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Currently, my research interest is concerned with analysis and computation of the
Partial Differential Equations (PDEs) arising from geophysical fluid dynamics. For
example, equations related to weather prediction and oceanography are the inviscid
Primitive Equations (PEs) and the Shallow Water Equations (SWEs).
In addition, I am interested in the analysis and numerical methods for the Stochastic
Differential Equations (SDEs) and Stochastic Partial Differential Equations (SPDEs)
which give us different points of view to understand the world. It has also been
suspected that fluid equations with adding noise perturbation such as the stochas-
tic Navier-Stokes Equations and stochastic Euler Equations might be an important
mathematical model for understanding the turbulence of a fluid with a high Reynold
number. In geophysical fluid mechanics, stochastic terms are used to model poorly
understood phenomena.
The research statement is organized as follows. In Section 1, research projects related
to the inviscid 3D Primitive Equations are described. In Section 2, future research
projects related to the shallow water equations are described.

1 Research Projects

In this section, research projects related to the inviscid 3D Primitive Equations are
described.

1.1 Numerical approximation of the 3D inviscid Primitive
Equations in a limited domain

The background of this work is based on a major computational issue for the geo-
physical fluid dynamics. Limited area models (LAMs) are often used to achieve high
resolutions over a region of interest such as regional weather forecasts and simula-
tions of coastal flows and gulf streams. The challenge for using such models is that no
physical laws will provide natural boundary conditions at the nonphysical boundaries.
Furthermore, we want the lateral boundary conditions to be transparent. The diffi-
culties for lateral boundary conditions are on two sides. On the computational side,
if the proposed boundary conditions are not suitable, it is well-known that errors at
the boundary will propagate and advect into the modeled domain and have a major
impact inside the domain. On the mathematical side, the negative result of Oliger
and Sundstrom [19] showed the ill-posedness of the inviscid PEs for any set of local
boundary conditions.
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In [22], the authors have investigated the inviscid PEs in space dimension two and
an infinite set of boundary conditions has been proposed. The well-posedness of the
corresponding linearized equations has been established in [23] and numerical simula-
tions have been performed in [24] for the linearized equations and for the full nonlinear
equations. Note that the nonoccurrence of blow-up in the latter case supports the
(yet unproved) conjecture that the proposed nonlocal boundary conditions are also
suitable for the nonlinear equations.
In [6], the authors considered a 2.5D model for the equations with three orthogo-
nal finite elements in the y-direction. The well-posedness of the linearized equations
was established in [6], and the numerical simulations of the nonlinear equations on a
nested set of domains were discussed in [9].
In [25], the authors obtained an infinite set of nonlocal boundary conditions for the
3D inviscid primitive equations by studying the stationary problem associated with
the linearized equations.
In our work [7], [8], we discussed the numerical simulations of the 3D nonlinear in-
viscid primitive equations on a nested set of domains. The 3D primitive equations,
linearized around a uniformly stratified flow (see [23], [24], [6] and [9]), read

ut + Ū0ux + φx − fv +B(u, v, w;u) = 0,

vt + Ū0vx + φy + fu+B(u, v, w; v) + fŪ0 = 0,

ψt + Ū0ψx +N2w +B(u, v, w;ψ) = 0,

ux + vy + wz = 0,

φz = ψ.

(1.1)

where u, v and w are the perturbation variables of the three velocity components,
φ is the perturbation variable of the pressure, ψ is the perturbation variable of the
temperature; f is the Coriolis force parameter, N is the Brunt–Väisälä (buoyancy)
frequency, assumed to be constant in the current study; B(u, v, w; θ) = uθx+vθy+wθz
for θ = u, v, or ψ.
After performing the normal mode expansions in the vertical direction (see [19] and
[29]), we are presented with an infinite set of 2D equations. We supplement the
equation for the zero (barotropic) mode with the boundary conditions proposed in
[7]. The corresponding equations resemble the Euler equations of incompressible flows
with marked differences. We established the well-posedness of the corresponding
linearized problems using the linear semi-group approach. One step for the proof is
to show the well-posedness of the following unusual boundary value problem of the
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Poisson equation: 
−Ū04v = F1y − F2x(∈ H−1(M′)),

v = 0 at x = 0, y = 0, L2,∫ L1

0
v(x, y) dx = 0.

