮紙從中間割開,分開原先的左、 右兩頁,然後再將它們旋轉 90 度後重疊,並從中

對折,才成為一本每頁大小為原本羊皮紙四 分之一的新羊皮書。請注意這時原稿頁面上 部已在新羊皮書的右頁,下部則在左頁,而 中間會落入對折後的凹槽中。更糟糕的是, 當再生羊皮書的書頁組合之後,原稿頁面的 上部與下部也許會被它們之上的許多書頁隔 開,而且順序在後的原稿右頁,將會變成順 序在前的原稿左頁之上。因此,重建原來的 手稿就像是在拼圖(圖4)。

比方說,在極為重要的《方法》命題14上, 抄寫員抄錄了一段給死者的祈禱文。但整個 命題的開頭卻在再生羊皮書第110書頁(對 開頁)右頁第一行。因此你得先將羊皮書旋 轉90度,才能讀到阿基米德的正文。可是正 文到書中間凹槽處就沒了,要回到5個書頁 可以拿來與阿基米德羊皮書在某些有趣的方面比較的,就是現存最古老的中國古代數學著作《筹數書》。研究過這份文本的彭浩與其他中國學者僅僅稱它為 Book on Arithmetic,但它處理的問題——在將近 200 枚竹簡上的 68 個問題,包含的不止算術問題,還有值得注意的幾何問題。因此這個書名是有疑問的。

在被認定順序是第六枚的竹簡背後,有「筹數書」三個字(圖 5)。英國劍橋大學研究東亞科學史、技術史與醫學史的李約瑟研究所(Needham Research Institute)前任所長古克禮(Christopher Cullen)將「筹數」當作一個詞,意思是「計算」(computation)。因此在他對這本書的翻譯與評註中,都稱它為Book on Reckoning(「計算書」)([Cullen 2004])。但是我選擇單獨翻譯每一個字,將它譯作 A Book on Numbers and Computation(「一本關於數與算的書」)。請注意該枚竹簡上用的是篆體「筹」字,但在這本書的所有現代版本,卻幾乎都將這個字寫成現代

圖 5 「 筭數書」字樣出現在竹簡上。



《筭數書》不但是中國古代存留至

今最早的數學文本,也是從有年代記錄的考古遺跡中出土的最早數學文本。就像其他記錄在絲帛、竹簡、獸骨上的文獻一樣,它是當時的抄寫作品。1983年12月至隔年1月,考古學家從湖北省江陵縣張家山附近一位西漢貴族的陵墓中,挖掘出許多部竹簡書,包括法律規定、軍事實務,以及醫學方面書籍。在這些竹簡中,大約有200枚是一本不為人知的數學作品,也就是《筭數書》。由其他出土文本推測——特別是《二年律令》(呂后2年的律令),考古學家將此墓年代訂於西元前186年左右。

它們聚集在一處,分布情形如圖 6。在考古學家完成辨識竹簡上的文字之後,有些字跡已經消褪或無法辨讀,所以他們面臨的第一項挑戰,就是重新排列這些竹簡,恢復它的原貌。這項挑戰與保存、編輯阿基米德羊皮書面臨的挑戰一樣,畢竟他們也是要恢復《方法》原貌。

當海伯格接觸阿基米德羊皮書,他拍攝了書中自己感興趣的內容,主要都與《方法》有關。一個多世紀之後,這些照片成了這份再生羊皮書品質如何嚴重惡化的記錄。這主要是因為它不曾被細心保存——或可說被遺棄在極潮濕的環境,使羊皮紙發黴。這部再生羊皮書有可能是在1940年代,為其巴黎擁有者更進一步破壞。該名擁有者為了增加它的價值,花錢找了一位老練的偽造者在其中幾頁畫了些裝飾。海伯格在世紀初於伊斯坦堡見到它時,書中並沒有這些裝飾。

讓人訝異的是,海伯格竟然可以讀出那麼多再生 羊皮書上的內容。撇開那些他可以直接閱讀的部 分,他僅有的就是照片及放大鏡,藉以幫助他解讀 再生羊皮書上的內容。然而,今日的雷射技術已可 製作出阿基米德羊皮書的高解析度合成影像,復原 的訊息比一個世紀前的海伯格還要多。尤其重要的 是,新的影像技術顯示出書上的圖形很接近阿基米 德原圖。而且正如內茲所說,對阿基米德而言,數 學就在圖形之中(圖7)。

