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Chapter 1

Gaussian Variables and Gaussian Processes

1.1 Exercise 1.15

Let (Xt)ie[0,1] be a centered Gaussian process. We assume that the mapping (¢, w) — X;(w) from [0,1] x Q into R
is measurable. We denote the covariance function of X by K (u,v).

1. Show that the mapping ¢ + X; from [0, 1] into L?*(2) is continuous if and only if K (u,v) is continuous on
[0,1]2. In what follows, we assume that this condition holds.

2. Let h: [0,1] — R be a measurable function such that

[ moVEE D < .
0

Show that the integral, for a.e., the integral

1 h(t) X (w)dt
0

is absolutely integral. We set Z(w) = fol h(t) X3 (w)dt.

3. We now make the stronger assumption

Show that Z is the L? limit of the variables

Z,=Y X / h(t)dt
i=1 =

when n — oo and infer that Z is a Gaussian random variable.

4. We assume that K (u,v) is twice continuously differentiable. Show that, for every ¢ € [0, 1], the limit

—~ X.—- X
X, = lim =5 =t

s>t s —1t
exists in L2. Verify that (E)te[o,l] is a centered Gaussian process and compute its covariance function.

Proof.

1. First, we assume that K (u,v) is continuous. Note that
Xt — XellT2) = Bl Xepn — Xe) = K(t + byt + h) = 2K (t + h,t) + K(t,1).

By letting A | 0, we see that the mapping t — X; is continuous.

Conversely, we assume that the mapping ¢ — X is continuous. By using Cauchy Schwarz inequality, we get
|K(u+t,v+s) *K(U,U”
S |K(U+t,1}+8) - K(U,U—FS)‘ + |K(U,’U+8) —K(’U,,U)|
= E[l(Xu+t - Xu)Xv+S|] + E[|(Xv+s - Xv)XUH
= ||Xu+t - Xu||L2HXv+S||L2 + ||Xv+s - Xv||L2HXu||L2

Since || Xy,4s||z2 is bounded for small s, we see that K (u,v) is continuous.



2. It’s clear that

/ / 1 () |o(8) | dt P (dw)

QJO

- / / 1, () | o(8)| P (o)
0 Q

- / 1611 |A() | dt
1

< / 116 |2 ()| dt

:/ VEGOIh®)|dt < oo
0

Thus, the integral, for a.e., the integral
1
/ h(t) X (w)dt
0

is absolutely integral.

3. It suffices to show that Z, — Z in L?. Indeed, since {Z,}n>1 are Gaussian random variables and Z,, — Z in
L?, we see that Z is a Gaussian random variable. Note that

N>

3\~

Thus,
E[Z - Z.])?

/Q / h(#) (X (w Xi(w)l[%’;)())dﬂ P(dw))?
//|h )| (Xe(w) — Z X ()lis o ()P (dw)) bt
/|h /|Xt )= DX sy ()Pl

For each t € [0,1) and n > 1 such that % <t< %, we get,
(X, — an1[, Loy ()2 = 11X — X |lpe < |1Xellpe + | X e ]2 <2 st] K(t,t) < 00
" " te[0,1

and therefore

()] < (X~ > X1 (0)llzx < Cla(e)]
=1

for each ¢ € [0,1) and some 0 < C < 0.
Fix t € [0,1). Choose {k,} such that =1 <t < Ex for each n > 1. Since t — X, is continuous, we have

(X, — ZX Lzt oy(8)l]22 = |[Xe = Xea |12 — 0 as 1 — oo.



By using dominated convergence theorem, we have

limsup E[|Z — Z,,|? }2 < hm / [h(t)] x |[(Xe — ZX Lz 1)( N|zzdt =0

n—oo
- =1

and, hence, Z, — Z in L?.

. To show that limg_,¢ X Xf exists in L?, it suffices to show that
X -X: X - X
|| t+h};1 t _ t+h]§2 t ||L2 N 0 as hl’hZ N 0
Note that « v
|| t+h}; t t-&-h}zl ||L2:A+B—ZC,
1 2
where . ,
A= WE[(XH-M - X)) = W(E[Xtm] + E[X?] — 2E[ Xy, X)),
1 1
B= WE[(XHM - X)) = W(E[XH}“’] + E[X7] = 2E[ Xy 45, X4)),
and
1 1
= — ——E[(X4n, — Xt)(Xign, — X)]
|| o]
1
— W(E[XHMXHM + E[X?] — E[Xi1n,X:] — E[Xi1n, X4)).

First, we show that C' — gugv (t,t) as hy, ha — 0. Without loss of generality, we may suppose hi, he > 0. Set

9(z) = K(t+ hi,z) — K(t, 2).

Then 11
=——(g(t+h2) —g(t)).
C= g7, 0t +h) = g(t))
Since K € C?([0,1]?), there exist t1,¢3 such that
1 1 OK(t+ hy,t OK (t,t3 O? K (t1,t3
C = g(tg) ( ( 1 2)_ ( 2)): (1 2)

hl hl ov ov Oudv

By using the continuity of 2 8 a , we see that €' — 3 (t t) as hi,ho — 0.
Similarly, we have A — auav K(t,t) and B — & 811( 7t) as hy, hag — 0. Therefore,

Xt+h1 - Xt _ XtJrhz - X

|| h h t||L2—>Oash1,h2—>0
1 2

and, hence, lim,_.; X =Xt exists in L2. Since £:=%Xt ig a centered Gaussian random variable for all s #t, we

—t s—1

see that Xt = 11m3_>t X ft is a centered Gaussian random variable. Moreover, since any linear combination

> hei Ck S’; o Xt s a centered Gaussian random, we see that (Xt)te[o 1] is a centered Gaussian process.

Finally, we show that
0’°K

k(t’ 5) = Oudv

(t,s),



where K (t,s) is the covariance function of (th)te[o,l]- By using similar argument as in (3), there exist 5, sp,

such that
Xeyn — Xe Xoyn — X K

h R Buan
for each h # 0 and t;, — t and s, — s as h — 0. Since K (u,v) € C?([0,1]?), there exist 0 < C' < oo such that

E[ th,sh)

Xpon — Xo Xoan — X, PK
= t <
- =55t sn)l < C

2

for all h # 0. By using dominated convergence theorem and the continuity of (‘38378[(1;7 we have

fayd > <5 . Xt+h - Xt Xs+h - XS . 62[( 82K
K = E[X;X,]=1lm F = lim —— = — .
(¢, 5) [Xi X [ [ h h i3 Judv (0, 5n) Audv (t5)

1.2 Exercise 1.16 (Kalman filtering)

Let (eén)n>0 and (7, )n>0 be two independent sequences of independent Gaussian random variables such that, for
every 1, e, is distributed according to N'(0,02) and 7, is distributed according to N(0,§2), where o > 0 and ¢ > 0.
We consider two other sequences (X,,)n>0 and (Y},)n>0 defined by the properties Xo = 0, and , for every n > 0,

XnJrl = anXy + €n+1 and Y, = cX, + Nn s

where ¢ and a,, are positive constants. We set

Xo/n = E[Xp[Y0, o0, Vo)

and .
XnJrl/n = E[Xn+1|YE)a ceey Yn]
The goal of the exercise is to find a recursive formula allowing one to compute these conditional expectations.

1. Verify that Xn+1/n = aan/m for every n > 0.

2. Show that, for every n > 1,
E[X,Z,)

—mra Zno
E[Z7]

Xn/n = Xn/n—l +

where Z,, =Y, — an/n_l.
3. Evaluate E[X,Z,] and E[Z2] in terms of P, = E[(X,, — X,,/,_1)?] and infer that, for every n > 1,

cP,

XnJrl/n = an(Xn/nfl + mzn)

4. Verify that P, = 02 and that, for every n > 1, the following induction formula holds:

, 0%P,

-2
Papr=0"tanp =5

Proof.



1. By observing the construction of X,, and Y,,, we see that Yy = 1o and for every n > 1, X,, isa o(ex, k =0, ...,n)-
measurable centered Gaussian random variable and Y;, is a o(ny, €x, k = 0, ..., n)-measurable centered Gaussian
random variable. Since (Yy) = o(ng) and for each n > 1, o(Yy, ..., Y,) C o(ex, nk, k = 0,...,n), we have

Xnt1/n = E[Xnt1|Yo, ., Ya)
= anE[Xn|Y0, ceey Yn] + E[€n+1|Y0, ,Yn]
= anXn/n + Eleni1]

= aan/n.

2. Given n > 1. Set K,, = span{Yp, ..., Y, }. Then, for each centered Gaussian random variable X € L*(Q, F, P),
E[X|Y0, ceny Yn] = PK,, (X),
where pg, is the orthogonal projection onto K, in the Hilbert space L?(Q2, F, P). Observe that

Zp =Y, — CXn/n—l

= Yn - CE[Xn|Y0, ceey Yn—l]

= Yn + E[nn - Yn|YEJu ceey Ynfl]

=Y, + E[n,] — E[Y,|Yo, ..., Yi—1]

=Y, — PK, 1 (}/n)

Set V,, = span{Z,}. Then K, = span{Yo,...,Yn-1,Zn} = Kn—1 ® V,,. Thus,

Xp/n = E[Xn|Yo, ... Ya)
= PK, (Xn)
= pKn—l(X") +pv, (Xn)

Z
= E[X'IL|Y07 -~~7Yn—1]+ < XTL7

>0 . =n
L@ | Znl22(0)

1 ZnllL2(0)
. E[X,Z,]

:X _ 7Z

3. First, we show that
E[Z%) = &P, + 62

Note that
E(Z2) = E[(Yn — X, /n-1)?]
= E[(Y, — cXy + cXp — Xy /n1)?]
= E[(n, + cXn — Xy /mo1)?]
=P, + En] + 2cEn, (X, — Xn/n—l)]
=Py + 02+ 2cEnn(Xy — Xpjn1)]

Since X, is o(ex, k = 0, ..., n)-measurable, Xn/n_l is o(Yx,k =0,...,n —1)-measurable, and o(Yy,k =0,...,n —
1) Co(nk, ek, k=0,...,n—1), we see that

Enn(Xn — Xn/n—l)] = En,]E[X, — Xn/n—l] =0

and therefore
E[Z%) = 2P, + 62



Next, we show that
E[X,Z,] = cP,.

Observe that

E[Xn/n—l(Xn - X”/"—l)]
= Epk,_,(X0)(Xn — pr,_, (X0))].

Since X, is o(eg, k = 0, ...,n)-measurable, we have E[X,n,] = 0 and therefore

E[X,Z,) = E[X,(Yn — X,/ 1)]
[(Xn (Y, — X, + X, — CXn/nq)]
E[X,(nn + cXn — Xy jn1)]
E[X,(Xn — Xo/n1)]
E[X,,(Xp, — Xp/n-1)] = cE[Xyyn_1(Xn — Xpjn_1)]
=cP,.

|
&

C
C

Finally, we have

Xn+1/n = aan/n

. E[X,Z,)
= an(Xpn/n-1+ mzn)
N cP,
= an(Xp/n—1 + mZn)
. Note that
Py = E[(X1 — E[X1|m))’] = E[(e1 — Ele1|no))®] = E[(e1 — Ele1])’] = 0
and

Pn+1 - E[(Xn+l - Xn+1/n)2]
= E[(anXyn + €nt1 — aan/n)Q]
= El(en+1 — an(Xy — Xn/n))Q]
= Ele} 1] + a2 E[(Xo — Xp/n)?] = 200 Elent1(Xp — X /m)]
Since X,, is o(ex, k = 0, ..., n)-measurable, Xn/n is 0(Yy, k = 0,...,n)-measurable, and o(Yy,k = 0,...,n) C

oMk, ek, k =0,...,n), we see that X
Elep1(Xn — Xp0)] =0

and therefore

Pn-‘rl = E[Ei-i-l] + aiE[(Xn - Xn/n)2] =0’ + aiE[(Xn - Xn/n)Q]'



Because Z,, and Xn/n_l are orthogonal and Z,, is centered Gaussian, we get E[ZnX'n/n_l] = 0 and, hence,

Pn+1 = 0'2 + G%E[(Xn - Xn/n)2]
= 02 + GZE[(Xn - Xn/nfl + Xn/nfl - Xn/n)Q]
E[X,.Z,)

—o% 4 aZE[(Xn — Xn/n,l - E[Z7]

Zn)?)

E[X,Z,]
E[Z7]
E[X,Z,)? 2E[XnZn]
E[Z7] E[Z7]

E[XnZn]Q)
E[Z7)
2p?
2P, + (52)
, 0°P,
a2 ——
"e2P, + 62

E[X,Z,]

= g2 + a%(Pn + ( E[Zn(Xn - Xn/n—l)])

=0’ +ad’(P, + E[Z,X,))

=0’ +d’ (P, -
=02+ d’(P,

=0+

1.3 Exercise 1.17

Let H be a (centered) Gaussian space and let H; and Hy be linear subspaces of H. Let K be a closed linear subspace
of H. We write pg for the orthogonal projection onto K. Show that the condition

VX1 € H1,VX2 € Hy, E[X1X3] = E[pr (X1)pk (X2)] (1)

implies that the o-fields o(H;) and o(Hs) are conditionally independent given o(K). (This means that, for every
nonnegative o(H1)-measurable random variable X, and for every nonnegative o(Hs)-measurable random variable

X5, one has
E[X1X;|0(K)] = E[X:|o(K)|E[X2|0(X2)].) (2)

Hint: Via monotone class arguments explained in Appendix Al, it is enough to consider the case where X7, resp.
Xa, is the indicator function of an event depending only on finitely many variables in Hy, resp. in Ha.

Proof.
To show (2), it suffices to show that

E[l{x}eri}---l{X,gleF;,l} x 1{X;erf}---1{X52eF%2} | U(K)]

= E[lxierty-1ixg ery ylo(K)] < Elxiersy-1ixz erz 3 | o(K)] (3)

£
for each Z7 € M, I'; € Bg, ms € N, and s =1, 2.

Let {Z :i=1,2,...,ms} be an orthonormal basis of linear subspace space M of L? spanned by {X? :i =1,2,...,n,}.
Then {Z},Z5,..., Z;, } C Hs are independent centered Gaussians. To show (3), it suffices to show that

Ellzierty--1qzy, ey, y X Yzgersy-zz erz, 3 | 0(K)]
> erz2 1| o(K)] (4)

mo mo

1 erl }|O'(K)] XE[]‘{Z%GF%}]‘{Z

= Ellizeryy iz, e,
for each I'} € Br. Indeed, by the theorem of monotone class, we get

E[l{El}l{EQ} | O'(K)] = E[l{El} | O'(K)]E[l{EQ} | O’(K)] VES c U(MS) and s = 1,2.



and so

E[l{X%€F%}"'1{XiIEF}l1} X 1{X21€F%}...1{X%2€p%2} | O'(K)]
= E[l{XlleF%}...l{X}Llepgll}lO'(K)] X E[l{XQEFf}“'l{XT2L2EFi2} ‘ O'(K)]

for each I'Y € Bg.

By independence of {Z7, Z3, ..., Z;, }, we have

E[(Z] = pr(Z))(Z] —pk(Z5))] =0 Vi jVs=1,2.

By (1) and Corollary 1.10, we get

E((Z} - px(ZD))(Z] — px(Z]))]
= E[Z; Z;] + Elpx (Z})px(Z3)] - E|Z}pk (Z})] — Elpx (Z)Z]]
= Elpx(Z})px(Z)| + Elpx (2} )px (Z})] — E[E[Z}|0(K)lpx(Z])] - Elpk(Z})E[Z}|o(K)]]
= Elpr(Z})px (Z])] + Elpr (2} )px (Z])] —

and

(y — pr(Z3))?

P(Z; €T3|o(K)) = 2(07)? )dy,

exp

o7V2m

where (0f)? = E[(Z; — pk(Z£))?]. Set
VP =27 —px(Z)).

By (5) and (6), {Y;? : s=1,2 and i = 1,2, ...,ms} are independent centered Gaussians. Set

F(z%,...,z}nl,zf,...,zgu) 1{F1}(Zl) 1{[‘1 }( m1) X 1{F2}(Zl) 1{1"2 }( m2)

mo
Since {Y;® : s=1,2 and i = 1,2, ...,n,} is independent of o(K), we get
E[I{leer%}...l{zl Lert, 3 X 1{22161“%}"-1{23,1261“2”2} | o(K)]

= E[F(Z},..,Z}, 23, ..., 72 ) | o(K))

1
= BIF(Y] + pc(Z0), s Y, 4 prc(Z0,), Y2+ prc(22), V2, + pic(22,)) | o(K)]
- / Fyt +pi(ZD), sy, + pR(Z1)0 02 + Pic(Z2), o2, + Pic(Z2,))
PYsl,.A.,YT}Ll,Yl, .
— [ PO+ 2ic(Z), ot + 2008+ 9 (B, + 9 (22,)
Py (dyy)..Pyy (dym,)Pyz(dyi)...Pyz_(dyy,,)

= H /1{r (Wi +pr(Z]))Py:s(dy;)

e

vz, (dyy % ... x dyy, % dyi x ... x dy?,.)

1.4 Exercise 1.18 (Levy’s construction of Brownian motion)

For each t € [0, 1], we set ho(t) = 1, and then, for every integer n > 0 and every k € {0, 1,...,2" — 1},

hn,k( ) =2% 1[ 2k+1)(t) — 2%1[2k+1 2k+2)(t).

on+1oon+1 on+1on+1

10

Elpx(Z})px(Z])] — Elpx (Z})px (Z)] =0 Vi, j



1. Verify that the functions (Haar system) H := {h,, x|n > 0 and k =0, 1,...,2" -1} | J{ho} form an orthonormal
basis of L*([0,1], Bo,1j, dt). (Hint: Observe that, for every fixed n > 0, any function f : [0,1) — R that is

bl S
2n ) 9n

constant on every interval of the form | ), for every 1 < j < 2™ is a linear combination of the functions

in H).

2. Suppose that {No} |J{Nn,x} are independent .4#°(0,1) random variables. Justify the existence of the (unique)
Gaussian white noise G on [0, 1] with intensity d¢, such that G(ho) = Ny and G(h}}) = N} for every n > 0 and
0<k<2" - 1.

3. For every t € [0,1), set By = G(1jg4). Show that

o 2"—1

By =tNoy + Z Z gn,k‘(t)Nn,ka

n=0 k=0

where the series converges in L? | and the functions g, x : [0, 1] = [0, 00) are given by

gn,k(t):/o Pk (s)ds.

Note that the functions g, i are continuous and satisfy the following property: For every fixed n > 0, the
functions g, x, 0 < k < 2™ — 1, have disjoint supports and are bounded above by 277,

4. For every integer m > 0 and every ¢ € [0,1] set

m—12"—1

Bln =tNy + Z Z gn,k(t)Nn,k~

n=0 k=0

Verify that the continuous functions ¢ — Bj" converge uniformly on [0,1] as m — oo (a.s.) (Hint: If N is

A7(0,1) distributed, prove the bound P(|N| > a) < exp(fé) for every a > 1, and use this estimate to bound
the probability of the event {supg<j<on_1 [Nnk| > 27}, for every fixed n > 0.)

5. Conclude that we can, for every t > 0, select a random variable W; which is a.s. equal to B¢, in such a way
that the mapping ¢ — W, is continuous for every w € Q.

Proof.

1. It’s clear that H is an orthonormal system in L?([0, 1], Bjg 13, dt). Now, we show that H is complete. Since
V = L2([0, 1}, B[O,l]? dt),
where V := span(S), S =~ Sn, and

2" —1
Spi={f:[0,1] = R: f(@)= Y el e)} Vn>0,
k=0

it suffices to show that S C span(H).

Fix f € S,, such that
2m 1

fz) = Z Cmlp s sy (x) for some m > 0.
k=0

T

It’s clear that f € span(H) if m = 0. Now, we assume that m > 1. To show that f € span(H), it suffices to
show that there exists real numbers «y, ..., €gm-1_; such that

om—1l_1

f(l’) - Z akhmek(m) S Smfl

k=0

11



Set |
ap — F(CQ]C - 02k+1) YO0 S k S 2m71 —1.
2

Then
Czkl[%,%)(w) + 02k+11[22@#,2§#)($) — aphm—1,k()
_ ROy () TR e (@)
2 [2m7 27 ) 2 [ oM 3 QM )
SR TOhy L W<k<2m -1
2 ogm—179m—1
gm—1_1
and so f(z) =Y v g khm—1k(x) € Spm1.

. Let {No} U{Nn i} be independent .4#(0,1) random variables. Define

oo 2"—1 oo 2"—1

G(COhO + Z Z Cn,k:hn,k> = CONO + Z Z Cn,lan,k:~

n=0 k=0 n=0 k=0
It’s clear that G is a Gaussian white noise with intensity dt.