(1.2)

For numerical schemes, due to its resemblance with the classical Navier-Stokes equa-
tions and Euler equations, we discretize the barotropic (zeroth mode) equations by
the classical projection method (see e.g.[10] and [28]), and by the pressure–correction
method (see [11], [15] and [30]) and study their stability.
For the higher modes, i.e. the subcritical and supercritical modes, the proposed
boundary conditions are based on the directions of the characteristics at the bound-
ary. For the subcritical modes, two boundary conditions are imposed at the left
boundary, and one boundary condition is prescribed at the right boundary in the
x-direction. For the supercritical modes, three boundary conditions are prescribed
at the left boundary, but no boundary condition is imposed on the right boundary.
Note that these proposed boundary conditions are different from those proposed in
[25] and [26]. We believe that the well-posedness of the linearized systems correspond-
ing to higher modes and supplemented with the proposed boundary conditions in [8]
can be established in the same way as in [25] and [26]. This will appear elsewhere.
For numerical schemes for the higher modes, we use the splitting-up method for the
discretization and advance the unknowns along the x- and y- directions in separate
sub-steps and treat the forcing term explicit.
For each mode, the numerical schemes involve the integral of the nonlinear terms.
In this study, we only need to consider a small number (≤ 10) of modes, and it is
then appropriate and sufficient to transform these integrals into the sums of suitable
Fourier coefficients.
In order to test whether the proposed boundary conditions are transparent, two nu-
merical simulations are performed. An initial simulation is carried out on a large
domain with homogeneous boundary conditions. Using the data from the initial sim-
ulation as boundary data, we then perform a second simulation of the same equations
on the middle-half domain. Then we consider the data from the initial simulation
as the true solution and compare these two results over the middle-half domain by
computing the relative errors in the L2 and L∞ norms. The relative errors for u, v, ψ ,
and φ, in both the L2 and L∞ norms, are of the order O(10−2), and the relative errors
for w are of the order O(10−1)(Figure 1- Figure 5).

In conclusion, the absence of blow up supports the idea that the proposed boundary
conditions are suitable for the nonlinear equations and that the proposed numerical
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Figure 1: Top row: evolution of the solution u in the L2 and L∞ norms. Bottom row:
evolution of the relative errors for u in the L2 and L∞ norms.
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Figure 2: Top row: evolution of the solution v in the L2 and L∞ norms. Bottom row:
evolution of the relative errors for v in the L2 and L∞ norms.

4



Research Statement Ming-Cheng Shiue October 2010

0 1 2 3 4 5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

t

Volume normalized L2 norm

0 1 2 3 4 5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t

Relative errors in L2 norm

0 1 2 3 4 5

x 10
4

0

0.02

0.04

0.06

0.08

t

L∞ norm

0 1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

t

Relative errors in L∞ norm

Figure 3: Top row: evolution of the solution w in the L2 and L∞ norms. Bottom
row: evolution of the relative errors for w in the L2 and L∞ norms.
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Figure 4: Top row: evolution of the solution ψ in the L2 and L∞ norms. Bottom row:
evolution of the relative errors for ψ in the L2 and L∞ norms.
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Figure 5: Top row: evolution of the solution φ in L2 and L∞ norms. Bottom row:
evolution of the relative errors for φ in L2 and L∞ norms.

schemes are stable. The fact that the numerical results match very well on the middle-
half domain confirms the transparency property of the proposed boundary conditions.

2 Shallow Water Equations : Current Research

and Future Plans

2.1 Analysis and Computation for the Shallow Water Equa-
tions with topography

The shallow water equations have been commonly used to describe the evolution of
a shallow layer of fluid. In geophysical fluid dynamics, the shallow water equations
are considered as a simplification of the primitive equations. We are then usually
interested in situations related to turbulence and the height h of the flow does not
vanish. We start with the shallow water equations in space dimension one.
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h(x)

B(x)

Figure 6: The shallow water model: h is the height of the water level, and B is the
bottom profile

The one dimensional shallow water equations read:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
− fv = −g∂B(x)