圖 7 羊皮書某頁的紫外線圖,在祈禱文下可見到阿基米德螺線的圖 形。

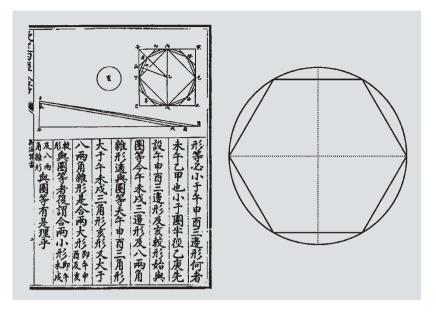


圖 8 左圖是阿基米德作品中譯本《園書》中的一頁;右邊是直徑為 I 單位的圓,半徑就是 I/2單位, 而內接正六邊形的周長為 I/2×6=3,顯然小於 圓周長,因此,圓周與直徑的比值一定大於 3。

誤稱,因為圓的面積從未被真的窮 盡了。

在阿基米德《測圓》的命題中, 他採用古希臘數學寶庫中最有威力 的論證方式——反證法:

更令人吃驚的是,海伯格似乎不在意書稿中的圖。在他們出版的版本中,圖形都由佐伊騰所繪。然而,根據內茲的說法,古代數學家藉以思考的是圖,而非文字([Netz&Noel])。讓我們先了解一些中國人認識的阿基米德,這有助於稍後了解實際圖形,及阿基米德關於圓與球的論證。

阿基米德與劉徽論圓

中國人認識阿基米德,要歸功於期望用數學與科學知識向菁英傳教的耶穌會傳教士。阿基米德一本關於求圓面積的簡短著作,也因此被完整翻譯放入《測量全義》, 並於 1635 年刻印。

阿基米德如何求出圓周與直徑的比?考察直徑為 1單位的圓,圓內接正六邊形的周長恰為3,而圓 內接正六邊形的周長短於圓周長,因此圓周與直徑 的比值一定比3大,但究竟大了多少?我們再拿圓 內接正12邊形來取代上述的正六邊形,就會得到 比3更好的近似值(圖8)。

從逼近圓面積的角度來思考這個問題,歐幾里得證明了圓面積等於高為半徑、底為圓周長的三角形面積。在《原本》第12卷的第二個命題中,他藉由直徑來求面積時,不斷增加圓內接正多邊形的邊數,並證明面積可以任意地接近圓的面積。不過,將使用的方法稱作「窮盡法」(exhaustion)實為

令ABCD是給定的圓,K是高為半徑、底為圓周長的三角形面積。如果圓面積不等於K,就一定比K小或比K大;利用圓的內接與外切正多邊形,阿基米德證明兩者都不可能,QED。因此圓的面積就一定等於K。

如洛伊德(Geoffrey Lloyd)所言:「希臘人偏好窮盡法,正是他們既想要求嚴格性,又要盡量避免無窮過程的證據。」([Lloyd])這裡需要補充說明的是,雖然希臘人的確努力避免實無窮過程(actually infinite process),但他們已經準備好,也願意考慮潛無窮的過程(potentially infinite process)——可以在達到任意想要的準確度後終止、整個過程被窮盡了,或者計算者完全感到厭煩了。

明瞭希臘人如何處理求圓面積的問題之後,古代的中國數學家又是如何處理相同的問題呢?這裡有一幅根據《九章算術》中求圓面積程序所繪的圖,是戴震在約1773年依西元3世紀數學家劉徽的注解重繪的(圖9)。此圖不需要太多解釋。

正如阿基米德的例子,我們沒有原來的圖,所以只能依賴各種重繪的圖(例如上面戴震所繪的圖)。但是內茲必定會說,圖會替自己發聲,而且會傳達該問題的數學思考本質。

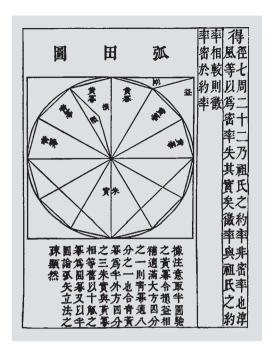
不過注意到中國的圖中,頂點沒有標示名稱,面 積則用顏色加以識別——在各個面積中的中文字, 標誌著朱、黃、青不同顏色 (請參看本文(上)篇之圖 8)。文本中指稱的名詞雖與 三角形有關,但古代中國沒有 指稱任意三角形的名詞,所以 只能用著色區域及它們的邊來 表示。在直角三角形中,就