. It’s clear that

oo 2"—1

Bt::G( Ot] _tNO+ZZgnk nk7

n=0 k=0

where t
Ink(t) = (Ljo,), Ponk) 12 :/ B i (s)ds.
0

n

By the definition of h,, i, we get g, x(t) is continuous, 0 < g,, x(¢) < 22, and supp(gn i) C [211, o
and k= 0,1,..,2" — 1.
. Note that
[eS) co 2"—1 [eS)
D P( sup  [N,p|>29) <)) P(INyg>2%) <) 2%exp(—2% ") < 0.
— 0<k<2n—1 — = —
n=0 == n=0 k=0 n=0
By Borel Cantelli lemma, we have P(E) = 1, where
U n{ sup  |Nnx| < 2%}
ol nem 0Sk<2n-1
Fix w € E. By problem 3, we get
2n—1 on—1
sup | Z gnk n,k| < sup Z gn,k(t)|Nn,k| = sup ( sup gn,k(t)an,kD
tel0,1] _ te[0,1] ;o 0<k<27—1 t€[0,1]
<(27%  sup  |Npgl) <27% x 2% =277 for large n
0<k<2n-—1
and so
mo 2"—1 mo m2
_n my,mo—00
sup | D > gnk(®Nagl < D sup IZgnk WNapl < 3 278 ™7,
t601]nm1k0 nmle[’] k=0 n=m

12
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Thus, >°7 Ziigl 9n. kN1 (w) converge uniformly on [0, 1] and so

oo 2™—1
te[0,1] — By :=tNog + Z Z Gk (t) Ny is continuous (a.s.).
n=0 k=0

Moreover, since
E[(B; — B,)’| = E[G(1(54)%] =t—s Y0<s<t<1

and
E[(B; — Bs)B;] = E[G(1(5,49)G(1j0,)] =0 VO<r<s<t<1,

we see that By — Bs ~ A4(0,t — s) and By — Bs Lo(B,,0 <r < s) for every 0 < s <t < 1.

- Let {Ng" :m > 1} U{N;, :m > 1,n > 0,0 < k < 2" — 1} be independent .#7(0, 1). Define Gaussian white
noises

oo 2"—1 oo 2"—1
G™ (coho + Z Z Cnkhni) == coNG* + Z Z Cn gk NY Ym > 1
n=0 k=0 n=0 k=0
and
oo 2"—1
B =G (L) =tNJ"+ > > gnk®N, Vm > 1t €[0,1].
n=0 k=0

Then B!, B?,... are independent. Define

m—1
Wy= Y Bf+ B, ifm—1<t<m.
k=1

Since (B}")¢eo,1) is continuous for every m > 1, we see that (W;);>o has continuous sample path. Moreover,
since

Wi—=Ws =B |, +B" '+ + BT + Bl =Bl ||~ A (0,t—s) YO<s<tn—1<s<nm—-1<t<m

and
E[(W; —W)W,] =0 Y0<r<s<t,

we see that we see that W, — W, 1Lo(W,.,0 <1 < s) for every 0 < s <t and so (W;)¢>0 is a Brownian motion.

O
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Chapter 2
Brownian Motion

2.1 Exercise 2.25 (Time inversion)

Show that the process (W;);>o defined by

tBi, ift>0
Wt: t 1
0, ift=0.

is indistinguishable of a real Brownian motion started from 0.

Proof.

First, we show that (WW;);>0 is a pre-Brownian motion. That is (W;):>0 is a centered Gaussian with covariance
function K (t,s) = s At. Since (By)t>o0 is a centered Gaussian process, we see that (W;);>0 is a centered Gaussian
process. Let t > 0 and s > 0. Then

1 1
E[WW,] = E[tsB1B1] = ts(— A ;) =tAs
t s S
and
EW Wy =0
Thus, (W});>0 is a pre-Brownian motion.
Next, we show that
B
lim W; = lim L= 0as.
t—00 t—oo t
By considering (By+1 — By)k>0 and using the strong law of large number, we get

B,
— =0 a.s.
n

Let m,n > 0. By using Kolmogorov’s inequality, we see that

2 1 1
. — >n3) < — — R E——
P(max B, s, = Bal 2 n8) € = Bl(Baa = B = —
By letting m — oo, we get
1
P( sup |B:— Bn|> n%) < —.
te[n,n+1] n3

By using Borel-Cantelli is lemma, we have a.s.
B 1 B
=t < — 4+ =2 forlargenand n <t <n+1
t n3 n
and, hence,

. t
lim — =0 a.s.
t—o0

Therefore, W, is continuous at ¢t = 0 a.s.
Finally, we set E = {lim;_, % =0} and

W( ) Wi (w), fwekFE
w) =
! 0, otherwise

for all t > 0. Then (VIA/;)tZO and (Wy);>¢ are indistinguishable. Since (VIA/;)QO has continuous sample path, we see
that (Wy)>0 is the Brownian motion. Thus, (W});>¢ is indistinguishable of a real Brownian motion (W;):>o started
from 0. O
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2.2 Exercise 2.26

For each real a > 0, we set T, = inf{¢t > 0|B; = a}. Show that the process (T,),>0 has stationary independent
increments, in the sense that, for every 0 < a < b, the variable T, — T, is independent of the o-field o(T.,0 < ¢ < a)
and has the same distribution as Ty,_,.

Proof.

1. First, we show that T — T, 2 Ty_o for each 0 < a < b. Given 0 < a < b. Set
By = 11, <c0(Br, 11 — Br,).
Since T, < 0o a.s., we see that (E)tzo is a Brownian motion on probability space (€2, F, P). Set
T, = inf{t > 0|B, = ¢}

for each ¢ € R. Then we see that ﬁ\_/a 2 Ty_q. Since T, < oo a.s., we have a.s. s > T, if B; = b. Thus, we see
that a.s.

Ty_o = inf{t > 0|B, = b—a}

= inf{t + Ty|Br,++ =band t > 0} — T,

=inf{s|Bs =band s > T,} — T,

=inf{s|Bs=b} - T, =T, — T,

and therefore
T, —T, 2T, ..

2. Next, we show that T, — T, is independent of the o-field o(T.,0 < ¢ < a). Given 0 < a < b. By using strong

Markov property, we see that B; is independent of Fr,. Since T, < T, for 0 < ¢ < a, we have Fp, C Fr, for
each 0 < ¢ < a. Indeed, if A € Fr_, then

ANTo <t} = (A(UTe <) [({Tu <t} € F

Therefore
{T., <t1,...,Te, <tn} € Fr,

foreachn > 1,0 < ¢; < .. <e¢, < a, and non-negative real number ¢4, ..., ¢t,,. By using monotone class theorem,
we have
o(T.,0<c<a)C Fr,.

Note that T, — T, = 1/“;:/,1 a.s. To show T, — T, is independent of o(T¢,0 < ¢ < a), it suffices to show that 7/}_,:
is independent of ¢(7¢,0 < ¢ < a). Since {T},—o <t} = {infseqnyo,q |Bs — (b —a)| = 0} and B; is independent

of Fr,, we see that 1/}?:1 is independent of Fr,. Because o(7.,0 < ¢ < a) C Fr,, we see that T, — T, is
independent of o(7,0 < ¢ < a).

O

2.3 [Exercise 2.27 (Brownian bridge)
We set W, = By —tB; VvVt € [0,1].

1. Show that (W};).cp0,1] is a centered Gaussian process and give its covariance function.
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2. Let 0 < t1 <ty < ... <ty < 1. Show that the law of (W;,, Wy, ,...,W;, ) has density
9(93171”2, Im) = V27py, (xl)ptz—tz (Iz - 1”1)-~-Ptm—tm,1 (l”m - Im—l)pl—t,,(*l‘m),

where p;(x) = \/217 exp( = ) Explain why the law of (W, , Wi,, ..., Wy, ) can be interpreted as the conditional
law of (By,, Bt,, ..., Bt,,) knovvlng that By = 0.

3. Verify that the two processes (Wi)icjo,1] and (Wi—¢)¢cjo,1] have the same distribution (similarly as in the
definition of Wiener measure, this law is a probability measure on the space of all continuous functions from
[0,1] into R).

Proof.
L Lt 0<t; <ty <..<tm<1l, Q:=>", tc and R; := Z:ij ¢; V1< j<m. Then

Y Wi = =Q(Bi = By,,) + (Q+ Rn)(Bi,, = Bi, ) + o+ (Q+ Ro)(Bi, = Biy) + (Q + R1) By,

is a centered Gaussian and so (W;)se[o,1) is a centered Gaussian process. Moreover, the its covariance function

EW,W;| = E[(B; —tB1)(Bs —sBy)| =tAs—ts—ts+ts=tANs—ts Vi,sel0,1].

2. Let 0=ty < t1 <ty < .. <ty <tmyr =1 and F(ay,...,2,,) be nonnegative measurable function on R™.

Then
E[F(W,, Wiy, ... Wi, )| = E[F (B, — t1B1, By, —t2Bu, ..., By,, — tmB1)]
m—+1
= / F(r1 — t1Zmy1, T2 — t2Tma1s s T — tinTmg1) H Pti—t; 1 (@i — Ti—1)dx1...dTm 41 (2o = 0)
Rm+1 =1

= / F(y1, 92, s Ym) Hpt —ti 1 (Wi = Yim1 + (G = i) Yma1)P1—t0, Yt 1 — Y — tmYmt1) Y1 dYm11
Rm,+1 i=1

(Set yo = 0,y = v — tiTmy1 ,and Ymy1 = Trmt1)-
Note that
1
Pti—tis (Yi — Vi1 + (ti — tic1)Ymr1) = Pri—tiy (Yi — Yio1) eXP(—Ym+1(yi — yi—l))exp(*g(ti —tic1)Ypi1)

for each 1 <7 <m and

1
D1t i1 = Y = tmYm1) = Prty, (=Ym) XD Umm 1) exp(=5 (1 = tm)y41)-
Then

1
H Pti—ti 1 (Yi—Yim1+(Ei—tio1)Ym+1)P1—t,, Ymt1—Ym—tmYmt1) = Hpti—tl_l (Yi=Yi-1)P1-t,, (—Ym) exp(—iyfnﬂ)

and so

E[F(Wy,, Wiy, ..., We,,)]

m

=/ F(y1,y2, .., ym) H tie = Yi-1+ (i = tie1)Ym+1)P1—t Ymt1 = Ym — Yt 1)dY1 - AYg
Rm+1 i=1
1 2
= F ?Jhyz,- 5 Ym Hpt,—t, 1(yi_yi—1)p1—tm(—ym)( eXp(—iymﬂ)dymﬂ)dyu.dym
" =1 R

/ F(y1,92, - Ym Hptz—tb V(Yi = Yim1)pi—t,, (—ym) V21dys ... dym.
i=1
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3. We have twos ways to explain why the law of Brownian bridge (W;).c[0,1] can be interpreted as the conditional

law of (B;)iec[o,1] knowing that B; = 0.
(a) First, we show that, if B;(w) = 0, then
E[F(By,,...,B:,,)|B1](w) = F(z1, .y @m)g(X1, ooy T )dxy . d Ty
]Rm

for every 0 = tg < t1 <ty < ... < ty, < type1 = 1 and F(x1, ..., x,,) be nonnegative measurable function
on R™. Observe that
E[F(Bt,, ..., By,,)|B1] = ¢(B1),

where zg = 0,

m+1
q(xm_H) = / thP___’Btm,B1 (561, ...,$m,$m+1)d$1...d$m = / H pti_ti—l (1‘1 — $Z‘_1)d1‘1...dl’m,
R’Vn m l:1
and
1
o(Tmi1) = m F(21, s Tm) By, ... By, B2 (T15 ooy Ty T 1) ATy . dTyy,
m—+1 Rm™
1 m—+1
=— F(z1,...,zm) Dt,—t,_ (X — xi—1)dz1...dT .
q($m+1) /m ) ym g 1 K2 K2 m
Note that
e 1 1
q(0) = /n 1,1pti_ti71(xi — Ti—1)p1-t,, (—Tm)dzy...dTyy = \/—27_ /m 9(1, ey T )dxy o d Xy, = \/—27
and

m—+1
1
©(0) = 70 /m F(x1, ..., 2m) 1131: Dti—ty 1 (X5 — xi—1)dxy...dxy,

m
=27 F(x1, .oy i) Hpti_ti—l (x; — Ti—1)p1-t,, (—Tm)dzy...dTp,
i=1

1
oy T ) —=—=G(X 1, ety T
V2T

= / F(x1, ooy ) g(1, oey T )dX 1 o d oy

d$1...d:nm

=27 F(.”L'l,
Rm™m

Thus, if w € {B; = 0}, then
E[F(By,,...,B,,)|B1](w) = ¢(0) = / F(z1, .y @m) (X1, ey T )dT1 . Ty .

(b) Next, we show that
(Bur,ooo )IB1l <€) % (Wi, ooy W)

m

for every 0 < t; < t2 < .. < t;, < 1 and so the conditional law of (Bi):c[o,1] knowing that |B;| < ¢
converges weakly to the law of (Wi)icjo,1). Given 0 < t; <t < ... < t,, < 1 and F(zy,...,7y) be
nonnegative measurable function on R™. Set

pe(dzy...dry,) == P((Bty, ..., Bt,, € dzy...dxy)||B1] <€) Ve>0.
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Then

/F(‘Tla7xm):u‘€(dxldzm) = P(|B1| < 6)71E[F(Bt17"'7Btm)1{\Bl\S€}]

P(|B,| <€) 'E[E[F(By,, ..., By, )| Bi]l{5,1<¢}]
P(|Bi| < &) E[p(B1) 1B, <c]
/ P(|B;| < 6) e_w2/21{|x|§5})dx.

It’s clear that () is continuous and so
/F(ml, ooy T ) e (dx1 o dX ) — (0) = / F(z1,..m)g(T1, .oy T )dxy .. .dTy, a8 € — 0.

4. Let 0=tg <t; <ta <. <ty <tmyr =1and F(zq,...,2,,) be nonnegative measurable function on R™. Set
i =1 —tmy1—; for every 0 <i < m+ 1. Then

EFWi_¢,,..Wi_y,)] = E[F(Ws,, ..., W,)]

:/ F(ym,ym 15+ Y1 l_IpsZ—s7 1(y Yi— 1)271 sm(ym)\/ dyl dym
]Rm

i=1

= F(xy,...,x Hpsl sioa (@i — Xim1)P1—s,, (Tm)V21dxy...dTp,
R™ i

= | F(x1, o wm) [ pr—t (@ — 2im)p1s,, (2m)V2rday ...dap,
Rm =1
[ (tha"'vwfm)]

and so (Wi)seqo,1] and (W1_¢)¢e(0,1) have the same distribution.

2.4 Exercise 2.28 (Local maxima of Brownian paths)

Show that, a.s., the local maxima of Brownian motion are distinct: a.s., for any choice of the rational numbers
0<p<qg<r<s, wehave
sup By # sup By.
p<t<q r<t<s
Proof.
Fixed any rational numbers 0 < p < ¢ < r < s. We show that

P(sup B, = sup B;)=0.

p<t<q r<t<s

Set

X = sup By — B,
p<t<q

and

Y = sup B; — B,.
r<t<s

Since {B, — Bi|p <t < ¢} and {B; — B,|r <t < s} are independent, we see that X and Y are independent

18



By using simple Markov property, we see that (B; — B,.);>, is a Brownian motion. Set S; = sup,>,. B; — B,.. By
using reflection principle, we have

P(S; > a)=P(supB; — B, > a)

t>r

= P(sup B;—, > a)
t>r

= P(|Bi—r| = a)
and, hence, S; is a continuous random variable for each ¢ > r. Therefore,
P(sup By = sup B;)=P(sup B;— B, = sup B;— B,)
p<t<gq r<t<s p<t<gq r<t<s
=P(X-Y=0)
— [ Lo+ 9P, v (do x dy)
R
= /]R2 Lioy(z +9) P(x,vy)(dz x dy)
= /R/Rl{o}(x—ky)P,y(dy)PX(dx)
~ [ [ 1 @PridyPx(n)
R JR
_ / P(—Y = —2)Px (dz) = 0
R

Thus, we have

P( U sup By = sup B;) =0

0<p<g<r<s are rational PStsq rst<s

2.5 Exercise 2.29 (Non-differentiability)
Show that, a.s.,

. By .. DB
limsup — = oo and liminf — = —o0,
to Vit 1o\t
and infer that, for each s > 0, the function ¢ — B; has a.s. no right derivative at s.
Proof.
1. First, we show that a.s.,
. B, .. . B
limsup — = oo and liminf — = —o0.
1o Vi 10\t

Given M > 0. Since
lim sup B _ lim sup By € F
— = — 0
10 N 0<t<c V1 +
and therefore

B,

Vit

{limsup — > M} € 4.
10

19



Now, by Fatou’s lemma, we have

B
P(limsup — > M)

1o Vit
B, -1
> P(limsup —— > M
= Pllimsup 570 = M)
B _
= P(Z2 > Mio)
1
B, -1
= P(limsu n
( n—)oop{\/n_
B, -1
> limsup P(—— > M
22
2

© q
= —— exp(——)dx >0
A4 i;wm )dx

> M})

Therefore, by zero-one law, we have a.s.
B,

limsup — > M.
o Vit

Since M is arbitrary, we get

. Bt . . Bt
P(limsup — =o00) = lim P(limsup — >n) = 1.
( 1oVt ) n—o0 ( 1o Vit )

Because (—B¢):>0 is a Brownian motion, we see that

.. B . —DBy
P(liminf — = —00) = P(limsup — = o0) = 1.
( ) ( P )

tl0 \/i 10

2. We show that, for each s > 0, the function ¢ — B; has a.s. no right derivative at s. Given s > 0. Observe that

B, — B;
P(limsup ————* = o)
tls t—s
B, — B; 1
= P(limsu X =00
(twp — — )
= P(limsup ——= = 0) = 1
tls t—s
and
B; — B
P(liminf —-——=2 = —0)
tls t—s
B, — B, 1
= P(liminf —-—== x = —o0)
tls t—s t—s
Bi—s
= P(liminf —=~ = —c0) =1

tls /t— s

Then the function ¢ — B; has a.s. no right derivative at s.
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2.6 Exercise 2.30 (Zero set of Brownian motion)

Let H = {t € [0,1]|B; = 0}. Show that H is a.s. a compact subset of [0, 1] with no isolated point and zero Lebesgue
measure.

Proof.
Since (Bi)¢efo,1) is continuous, we see that H is closed and so H is compact. Observe that

1 1 1
E[)\R(H)] = /Q/ 1{56[011]:]38:0}(ﬁ)dtp(dw) = / /Q1{56[0,1]:BS:0}(t)P(dw)dt = / P(Bt = O)dt =0
0 0 0

and so Ag(H) =0 (a.s.).
Now, we show that H has no isolated points (a.s.). Define

T,:=inf{t >q: B, =0} VYge[0,1)( Q.
Observe that

P( sup Br,1s>0and o%gisBTq+S<O VeG(O,l—q)ﬂQ, VqE[O,l)ﬂQ):l.

0<s<e

Indeed, by proposition 2.14 and the strong Markov property, we get
P(Osgli];g)EBTqus > 0 and ngge Br,4s <0 Veec (0,1—gq) ﬂ@)

= P( sup B, >0 and 0gngBsa) Vee (0,1-¢)(1Q) =1 Yge[0,1)[ Q.

0<s<e

Set
E= ) ( GreO,)Q T,<T,<T,+¢}
¢€[0,1) NQe€(0,1-9) NQ

Then P(E) =1 and so Ty is not an isolated point for every ¢ € [0,1)(Q (a.s.). Fix w € E. Let t € H\ {T, : g €
[0,1)Q}. Choose ¢, € [0,1)(Q such that ¢, 1 ¢. Since ¢, < ¢ and B; = 0, we have

Gn <Ty, <t Yn2>1

and so Ty, 1t. Thus, ¢ is not an isolated. Therefore, H has no isolated points (a.s.). O

2.7 Exercise 2.31 (Time reversal)

We set B; = By — By for every t € [0,1]. Show that the two processes (By):cjo,1) and (B{)¢c[o,1) have the same law
(as in the definition of Wiener measure, this law is a probability measure on the space of all continuous functions
from [0, 1] into R).

Proof.
Let 0 =ty < t1 < ta < ... <ty < type1 = 1 and F(x1,...,2,n) be nonnegative measurable function on R™. Set
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Si =1—tmq1—; for every 0 <i <m+1 and pi(z) = \/21? exp(—%). Then

E[F(B;l, ey B{m)] = E[F(By — Bs,,,...,B1 — Bs,)]
m—+1

= / F(zm+1 —Tmy Tm4+1 — Tm—1s -y Tm41 — Il) H psi—si,l(xi - xi—l)dxl---dan+l($O = O)
R7n+1 N
i=1

m+1
= / ) F(y1,y2, s Ym) H Ptoir—iory—tms1—i Ym1—(i—1) — Ymt1—i)AY1 ... dYmy1  (Yi = Tmg1 — Tmg1—; V0 <i<m+1)
i=1

m+1
= / » F(y1,y2, s ym) || poimtes 0 = 9i-1)dyn . dyma
R’"l 121

m
= / F(yla Y2, -5 ym) Hpt'i_ti—l (yi - yi—l) X (/ Ptrii—tm (ym-‘rl - ym)dym+l)dy1~-~dym
m Z=1 R

=/ F(y1, Y2, ¥m) [ [ Pti—ties (i — vi-1) X 1dyy...dym = E[F(By,, ..., By,,)]
" i=1

and so (By)ie[0,1] and (B})¢e(o,1) have the same distribution. O

2.8 Exercise 2.32 (Arcsine law)

Set T :=inf{t >0: B; = S1}.
1. Show that T < 1 a.s. (one may use the result of the previous exercise) and then that T is not a stopping time.
2. Verify that the three variables S;, Sy — B; and | B;| have the same law.
3. Show that T is distributed according to the so-called arcsine law, whose density is

1
g(t) = ml(o,n (t).