∂x
,

∂v

∂t
+ u

∂v

∂x
+ fu = 0,

∂h

∂t
+ u

∂h

∂x
+
∂u

∂x
h = 0,

(2.1)

where u and v are the x and y components of the velocity, B(x) is the bottom function
of the topography, h is the height of the water, h + B is the water level of the free
surface (Figure 6), g is the gravitational acceleration, and f is the Coriolis parameter;
f is usually a linear function of y, f = f0(1 + βy). Here, we take f conatant for the
sake of simplicity, f = f0.
The purpose of this work is to perform numerical simulations using suitable boundary
conditions and suitable numerical schemes which guarantee efficiency, accuracy and
transparency of the boundary so that the waves freely move in and out of the domain.
In our current work [27], two types of characteristic boundary conditions (linear and
nonlinear) are considered. Linear characteristic boundary conditions have been ap-
plied for a long time, see e.g. [5], [16], [17] and [20]. The nonlinear characteristic
boundary conditions that we implemented in [27] are based on the theoretical work
of Benzoni and Serre [4] which relates to boundary value problems for linear and
nonlinear hyperbolic equations. After our work was completed, we found that these
boundary conditions were also proposed in [18] in the context of a numerical work.
In [18], the authors added lateral viscosity terms in the momentum equations and
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performed numerical simulations of both one-layer and two-layer shallow water mod-
els with the proposed linear and nonlinear characteristic open boundary conditions.
But, in our work, the nonviscous shallow water equations are considered.
The semidiscrete central-upwind method presented in [2],[13] is applied for the space
discretization. One of the important features of this method is that it respects the
direction of wave propagation by measuring the one-sided local speeds. Furthermore,
this method is simple because there are no Rienmann solvers nor characteristic decom-
positions involved. For the time discretization, the Runge-Kutta method of second
order is used, which is one of the standard ODEs’ solvers.
Several numerical experiments for subcritical and supercritical flows with these two
boundary conditions were performed in [27]. For example, we considered a small per-
turbation of a steady state subcritical flow which was modified from [14] or [1]. In this
example, the small disturbance generates two waves and these two waves propagate
at the characteristic speeds ±

√
gh and flow out of the domain smoothly (without

being reflected at the boundary). The other numerical experiments include trans-
critical flows and supercritical flows over a hump and a trapezoidal obstacle. The
transcritical flows produce a stationary shock. For supercritical flows, the free water
surface of the steady states arrives at a large elevation of water above the hump. For
subcritical or supercritical flows, the boundary value problems for which the steady
states produce a propagating shock (see [3] or [12]) will be studied elsewhere.

2.2 Future Plans

In our future plans, we plan to extend this research project by considering first two
dimensional shallow water equations with topography. Namely, we will consider the
system 

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
− fv = −g∂B(x, y)

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+ fu = −g∂B(x, y)

∂y
,

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0.

(2.2)

In this two-dimensional case, our goal will be the same as for the one-dimensional
case. But considerations for suitable boundary conditions and numerical implemen-
tation are different and more complicated due to the additional y direction.
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Another important and interesting issue would be to consider a time dependent bot-
tom topography, and more specifically a stochastically defined bottom to account for
the roughness of the bottom and incertitudes on the function B. In this case, the
bottom function satisfies an SDE of the type:

dB = αdt+ βdW. (2.3)

As we said, such a bottom equation would be useful to account for the roughness and
the uncertainties in the bottom topography. However, we enter here in the difficult
domains of stochastic partial differential equations with white noise in the boundary
conditions [21].
We will also consider the boundary value problems for multi-layer shallow water
equations. For example, the two-layer shallow water equations in space dimension
one read: 

∂h1
∂t

+
∂

∂x
(u1h1) = 0,

∂u1
∂t

+ u1
∂

∂x
u1 + g

∂

∂x
(h1 + rh2) = 0,

∂h2
∂t

+
∂

∂x
(u2h2) = 0,

∂u2
∂t

+ u2
∂

∂x
u1 + g

∂

∂x
(h1 + h2) = 0;

(2.4)

here r =
ρ2
ρ1

< 1, the ρi are the density constants, i = 1, 2, and g is the gravitational

constant. In this case we will meet a formidable difficulty already pointed out in [19]
for the choice of the boundary conditions. Indeed, already in (2.4), we encounter
some form of the difficulty shown in [19] and addressed in our other work [8] for the
primitive equations, that the boundary conditions can not be of local type.
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