用個別斜邊來表示。儘管如此,劉徽《九章算術》注的要旨,就是建立在不斷逼近圓的內接正多邊形上,只要審視圖形就會明白。從圓內接正多邊形的邊長,劉徽可以求得愈來愈精準的圓面積。比方說,在圓內接正 192 邊形的情況下,劉徽求出的比率是直徑 100 時,圓周長為 314 67/625。

劉徽總是說直徑與圓周長的「率」。他稱 50 與 157 是「相與之率」(precise rate),卻沒想到類 似 π 這樣的特定數字,而是用一對數字表示直徑與 圓周長。無論如何,這點要特別強調,因為它是希 臘與中國思考這些很重要的觀念差異。另一位中國 古代數學家李淳風,則說直徑與圓周長的「率」是 7 與 22。而祖沖之則將「密率」定為 113 與 355。

阿基米德、劉徽、祖暅論球體積

回到阿基米德羊皮書。真正令人欣喜的發現,要 歸功於利用現代科技與電腦影像處理技術,來復原 阿基米德的《方法》與球體積的求法。後者是阿基 米德最有名的成就。他在《論球與圓柱》中,證明 了球的體積與表面積都是其外切圓柱體體積與表面 積的 2/3。阿基米德認為這是他最偉大的發現。根 據古人的記載,呈現這個結果的圖形就刻在阿基米 德的墓碑上。



《方法》的重要性在於阿基 米德描述了他如何發現這些成 果。他在寫給艾勒托塞尼斯 (Eratosthenes)的一封信中 做了概述,部分節引如下。阿 基米德說:

如果一個圓柱體內接在一個立

方體中,圓柱體的底面位於立方體的底面,且圓柱體的表面與立方體的另外四個面相切,如果在這個立方體中,再內接一個圓柱體,這個圓柱體的底面位於另外兩個底面,且圓柱體的表面亦與立方體的另外四個面相切,那麼,這兩個圓柱體重疊的部分,就會是整個立方體的2/3。

阿基米德還表示自己是用力學方法(mechanical method)發現這個定理,正如他已經發表的許多成果一樣。這個證明的關鍵是用許多平面去截立體圖形,這些立體圖形的截面都成比例,然後證明它們會達到平衡。知道結果之後,阿基米德就用幾何及窮盡法來證明它。

但是,在《方法》中有一個定理與眾不同,就 是讓內茲感到特別興奮的第 14 個命題的幾何推

① 譯註:作者似將《圖書》(On the Measurement of the Circle) 與《測量全義》混淆。(編按:《測量全義》內容龐雜,除了 阿基米德的《圖書》之外,還包括了《幾何原本》、《籌算》等 眾多書籍的部分內容。《幾何原本》是利瑪竇和徐光啟漢譯《原 本》(Elements)的書名,其中只譯出六卷。我們也將 On the Measurement of the Circle 原書譯為《測圓》,以作區別。)

[▶] 譯註:原文將 192 邊形誤作 96 邊形、314 64/625 誤作 314 64/624。

THE METROD

圖 10 命題 14 的圖,引自 [Heiberg]。

導。而這命題大部分海伯格都 未能讀到(圖10)。命題14 將球的體積建立在無窮小薄片 (infinitesimal lamina) 的比例 關係,然後在命題 15 中再用窮 盡法嚴格地證明它。

阿基米德對他的命題 14 不滿 意,至少有兩個可能的原因:他 不認為建立在像是《方法》中力 學方法上的結論是數學嚴格的,

而且在命題 14 中還用到不可分量(indivisible), 這也很可疑,因為它牽涉到弔詭的無窮概念。從芝 諾(Zeno)與德謨克利特(Democritus)的時代起, 無窮的悖論就深深影響著希臘哲學與數學,因此, 才有能實際「避開極限」的窮盡法,藉以排除要訴 諸實無窮的情況。

然而,我們知道不仰賴無窮論證(infinitary argument),就無法得到角錐體積,也不能化圓為 方、求得球體積,或馬蹄形體(內茲稱它為腳指甲) 的體積 6。在命題 14 中,阿基米德利用了無窮論

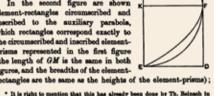
證——建立一系列複雜的比例線 段,阿基米德證明任意選定的 平面或切片,都會符合特定比 例——即便是要做出無窮多個同 樣的切片。

劉徽也考慮了球體積問題。 在《九章算術》第四章中,給 出體積為V的球,其直徑

$d = \sqrt[3]{(16/9)V}$

這結論是從經驗中得知的,

ate OM, of which



如同劉徽對該段文字的註解:

黄金方寸,重十六雨;金丸徑寸, 重九雨,率生於此,未曾驗也。

劉徽在其注中說明這個結論 如下:考慮一個內切於正方形 的圓,圓的面積是正方形面積 的 3/4。現在考慮一個內切於 立方體的圓柱體,其體積比一 定也是3:4(任一個平行於

底面的平面,對圓柱體與立方體所截出的面積比 例都一樣)。如果我們假定內切於圓柱體的球, 其體積是圓柱體體積的 3/4,那麼球的體積就是 $(3/4) \cdot (3/4) \cdot d^3$,也就是立方體體積的 9/16,因 此,就得到

$d = \sqrt[3]{(16/9)V}$

但是,劉徽知道這不正確,並試著求得更精確的 結果。他指出考慮的若不是球與圓柱體,而是另一 個體積小於圓柱體的立體,他稱之為「牟合方蓋」, 像是兩支倒雨傘的形狀(圖11),那麼,體積的

比值 3/4 就會成立。

事實上,這與阿基米德關注的 立體是相同的,也就是由兩個圓 柱體直交而成的形體。遺憾的是 劉徽知道他無法求出該立體的真 正體積。兩個世紀之後,數學家 祖暅著手研究這個問題。他考慮 上述圖形的 1/8, 即圖 12(a)。

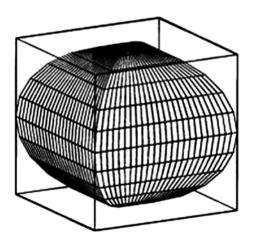
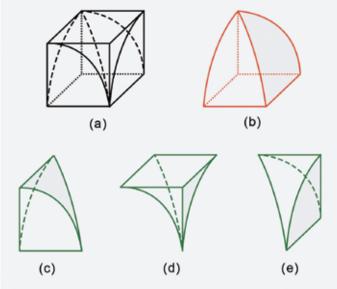


圖 II 牟合方蓋圖。



祖暅利用兩個圓柱體的截痕,將(a)分割成4塊。其中(b)稱為「內棋」,(c)、(d)、(e)稱為「外棋」。

現在,考慮立方體的任一個水平切面,祖暅仔細核對「內棋」(b)的截面積,與「外棋」(c)、(d)、(e)截面積和之關係,發現無論是哪一個高度的水平切面,關係都不變。因此他說:「不問高卑,勢皆然也。」

關鍵之處即某種「卡瓦列里原理」(Cavalieri principle)的應用,出現在下列文字中:

夫疊棋成立積,緣冪勢既同,則積不容異。

這裡的「棋」指的是什麼呢?它真的如 18 世紀清朝注釋者李潢所說,要將「棋」改成「冪」,指的是無窮小切片?丹麥漢學家華道安(Donald Wagner)同意將「棋」改成「冪」,如此文意指的就是無窮薄的切片或截面。他是對的嗎?不管這些爭議。祖暅論證的核心,似乎清楚地用到了某種形式的卡瓦列里原理。

結論

最後,我們要如何解釋這個幾乎在同一時間發現 的特殊例子?或者我們應該肯定地說,擁有相同數 學成就與技巧的數學家,雖然身處不同的地方與文 化,但心中的意圖與目標都一樣?阿基米德與 劉徽兩人都致力於數學,劉徽甚至知道有自己 解不出的問題,希望有一天有人會解決這些問 題。

我們現在搭建了一個數學比較的舞臺,東方 vs. 西方。洛伊德對如何看待彼此的差異作出建議:用「對手」(adversaries)與「權威」(authorities)來區分希臘與中國的想法。洛伊德將他比較這兩個文化的著作,取名為 Adversaries and Authorities,這說明了他所認定的二地科學的核心差異。簡而言之,儘管雙方處理的直角三角形、圓、內接正多邊形、球,你或許認為是普世皆同,無論是在雅典或西安,這些形體的數學性質也是普世皆同—特別是用相同的方式理想化之後,但是在古希臘與古中國文化裡處理它們的脈絡(context),卻可能有很大的不同。

洛伊德認為古希臘文明是發展證明的公設進路(axiomatic approach),其中包含針對無窮的典型(paragon)數學方法——窮盡法,以及歸謬法這類間接證明法。這些都是從與不同對手交流的經驗中成長茁壯,這些對手出自希臘城邦政治、法庭、民主辯論,需要說服政治對手接受某個論點的合法性。至於中國的政治脈絡則十分強調權威領導,因