4. Show that the results of questions 1. and 3. remain valid if T is replaced by
L:=sup{t <1:B; =0}

Proof.

1. Tt’s clear that P(T < 1) = 1. Suppose that P(T = 1) > 0. By exercise 2.31 and proposition 2.14, we get

P( inf B, <0 Vee (0,1))=P( inf B;,<0 Veec (0,1))=1,

0<s<e 0<s<
where B, = By — By, for every ¢ € [0,1]. On the other hand,
0<P(T=1)<P(B,>0 Vsel0,1])

which is a contradiction. Thus, we have P(T' < 1) = 1.

Now, we show that T is not a stopping time by contradiction. Assume that T is a stopping time. By theorem
2.20 (strong Markov property), we see that B = Br,; — Br is a Brownian motion. Since P(T < 1) = 1, we
get

P( sup BT <0 for some ¢ > 0) = 1,
0<s<e
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which contradiction to (proposition 2.14)

P(sup Bl >0 Ve>0)=1.

0<s<e

Thus, we see that T is not a topping time.

. Fix t > 0. By theorem 2.21, we have S; 2\B |B;|. Now, we show that S; = Sf B;. By similar argument as the
proof of exercise 2.31, we get (B)se[o,4 4 (Bs)sejo,4), where B, = By — By for every s € [0,t]. It’s clear that
(BY)scio.] % (—BL)scpo.- Thus, we have

S; = sup B, < sup —B. = sup By_s — B, = sup Bs— B, =85; —

S
0<s<t 0<s<t 0<s<t 0<s<t

. Since

P( sup Bs# sup B, for all rational numbers p; < q1 < p2 < ¢2) = 1,
P1<s<q1 Pp2<s<q2

we see that the global maximum of (B;).co,1] is attained at a unique time (a.s.). That is,
PAltel0,1] B:=51)=1.
Let r € (0,1) and Z1, Z e A4(0,1). Then

P(T < r)=P(max B; > max B;) = P(max B; — B, > max B; — B,).

0<t<r r<s<1 0<t<r r<s<1
Since
max By — B, max By — B,,
0<t<r r<s<l1
max By — B, = max (B,_; — B,) % max B, = S, < |\/rZ],
0<t<r 0<t<r 0<t<r
and 4 4
rgaéB — B, = = max (Bs — B,) = [ Jnax By =51 =V1—1|Z],
we get
|Z]?
P(T<r)=P(r|Zi|>V1—-r|Z])) =P(—————= <7
( ) (\/>‘ 1| | 2|) (|Z1|2+‘ZQ|2 )
d 2 .
and so T' = % Since
|Z2|2 y2 1 l‘2 + y2
Ef(————— — dxd
Hgpae) = [ >2ﬂ exp(~ 1 )drdy

2 2
/ / fxzw S ep(— ) dudy
/ / f(sin(6 —exp( xz;yZ)rdrdH
%/0 f(t)Qm—t\/idt

/ L N
Vi)

we see that

is the density function of T'.
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4. We redefine L(f) as the latest time of f € C([0, 1]) such that f(¢) = f(0). That is,
L(f) =sup{t < 1: f(t) = f(0)}.

Then L = L((|Bt|)¢e[o,17). Since the global maximum of (B;)c[o,1) is attained at a unique time (a.s.), we see

that T'= L((S¢ — Bt)te0,1]) (a.s.). Since Sy — By < | B;| for every t > 0 and they have continuous sample path,

we see that (S; — Bt)i>0 < (|Bt|)¢>0 and so L L 7. Thus, g(t) is the density function of L, L < 1 (a.s.), and L

is not a stopping time. Indeed, if L is a stopping time,

Bl =By~ B, ") B, Vt>0

is a Brownian motion with 0 is an isolated point of {t € [0,1] : B; = 0} (a.s.) which contradict to Exercise 2.30.

O

2.9 Exercise 2.33 (Law of the iterated logarithm)

The goal of the exercise is to prove that

B
lim sup ' —1aqs.

oo \/2tloglogt
We set h(t) = +/2tloglogt.
1. Show that, for every t > 0,
2 u?

exp(——),
e p( 2)

P(St > U\/%) ~
when u — oo.
2. Let r and ¢ be two real numbers such that 1 < r < ¢? and set S; = sup,; Bs. From the behavior of the

probabilities P(S,» > ch(r"~!)) when n — oo, infer that, a.s.,

: By
lim sup

— <1
t—oo /2tloglog2t —

3. Show that a.s. there are infinitely many values of n such that

—1
Byn — Byno1 > 1| ——h(r™).
T

Conclude that the statement given at the beginning of the exercise holds.

4. What is the value of
.. B;
lim inf ?

t—oo (/2tloglogt
Proof.

1. Given t > 0. By using the reflection principle, we have
P(S; > uVt)
= P(S; > uVt, B; > uvt) + P(S; > uv/t, By < u\/t)
= P(B; > uV/t) + P(B; > u\/1)
=2P(B; > uV't)

2/°° 1 ( x?
= exp(——
w/E V2t P 2t

2 > y?
= 7271_/u exp(—?)dy

)dx
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Note that, for x > 0,

o 3 2 1 1 2
| 0= ey = - pesn(-),
we have
00 2 00 2 2 0o 1 2
/m exp(—%)dy = /0 exp(— (z J;z) )dz < exp(—%)/o exp(—zz)dz = - exp(—%)
and ) . ) - )
£ Y
(; - ﬁ)exp(—?) < /z GXP(—?)dU
Thus,
2 1 1 u? 1 u?
— (- - = ——)< P 1) < —— -
—(; — ) ep(—T5) < PS> Vi) €~ exp(= )
and therefore
P(S; > u/) ~ ——exp(—2)
U ~ exp(——),
! uy/2m Py
when u — co.
. Given 1 < r < 2. By using similar argument, we have
> 1 z? 2 2

P(Syn > ch(r™™ 1)) = 2/

exp(——)de = — exp(—y—)dy.
ch(rn—1) V2mrn" 2rm V2 %‘1) 2

Because
A ) — 00 as n — 0o
J
and 2 2
o0 1
/x exp(—%)dy <2 exp(—%),
we get
- 1 h(rn—1)2
nlggop(ST > ch(r" ™)) < nhﬂn;Q 5 ch(rn 1) exp( 5 n ) =0.

Choose {ny} such that

ZP e > ch(r™ 1)) < oo

By using Borel-Cantelli lemma, we get

Sr"k h(rnk_l) :

PGamy > “himn

Observe that

Then



and, hence,
Sy

B
P(limsup — < i) > P(limsup

NIV TRV

Fixed r > 1. Choose {c,,} such that 1 <7 < ¢2 and ¢2 | 7. Then

)=1.

. Bt Cn
P(limsup — < —) =1
(limsup 375 < V7

for each n > 1. By letting n — oo, we have

By
I 1.“[ —<1)=1
( i h(t) — )

. Given r > 1. Set d to be the positive number such that d = log(r). By using the fact that the increments of
Brownian motion are Gaussian random variables, we have

r—1

P(Byn — Byoos > h(r™))
T

By — Bons
= P(ﬁ Z \/210g10g7“")

Brn - Brn—
= P(-——2_ > \/2logdn)

T7l — rn
[e%s} 1 172
- —— exp(——)dz
/\/m V2m 2
1 1 1 1

2 - 3
IR, 27r(\/210gdn (2 log dn)i )d’l’L

0o 1 o 00
Because )~ , e = o and Yoo

T+ < 00, we see that
n(logn)?2

r—1
r

> P(Bun — Bpuer > h(r™)) = oo.
n=1

Note that {Byn — B,n-1},>1 are independent. By using Borel-Cantelli lemma, we have

r—1

P(Brn — Brn—l Z h(T’n) 1.0. ) =1.

r

Now, we show that

B,
P(limsup — =1) = 1.
(limsup 775 =1)

It remain to show that B
P(limsup —~ > 1) = 1.

t—00 h(t)
Given r > 1. Since
P(Byn — Byn1 > | “—=h(r") 1.0. ) = 1,
r
we have
_ n—1 _
P( Bn > r—1 loglogr 1 Bn-1 0. ) =1,
h(rm) r log log r™ r h(rn—1)
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and, hence, we have a.s.

lim su & > S + \/Tlimsu ﬂ
P Bt = Ty e P ()

Thus,
. Bt 2 T*l
P((l — ) > ————)=1f h 1.
((lgilolph(t)) _r—2\/77+1) or each r >
Choose {ry|r, > 1} such that r, | 1. Since #\/%H — 1 asr ] 1, we see that
. B; 4 . . B; , rp— 1
P((1 —)*>1)= lim P((l —_— )
((timsup 7z5)" 2 1) = m P((limsup 725)" 2 S

and, hence,

By
P(li 2t >y =1,
“?iilip o = )

. Since (—By)¢>0 is a Brownian motion, we see that

... By s By
P(htrglogf ) -1)= P(h?isogpw =1)=1

and, hence, we have a.s.

.. o
llggfwf 1.
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Chapter 3

Filtrations and Martingales

3.1

1.

Exercise 3.26

Let M be a martingale with continuous sample paths such that My = x € Ry. We assume that M; > 0 for
each ¢ > 0, and that M; — 0 as when t — oo, a.s. Show that, for each y > =,

P(sup M; > y) = L
t>0 Yy

Give the law of

sup B;
t<Tyo

when B is a Brownian motion started from x > 0 and Ty = inf{¢t > 0|B, = 0}.

Assume now that B is a Brownian motion started from 0, and let p > o. Using an appropriate exponential
martingale, show that

sup(B: — pt)
£>0

is exponentially distributed with parameter 2.

Proof.

1.

Given y > = > 0. First, we suppose (M;);>0 is uniformly integrable. Then (M;):>¢ is bounded in L' and,
hence,

M, = lim M; =0 a.s.
t—o0
Set T'= inf{t > 0|M; = y}. Then T is a stopping time. By optional stopping times, we have
E[Mr] = E[My] = z.

Observe that
EMr]|=yP(T < o0)+ P(T =00) x0=yP(T < )

and

P(T < c0) = P(sup M; > ).
>0

Thus, we have

P(sup My > y) = z
t>0 Y

Next, we consider a general martingale (M;);>o. For each n > 1, we set
Nt(n) == Mt/\n-
Then (Nt(n))tzo is an uniformly integrable martingale for each n > 1 and therefore

P(sup M; >y) = P(supN™ >y) ="
y

0<t<n >0
Letting n — oo, gives

P(sup M, > y) = =.
t>0 Y
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2. If y < x, it’s clear that

P(sup B, > y) =1.
t<To

Now we consider y > x. Set
Nt = Bt/\To
for each ¢ > 0. Then (INV;);>0 is a martingale. Since Ty < oo a.s., we get Ny — 0 when ¢ — co. Thus,

P(sup B, > y) = P(supN, > y) = L
t<T, t>0 Y

3. Given p > 0. If y <0, it’s clear that
P(sup(By — pt) > y) = 1.

>0
Now, we suppose y > 0. Observe that

P(sup(B; — pt) > y)
>0

= P(i‘ilg(B%)% —u((5-)%t) > y)

2

1
= P(sup(2uB( )2, — 5t) = 2uy)
>0 Z 2

1
= P(sup(B; — 5t) = 2uy)
t>0

_1
= P(sup eBr—at > ez“y)
>0

Set M, = eBt+=3" for each ¢ > 0. Then (My)¢>0 is a nonnegative martingale with continuous simple path. Since
limy_y o0 % =0 a.s., we get

. 1 . B 1

tlg(r)lo(Bt — §t) = tlg(r)lot(T - 5) = —00 a.s.

and, hence, lim;_, o, M; = 0 a.s. Because e?*¥ > 1 = My, we get

P(sup(B; — pt) > y) = P(sup M; > ) = ™.
>0 >0

Therefore, we have

P(sup(B; — put) < y) =

1—e 2% if y >0,
>0

0, otherwise.

and, hence, sup,~,(B; — ut) has exponentially distributed with parameter 2.

3.2 Exercise 3.27

Let B be an .%;-Brownian motion started from 0. Recall the notation T, = inf{t > 0|B; = z}, for each z € R. We
fix two real numbers a and b with a < 0 < b, and we set

T =T, NTp.
1. Show that, for every A > 0,
BT cosh(252 v/ 2)\)'
cosh(25%v2))



2. Show similarly that, for every A > 0,

sinh(b\/ﬁ)
sinh((b — a)v/2X)

E[e_)\Tl{T:Ta}} =

3. Show that

Proof.

1. Set a = H?a and
M, = 6\/5(Bt—a)—xt + e—\/ﬂ(Bt—a)—At

for each ¢t > 0.

Since

_(v2n)?
(U)o = (VP P27 1),

and
vzn?,
2

(Vi)izo = (V2N £20

are martingales, we see that
M, = e VPey, 4 eVPey,

is a martingale. Because
0 < Uppy < V2V

and
0 < Vipr < eV o)

for each t > 0, we see that (Uiar))i>0 and ((Viar))i>o are uniformly integrable martingales and, hence,
(Miar)e>0 is a uniformly integrable martingale. Thus, by optional stopping theorem, we get

b+ a

E[My) = E[M] = 2 cosh(vV2A——).

Observe that

b—a

E[Myr) = e V5 Ble g, <p] + VP 5 Ele ™ 11, <1,
+ eV Ele M g o]+ e VA Ele M 11, o1
_ E[B—AT](e\/ﬁb’T“ _‘_e—\/ﬁb;“)

)

—a

= E[e ]2 cosh(V 2)\b 5

and therefore

BleT) = cosh(b'*'T“\/ﬁ)
‘ B cosh(b_%\/ﬁ).

2. Set a = HT“ and
N, = e\/ﬁ(Bt—a)—At . e—\/ﬁ(Bt—a)—,\t
for each ¢ > 0. By using similar arguments as above, we get

a+b

E[Nr] = E[Ny] = —2sinh(V2\ )
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and

b—a

E[N7] = eV Ele g, <p] — VT Ele 17, <1,

a

/ b—a /oy b—
+e 225 E[e_/\TlTa>Tb} —e 225 E[e_)\TlTa>Tb]
b—a

)E[eiATlTa >Tb]

b _
= —2sinh(V2A— Y E[eT 17, <7,] + 2sinh(v2X

Observe that

2 cosh(\/ﬁb —; a) = E[Mry]

b— b—
= 2 cosh(V 2)\—G)E[6_leTa§Tb] + 2 cosh(v py—

5 JEle 11, >1,]

Thus, we have

cosh(\ﬁ ) = cosh(\ﬁ DEle M lp_r,] + cosh(\/ﬁb_Ta)E[e_leT:Tb]
- smh(\/i - smh(\/i)\bTa)E[e_)‘TlT:Tu] + sinh(\/ﬁlFT“)E[e_ATlT:Tb]

By using the formula
sinh(x 4+ y) = sinh(z) cosh(y) + sinh(y) cosh(x),

we get
sinh(bv/2))

Ble™ lgrry] = sinh((b— a)v/2X)

3. By using dominated convergence theorem and the result in problem 2, we have

P(Ta < Tb) = E[lT:Ta}
= lim E[e " 1p_r]
A—0+
. sinh(bv/2X)
im
A0+ sinh((b — a)V2)\)
b
b—a

3.3 Exercise 3.28

Let B be an (.%;)-Brownian motion started from 0. Let a > 0 and
0o =inf{t > 0| B, <t —a}.
1. Show that o, is a stopping time and that o, < oo a.s.
2. Using an appropriate exponential martingale, show that, for every A > 0,

E[ef)\aa] _ efa(\/ 1+2)\71)'

The fact that this formula remains valid for A € [—%, 0] can be obtained via an argument of analytic continua-
tion.
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at 18 closed if and only if p <1

. Show that the stopped martingale M, n

3. Let u € R and M; = etBr—"%
Proof.
1. Since liminf;, o B = —00 a.s., we see that liminf;,(B; —t) = —o00 a.s. and 0, < 00 a.s
2. Given A > 0. Set t = 1—+/1+ 2). Then ——+u = —Xand (M;);>o = (!B~ ”“At)t>0 is a local martingale
—a < B/ — (04, A1) <
“—(0at)) < o—ha

Moreover, since
0< e (BY

and
‘e”Bm u(aa/\t)eu(ﬂa/\t)—Tﬂa/\t‘ < gha

for all t > 0, we see that
2] = fer o
for all ¢ > 0 and therefore M is an uniformly integrable martingale. By optional stopping theorem, we have
Elenoe—ne—trou] = ElerBo—tron] = 1,

— V142X

Since
w=1
and )
1
_E Y
D) +u )
we get
E[ef)\aa] — eha efa(\/1+2)\71).
Next, we show that the statement is true when A € | ]. Set @ ={z € C| Re(z) > —3}. Define f: Q— Z
by
f(z) = E[e77"].
Note that oA
1 2 2 -
/ e s = Ve 27
0o Sz B
for A, B > 0 and
b (a—s)?
P(o, <t)= / e 2 ds
( ) 0 V2ms3
For z = c+id € Q, we have
7za'a — (a=5)?
Bl = [ e e
a (a—s)
e 2 ds
B /0 \/ 2ms3
< ige*a;é*(é“)sds




and, hence, f(z) is well-defined. Let I’ be a triangle in Q. By using Fubini’s theorem, we have

/F f(2)dz = /Q /F e 4z P(dw) = 0.

Thus, f(2) is holomorphic in Q. Set g(z) = e~*(V22+1=1_ Then g(z) is holomorphic in Q. Since f(z) = g(2)
on the positive real line, we get g = f in © and, hence,

E[e—)\aa] — oMo — e—a(\/1+2)\—1)
for A € (—%7 0]. By monotone convergence theorem, we have

E[e%g"] = lim E[e %] = lim e @(VI+2A=1) — ¢a

A—1 A—1
and, hence,
Ele 7] = Mo = ¢—o(VIF2A-1)
for A € [-3,0].
. Note that

u?

2
1= E[MU(:,] = E[eli(o'afa)*To'a] _ E[ef(%fﬂ)o'a*l‘«a]
if and only if
2
E[e_(%_”)”@} — eha
Since 4 — > —1 for u € R, we get, by the result in problem 2,
z M 2 K

—a(u—2 .
Ble (5 ~m7e] = ¢—a/m17-1) _ ] € W2, it p>1
et ifp<i1

and, hence,
1= E[M,,] if and only if p < 1.

Now, we show that
M, is closed if and only if p < 1.

It’s clear that
1= E[MO/\g'a] = E[Moo/\aa] = E[Maa]

whenever M, n; is closed. It remains to show that M, ,; is closed when 1 = E[M,,].
Let t > 0. By using optional stopping theorem for supermartinale(Theorem 3.25), we have

Mt/\aa Z E[Mo'a|ﬁt/\o'a}7 a.S..

If
P(Mipo, > E[M,,|Fip0,]) > 0,

then we have
1= E[MO/\UQ} = E[Mt/\oa] > E[E[MUQLQMUQH = E[MO'@} =1

which is a contradiction. Thus, we have
Mt/\o'a = E[Mga|ﬂmga], a.s.

This shows that M;a., is closed.
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3.4 Exercise 3.29

Let (Y;)¢>0 be a uniformly integrable martingale with continuous sample paths, such that Yo = 0. We set Y, =
lims—, oo Y;. Let p > 1 be a fixed real number. We say that Property (P) holds for the martingale Y if there exists a
constant C such that, for every stopping time T, we have

E[|Yo = YrP|Fr] <C
1. Show that Property (P) holds for Y if Y, is bounded
2. Let B be an {%; }-Brownian motion started from 0. Show that Property (P) holds for the martingale Y; = Bin;.
3. Show that Property (P) holds for Y, with the constant C, if and only if, for any stopping time T,
E[|Yr — Y [P] < CP(T < ).
4. We assume that Property (P) holds for Y with the constant C. Let S be a stopping time and let Y¥ be the
stopped martingale defined by Y;* = Ys,;. Show that Property (P) holds for Y¥ with the same constant C.

5. We assume in this question and the next one that Property (P) holds for Y with the constant C' = 1. Let
a > 0, and let (R,,)n>0 0 be the sequence of stopping times defined by induction by

Ry =0 and R,4+1 = inf{t > R,||Y: — Ygr,| > a} (inf § = c0).
Show that, for every integer n > 0,

a’P(R,11 < 00) < P(R,, < ).

6. Infer that, for every = > 0, ,
P(supY; > ) < 2P27 5.
t>0

Proof.

1. Since (Y%)¢>0 is an uniformly integrable martingale,
Y, = E[yoo|ﬁt]

for each 0 <t < co. Because Y is bounded, there exists C' > 0 such that a.s. |Y;| < C. Since the sample path
is continuous, we have a.s. sup;sq|Y;| < C and therefore a.s. |Y7| < C. Thus, if p > 1, then

El[Yoo = Yr|P|Fr] < E[([Yoo| + [Y7|)"| 2] < (2C)"
and therefore Property (P) holds for Y.

2. First, note that Y; is a uniformly integrable martingale, since Y; = E[Y1|.%] for ¢ > 1.

Now, we show that Property (P) holds for the martingale Y; = Byx1. First, we consider the case p = 1. Let
F e Z1. Then
E[E[|[Yr — Yoo||Zr]1r] = E[[Yr — Y |1r] < E[|Ys|1F] + E[[Y7[15].

Since Y; is a uniformly integrable martingale, Yr = E[Y|-%r] and, hence,
E(|Yr|1r] = E[|E[Ys|Z7][1F] < E[E[[Yx|[Z7]1F] = E[|Yx|].

Thus,
E[EHYT - Yoo”gT]lF] < QEHYOOH
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for each F' € Z#r. Since E[|Yr — Yxl||.Z7] is Fr-measurable, we get
El|Yr — Yoo||Fr] < 2E[|Y|]

and therefore property (P) holds for the martingale Y; = Bia; when p = 1.

Next, we suppose p > 1. By Doob’s inequality in L?, we get

p
E[sup |Y;|P] < E[ sup |B[P] < ( )PE[|B1|"]
>0 0<t<1 p—1

and therefore sup; |Y3|? is in LP. Then, for each F' € Fr,
E[E[Ye — Yr|?|Zr]lF] = E[|Yoo — Yr['1F]
< E([[Yoo| + [Yr[)P1F]
= E[(2sup [Yy[)"1F]
>0

= 27 Efsup [Y;["17]
t>0

< 2P E[sup [Yi|"]
>0

p
< (——PE[|By [P
LV BIBI < o

Since E[|Yoo — Y |P|Fr] is Fpr-measurable, we get
EllYs = Yr[?|7r] < 2p(p )P E[| By "]

and therefore property (P) holds for the martingale Y; = Bia; when p > 1.
. Suppose property (P) holds for the uniformly integrable martingale (Y:):>o. Since {T' < oo} € Fr, we get
EllYoo = Y7[’] = E[[Yoo = Y7["lr<oc] = E[E[|Yoo — Y1 [’|Fr|l1<00] < OP(T < 0).
Conversely, suppose that
E[|Yo — Y7P] < CP(T < 0)
for each stopping time T. Let T be any stopping time and F' € %r. Then
E[E[Ysx = Yr|?|Zr|lp] = E[|Yoo — Yr[P1p] < C.
Since E|[|Yoo — Y7|P|-Z1] is Fr-measurable, we get
E[lYo —Yr|'|Fr] < C
and therefore property (P) holds for the martingale (Y;):>0

. Let S and T be stopping times. Since (Y;);>0 is an uniformly integrable martingale, (Y;*);> and (Y,!);>¢ are
also uniformly integrable martingales. Thus, we have

YJ = E[Y|Zs] = E[Yr| 7]

and therefore
Y2 =Ygar = Y = E[Y7|Fs).

Hence we get

E[Y7 — Y2 = E[| E[Yr|Zs] - Ys|']
= E[|E[Y7|Zs] — E[Yoo| Zs]|"]
< E[|Yr - Yol?]
< CP(T < o).

and therefore property (P) holds for (Y;%);>o with the same constant C.
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5. Given a > 0. By the definition of {R,},>0, we have R,41 > R, for all n > 0. By considering uniformly
integrable martingale (YtR”“)tZQ and using the result in problem 4, we get

E[|Yg,., — Yr,|'] = E[[Y;™+ — Y1) < P(R, < o).

n+1

n

Since |Yg, ,, — Yr,| > a on {R,41 < oo}, we have

E[|Yr,,, = Yg,["] = a? P(Ry11 < 0)

n+1

and, hence,
a’P(R,41 < 00) < P(R,, < 00).

6. Observe that if 0 < 2 < 2, then 2'~% > 1 and, hence, the inequality is true. Now, we suppose = > 2. Set
Ry =0and R,y; = inf{t > R,||Y: — Yg, | > 2}
for each n > 0. According the conclusion in problem 5, we get
P(R, <o0)<27™
for all n > 1. Let m be the smallest integer such that 2m > x. Then
zp

P(supY; > 2) < P(Rp_1 < 00) < 27m=DP < 2(=5+p — 9po—5°
t>0
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Chapter 4

Continuous Semimartingales

4.1 Exercise 4.22

Let Z be a .%p-measurable real random variable, and let M be a continuous local martingale. Show that the process
Ny = ZMjy is a continuous local martingale.

Proof.
Without loss of generality, we may assume My = 0. Set

T,, = inf{t > 0||N¢| > n}

for each n > 1. Then T}, is a stopping time for each n > 1. Clearly, T}, 1 oo, (T},) reduce M, and |ZM ™| < n for all
n > 1. Thus, ZM7Tn is bounded in L' for each n > 1. Now, we show that ZMTn is a martingale for each n > 1. Fix
n > 1. Choose a sequence of bounded simple function {Z;} such that Z, — Z and |Z;| < |Z| for each k > 1 and for
all w € €. Note that,

|2 M| < | ZME| < .

Fix 0 <s < t. Let I' € %#;. By Lebesgue’s dominated convergence theorem, we get
E[ZM1p] = Jim E[ZyM 1p]) = Jim E[ZyMT1p) = E[ZMT 1.
— 00 — 00
Thus,
ZMI = E[ZM]" .7,

for all 0 < s < t and, hence, ZM ™" is a martingale. Therefore ZM is a continuous local martingale. O

4.2 Exercise 4.23

1. Let M be a martingale with continuous sample paths, such that My = 0. We assume that (M;);>¢ is also a
Gaussian process. Show that, for every ¢ > 0 and every s > 0, the random variable M, — M; is independent
of o(M,,0 <r <t).

2. Under the assumptions of question 1., show that there exists a continuous monotone nondecreasing function
f Ry — Ry such that (M, M), = f(t) for all t > 0.

Proof.

1. Observe that
E[M, M| = E[M}]

for all s > 0 and t > 0. Since
El(Mqs. — Mi)M,] = B[M2] — E[M?] =0

for all 0 < r <'t, we get span{M;s — M} and span{M,|0 < r < t} are orthogonal. It followings form Theorem
1.9 that M; s — M, is independent of o(M,.,0 < r < t).

2. Observe that if B is Brownian motion, B is both continuous martingale and a Gaussian process. Moreover, we

have
(B,B); =t = E[B?].

Therefore we consider the function
f(t) = E[M{].

37



Now, we set % = o(M,|0 < r < t) for all £ > 0. First, we show that f(¢) is a continuous monotone
nondecreasing function. Let 0 < s < t. Since

M = E[M|7,)* < E[M{|7.],
we have
f(s) = E[M] < E[M{] = f(t)
and, hence, f(t) is monotone nondecreasing function. Let T > 0 and {t,,} J{t} C [0,T] such that ¢, — ¢. By

using Doob’s maximal ieugiality in L?, we have

E[ sup [M,[?] < 4E[|M[?] < oc.
0<s<T

By using dominated convergence theorem, we get

lim f(t,) = lim B[M2] = B[M?) = f(1)

n—roo n— oo

and, hence, f(¢) is continuous.

Next, we show that (M, M), = f(¢) for all t > 0. Set .4 to be the class of all (¢(M;|t > 0), P)-negligible sets.
That is,
N i={A:FA e (M|t >0) AC A and P(A") = 0}.

Define
Y =0(Msls<t)Va(A) t>0

and
Yo := (M|t > 0)Vo(A) t>0.

Then (%;)¢cjo,o] 15 @ complete filtration, &; C .%; for every 0 <t < oo, My, — My 1LY, for every t,s > 0, and
(Mp)t>0 is a (9;)ie[0,00)-martingale.
To show that (M, M), = f(t) for every t > 0, it suffices to show that M? — f(t) is a (%)e[o,00)- continuous

local martingale. Indeed, since
p’ﬂ

P
Z(Mtf — Mg )> = (M, M),

i=1
we see that finite variation process ((M, M););>o does not depend on the filtration of (M;);>o.
Now, we show that M7 — f(t) is a (4;)ic[0,0c]-martingale. Let 0 < s < ¢. Observe that

E[(M; — M,)*|%,] = E[M{ — M?|%.]
Since My — M, is independent of ¥, we have
E((M; - M,)*|4.] = E[(M, — M,)*] = E[M} — M7].
Thus, if 0 < s < t, we get
E[M}|%,] — E[M{] = E[M{ — MZ|F,] + M — E[M}] = E[M{ — MZ] + M? — E[M}] = M — E[M]

and therefore M? — f(t) is a (%) ;e[o,00-martingale.
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4.3 Exercise 4.24

Let M be a continuous local martingale with My = 0.
1. For every integer n > 1, we set T, = inf{¢ > 0||M;| = n}. Show that, a.s.
{tlim M, exists and finite } = U {T,, = 0} C{{M, M) < oco}.
—00

n>1
2. We set
Sy, = inf{t > 0(M, M); = n}
for each n > 1. Show that, a.s.,
{M,M)s < 0} = U {5, =0} C {tlim M, exists and finite }
—00
n>1

and conclude that

{tlim M, exists and is finite } = {{M, M) < o0} , a.s.
— 00

Proof.

1. Since M has continuous sample paths, we see that
T, = inf{t > 0||M¢| > n}

and (T,)n>1 reduces M and, hence, M is a uniformly integrable martingale for each n > 1. Thus, for each
n>1,
M exists a.s.
Since |MT| < n for each n > 1, M™ is bounded in L? and, hence, E[{M™ M™») ] < co. Thus, for each
n>1,
(M, M)r, < oo a.s.
Set
E= U {MZI» exists and (M, M), < oo}

n>1

Then P(E) = 1. To complete the proof, it suffices to show that the statement is true for each w € E. Let
w e {tlgglo M, exists and finite }ﬂE

Since M (w) has continuous sample path and M. (w) < oo, there exists K > 0 such that |M;(w)| < K for all
t > 0 and, hence, T, (w) = oo for each m > K. Thus, w € E(\(U,;>1{T» = o0}). Conversely, let w € E and
Ty (w) = oo for some m > 1. Then -

Moo (w) = MEm (w) exists

and
|M;(w)| = | M (w)] < m for all 0 <t < oo.

Thus, w € {My exists and My, < oo} (| E. Moreover, since w € E, we have
(M, M) (w) = (M, M), (w) < o0
Thus, we get
Em{tlgrolo M, exists and finite } = Eﬂ( U {T,, = x}) C Eﬂ{(M, M) < 00}
n>1

and therefore a.s.
{tlim M, exists and finite } = U {T,, = 00} C{(M, M) < c0}.
n>1
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2. Since (M, M) is an increasing process, it’s clear that
{{M, M) < oo} = | J{Sn = oo}.
n>1

Let n > 1. Then
(M5 M5y = (M, M)g, e <1

for all t > 0 and, hence, E[(M°» M), ] < n. Thus, we see that M*" is a L? bounded martingale and, hence,
limy o0 Mts" exists and finite (a.s.). Set
. . Sp s . .
F= gl{tgr& M exists and is finite }.

Then P(F) = 1. Fix w € F()(U,;>1{S» = oc}). Then Sy, (w) = oo for some m > 1 and, hence,

: 1 Sm
tli>rgo Mi(w) = tli>rgo My (w)

exists and is finite. Thus, a.s.,

{{M, M)oo < 00} = [ J{Sn =00} C { lim M exists and is finite }.
— 00
n>1

Combining the result with the above, we get

{tlim M, exists and finite } = {{M, M), < oo}, a.s.
— 00

4.4 Exercise 4.25

For every integer n > 1, let M™ = (M}")i>0 0 be a continuous local martingale with M§ = 0. We assume that

lim (M", M")o, = 0 in probability.

n—oo
1. Let € > 0, and, for every n > 1, let
T! =inf{t > 0|(M", M"™); > €}.
Justify the fact that T is a stopping time, then prove that the stopped continuous local martingale
thEZ 7;\T"a vt >0

is a true martingale bounded in L2.

2. Show that
Efsup [M["?] < 4e.
0<t
3. Writing, for every a > 0,
P(sup |[M}*| > a) < P(sup |M*| > a) + P(T!* < o),
>0 >0

show that
lim (sup |M{*|) =0

n—oo t>0

in probability.
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Proof.

1. Since (M™, M™) has continuous sample paths, it follows form proposition 3.9 (iii) that
TF =inf{t > 0||(M"™, M")| € [e,00)}
is a stopping time. Hence M™¢ = (M™)T¢" is a continuous local martingale with
(M™, M™) o <e.
Thus, M™€ is a L? bounded martingale.
2. Since (M;"“)¢>0 is a martingale bounded in L?, we see that
E[(M%)*] = B[(M™,M"™)s] < e.
By Doob’s maximal inequality, we get

E[ sup |[M]’] < 4B[|M;|)

0<s<t
for each ¢ > 0. Since M™* is a martingale, we see that

E[(M)’] < B[(M{")?]
for each s < t. Thus,

B| sup | M%) < AB[| M ’] < 4B[|MZe[?] < 4e.
<s<t

By the Monotone convergence theorem, we have

E[sup |M™¢|?] < 4e.
s>0

3. Given a > 0 and € > 0. It’s clear that
P(sup |M;*| > a) < P(sup |M[*| > a, T = c0) + P(T]' < 0)
>0 >0
= P(sup |M;"“| > a, T = c0) + P(T]' < x0)
>0

< P(sup |M{"*| > a) + P(T}" < c0).

t>0
Note that 1 4
P(sup |M["| > a) < — Esup | M"") < =
t>0 a 0<t
and
P(T!' <o) =P((M", M) s > ¢€).
Thus,

4
P(sup| M| > a) < — + P((M", M") > ¢).
t>0 a

By letting n — oo and then € | 0, we get
lim P(sup |M;'| > a) =0.

n—oo t>0
Since a is arbitrary, we have

lim sup|M;* =0 in probability.

n—oo t>0
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4.5 Exercise 4.26

1. Let A be an increasing process (adapted, with continuous sample paths and such that Ay = 0) such that
A < 00 a.s., and let Z be an integrable random variable. We assume that, for every stopping time T,

E[As — A7) S E[Z1{1<00y]-
Show, by introducing an appropriate stopping time, that, for every A > 0,

E[(Ax = N1lga_sx) S E[Z11a s

2. Let f : Ry — R be a continuously differentiable monotone increasing function such that f(0) = 0 and set
F(z) = [ f(t)dt for each z > 0. Show that, under the assumptions of question 1., one has

E[F(Ax)] < E[Zf(Ax)]-

3. Let M be a (true) martingale with continuous sample paths and bounded in L? such that My = 0, and let M,
be the almost sure limit of M; as ¢ — co. Show that the assumptions of question 1 hold when A; = (M, M),
and Z = M2 . Infer that, for every real ¢ > 1,

E[((M,M)ee)™'] < (¢ + D) E[((M, M)oc)"MZ].

4. Let p > 2 be a real number such that E[({M, M) )?P] < co. Show that

E[((M, M)s)?] < p"E[| Moo |*].

5. Let N be a continuous local martingale such that Ny = 0, and let T be a stopping time such that the stopped
martingale N7 is uniformly integrable. Show that, for every real p > 2,

E[((N, N)7)?] < p"E[|Nr|*].
6. Give an example showing that this result may fail if N7 is not uniformly integrable.

Proof.

1. Set T =inf{t > 0|4 > A}. Then {T < oo} = {4 > A} and therefore

E[Z1(a_>xy] = E[Z1(1<0)] > E[Aa — Ar]
[
[
[

(Aoo - AT)l{T<oo}]
(Ao = M1 <o0y]
(Aso = M) 1ga_ syl

I
S|

2. Note that "
F(x) = xf(x) 7/0 Af(N)dA

and f'(\) >0 for all , A > 0. Since

{Lasny =11 ={(w,) € QxRy[Ax > A} = | ({4 > ¢}[)I0,4) € F @ Ba,
q€Q4

for all A € R, we see that 1;4_>xy(w,\)f'(A) is .# ® Bg, -measurable and, hence,
[e%s) A
B[ 1iacn 0N =B[N
0 0
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is well-defined. Then

oo

= Bl [ 1 VN = B[ 104 N
0 0
- / BlAslia_ ol f/(NdA — / BN (4o nlf (V)dA
0 0
S/ E[Z1{a > f (N)dA
0

By using Fubini’s theorem, we get

/Ooo E[Zl{a >nlf'(NdX = E[Z /OOO Lawsap /' (NdA] = E[Zf(Ax)]

and, hence,
E[F(Ax)] < E[Zf(Ax)]-

. First, we show that the assumptions of question 1. hold when A; = (M, M), and Z = M2 . Let T be any
stopping time. Since M is L2- bounded martingale, we see that M? — (M, M) is an uniformly integrable
martingale and, hence,

E[MF — (M, M)7] = E[MZ, — (M, M)].

Thus,

E[(M, M) — (M, M)7] = E[MZ, — Mj]
E[(MZ, = M7) <o)l
E

[Mc%ol{T<oo}]

IN

and therefore
E[Aw — A7) < E[Z1{7c50y]-
Next, by taking F'(z) = 297! in problem 2, we have

E[((M,M)oc)™"] < (¢ + D) E[((M, M)oc)"MZ].

. Given p > 2. Set ¢ = ]%. Then % + % = 1. By Holder’s inequality, we get
E[((M,M)c)"] < pE[((M, M)s)" ™" MZ]
< PE[((M, M)oo) "V ]4 B[| M| "]
= PE[((M, M).)"] 7 E[| Mo [*]7.
By assumption, we have E[((M, M, )~ )P] < oo and, hence,
E[((M,M,)e)"|"" < p"E[|Mu|™]7.

That is,
E[((M, M, ) )?] < p71 E[| My || @17 = p? E[| My |?).
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5. Given p > 2. If E[|Nr|?’] = oo, then there is nothing to prove. Now, we suppose E[|Nr|??] < co. Observe
that N7 is a L?P- bounded martingale. Indeed, since N7 is uniformly integrable martingale, one has

Nray = E[Np|F)

for all t > 0 and, hence,
E[|N7i|*) < E[|Nr[*] < o0

for all t > 0. Thus we see that N7 is a L?’- bounded martingale, which implies that N7 is a L?- bounded
martingale. Set
7o = {t > O(NT NT), > n}

for each n > 1. Since N7 is uniformly integrable martingale, we have
Nrpr, = E[N7|FTps,]

for each n > 1 and, hence,
E[|N7pr, |*] < E[|Nr|*]

for each n > 1. Note that NT"\™ = (NT)™ is a L?>-martingale with continuous sample paths and
E[(NTA™ NTATP | < b,
By using the result in problem 4, we get
E[((N,N)7pr,)?] = E[(NT"T, NTA™) 0 )P) < pPE[| Ny, | ]
for each n > 1. By using monotone convergence theorem, we have

E[((N, Nyr)') = lim BI((N,N)zar,)?] < limsupp? B[ Nrae, %] < p? [Ny 7).

n— oo

6. Let a # 0, p > 1, and B is a Brownian motion starting from 0. Then B is a marintgale and (B, B); = t. Set
T = inf{t > 0|B; = a}. Note that T' < oo (a.s.) and

E[|Br|*] = |a]*" < oc.
By using the result in Chapter 2(Corollary 2.22), we see that E[T] = co and, hence, E[T?] = co. Thus,
o0 = E[I"] = E[((B, B)r)"] > p"|a|* = p"E[|Br|*]

and, hence, the inequality fails.
Finally, BT isn’t uniformly integrable. Indeed, if B” is uniformly integrable, then

0= E[Bj] = E[BL] = E[Br]=a#0

which is a contradiction.

4.6 Exercise 4.27

Let (X:)t>0 be an adapted process with continuous sample paths and taking nonnegative values. Let (A¢)¢>0 be
an increasing process (adapted, with continuous sample paths and such that Ag = 0). We consider the following
condition:

(D) For every bounded stopping time T, we have E[Xr] < E[A7].

1. Show that, if M is a square integrable martingale with continuous sample paths and My = 0 , the condition
(D) holds for X; = M? and A; = (M, M);.
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2. Show that the conclusion of the previous question still holds if one only assumes that M is a continuous local
martingale with My = 0.

3. We set X = sup,<; X5. Show that, under the condition (D), we have, for every bounded stopping time S and
every ¢ > 0,

Ju—y

P(X3 > o) < ~B[Ag)].

¢
4. Infer that, still under the condition (D), one has, for every (finite or not) stopping time S,
1
P(Xi>c) < EE[AS].