[▶] 見 [Netz&Noel]。更詳細的數學討論請見 [Tchernetska],頁 109-125。譯按:見《阿基米德寶典》頁 240,阿基米德證明這 個截面像是指甲的立體圖形體積是其外接正立方體體積的 1/6。

[᠍] 編註:作者並未完成祖暅的說明,必須再將立方體扣掉牟合方蓋部分的體積等同於某角錐(稱為「陽馬」)的體積,才能完成。清楚的說明請見「延伸閱讀」3。

此,洛伊德辯稱這導致不同的論證形式,而且讓依賴權威反過來阻礙了中國數學的進展,而希臘的論證形式則促進數學發展。

但是,我認為更精準的說法是,中國古代數學家十分樂意批判不好或貧乏的結果。例如他們不斷尋求更佳的近似值,或者像求平方根、立方根的算則,都是值得注意的例子。不過,中國古代數學家對為了論證而做聰明的論證似乎缺乏耐性。中國不但沒有違反事實推理的例子,而且當遇到歸謬法的假設前提時,中國人的反應是「為什麼要從已知是錯誤的假設開始推理?」(6)

中國人或許比希臘人更注重實際,且對為論證發展出的高明辯術不感興趣。但更貼近東方與西方推理特性的不同之處,並不在於「對手」vs.「權威」、陰 vs. 陽,我寧可強調兩者有所差異之處,在於中國是「同意(consensus)的推理」,在希臘則是「反對(contrariness)的推理」。洛伊德與席文(Nathan Sivin)最近的比較研究著作《道與話語——早期中國與希臘的科學與醫學》(The Way and the Word(Dao and λόγος): Science and Medicine in Early China and Greece中,對此有更細緻的比較。道(dao)與話語(λόγος,Logos)、同意與爭論的差異,它們是否是東西社會、政治或甚至心理差異的結果,仍是未定之論,需要更仔細、更嚴謹的研究。

然而,有件事在阿基米德與劉徽的比較中顯而易見,那就是無論身在何地,當人類心靈面對數學以及如圓或球這樣特定的數學對象,他們的目標是一致的。他們會建立結論、發現關係,為支配所有圓、所有球的「定律」,不只提供合理的說明,更追求

一般性的真確論證。無論這些圓和球是在古希臘、 古中國,或是今日的數學教室。正如柏拉圖所理解 的,數學是人類心靈最卓越也最不朽的成就。◎

本文參考資料請見〈數理人文資料網頁〉

http://yaucenter.nctu.edu.tw/periodical.php

本文出處

2012 年,作者擔任交通大學人文與社會科學研究中心的訪問學者。作者將該年在清華大學演講的材料整理後,除受邀於同年 9 月 20 日在哈佛大學費正清中國研究中心演講下列主題:"The Evolution of Mathematics in Ancient China: From the Newly Discovered 數 Shu and 算數書 Suan shu shu Bamboo Texts to 九章算術 the Nine Chapters on the Art of Mathematics.",並將演講內容發表於 Notices of the ICCM 2(2014)no.2。作者感謝交大邀訪,與當時郭書春、洪萬生、徐光台、琅元(Alexei Volkov)、鄒大海提供的寶貴意見。本文(上)篇已刊登於上期。

譯者簡介

林倉億畢業於師大數學所,現為臺南一中教師、清華歷史所博士班 學生,著有《數之起源》(合著),譯有《爺爺的證明題》(合譯) 與《溫柔數學史》(合譯),曾任《HPM 通訊》副主編。

延伸閱讀

▶ Netz, Reviel & Noel, William *The Archimedes Codex: Revealing The Secrets of The World's Greatest Palimpsest* (2007),中文譯本: 曹亮吉譯《阿基米德寶典—失落的羊皮書》(2007),天下文化。
▶阿基米德羊皮書的普及網站,可以找到各種資料,以及更仔細的成書說明:http://archimedespalimpsest.org/

其中底下網頁提供歷史說明與影片:

http://archimedespalimpsest.org/about/history/index.php 另外,底下是阿基米德羊皮書本身頁面的專業網站

http://www.archimedespalimpsest.net

▶李宗元 〈祖沖之、球體公式及其他〉(1977),《數學傳播》 第1卷第4期。也可見《數學知識》網頁

http://episte.math.ntu.edu.tw/articles/mm/mm_01_4_01/index.html

⑥ 例子請見 [Bloom],以及艾爾曼(Benjamin Elman)的評論 ([Elman])。