(when S takes the value oo, we of course define X7, = sup,>q Xs)

5. Let ¢ >0 and d > 0, and S = inf{¢ > 0|A; > d}. Let T be a stopping time. Noting that

{X7 >} € {X7ns > o} ({Ar > d).

Show that, under the condition (D), one has

1
P(X; > ¢) < —E[Ar Ad|+ P(Ar > d).

6. Use questions (2) and (5) to verify that, if M) is a sequence of continuous local martingales and T is a
stopping time such that (M M) 5 converges in probability to 0 as n — oo, then,

lim (sup |M{™]) = 0, in probability.

n—oo s<T

Proof.

1. Let T be a bounded stopping time. Since M is a L?-bounded martingale, we see that M2 — (M, M) is uniformly
integrable and, hence,
E[M7 — (M, M)7] = E[Mg — (M, M)o] = 0.

Thus,
E[Xr] = E[M7] = E[(M, M)r] = E[Ar].
2. Let T be a bounded stopping time. Set
Tn = inf{t > 0||M;| > n}

for each n > 1. Then 7,, — 00 as n — 00, (7,,) reduce M,and M™ is a bounded martingale for each n > 1. By
(1), we have
E[M’lz"/\rn] S E[<M7 M>7'/\T}

for each n > 1. By Fatou’s lemma and monotone convergence theorem, we get

E[(M7)?] < liminf E[(M, r7)?] = lim E[(M, M), \r] = E[(M,M)r].

n—oo n—o0

3. Given a bounded stopping time S and ¢ > 0. Set R = inf{t > 0|X; > ¢} and T = S A R. According to the
assumption, we have

E[Xr] < E[Ar]) < E[As].

Note that
[T =R} = {R<S}={X5>c}.
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Since X is continuous and S is bounded, we see that
Xgp=con {T =R}

and, hence,
E[X1lir=gry] = cP(T = R) = cP(X3 > ¢).

Therefore

1 1 1
P(X52¢) = _EXrlir=p)] < _E[Xr] < _B[As].

. Given a stopping time S (finite or not) and ¢ > 0. Set S,, = S An. Then S,, 1 S and S, is a bounded stopping
time for each n > 1. By using the result in problem 3, we get

1
P(X5, > ) < -E[As,].
By using monotone convergence theorem, we get
E[As] = lim E[AS"].
n—oo

Note that
{X5, >} C{X5,,, >}

for each n > 1 and

U {X5, > c} ={X5 > c}.

n>1
Thus )
P(X$>c) = hm P(X5 >¢c) < E hﬁm E[Ag,] = CE[AS].
. Note that

{X7 >t C{Ar <d, X7 > c} U{AT > d}

C{T < 8, X5 > e} J{Ar = d}

C {(Xins > e fAr > ).
and, hence,

P(X7 >c¢) < P(Xiap >c)+ P(Ar > d).
Since Agpr = A1 A d, by using the result in problem 4, we get

1 1
P(X5ar >¢) < EE[AT/\S] = EE[AT Ad].

and, so,

—_

P(X; > ¢) < —E[Ar A d|+ P(Ar > d).

. Given ¢ > 0. Let d > 0. Set X = (M™)2 and A = (M®™ M™Y. Then A{") — 0 in probability. By
using the result in problem 5, we get
n n d n
P( sup |[MM]>>e) < E[A(T) Ad] + P(AY > d) < =+ P(AY) > d).
0<s<T €

By letting n — oo and d | 0, we have

lim P( Sup \M("\>\f)—hm P(sup MM >e)=0
n— oo 0<s< 0<s<T

and therefore
lim (sup |M{™|) = 0, in probability.

n—oo s<T
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Chapter 5

Stochastic Integration

5.1 Exercise 5.25

Let B be an (%;)-Brownian motion with By = 0, and let H be an adapted process with continuous sample paths.
Show that B% fot H,dB; converges in probability when t — 0 and determine the limit.

Proof.
To determine the limit of B% fot HydB;, consider the special case

p—1
Hy (w) = Z H(l) (w)l(ti,ti+1] (S)v
1=0

where H;) be F,-measurable and 0 < t < t;. We see that

p—1

I 1 1
Ft/o Hsst = E(; H(i)(BtH_l/\t - Bti/\t)) = EH(o)Bt = H(0)~
From the above observation, we will show that
S / tH dB, % H,
Bt o s s 0

and we may suppose that Hy = 0.
First, we consider the case that H is bounded. By Cauchy—Schwarz’s inequality and Jensen’s inequality, we get

t

0<s<t
1 o911
< E[|By|"2]2E[ sup H;|8t3
0<s<t
Note that
>~ 1 1 x
E[|B,| ]2 :(2/ — e~ % dr)?
0 T /27t
>~ 1 1 1 2 1
=@ ey
0 Y (2t)1 VT
:c><t7§7

where 0 < ¢ = (—2 foooﬁ

Y= e‘yzdy)% < 00. By Lebesgue dominated convergence theorem, we shows that
4./

E[sup H2s »0ast— 0"
0<s<t
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and therefore

= /tHdB|> )< Lgpt /tHdB|i]
o s sl Z2€)> 1 . s s
Bt 0 €1 Bt 0
]. 1,1 11
< < E[|B/|7?]2E[ sup H}]5ts
€1 0<s<t
1
< GextT éE[ sup HZ2|5t
€1 0<s<t
1 1
= —cE[sup H?s - 0ast—0".
€1 0<s<t

Next, we prove the statement for unbounded case. Set
Hy(w) if |Hs(w)
HP (w) = { R, if Hy(w)

| <
>R
—R, if Hy(w) < —

Then H® (w) is an adapted process with continuous sample paths. Now, we show that, for 0 < a < 1, a.s.
/ H,dB, = / H®dB, in { sup |H,| < R}.
0 0 0<s<1

That is,

P(/ HSdBS:/ H®dB,, sup |Hs| < R) = 1.
0 0 0<s<1

Given 0 < a < 1. Note that, if 0 =9 < ... <, and w € {supy<,<; |Hs| < R}, then

ZH(z Bt1+1/\a( ) Bt /\a ZH(R) Bt1+1/\a(w) - Bti—l/\a(w))’

Choose 0 = tf < ... <ty = a of subdivisions of [0, a] whose mesh tends to 0. By using Proposition 5.9, we have
Pn—1

N = Z Hyr (Bin, na — Birna) = / H,dB, in probability
0

and
pn—1

B, = Z H<n (Bir, na — Binna) — / H®dB, in probability..
i=0 0

Choose some subsequences A,, and B,, such that a.s.
a
An, — / H.dB;
0

and u
B, — / H"™dB,.
0

Since A, = By, in {supy<.<; |H,| < R}, we see that a.s.

/ Hsst:/ H®dB, in { sup |H,| < R}.
0 0 0<s<1
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Given € > 0. Let R >0and 0 <t < 1. Then

1t
P(§/H5d38|26)§P sup |Hs| < R,|—= /HdB|>e)+P(sup |Hs| > R)
tJo

0<s<1 0<s<1

= P(sup |H, <R,|— / H™WAB,| > ¢) + P( sup |H,| > R)
0<s<1 0<s<1

1 t
P(|—/ H®dB,| > €) + P( sup |H,| > R).
Bt Jy 0<s<1

By using the result in first case, we get

lim P(| —/H )dB,| > €) = 0.

t—0+

Because H is continuous and Hy = 0, we see that

P( sup |Hs|>R) —0as R— oo.
0<s<1

By letting t — 0T and then R — oo, we get

5.2

1.

1t
P(—/Hsst|Ze)—>Oast—>O+.
Bt 0

Exercise 5.26

Let B be a one-dimensional (.%;)-Brownian motion with By = 0. Let f be a twice continuously differentiable
function on R, and let g be a continuous function on R. Verify that the process

Xy = f(By)e oo

is a semimartingale, and give its decomposition as the sum of a continuous local martingale and a finite variation
process.

Prove that X is a continuous local martingale if and only if the function f satisfies the differential equation
1" =2gf.

From now on, we suppose in addition that g is nonnegative and vanishes outside a compact subinterval of
(0,00). Justify the existence and uniqueness of a solution f; of the equation f” = 2fg such that f1(0) = 1 and
f1(0) =0. Let a > 0 and T, = inf{t > 0 | B; = a}. Prove that

Proof.

1.

T 1
Ele™ 0 g(Bs)ds — 5
[ } @)
Set F(z,y) = f(z)e ™. Then F € C*(R?). Note that ( fo Bs)ds)>0 is a finite variation process. By using
1t0’s formula, we get
¢
X, = F(B,, / 9(B.)ds)
t
/ f g(Br )drdB + / 7f(Bs)€7 Iy g(BT,)dT dS / f// - )d'l"ds
0
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Since .
£O)+ [ (B)e oI ap,
0

is a continuous local martingale and

t . Lt S
/ _f(Bs)e_ fo g(BTV)dTg(BS)dS —+ § / f”(BS)e_ fo g(Br)d’l‘ds
0 0
is a finite variation process, we see that
X, = f(By)e Jo 9(B:)ds

is a simimartingale.

2. Note that X is a continuous local martingale if and only if
t ts
/ e I 9B (1B Y 2 (B,)g(By))ds = 0,¥E > 0 as.
0
It’s clear that X is a continuous local martingale whenever f” = 2fg. Now, we show that f” = 2fg when

t
/ e~ 5 9B (1B 2f(B)g(B.))ds = 0,Yt > 0 a.s.
0

We prove it by contradiction. Without loss of generality, we assume that there exists a € R and § > 0 such
that
" (z) —2f(x)g(z) > 0 on B(a,d).

Choose t, > a+ 0. Set T =inf{t > 0| B, = a}. Then

P(/Ot e~ Jo 9B (£ (BY — 2 (B,)g(Bs))ds # 0 for some t € (0,t,)) > P(T < tg) >0

which is a contradiction.

3. We show that existence and uniqueness of the problem:

[ (@) = 2g(x) f(2), vz € R
f € C*(R)
f(0) =1 and f/(0) = 0.

(a) Choose [, 8] C (0,00) such that g(x) = 0 for every = ¢ [a, 5]. Observe that if f is a solution of the
problem, then f”(z) =0 for every < « and so

flz)y=1 Vx <o

(b) Let f(z) be a solution of the problem. By continuity, we see that f(a) = 1 and f'(o) = 0. By [[2],
Theorem 4.1.1], there exists a unique solution F' € C?([a, (]) such that

F'(z) = 2g(x)F(z), YV € [a, f]
F(a) =1 and F'(a) = 0.

(¢c) Since g(z) = 0 for every x > 3, we see that f”(x) = 0 for every z > 8 and so

flz) =F'(B)z+ F(B) — F'(B)B Vx> p.

50



5.3

Thus, we define
1, if —co<z<a
fi(z) = ¢ F(x), ifa<z<p
F'(B)x+ F(B)— F'(B)B, if f<x<o0.

and so fi is a solution of the problem. Moreover, by the construction as mentioned above, f; is the unique
solution of the problem.

. Now, we show that

Elexp(— / " g(BL)ds)] =

Fix @ > 0. Define T, := inf{t > 0: B; = a}. Let ¢ > 0. Then

1
fia)
M{ = Xearone Y020
is a continuous local martingale. It’s clear that sup, <, [fi(x)] < M < oo for some M > 0. Thus,
cNT, s
E[(M°, M) ] = E[/ f1(By)? exp(—2/ g(By)du)ds] < M?c < oo

0 0

and so M¢ is a L?-bounded martingale. Therefore, we have

Elfy (Bonr, ) exp(— / T y(Bads)] = BIME) = E[Mg] = £,(0) = 1.

Note that sup, <, [f(7)| < co and P(T, < c0) = 1. By dominated convergence theorem, we get

T, cATy
Bl esp(= [ g(Bas)] = lim BlA(Bor)esp(= [ o(B)i9) =1

and so

Exercise 5.27 (Stochastic calculus with the supremum)

. Let m : R4 — R be a continuous function such that m(0) = 0, and let s : Ry — R be the monotone increasing

function defined by

s(t) = sup m(r).
0<r<t

Show that, for every bounded Borel function h on R and every ¢ > 0,
t
/ (s(r) — m(r)h(r)ds(r) = 0.
0

Let M be a continuous local martingale such that My = 0, and for every ¢ > 0, let

S = sup M;.
0<r<t

Let ¢ : Ry — R be a twice continuously differentiable function. Justify the equality
t
P50 = 20+ [ ¢(5.d8..
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3. Show that ,
(S, — M)p(S,) = (S,) - / 2(S.)dM,
0

where ®(z) = [ ¢(y)dy for each = € R.

4. Infer that, for every A > 0,
G_ASt + )\(St — Mt)e_ASt

is a continuous local martingale.

5. Let a > 0and T =inf{t > 0| Sy — M; = a}. We assume that a.s. (M, M), = co. Show that T < oo a.s. and
St is exponentially distributed with parameter %

Proof.

1. Given t > 0 and a bounded Borel function h on R. Observe that s(r) is a nonnegative continuous function.

Then
E={rel0,t]]|s(r)—m(r) >0}

is an open subset in [0, ¢] and, hence, there exists a sequence of disjoint intervals {I, },>1 in [0, ¢] (these intervals
may be open or half open) such that
E= U I,.

n>1

Moreover, s is a constant in I,, for each n > 1. Indeed, if ro € I,, = (an, b,) (I, may be half open interval, but
the argument remain the same) for some n > 1, there exists 6 > 0 such that

m(r) < s(ro) in B(ro,9)

and, hence, s is a constant in B(rg,d). By using the connectedness of I,,, we see that s is a constant in I,.
Thus

/ (s(r) —m(r))h(r)ds(r) =0

I”L
for each n > 1 and, hence,

/0 (5(r) — m(r)h(r)ds(r) = / (5(r) — m(r)h(r)ds(r) + / (5(r) — m(r)h(r)ds(r)
Z/ 7)h(r)ds(r) + 0 =0

2. Since S is an increasing process, we see that S is a finite variation process and, hence, (S,S) = 0. By Ito’s
formula, we get

o(5) = e+ [ (50d8 + 5 [ S0a(5.5). = pl0)+ [ &(S.)as.

3. Set
F(z,y) = (y — 2)p(y) — (y).
Then F € C%(R?), 2 e E(z,y) = (y —x)¢'(y), and a —5(7,y) = 0. By Ito’s formula, we get
(St — My)e (St) D(Sy) = F(My, St)

LoF
0 Oz

82

= F(0,0) + 2 ), aar

O (a1, 8,)dM, +/ 5o (M., 5.)3S. +1 (M,, S.)d(M, M),

== /t @(Ss)dMs + /t(Ss — M,)¢'(S5)dSs.
0 0
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Fix w € Q. Note that s € [0,t] — ¢'(Ss(w)) is continuous and, hence ¢’'(Ss(w)) is bounded in [0,¢]. It
followings for, problem 1 that

([ (5. = e (sdS)w) =0

and therefore

t
(51~ M)p(S) = 2(S) ~ [ p(Su)aM..

0
. Given A > 0. Set op(x) = Ae **. Then ®(z) = 1 — e~**. Fix ¢t > 0. By using the result in problem 4, we get

t
e ML NSy — My)e ™t =1~ / e d M.
0

Because fg Xe *SdM, is a continuous local martingale, so is
e_AS‘ + )\(St - Mt)e_/\st.

. Fix a > 0. By Theorem 5.13, we see that there exists a Brownian motion (8s)s>0 such that
My = By, VT >0, as.
By Proposition 2.14, we have a.s. liminf;_, o, 8; = —0o. Because (M, M), = oo a.s., we have a.s.
litrgior.}f M; = —occ.

Since S is nonnegative, we have a.s. T = inf{t > 0| S; — M; = a} < oco. Now, we show that St is exponentially
distributed with parameter % For this, it suffices to show that

1
E —AST]
le ) 1+Axa
for each A > 0. Let A > 0. By using the result in problem 4, we see that
6_>\St + )\(St - Mt)e_/\st

is a continuous local martingale and, hence, there exists a sequence of stopping times {o}, },>1 such that o,, 1 0o
and
e*ASt/\Tn + A(St/\Tn _ Mt/\Tn)eiASMT"

is an uniformly integrable martingale where T,, = 0, AT and n > 1. Then T}, T T and
E[e™ %] + AE[(St,, — Mz, )e™ ] = Ele™ %] + AE[(Sorr, — Moat, )e™ 27 ] =1

for each n > 1. Note that
0< STn — MTn <a

for all n > 1. By using Lebesgue dominated convergence theorem, we see that
1= lim E[e ]+ lim AE[(S7, — My, )e 7]
n—oo n—oo

= E[e 7] + AE[(Sp — Myp)e 7]
= E[e97](1 + X\ x a).

and, hence,
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5.4 Exercise 5.28

Let B be an (.%;)-Brownian motion started from 1. We fix e € (0,1) and set T, = {t > 0| B; = ¢}. We alsolet A >0
and a € R\ {0}.

1. Show that Z; = (Biar. )™ is a semimartingale and give its canonical decomposition as the sum of a continuous
local martingale and a finite variation process.

2. Show that the process
=X firTe Lods
Zy = (Biar,)% ~°° PR
is a continuous local martingale if o and A satisfy a polynomial equation to be determined.
3. Compute
E[e—)\ fOT" Bigds].

Proof.

1. Observe that
T. < o0 a.s.

and
Bipr, > €Vt >0 as.

Define F : RT — R by F(z) = z. By Itd’s formula, we have

¢ 1)t
(Biar ) =1+ a/ (Bsnr,) 'dBs + 706(042 ) / (Bsar,)* 2ds a.s.
0 0
for all t > 0.
2. Define F : R* — R by F(z) = In(z). By Itd’s formula, we have

B 2 B?

S

AT o [T
In(Biar, ) = aln(Biar,) = a/ —dB, — —/ —ds.
0 0

and, hence,

—A [INTe g a —A[NTe 1gs
Zy = (Biat.)%e o™ mrds _ (B Mo B

tATe 1 _a [tATe 1.y [tATe _1
_ eocfo B, dBs—3 fo B%ds Afo B2 ds

is a continuous loacl martingal whenever %2 =54+ A(le a= 1ty1i82 VIE8A),

3. Let A > 0. Set o = 1=V 182 V21+8>‘ be a negative real number. Choose stopping times (7},)n>1 such that T,, — oo
and Z™» is an uniformly integrable martingale for n > 1. Then

A fgnhTe Zyds

1 = E[Z;"] = E[Z;"] = E[(Br,a1,)%
for all n > 1. Observe that

_ TnATe _1_
0 < (Br,a1.)% Mo 7% < (Broar)” <€ as.

for all n > 1. By using the Lebesgue dominated convergence theorem, we have

_ TnATe 1_gg _ Te 1_gg
1= lim E[(Brap)% o 575 = pleae Mo 52

n—oo

and therefore .
E[€_>\ fo ‘ %dﬁ] = i
60&
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5.5 Exercise 5.29

Let (X¢)i>0 be a semimartingale. We assume that there exists an (.%;)-Brownian motion (By)¢>o started from 0 and
a continuous function b : R — R, such that

¢
Xt = Bt +/ b(Xé)dS (7)

0
1. Let F': R — R be a twice continuously differentiable function on R. Show that, for F'(X;) to be a continuous

local martingale, it suffices that F satisfies a second-order differential equation to be determined.

2. Give the solution of this differential equation which is such that F'(0) = 0 and F'(0) = 1. In what follows, F
stands for this particular solution, which can be written in the form

F) = [ e,
0

with a function § that will be determined in terms of b.
3. In this question only, we assume that b is integrable, i.e [, |b(x)|dz < occ.

(a) Show that the continuous local martingale M; = F(X}) is a martingale.
(b) Show that (M, M) = o0 a.s.

(c) Infer that
limsup X; = +oo,1itmiant = —00, a.s.
—00

t—o00
4. We come back to the general case. Let ¢ < 0 and d > 0, and
T.=inf{t >0 | X; <c},Ty=inf{t >0]| X; >d}.

Show that, on the event {T. A Ty}, the random variables |B, 11 — By| for n > 0, are bounded above by a
(deterministic) constant which does not depend on n. Infer that

P(T. ATy = o0) = 0.

5. Compute P(T, < Ty) in terms of F'(c) and F(d).

6. We assume that b vanishes on (—oc, 0] and that there exists a constant a > § such that b(z) > 2 for all z > 1.
Show that, for every € > 0, one can choose ¢ < 0 such that

PT,<T,Vn>1)>1—c¢
Infer that X; — oo as t — 0o a.s.

7. Suppose now b(z) = 5= for all # > 1. Show that

liminf X; = —oo0, a.s.
t—o00
Proof.

1. By It6’s formula, we get

F(Xt)z/0 F’(Xs)st—F/O F’(Xs)b(Xs)ds—i—%/O F"(X,)ds.
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Thus,
t
F(X,) = / F'(X,)dB, ¥t > 0 as. (8)
0

is a continuous local martingale whenever
1
§F”(m) + F'(x)b(z) = 0 for all z € R.

2. By integrating both sides of the equation, we get

F/(.%‘) _ efoz —2b(t)dt (9)

and, hence,

F(x):/ eld —2b(t)dtdy (10)
0

3. (a) Since b € L'(R), there exists 0 < | < L < oo such that

I <elo —26dt <, (11)

for all 2 € R. By the formula (1), we get

1< F(X)(w) < L (12)

for all s > 0 and w € Q and, hence, (F'(X;))i>0 € L*(B®) for all a > 0. Thus ( Ot/\a F'(X,)dBs)i>0 is a

L2-bounded martingale for a > 0 and therefore (fot F'(X;)dBs)>0 is a martingale. By (32), we see that
M, = F(X,;) is a martingale.

(b) By (32) and (12)
t
(M, M), = / F'(X,)%ds > 12 x t V¥t >0 as.
0

and, hence, (M, M) = o0 a.s.
(¢) Since
Mt = B{M,M}t Vi > 0 a.s.

for some Brownian motion § and (M, M), = oo a.s., we see that

lim sup M; = +oo, liminf M; = —o0, a.s.
t— 00 t—o0

By (9), (10), and (11), we see that F is nondecreasing and

F(+o0) = IEI:?OO F(z) = 0.
Since M; = F(X;), we have
limsup X; = —|—oo,1itmiant = —00, a.s.
—00

t—o00

4. Givenc<0and d >0 . Let w € {T. AT; = 00}. Then ¢ < X¢(w) < d for all t > 0. By (7), we get

n n

|m—m4=wwxmﬁ/ %mMSHMH&AH/ Ib(X,)|ds

n—1 n—1

<2x(dV (—c))+ sup |b(t)| =R < 0.
t€e,d]
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for all n > 1. Thus, we see that
{TeNTy =00} C{[Bp — Bp-1| < R, Vn > 1}.
Because {B,, — B,,—1 | n > 1} are independent and
0<P(|B,—Bp_1|<R)=c<1

for all n > 1, we see that

P(|B,, — Bp—1| < R,Yn>1)= lim P(|B, — By_—1| < R,V1<n<m) = lim ™ =0

m—r o0 m—0oQ

and, hence,
P(T.ANTy=00)=0.

. Set T'=T. A Ty. Because P(T < co) =1 and M is a continuous local martingale, we get

M| = |F(X{)| < sup |F(2)| < o0, Vt>0, as.
z€[c,d]

and, hence, M7 is an uniformly integrable martingale. Thus,

(13)

0= E[My] = E[M) = E[Mr] = E[lr,<r,Mr.] + E[lr,<1.Mr,] = F(c)P(T. < Tz) + F(d)P(Ty < T.)

and, hence,

A pry <=1

P10 = 5y ey P10 =T = 7@ - Fo

. Observe that, for each x > 1 and z < 0,
x
Flz) = / =203 b0t g,
0
1 T
_ / e~ 2 Iy b(t)dtdy + o2 Ji b(t)dt/ e—2 Jy b(t)dtdy
0 1
1 x
< / e~ 2 Iy b(t)dtdy + 2 f()l b(t)dt/ =2 I %dtdy
0 1

1 T
_ / 2Ot gy =2 b(t)dt/ %dy
0 1y

and

o 0
F(z)= 7/ ely 220t gy, f/ 1dy = z.

This implies that
0 < F(00) < 00 and F(—o00) = —o0.

Given € > 0. By (15), there exists ¢ < 0 such that % < €. Since T;, > T,,_1, we see that

. F(o0)
S _ =] - — 7 > 1—¢.
P(Tn < Tca Yn > 1) nhﬁrr;(} P(Tn < Tc) 1 F(OO) — F(C) = 1 €

For k > 1, there exists ¢x < 0 such that

P(T, > T, for somen >1) < 2k,
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By Borel Cantelli’s lemma, we see that P(E€) = 0, where

E° = {{T,, > T, for some n > 1} i.o k}.
For k > 1, since F(cy) < Minr., = F(Xiar,, ) < F(00) < oo, we see that M™er is an uniformly integrable
martingale and, hence, lim;_, o, MtTc’“ exists (a.s.). Set

G = m {tlggo MtT’“ exists }.

k>1

Then P(GNE) =1. Let w € E(G. Then T, (w) < T¢, (w) for some k > 1 and all n > 1. Since T},(w) 1 oo,

. . Te .
we see that T, (w) = oo, and, hence, lim;_, o Mi(w) = lim;_, oo M, ** (w) exist. Because

lim Mi(w) = lim Mr, (w) = lim F(n) = F(c0),

t—o0 n—00 n—00
we get limy_,o0 Xt(w) = 0o. Therefore lim;_, oo Xt = 00 (a.s.).

7. Let £ > 1. We see that

1 x
F(z) = / e 23 b(t)dtdy + efzfol b(t)dt/ édy
0 1

and, hence, F(0c0) = oo. Choose {cp} C R_ such that ¢ — —oo. For k > 1, by (14), there exists dj > 0 such
that
P(T., >T,) <27k

By Borel Cantelli’s lemma, we see that P(I'°) = 0, where
re={{T., > Ty} io. k}.

Let w € T'. There exists K > 1 such that T¢, (w) < Ty, (w) for all k > K and, hence, T, (w) < oo for all k > K.
Thus,

lim X7 (w)= lim ¢ = —c0.
k—o0 k k—o0

Therefore liminf; ., X; = —c0 (a.s.).

5.6 Exercise 5.30 (Lévy Area)

Let (X, Yy)i>0 be a two-dimensional (.%;)-Brownian motion started from 0. We set, for every ¢ > 0:

t t
o, :/ X.dY, —/ Y.dX, (Lévy area)
0 0

1. Compute (<, o7), and infer that (<% );>¢ is a square-integrable (true) martingale.

2. Let A > 0. Justify the equality _
E[e?™] = E[cos(\et)).

3. Let f € C3(Ry). Give the canonical decomposition of the semimartingales

/')
2

Z; = cos(\t;), Wy = — (X2 +Y2) + f(t).

Verify that (Z, W), = 0.
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4. Show that, for the process Z;e"* to be a continuous local martingale, it suffices that f solves the differential
equation

F'(t) = f(6)* =22
5. Let r > 0. Verify that the function
f(t) = —In(cosh(A(r — t)))
solves the differential equation of question 4. and derive the formula

1

E iy — )
[ cosh(\r)

Proof.

1. By Fubini’s theorem, we get

Bl(er, )] = B ' X%ds) + B / y2as)

t t
:/ E[Xf}ds—i—/ E[YZ]ds
0 0
t t
:/ sds—|—/ sds = 2
0 0

for all t > 0. By Theorem 4.13, we see that < is a true martingale and o7 € L? for all t > 0.

2. Fix A>0and t > 0. Let 0=ty <t} <..<t, =tbe asequence of subdivisions of [0,#] whose mesh tends
to 0. By Proposition 5.9, we have

pn—1 pn—1
thnytn - Zytnxtn —th1—>/XdY /YdX o,
and
Prn—1 pn—1
> Y (Xin, — Xy thn (Yer,, = Vi ) —>/ Y,dX, — /XdY =
=0
Let

x —z;)?
R — o T S
(2m) 2 \/ti(ta — t1)..(tp — tp_1)

Since (X, Yy )i>0 is two-dimensional Brownian motion, we get

zs(zpﬂ P X (Yep,  —Yin )= Vi (Xep, | = Xon 1>>]
n

/ / (TR @i (yitr—yi) iiglyi(xi“_x'i))p(ac)p(y)dxdy
Rr JRp

zg (=pm *1Ytn(xtn X )= 1Xt?(ytn ~Yin_ 1))]

for all n > 1 and £ € R. By Lévy’s continuity theorem, we see that
E[eiém} — E[eié(—aﬂ)]
for all £ € R and, hence <7 2 —a7; Therefore
Elcos(\e)| + iE[sin(A\e;)] = E[cos(Ae)] — i E[sin(Ae;)]
and, hence E[sin(Ae)] = 0.
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3. By Itd’s formula, we get
t 1 t
Z=1_ )\/ sin(\e/, )ity — EAQ/ cos(\et,)d(o , 57 )
0 0

t t
=1- )\/ sin(\eZ, )d.oty — %AZ/ cos( AN, ) (X2 +Y2)ds
0 0

t 1 t
=1- )\/ sin(A\et,)d.ody — §A2/ Z(XZ+Y2)ds.
0 0

Also we have
fOX7+Y7)

t t t 1 t 1 t
— [ X2+ Y2ds+ [ f(s)2X.dX, + / F(s)2YsdYs + / 71(5) x 2ds 4+ [ f(5)  2ds
0 0 0 0

- / F7(5) (X2 + Y2)ds + / F()2X X, + / F(8)2Y2dY, +2(£(t) — £(0))
0 0 0

and, hence,

*1/ 2 2 _ _tls _t/S _ltus 2 25
W= Gl OO 2+ 10 = 10) = [ F@xXax, = [ pevay. =5 [ e+ v

Therefore
(W, Z)¢ = Xof' () Asin(Ae ) (X, )1 + Vi f' () A sin(Aet ) (Y, o ),
= X f' ()X sin(\e) x (=Y;t) + Yo f'(H) A sin(A\a%) (Xit) = 0
4. By It0’s formula, we get

t t 1 [t
Z,eWe :/ eWsdz, +/ Z.eWVedW, + §/ Zye"d(W, W),.
0 0 0

Note that 1
dZ, = —Asin(\eZ,)d.ot, — 5AQZS(XSQ +Y2)ds,
1
dW, = f'(8) XedXs — f'(5)YsdYs — 3 () (X2 +Y2)ds,

and
AW, W) = (X2f'(5)* + Y[ (5)%)ds.

Thus, Z;e"* is a continuous local martingale when
710 = £/(07 = X
5. Fix 7 > 0 and A > 0. It’s clear that f(t) = —In(cosh(A(r —t))) € C3(R,) and satisfy
£ = 78— 3

Thus (Z;e"*);>0 is a continuous local martingale. Choose (T},),>1 such that (ZtT"eWtTn)

integrable martingale for n > 1 and 7;, 1 co. Then

+>0 is an uniformly

1 T 2 2 n/\T _ n Tn — n o =
Elcos(\etp, )~ 38 TnA) (XF ot Y2 () HF(Tuin)| = B7T0 Wi ] = B[ZTneWo "] = SNEYOR
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Because r —T,, Ar > 0 for all n > 1, we see that

I = T A 2

and, hence,
0< e_%fl(T”/\T)(X’?"-,L/\'r-"_y’l%n/\r) <1

for all n > 1. Since cosh(A(r — T, Ar)) > 1 for all n > 1, we get
f(Tn A1) = —In(cosh(A\(r — T, Ar))) <0

and, hence
0<efTnAn) <.

By Lebesgue dominated convergence theorem, we see that

L 1 R ,
— — 1 =5 (TaN?) (X7, prt Y7, Ar) T F (T AT)
COSh()\r) nlgl;o E[COS(/\JZ{TR/\T)B 2 T Z ]

= E'[cos()\,;zfr)e_%f’(r)(xf‘*‘Yf)-irf(T)]

Since f'(r) = %‘t:r = 0= f(r), we have

E[COS()\%T)@—%f’(r)(X£+Y3)+f(r)] = E[cos(\,)].

By the result in problem 2,
1

E[e?"] = Elcos(\e,.)] = coshOr)’

5.7 Exercise 5.31 (Squared Bessel processes)

Let B be an (.%;):>0-Brownian motion started from 0, and let X be a continuous semimartingale. We assume that
X takes values in R, and is such that, for every t > 0,

t
X :x+2/ vV X dBs + at
0

where x and « are nonnegative real numbers.

1. Let f: Ry — Ry be a continuous function, and let ¢ be a twice continuously differentiable function on R,
taking strictly positive values, which solves the differential equation

¢ =2fp
and satisfies p(0) = 1 and ¢’(1) = 0. Observe that the function ¢ must then be decreasing over the interval
[0,1]. We set
'(t)

for every t > 0. Verify that we have, for every ¢t > 0,
u'(t) + 2u(t)® = f(t),
then show that, for every t > 0,
t t t
u(t) Xy —/ f(s)Xsds = u(0)z —|—/ u(s)dXs — 2/ u(s)? Xods.
0 0 0
We set .
Y = u(t) Xy —/ f(s)Xds.
0
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2. Show that, for every ¢ > 0,
p(t)"2e" = E(N),

where &(N); = exp(N; — 2(N, N);) denotes the exponential martingale associated with the continuous local
martingale

Ny = u(0)x + 2/t u(s)\/ X ,dB,.
0

3. Infer from the previous question that

N

Blosa( [ F9Xd5)] = (1)
4. Let A > 0. Show that
Elexp(—A /0 ' Xds)] = (cosh(vaN) 2 exp(~ 5 VI tanh(v/2))
5. Show that, if 5§ = (B¢)+>0 is a real Brownian motion started from y, one has, for every A > 0,
Elexp(—\ /0 1 82ds)] = (cosh(V2X))"2 exp(—y;@ tanh(v/2X)).
Proof.

1. Since f > 0 and ¢ > 0, we see that ¢” = 2f¢ > 0. Because ¢'(1) = 0 and ¢’ is nondecreasing, one has ¢’ <0
in [0,1] and, hence, ¢ is decreasing over the interval [0, 1]. Note that

2 _ " (020(1) - 20(1)?

' (t) + 2u(t) 4o(0)? 4p(t)?  2¢(t)

By Ito’s formula, we get

t

u(t) Xy = u(0)z + /t u'(8) Xsds —|—/ u(8)dX

0 0
=u(0)x + /Ot f(8)Xsds —2 /Ot u(s)?Xods + /Ot u(s)dXs.

and, hence, , , ,
u(t) Xy — / f(8)Xsds = u(0)x —|—/ u(s)dXs — 2/ u(s)? Xods.
0 0 0
2. Note that
_ t ix. t oy
Y = u(0)x —|—/O u(s)dX 2/0 u(s)*Xsds
¢ t t
=u(0)x + / u(s)/X,dBs + a/ u(s)ds — 2/ u(s)? X ods
0 0 0
B t t t (p/(S)
= u(0)x + /0 u(s)\/XsdB, — 2/0 u(s)?X.ds + a/o 2¢(s)ds

= u(0)a + /O u(s)\/XsdBs — 2 /0 u(s)2 X,ds + %m(@(t)).
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Then we have

&(N)¢ = exp(Ny — (N, N)y)

= exp(u(0)x + 2/0 u(s)\/X,dB, — 2/0 u(s)? X,ds)

[N)

= exp(u(0)r +2 [ u(s)VFidB, =2 [ (s Xuds + G ol
= exp(Yy)p(t)~

. Choose m such that In(p(t)) > m for all t € [0,1]. Fix ¢t € [0,1]. Because ¢’ <0 in [0,1] (problem 1), we see
that v <0 in [0, 1]. Because f > 0 in [0,1] and X, « > 0, we see that

N

E(N): = exp(Ye)p(t)F = explu(t) X, - / F(8)Xods = 5 In(p(t))) < exp(—5m) < oc.

and, hence, &(N)¢a1 is a uniformly integrable martingale. Because u(1) = ¢’(1) = 0 and ¢(0) = 1, we have

(1)~ % Elexp(~ / £(5)X,ds)] = (1)~ % Elexp(u(1)X; — / £(5)X.ds)] = Elp(1)" % exp¥i]

= E[6(N)1] = E[6(N)o] = Elexp(No)] = exp(u(0)z)

_ ¢'0), _ 20
- eXp(x2cp(())) - exp( 2 )
and, so )
Blesp(= [ 1()X,ds)] = (1)# exp(¢'(0).

. Set f = A. Then we have ¢”(t) — 2Xp(t) = 0 and, hence, ¢(t) = ¢1 exp(V2At) + ca exp(—v2At). Combining
with initial conditions, we get

_ exp(—v2)) ox exp(V2X) e (
~ exp(V2X) + exp(—v2)) P(V2X) + exp(V2X) + exp(—v2)) p(=V2R)
Thus,
2 1
P = o (VEN)  exp( V%) cosh(vN)
and
(0) = VSRV H (VN | pre /oy

exp(VIN) + exp(—V2N)

By problem 3, we get
1
E[exp(—)\/ X,ds)] = (cosh(V2)))~ 2 exp(—g\/ 2Xtanh(v2))).
0
. Suppose S is a (F;)¢>o-real Brownian motion. By Itd’s formula, we get
t
ﬂ?=y2+2/ BedfBs +t
0
Set B; = fot sgn(Bs)dBs. Then (By)i>o is a process (B, B); = t, we see that B is a (%;);>¢-real Brownian

motion and

t
ﬁf=y2+2/ |.]dB, +t.
0
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5.8

Thus, by problem 4, we get

E[exp(—)\/o 82ds)] = (cosh(V2X)) ™3 exp(—y;\/ﬁtanh(\/ﬁ)).

Exercise 5.32 (Tanaka’s formula and local time)

Let B be an (.%;);>o-Brownian motion started from 0. For every ¢ > 0, we define a function g. : R — R by setting

ge(z) = Ve2 + 22

1.

Show that
9e(Bt) = ge(0) + My + A}

where M€ is a square integrable continuous martingale that will be identified in the form of a stochastic integral,
and A€ is an increasing process.

We set sgn(z) = 1{z>0y — lz<oy for all z € R. Show that, for every t > 0,
t
M — / sgn(Bs)dB, in L? as € — 0.
0
Infer that there exists an increasing process L such that, for every ¢ > 0,

t
| B | :/ sgn(Bs)dBs + Ly.
0

Observing that A — L; as € — 0 (It seems that the author want us to prove
A — Ly ase = 0Vt > 0 (a.s.),

but this statement is to strong to prove. You can prove the following problems without this statement). Show
that, for every 6 > 0, for every choice of 0 < u < v, the condition (|B;| > ¢ for every t € [u,v]) a.s. implies
that L, = L,. Infer that the function ¢ — L; is a.s. constant on every connected component of the open set
{t=0] B, #0}.

We set 8y = fg sgn(Bs)dBs for all t > 0. Show that (8;)¢>0 is a (%¢)i>0 Brownian motion started from 0.

Show that L; = sup,<;(—0s) (a.s.). (In order to derive the bound L; < sup,<,(—fs), one may consider the last
zero of B before time t, and use question 3.) Give the law of L;.

For every € > 0, we define two sequences of stopping times (Sf,)n>1 and (T5)n>1, by setting
S =0, Ty =inf{t > S7 | |B:| = ¢}
and then, by induction,

SE

n

1 =inf{t > T5 | |By| =0}, Ty5,; =inf{t > Sy, | | |B| = €}.

For every t > 0, we set
N =sup{n >1|T; <t}
where sup ) = 0. Show that
2
eNfL%Lt as € = 0.

(One may observe that
t oo
L+ / Z Lise 1e1(8)sgn(Bs)dBs = eNy +r; (a.s.),
0 p=1

where the “remainder” r{ satisfies |r§| < e.)
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7. Show that NTi converges in law as t — oo to |U|, where U is N(0, 1)-distributed.

Proof.

1. By Ito’s formula, we get

€2

t B 1 t
(Bt) = g.(0 +/ 75st+7/ ———ds.
g( t) g() 0 W 2 0 (€2+BS2)%

It’s clear that
1

t 62
AEE—/ —————ds 16
C 2 (@ By "

is an increasing process. For ¢ > 0,

t B t B t 2
E / 786135,/ P« 4B, :E/ D5
Uy Verm P ), Jarm P =B o h

By theorem 4.13, we see that

ds] <t.

(17)

t
B
M = / ———dB
"o JeErBE
is a sequare integrable continuous martingale.

2. Fix t > 0. Then
B, B

_bs . bs
\/624—33 |BS|

where |g—5| =0 when B, = 0.

= sgn(B;) as e = 0 Vs € [0,t] (a.s.),

By Proposition 5.8, we see that

t t
Bs P/
———dB, —~ sgn(Bg)dBg as € — 0.
/ — [ san(s)

Recall that

Lieb’s theorem [1, Theorem 6.2.3].
Let (E,B, i) be a measure space, p € [1,00), and {fo}U{f} € LP(u;R). If sup,>q ||fnllzr(ur) < o0 and
fn — [ in u-measure, then

[fn = fllzeur) — O whenever || fullLeur) — [1f|lLr (ur)-

Since
2
S

t B t B t
————dB,|[}. = E / ————dB,)? :E/
||/; \/m HL2 [( 0 \/m ) ] [ o €2+B§

ds] <t

for all e > 0 and

t t t
. Bg 2 o 21 2
lim | / Bl =1 = B / sgn(B,)dB.)"] = | / sgn(B.)dB, |2,

we get

¢ ¢
B

Me:/is dBS%/snBsstianaseﬁo.

"o e+ B? 0 gn(Ba)
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Let us now construct the corresponding increasing process (Ly)i>0. We just define

t
L; = |Bs| —/ sgn(Bs)dBs. (18)
0
It remains to show that (L;);>o is an increasing process. Fix ¢t > 0. By Lieb’s theorem, we see that

9e(B)) = VET B L B, as e = 0
and therefore ,
AS = g.(By) — g.(0) — Mf 5 |By| — / sgn(B,)dB, = Ly.
0

Since (Af)¢>0 is an increasing process for all € > 0, we see that (L;);>0 is an increasing process.

. First we show that the condition (|B;| > 9§ for every t € [u,v]) a.s. implies that L, = L,. Fix § > 0 and

a.s.

0 < u < wv. Since A§ 5 L; for ¢ = u, v, there exists {ex} such that e, | 0 and A* =" L; for ¢ = u,v. Let
we { lim A = Lu}ﬂ{kli_{r;o A = L} ({IB] > 6 for all ¢ € [u,v]}.
Then
L i
(@ + Biw)? = 7

for s € [u,v] and k > 1. By Lebesgue’s dominated convergence theorem, we get
Y €
Ly(w) — L,(w) = lim — (—ds =0.

Thus, the condition (|B;| > ¢ for every t € [u,v]) a.s. implies that L, = L,.
Next, we show that the function ¢ — L; is a.s. constant on every connected component of the open set
{t >0| B; #0}. Set

Z§ ww = 1(|Bt] > 0 for every t € [u,v]) implies that L, = L,}

for all positive rational numbers § and u < v. Then

Z=J Zsuw (19)

§,u,v

is a zero set. Let w € Z¢. Let (a,b) be a connected component of {t > 0 | B;(w) # 0}. For any two rational
numbers u and v such that a < u < v < b, there exists positive rational number ¢ such that |B(w)| > ¢ for all
t € [u,v] and therefore L, (w) = L,(w). Since t € (a,b) — Li(w) is increasing, we see that ¢t € (a,b) — Li(w)
is a constant. Hence t — L; is a.s. constant on every connected component of the open set {t > 0 | B; # 0}.

. It’s clear that (8¢)¢>0 is a (%)>o-continuous local martingale with (8, 8); = ¢ for all ¢ > 0. Thus, (8¢)¢>0 is a
(Z#:)1>0 Brownian motion started from 0.

. Fix tg > 0. Since |Bi| = B¢ + Ly Vt > 0 (a.s.), we have sup,«; (—8s) < sup,<y, Ls = Ly, (a.s.). We show that

sup(—pfs) > Ly, (a.s.).

s<to

Let w € Z¢("{|B:| = Bt + L+ ¥Vt > 0}, where Z is defined in (19). Set r = sup{0 < s < tg | Bs(w) = 0}. Then
B, (w) =0 and

Ly (w) = =B (w) < sup(—ps)(w) whenever By, (w) = 0.
s<to
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Since t € Ry — Ly(w) € C(Ry) is constant on every connected component of {t > 0 | By(w) # 0}, we have

Li(w) = L.(w) = =B, (w) < sup(—LB)(w) whenever B;(w) # 0.

s<t
Thus
sup (—fs) > Ly, (a.s.)
s<to
and therefore
sup(—pfs) = Ly, (a.s.). (20)
s<to

To find the law of L;, we define stopping times
I'y=inf{t >0| -6 =a} (21)

for a € R. By the result of problem 4 and Corollary 2.22, we get

2

*  a a
P(L;<a)= P(SSL;I;(—BS) <a)=PT,>t)= /t o exp(—5-)ds.

. Fix t > 0 and € > 0. Note that Nf is the number of upcrossing from 0 to +e by (B;)scjo,4- First, we show that

L —|—/ Z Lise ¢ (s)sgn(Bs)dBs = eNy + 1y (as.),

where |rf| < e. By (18) and Proposition 5.8, we get
L —|—/ Z Lise 71 (5)sgn(Bs = |By| —/ Zl Te,5¢,,)(8)sgn(Bs)dBs

B~y / Lre 0. (5)sgn(B,)dB,
n=1 0

outside a zero set N. Let w € N¢. We consider the following cases:

(a) Suppose that 0 = S$(w) < Tf(w) < S5(w)... < T¢,_1(w) < S&,(w) <t < T, (w) for some m > 1. Then
|Bi(w)| < €, Nf = m—1, and sgn(B;)(w) = sgn(BTs)( w) for s € [T (w), S, (w)) foreach k =1,...,m—1.
If we set r§(w) = |By(w)], then we have

oo t

|Be(w)l = (Y ; Lizg sz, ) (8)sgn(Bs)dBs ) (w)
k=1

(Y sgn(Br) /0 Lz si.)(5)dBy) ()

k
m—1

— ri(w) — 3 sgn(Bas) (w)(Bs; . (w) — Br(w))
k=1

i) — 3 sgn(Br)(w)(0 — sgn(Bre)(w) x o)
k=1
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(b) Suppose that 0 = S§(w) < Tf(w) < S§(w)... < T _1(w) < S5 (w) < TS (w) <t
m > 1. Similar, we get Nf = m, and sgn(Bs)(w) = sgn(Bre)(w) for s € [Tg(w
k=1,...,m+ 1. If we set r{(w) = ¢, then we have

1(w) for some

< Sh1(w
); Siy1(w)) for each

Bl - (3 / Lre.si ) ()sgn(B,)dB,) (w)

= [Bi(w)| — ngn Bry) / (15.55.,,) (8)dBs) (w) —SQN(Bt)/O Lirg, ) (s)dBs)(w)

= [Bi(w)| = Z sgn(Brg)(w)(Bs;, , (w) — Brg (w)) — sgn(By)(w)(Bi(w) — Bry, (w))
= |Bi(w)| — Z sgn(Bre)(w)(0 — sgn(Bre)(w) x €) — sgn(Byg)(w)(B(w) — sgn(By)(w) X €)
=€+ me

Thus we have, a.s.,

t OO
L, —|—/ Z Lise 1) (s)sgn(Bs)dBs = eNy + 1y,
0 n=1
where |r§| <e.
Next, we show that
2
eNfth as € = 0.
Fix t > 0. Note that
Z 1 (S (w),Te ( w)] ) < 1{‘BS‘S€}(w) for all 0 S S S t and w € Q. (22)
k=1

and so
1eNg = Lillzs < | / Zl[s;,T,f )sgn(B,)dBs|1a + |17l s
:E[/ Zhsﬂﬁ Vds] + [r<|| 2
/ Zl[se 7e1(8)]ds + ||r§]| L2

< / B[, <o) ())ds + [1r5]] 2

t t
:/ P(|B,| < €)ds + ||rf]| 2 630/ P(|B,| = 0)ds = 0.
0 0

7. First we show that L’ |U| for all ¢ > 0. Define stopping times I', as (33). Fix to > 0. By (20) and Corollary
2.22, we get

L * Viga toa?
P 9 < s) < >tg) = - dt.
(\/% > G,) (SSEE)( B ) a X \/>) ( av/tg = 0) " \/m exp( 2 )
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Set # = Y%% Then dz = 1 Y% 4t and

1
2

v A
T (1= [ 2 exp(- e = P(U| < a)
xp(— = XPp T = <a).
to V2mt3 2t 0o V2 2

Recall that if X, 4 X and Y. A 0, then X,, + Y, 4 X. To show that NTi a4 |U|, it suffices to show that, as
t — oo,

7(]\71 / Z 1[51 Tl] Sg’ﬂ,(Bé)dB6 — ’I“tl) L—) 0.

Note that
1 Lt 1
(s)sgn(Bs)dB, —r} < —/ sqn(BJ)dB.|| 12 + || —r1
||\//n1 st (B8, = los <117 [ i o)sontBIaB e + -l

and

—=1 2 .
\/g L = \/E

It suffices to show that
2
/ st 7o (s)sgn(Bs)dBs E0ast — oo

y (32), we get
1 2
||\% E Lisy,m11(s)sgn(Bs)dBs||72

1 t
E[;/ 21[51 T1 sgn( s)ds] SE[;/ 1{|B5|§1}d5]

=/PBK1 /PﬁKf)
= / /f exp ——)dmds
- / / = exp(— dsdx+/ / reXp( 2)d8dw)

00 2

2
- ?(/o \/ﬂexp( )d$+/i x2rexp( - )dx)
<11
L 2 Vr

t

V2
t

IN
| DN

S—
S

exp(—m;)da: + / dx)

exp(—%)daz + L\/1?)

SR
S

§
HQ

2 x2 2

exp(— )d TW

— 0

280,

OL
R
N



5.9 Exercise 5.33 (Study of multidimensional Brownian motion)
Let B; = (BY,..., BY) be an N-dimensional (.%;)-Brownian motion started from = = (21, ..., xx). We suppose that
N > 2.
1. Verify that |B;|? is a continuous semimartingale, and that the martingale part of |B|? is a true martingale.
2. We set
N t Bi .
Bt = / 5 dB;
zi: 0 |Bs‘
with the convention that éfl = 0 if |Bs| = 0. Justify the definition of the stochastic integrals appearing in the
definition of j;, then show that the process (5;)i>0 is an (%;)-Brownian motion started from 0.
3. Show that .
B =[af? +2 [ [BuldB.+ Nt
0
4. From now on, we assume that x # 0. Let € € (0,|z|) and T, = inf{t > 0 | | B¢| < €}. Define f : (0,00) — R by
log(a), ifN=2
fla)=19 8 .
a , ifN>3
Verify that f(|Biar.|) is a continuous local martingale.
5. Let R > |z| and set Sg = inf{t > 0| |B| > R}. Show that
f(R) — f(|z])
P(T. < Sg) = ——~———~.
f(R) = f(e)
Observing that P(T. < Sg) — 0 as € — 0, show that B, # 0 for all ¢t > 0, a.s.

6. Show that, a.s., for every t > 0,

N-1 (" ds
|Be| = || + Bt + —— :
2 Jo IBsl

7. We assume that N > 3. Show that lim; .., |B;| = co (a.s.) (Hint: Observe that |B;|>~" is a nonnegative
supermartingale.)

8. We assume N = 3. Using the form of the Gaussian density, verify that the collection of random variables
(|1Bt]|™')t>0 is bounded in L?. Show that (|B¢|™!);>0 is a continuous local martingale but is not a (true)
martingale.

Proof.
1. By Ito’s formula and Doob’s inequality in L?, we get

N t
|B,|? = || + Z/ 2B!dB! + Nt
i=170
and

E( / BB, / "Bl - 4B| / (Bi)ds) < 4| sup (B)?) < 42’ B(B)) < 164(t + 2?)
0 0 0

0<s<t

for 1 <i < N. Thus, (fot 2B!dBY);>0 is a true (F;)-martingale for 1 <i < N.

70



€ L? (B") and, hence, fot ‘gi‘ dB? is well-defined continuous local martingale.

2. Since (‘ |) <1, we see that I%I

Thus, (Bt)¢>0 is a (F;)-continuous local martingale. Because

N t (Bi)2
( S)
:§ ds =
<,87/8>t i_l/o |BS‘2 S t,

we see that (8¢)¢>0 is an (%;)-Brownian motion started from 0.

3. Note that
. Bi
B; = B
t |B | | t|7
where |g£| is defined in problem 2, and
N

Z g‘ dB‘.

Then
N t ] ) t
HM2=MF+§:/°ﬂﬁﬁﬁ+N¢:@P+2/ﬂBQ#ﬁ+Nt
- 0 0

4. Define F': RN\ {0} = R by F(x) = f(|z|). Then we have

OF 1 _ G, #N>3
o N =2

L
[z]2>

and

82F($) B 2(1 ﬁ”lg), if N >3
o2 1- 2 if N = 2.

x \

Note that |Biar. (w)] > € for all t > 0 and w € Q. By Itd’s formula, we get

f( ) = F(Binr.)
N t a2
i o*F
= ‘$| +Z/ 6 s/\T dB ;/0 Tx?(BS/\TE)dS
t 2=N)Bir, jpi _ N(Bi\g)? i
_ e+ X OW‘UB +3 0 o Fraw (1= JE o )ds, i N >3
B ¢ BS/\ e % (Bs/\ ) .
f(|x‘)+2i:1 0 |Bs TT‘2dB + 35 Zz 1f0 - ‘BsAiTTlg)dS, if N =2
2-N)B!, .
e+ Sy G aBi, N >3
B B A i .
Fllel) + S fo pe2imdBl, i N =2

and, hence, f(|Biar,|) is & continuous local martingale.

5. Set T = T.ASg. Then |f(|BF|)| < M for some M > 0 and all t > 0 (a.s.). Since f(|Biar,|) is a continuous local
martingale, we see that f(|B]|) is a bounded continuous local martingale and, hence, f(|B}|) is an uniformly
bounded martingale. Then we have

f(zl) = E[f(I1B5 )] = Ef(|Br|)] = f(e) P(Te < Sg) + f(R)P(Te > S).
Since P(T. < Sg) + P(T. > Sgr) = 1,we get

f(R) — f(]z])

Ple<50) = "m =10
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Because f(e) — foo(depending on N) as € — 0, we see that P(T. < Sg) — 0 as ¢ — 0. Next we show that
B, # 0 for all t > 0 (a.s.). Choose a sequence of positive real number {e,} such that €, | 0 and

NE

P(T., < S,) <o

n=1

By Borel Cantelli’s lemma, we get P(Z) = 0, where Z = limsup,_,. {7, < Sp}. Then B; # 0 for all
t > 0in Z° Indeed, if w € Z° and By(w) = 0 for some ¢ > 0, then T, (w) < ¢ for all n > 1 and, hence,
Sp(w) < t for some m > 1 and all n > m. Since {S,(w)} is nondecreasing, we see that lim,, . S, (w) exists,
s = limy, 00 Sy (w) < ¢t and, hence, Bs(w) = oo which is a contradiction. Thus, B; # 0 for all ¢ > 0, a.s.

. Define F: R¥\ {0} > Ry by F(x) = |z|. Then F € C®(RN\ {0}), 92(z) = &, and 2£(z) = 2 Since
By € RN\ {0} for all t > 0 (a.s.), we get

i |B,|? — N -1 [ ds
Bl = B = ‘””'+Z/| Bt Z/ P Ee s =l s Mt [

. Define F : RV \ {0} = R, by F(z) = |z|>¥. Then F € C®(RY \ {0}). Since B; € RN \ {0} for all t > 0
(a.s.), we get (see the proof of problem 4)

By~ = \ml2N+Z/ ‘B|N @=NB, i

‘27N

Then | B;|>~¥ is a non-negative continuous local martingale and, hence, | B; is a non-negative supermartin-

gale. Thus,
E[|B,)* ] < E[|Bo* V] = |2

for allt > 0. By Theorem 3.19, | B, |~ exists (a.s.) and, hence, lim;_, . | B;| exists (a.s.). Since limsup,_, . B} =
oo (a.s.), we see that lim;_, | Bt| = 00 (a.s.).

. First, we show that (|B¢|~1);>0 is bounded in L?. Set § = % > 0. Then

_ 1 y —z|?
BB = [ e w={ +f
3 [y[?(2mt)2 wl<s g5

1 —|y — |? 1/ 1 —|y — z|? 1
— ex dy < — ex dy < —
/yz6|y2(27rt)3 P WS E | G T SR

for all ¢ > 0, it suffices to show that

Since

1 —ly —af
exp( )dy
/y|<6 ly|2(2mt) 2t

is bounded in t > 0. Note that, if |y| < 6 = %, then |y — x| > |z| — |y| > % Then we see that

1 —ly — z|? 1 —|z|? 1 1 —|z|?
/ 5 7 exp( | | )dy < 7 exp( 2] )/ —dy = 7 exp( i Jws,
lwl<s [y[?(27t)> 2t (2mt)> 8t " Jiyi<s Iyl (2mt)> 8t

where w3 is the area of unit sphere in R3. Define ¢ : (0,00) — R, by

p(t) = 7 exp(



Then ¢ € Cy((0,00)) and lim g (t) = 0. There exists M > 0 such that sup,. |¢(t)] < M < oco. Thus,

1 —ly —a?
sup/ exp( )dy < Mwsd
>0 Jiyj<s [y|2(2mt)> 2t

and therefore (|B;|™!)¢>¢ is bounded in L?. Now we show that (|B:|™!):>¢ is a continuous local martingale
but is not a true martingale. Assume that (|B;|~!);>0 is a true martingale. Then (|B;|™!);>0 is a L2-bounded
martingale. Recall that lim; o |B| = 0o (a.s.). Together with Theorem 4.13, we get

0= E[|Boo|™*] = E[|Bo| ] + E[(|B|”", |B|™") ]

which is a contradiction. Thus (|B;|~1);>0 is a continuous local martingale (see the proof of problem 7) but is
not a true martingale.

O
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Chapter 6
General Theory of Markov Processes

6.1 Exercise 6.23 (Reflected Brownian motion)

We consider a probability space equipped with a filtration (%;)ic(0,0c]- Let a > 0 and let B = (Bt);>0 be an
(Z#;)-Brownian motion such that By = a. For every ¢t > 0 and every z € R, we set

1
pe(z) = \/?mf exp(——

1. We set Xy = |By| for every t > 0. Verify that, for every s > 0 and ¢t > 0, for every bounded measurable function
f : R+ — R,
E[f(Xs+t) | g\a] = Qtf(Xs)a

where Qo f = f and, for every t > 0, for every = > 0,
Quf@)= [ (ly =)+ ily -+ o))y,
0

2. infer that (Q¢)¢>o0 is a transition semigroup, then that (X;);>o is a Markov process with values in £ = Ry,
with respect to the filtration (.%;);>0, with semigroup (Q¢)i>o0-

3. Verify that (Q¢):>0 is a Feller semigroup. We denote its generator by L

4. Let f be a twice continuously differentiable function on R, such that f and f” belong to Cy(R). Show that,
if /(0) =0, f belongs to the domain of L, and Lf = 3 f”. (Hint: One may observe that the function g : R — R
defined by g(y) = f(|y|) is then twice continuously differentiable on R.) Show that, conversely, if f(0) # 0, f
does not belong to the domain of L.

Proof.

1. Set QP to be the semigroup of real Brownian motion (i.e. QPF(z,dy) = p;(y — x)dy). Given a bounded
measurable function f: Ry — R. Define g : R — R by ¢(y) = f(|y|). By definition of Markov process,

E[f( s+t)|‘/] Bs+t)|95] Qt ( S)
/ 5= ol 57y
- [" sz ent-E R [ e - Py
(y — By)? > 1 (y + By)?
= [ st o P Ny [ o o=y
2 o)
A e Y L et
=Qf(X )
2. It’s clear that
_ [, (y —x)* 1 (y +x)°
(tvx)€R+XR+'—>Qt($>A)—/O (\/ﬁexp(— o )+ %QXP(—T))M(?J)@



is a measurable function. Thus, it suffices to show that (Q;):>0 satisfy Chapman-Kolmogorov’s identity. Let
f be a bounded measuable function on Ry. Define g : R — R by ¢g(y) = f(|y|). By using similar argument as
the proof of problem 1, we have

Qif(lz]) = QPg(x)  VzeR. (23)
and therefore

2

Quiaf0) = Qfrale) = QPQEale) = [ Qo) = exp(- 5Dy

2
_ 1 (y — x)? 1 (y — z)?
= .. QJg() 7o exp(—; )dy+/Ri QJg(y) o= exp(—5—)dy
_ 1 (y —x)? 1 (y +z)2
-/ Q7 9(4) o= exp(—5—)dy + 5 Q¥g(=y) = exp(—= 5 )dy
_ ! (y—=)° 1 (y +z)2
= - st(y> \/ﬁ eXp(_ 2% )dy + v, st(y) \/ﬁ eXp(— o7 )dy

=@QQsf(x) Ve eR,.

. Given f € Cy(R4). Then g(x) = f(|z|) € Co(R). Since (QF);>¢ is Feller semigroup, we see that Q;f(x) =
QPg(x) € Co(R.) and

sup Qe f(z) — f(x)] < sup|QF g(x) — g(x)] 0.
TER z€R

Therefore (Q;)i>0 is a Feller semigroup.

. Let f be a twice continuously differentiable function on Ry, such that f and f” belong to Cy(R,). Define
g:R— R by g(y) = f(Jy|). Observe that

o 90000 _ o F@) = 1O)
t—0+ T t—0t T
and
i 20 90) _ gy SED SO

Since f/(0) = 0, ¢’(0) exists and therefore

9'(y) = f'(lyl)sgn(y)

and
g"(y) = "(ly)),

where sgn(y) = 1gy~01 — l{y<o}- Thus g is a twice continuously differentiable function on R, such that g and
g” belong to Co(R). Let L be the generator of (QF);>0. Then LPh = 1h” (see the example after Corollary
6.13). By (32), we have

— B —
Lf(x):%i_%wztlz%w:%g”(x):%f”(x) Ve e Ry

and therefore Lf = 1 f”. Conversely, assume that there exists f € Co(R)(D(L) such that f'(0) # 0. Then
¢'(0) doesn’t exist and lim;_,q M exists for all Vo € Ry. By (32), we see that

lim Q090 —9@) _ ) QI@ =1 _ oy s
t—0 t t—0 t
t—0 t t—0 t
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and therefore LPg(x) = Ly f(|x|) for all # € R. Since L;f € Cy(Ry), we see that LPg € Cy(R) and, hence,
g € D(LB) ={h € C?>(R) | h and h" € Cy(R)} (see the example after Corollary 6.13) which is a contradiction.
Thus, we see that

D(L) = {h € C*(Ry) | h,h" € Cy(R4) and h'(0) = 0}.

and Lf = L f".

6.2 Exercise 6.24

Let (Q¢)1>0 be a transition semigroup on a measurable space E. Let m be a measurable mapping from E onto another
measurable space F. We assume that, for any measurable subset A of F, for every z,y € E such that n(z) = 7(y),
we have

Qu(z, 771 (A)) = Quly, 771 (4)) V> 0. (24)
We then set, for every z € F' and every measurable subset A of F, for every ¢t > 0,
Qi(z, A) = Qi(z, 771 (A)) (25)

where x is an arbitrary point of E such that 7(z) = z. We also set Q(z, A) = 14(z). We assume that the mapping
(t,z) = Q}(z, A) is measurable on R, x F, for every fixed A.

1. Verify that (Q}):>0 forms a transition semigroup on F.

2. Let (X;)1>0 be a Markov process in E with transition semigroup (Q;);>0 with respect to the filtration (%);>0.
Set Y, = w(X,) for every ¢ > 0. Verify that (Y;);>0 is a Markov process in F with transition semigroup (Q}):>0
with respect to the filtration (%;);>0.

3. Let (Bt)i>0 be a d-dimensional Brownian motion, and set R; = B; for every ¢ > 0. Verify that (R;);>0 is
a Markov process and give a formula for its transition semigroup (the case d = 1 was treated via a different
approach in Exercise 6.23).

Proof.

1. To show that (Q})¢>0 forms a transition semigroup on F, it remain to show that (Q}):>o satisfies Chap-
man—Kolmogorov identity. Since

/ 1)@ (n(x), dy) = / La(m(y)) Qi dy),
F E

we get

(Qif)(7(x)) = Qeg(), (26)
where f is a bounded measurable function on F, g = forw, and € E. Given z € F. Since 7 is surjective, there
exists © € F such that z = m(x). By (26) and (25), we get

@y f(2) = Quat(t) = QuQug(x) = /E Qs9(y)Qu(x, dy)
- / QL1 (7 (1) Qs (. dy) = / QL (0)Qu (n(x), dw)
E F
— QLI (n(2) = QUQLF(2).

2. It’s clear that (Y;);>0 is an adapted process. It remain to show that has (Y;);>0 Markov property. Let f be a
bounded measurable function on F and g = f o w. By (26), we get

E[f(YvH»s) ‘ ys} = E[Q(XtJrs) | js] = th(Xs) = ng(W(Xs)) = Q;f(yvs)
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3. The case d = 1 was solved in Exercise 6.23. Now we assume that d > 2. Recall that

(

w—af?
2t

Quf(x) = ) f (w)dw.

1
exp
Rd V/27td

for all bounded measurable function f on R?. Define 7(z) = |z| and Q}(z, A) as (25) for = € Ry and A € Bg, .
First we show that (Q;)¢>0 satisfies condition (24). Let A € Bg, and B =7 '(A). Then

OB={Oxz |z B}=DB

for all orthogonal matrix O. Given x,y € R? such that m(z) = m(y). Choose an orthogonal matrix O such that

z = Oy. Then
Qi(x, 7' (A)) = Qi(x, B) L exp( |w7x|2)1 (w)d
= = X —_——
(x, +(z, = P 5 B(w)dw
1 |Ou — Oy|?
— — 7 HY15(0Ou)d =0
T exp( of )5 (Ou)du (w u)
1 lu —y|?
= — 1p-1
/Rd i exp( o Jlo-1p(u)du
1 lu —y|?
= — 1
T exp( 5 Vg (u)du

= Q(y, B) = Qu(y, 7" (A))

Next we show that the mapping (¢, z) — Q}(z, A) is measurable on R x R, for all A € Bg, . Given a bounded
measurable function f on R} and z € Ry. Set z = (2,0, ...,0) and g = f o 7. By (26), we have

) 1
Qtf(z) = th(l') = RY \/W exp 2%

This shows that the mapping (¢, z) — Q}(z, A) is measurable on Ry x R for all A € Bg . By problem 2, we
see that (R;);>o is a Markov process with semigroup (27).

d
(co((wr — 2% + S wd) f(w])doo. (27)
k=2

O

In the remaining exercises, we use the following notation. (E,d) is a locally compact metric space, which is
countable at infinity, and (Q;):>0 is a Feller semigroup on E. We consider an E-valued process (X;);>o with cadlag
sample paths, and a collection (P,)zcg of probability measures on E, such that, under P,, (X;);>0 is a Markov
process with semigroup (Q¢):>o0 with respect to the filtration (.%#);>0 and P,(Xo = =) = 1. We write L for the
generator of the semigroup (Q)¢>0, D(L) for the domain of L and R) for the A-resolvent, for every A > 0.

6.3 Exercise 6.25 (Scale Function)
In this exercise, we assume that £ = R, and that the sample paths of X are continuous. For every = € R, we set
T, =inf{t >0 | X; =z}

and
o(z) = P,(Ty < 00).

1. Show that, if 0 <z <y,
o(y) = p(x) Py (T < 00).

2. We assume that ¢(r) <1 and P,(sup;>o X¢ = c0) = 1, for every 2 > 0. Show that, if 0 <z <y,

plz) —oly)

Pl <) = )
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Proof.

1. By strong Markov property, we have
Py (Ty) < o0) = Py(Ty < 00, T, <00) = Ey[lir, <oo} l{my<oo}] = Eyl[lir, <o} Exr, 1{1y<o0}]l-
Since (X¢):>0 has continuous sample path, we get X7, =« on {T, < oo} and therefore
P,(Ty < 50) = By L7, <) By, (L <o) ]] = Py(Ts < 50)Po(Ty < 0) = (@) P, (T, < ).
2. Because P, (T, < o0) =1, we get
P, (T) < ) =P, (Ty < Ty) + P,(Tp < o0, T, < Tp).
By strong Markov property, we have
E. 11, <111 {my<oo}] = Eo[lir, <10} Exr, [Ty <c0}]]-
Since (X¢)¢>0 has continuous sample path, we get X7, =y (a.s.) and therefore
E. 11, <y {1y<00}] = Pa(Ty < To)Py(Tp < 00).
Hecen

p(x) = Py(Th < 00) = Po(Ty < Ty) + P(Ty < Tp)Py(Ty < 00) = P (Ty < Ty) + P,(T, < Tp)e(y).

Since
1= P,(Ty < T,) + Po(T, < T)
and
o(r) <1 Va > 0,
we have () W)
14 — Py
P.(Ty<T,) =
T <T) —¢(y)
O
6.4 Exercise 6.26 (Feynman-Kac Formula)
Let v be a nonnegative function in Cy(E). For every x € E and every ¢t > 0, we set, for every ¢ € B(E),
t
Qip(o) = Bolp(Xp exp(= [ v(X.)ds).
1. Show that, for every ¢ € B(E), and s,t > 0, Q%, ¢ = Qf (Q%p).
2. After observing that
t t t
1- exp(—/ v(Xs)ds) = / v(Xy) exp(—/ v(Xy)du)ds,
0 0 s
show that, for every ¢ € B(E),
t
Qo — Qio= [ Q.0Q1)ds. (28)
0

3. Assume that ¢ € D(L). Show that
d *
@t Pli—o = Ly —vyp.
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Proof.

1. Fix s,t > 0. Define ®)(f) = o(f(s)) exp(— fo ). By simple Markov property, we get

Qi(Q:9)(x) = Eu[Bx, [p(X.) exp(~ / (X, )du)] exp(~ / o(X.)du)

E,[Ex,[8)] exp(~ / o(X,)du)]

0
— BL[EL [0 (Xypr)r20)  F] exp(— / o(X,)du)]

— EL[0)(Xesr)r20) exp(— / o(X,0)du)]

~ Bale(Xexn(- | (X )dt) exp(— | o)
t+s t
of ( / o(X.)du)

= Bulp(Xuesn(= [ o(X)dn)ex(- = QLyple)
2. Observe that p . .
gexp(—/ v(Xy)du) :v(XS)exp(—/ v(Xy)du).
Then we have . . .
1—exp(—/o v(Xs)ds) :/0 v(Xs)eXp(—/S v(Xy)du)ds.
By Fubini’s theorem and simple Markov property, we get
Qup(x) — Qi p(z) = Exlp(Xy)] —Eac[@(Xt)eXp(—/o v(X)ds)]
— Bulp()(1 - exp(— [ v(X.)ds))
0
— B, [p(X)) x / o(X,) exp(— / o(Xy)du)ds]
/ E.lp(Xy) x v(Xs) exp(— / v(X,)du)|ds
/ E,| ) x o(Xt) exp(— /O_S V(Xyqs)du)]ds
/ B [o(X.)90 ) (Xas,)r20)]ds
/ B [o(X0) B[00 (Xosr)r20) £ ZJds
:/ E [v( 26*S)]d.s
/E o(Xi—s) exp(— /0 v(X,)du)|ds

/E X)Q;_sp(Xs)lds
- /0 Q. (vQ;_ ) (x)ds
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3. Note that .
Qup(z) = p(x) + / Qu(Lg)(x)ds
0

and Qfo(x) = p(z). By differentiating (32), we have

4 Qie(@)eo = Lo(w) ~ v(z)o().

6.5 Exercise 6.27 (Quasi left-continuity)

Throughout the exercise we fix the starting point € E. For every ¢t > 0, we write X;_(w) for the left-limit of the
sample path s — X (w) at t.

Let (T},)n>1 be a strictly increasing sequence of stopping times, and T' = lim,,_,, T,,. We assume that there exists a
constant C' < oo such that T" < C. The goal of the exercise is to verify that X = Xp_, P, -a.s.

1. Let f € D(L) and h = Lf. Show that, for every n > 1,
T
B,{f(Xr) | 1] = £(Xn,) + Bal | h(X.)ds | Fn),
T,

2. We recall from the theory of discrete time martingales that

a.s. L'

E[f(Xr) | #1,] " E.[f(X1) | Frl,

where

Fr =\ Zr .

n

<3

n=1

Infer from question (1) that .
E[f(Xr) | #r] = f(X7-).

3. Show that the conclusion of question (2) remains valid if we only assume that f € Cy(E), and infer that, for
every choice of f,g € Cy(E),
E.[f(Xr)g(Xr-)] = Eo[f (Xr-)g(Xr-)].
Conclude that X+ = X7, P,-a.s.

Proof.

1. By Theorem 6.14, we see that (f(X;) — f(f h(Xs)ds)i>0 is a martingale with respect to (:#;);>0. By Corollary

3.23, we have
T Ty
B [f(Xr) - / W(X.)ds | Fr) = f(Xn,) - / h(X.)ds
0 0
and so .
B, [f(Xr) | #n,) = f(Xp,) + Ea| / W(X.)ds | Fr,].
Thn
2. Note that

E,[f(X7) | Z1] < |Ifllu < oo,

where || f||, = sup,cg | f(x)]. Then the discrete time martingale

(Eu[f(X7) | Z1,))nz0 = (BoE[f(Xr) | Fr]| F1,])nz0
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is closed and, hence,

T —_
f(XTn)+Ex[/T WX.)ds | Zr,) = BLlf(Xr) | Zr,] “ BLlf(Xr) | Frl

Note that lim, oo X7, = X7, Py-a.s. and [|h||, < co. By Lebesgue’s dominated convergence theorem, we
get

1 (Xr) — f(Xn,) /h Jds | Fr ]|l
T
< F(Xro) = F(X, )l + || Bl /T W(X.)ds | Fr, ]l

< B [[f(Xr-) — f(Xp)l + Ez[/ [7(Xs)lds]

n

and therefore E[f(Xr) | F ] f(Xr_), Py-as.

3. First, we show that .
E[f(X7) | Zr] = f(Xr_)  VfeCo(E).

By proposition 6.8 and proposition 6.12, we see that

D(L)=%={R\f| [ € Co(E)}
is dense in Cy(E). Given f € Co(F) and € > 0. Choose g € D(L) such that ||f — g||. < e. Then

Elg(Xr) | 1] = g(Xr_)

and, hence,
E.[|E[f(Xr) | Fr] — f(X7_)]]
< E,[|E[f(Xr) | Zr| - Elg(Xr) | Zr]|| + Exllg(Xr_) — f(Xro)|]
< Eu[lg(X1) — f(X7)[] + Eollg(X7-) — f(X7_)]]
< 2Hf QHu < 2e.

By letting € — 0, we get .
Ef(Xr) | Z7| = f(X1-).
Next, we show that X7 = Xr. Let f,g € Co(E). Then g(Xr_) is ZFp-measurable and, hence,
B, [f(Xr)g(Xr-)] = Bo|Ealf(Xr) | Zrlg(Xr-)] = Bolf (Xr-)g(Xr-)].

Thus, we have
E.[f(Xr)g(Xr-)] = E[f(X7-)g9(X7r-)]  Vf,9€ Co(E).
Hence
E.[f(X7)g(Xr-)] = Eo[f(Xr-)g(X7-)]  Vf,g€ B(E)
and therefore
E [WMXr, Xp_)] = E [h(Xp—, X7_)] Vh € B(E x E).

For € > 0, if we set h(x,y) = lg(,y)>e(,y), then
Pm(d(XT,XT_) > 6) = Em[h(XT,XT_)] = Em[h(XT_, XT_)] =0.
Therefore X7 = Xr, P,-a.s.
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6.6 Exercise 6.28 (Killing operation)
In this exercise, we assume that X has continuous sample paths. Let A be a compact subset of E and
Ta=inf{t >0]| X; € A}.
1. We set, for every ¢ > 0 and every bounded measurable function ¢ on F,

Qip(x) = Eu[p(Xe)lp<ray]s Ve e E.
Verify that Qf, ¢ = Q; (Q%p), for every s,t > 0.

2. We set E = (E\ A)U{A}, where A is a point added to E \ A as an isolated point. For every bounded
measurable function ¢ on F and every t > 0, we set

5 _JEe(X) ey + Po(Ta < t)p(4), ifze E\A
Quele) = {w(A), if 2= A

Verify that (Q,)t>0 is a transition semigroup on E. (The proof of the measurability of the mapping (¢,z)
Q,¢(x) will be omitted.)

3. Show that, under the probability measure P, the process X defined by

— Xy, ift<Ty
Xt = .
A, ift>Ty.

is a Markov process with semigroup (@t)tzo, with respect to the canonical filtration of X.

4. We take it for granted that the semigroup (Q,)¢>o is Feller, and we denote its generator by L. Let f € D(L)
such that f and Lf vanish on an open set containing A. Write f for the restriction of f to £\ A, and consider
f as a function on F by setting f(A) = 0. Show that f € D(L) and Lf(x) = Lf(z) for every x € E'\ A.

Proof.

1. By the simple Markov property, we have

Qi Qo) () = EL[Qip(Xi) 1 jr<ray]

2. First, we show that 2 € E + Q,¢(z) is measurable for every bounded measurable function ¢ on E and every
t > 0. Observe that

{A}, ifp(A)el
0, otherwise.

{z € E|Qup(x) €T} = ({Que e T} B\ A) {
Define ¢ : £ +— R by

~ o), ifreE\A
Ple) = {0, if z € A.
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Then ¢ is a bounded measurable function on E and, hence,
v € B E [o(Xe)lpar,y]

is measurabale on E. Note that
Then we see that
r € B\ A E[p(Xe)li<rsy] = Exlo(Xe)lp<ra}]

is measurable on E \ A. Similarly, we see that
rE€E\ A P, (Ty<t)
is measurable on E \ A. Thus,
v € B\ A= Eufp(Xi)lteryy] + Po(Ta < )p(A) = Qup(2)
is measurable on F \ A and, hence,

{A}, ifp(A)eT
0, otherwise.

{ e E|Qu(z) €Ty = ({Qu e T (BN A) {

is a meausbale set on £\ A. B
Next, we show that Q,Q,p = Q¢ for all bounded meausable funciotn ¢ on E. It’s clear that

Q1Q,0(A) = Qup(A) = p(A) = Qpy s0(A).

Now, we suppose € E \ A. By the simple Markov property, we get

ol
2|
w

5
&

sP(Xt)literay) + Po(Ta <1)Qp(A)

(X))l peray] + Po(Ta < t)p(A)

(Ex,[o(X)lseray] + Px,(Ta < 5)o(A)1gpcray] + Po(Ta < t)p(A)

X (X)L scra)lpperay] + Ex[Px,(Ta < 8)0o(A)lpcryy] + Po(Ta < t)p(A)

Xort) U s<int{r>01 X, €A} L{t<Ta}) T Ba[l{int{r>0/x, 1 eay<s} @(A) L icry] + Po(Ta < t)p(A)

x

Q| Q|

x

8

S

8

Xort)ljtqscray] + (D) Ep[(1int{r>01x, . cAt<st Lit<Ta} + LiTa<t})]

Xs+t)1{t+s<TA}} + Pa?(TA § s+ t)SD(A) = Qert(:E)'

8

I
SNSRI IO IS S
T ER=85

BS)
PENIPNIAN

B

8

. For t > 0 and a measurable set I' of E such that A ¢ T,
{(Xi T} ={X, e T} [{t < Ta} € F

and, hence, (YL)QO is a (F;)i>0-adapted process. Now, we show that (X;);>0 is a (% )i>0-Markov process on
E. Let ¢ € B(E). Note that

— Xy), ift<T
o(Xy) = { AR e <Ta
p(A), ift>Ta.
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By the simple Markov property, we get

E.[p(X1ys) | Z]

= E.[o(X i1 ) ltrs<tay | ol + Eolp(Xers)pepszray | o)

= Eu[p(Xtts)Liprs<tay | sl + Eu[o(A)1tts>1ay | Fol

= E.[o(Xt4s) 1 {s<mat Lt<int{r>0| Xty e} | Fs] + Eolp(A) (1 sarit L int{r>01 X1 A}y + Ls>Tay) | F]
= 1< Ex [p(X)licray] + 0(A) 1 fscry Px, (t = Ta) + @(A) 15>}

= 1seray (Bx, [9(X)lrcray] + 9(D)Px (t > Ta)) + (X o) 1{s>143

= @tw(ys)'

4. Let us show that

= {1 ress

Since A is an isolated point of E\ A and f,Lf € Co(E), we see that f,Lf € Co(FE). By thoerem 6.14, it
suffices to show that ( fo Lf(Xs)ds)i>o is a (%;)¢>o-martingale under P, for allz € E. If x = A, then

X =A Vt>0 P,-as.

and so o o
f(Xt) = Lf(Xt) =0 Vit Z 0 P,;-a.s.

Thus ( fo Lf(X s)ds)i>0 is a zero process. Now, we suppose € E'\ A. Since f and Lf vanish on an
open set contalnmg A, we see that

J(Xinry) = Lf(Xinr,) =0 Vi >Ta.

Thus, we have -
f(X) = f(Xear,)  VE>0

and

t tAT A
/ Lf(X,)d Lf(Xsar,)ds :/ Lf(Xy)ds  Vt>0.
0 0

Since (f(Xy) — fot Lf(Xs)ds)i>o0 is a (%1)i>o-martingale under P, we get

(F(Xe) _/o Lf(X)ds)iso0 = (f(Xears) _/0 ’ Lf(Xs)ds)e>o

is a (#;)i>o-martingale under P,. Thus f € D(L) and

(o) = T (o) = {Lf(m), ifzeE\A

0, if z = A.
O
6.7 Exercise 6.29 (Dynkin’s formula)
1. Let g € Cop(E) and z € E, and let T be a stopping time. Justify the equality
E.[l{r<sre ™ /OOO e Mg(Xry1)dt] = Eu[lircocye M Rag(X7)] (29)
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2. Infer that -
Ryg(x) = Eac[/ e Mg(Xy)dt] + Eo[l{r<ocye M Rag(X7)]. (30)
0

3. Show that, if f € D(L),
T
f@) = Bul [ e NOF - PO + Ballresye T (X))
0
4. Assuming that E,[T] < oo, infer from the previous question that

T
Ex[[ Lf(Xy)dt] = E.[f(X7)] — f(2). (Dynkin's formula) (31)

How could this formula have been established more directly?

5. For every € > 0, we set T, , = inf{t > 0 | d(z, X;) > €}. Assume that E [T, ;] < oo, for every sufficiently small
€. Show that (still under the assumption f € D(L)) one has

 EJf(X, ) - ()
Li@) =l ——p

6. Show that the assumption E,[T, ;] < oo for every sufficiently small e holds if the point « is not absorbing, that
is, if there exists a ¢t > 0 such that Q;(z,{z}) < 1. (Hint: Observe that there exists a nonnegative function
h € Cy(E) which vanishes on a ball centered at = and is such that Q¢h(x) > 0. Infer that one can choose a > 0
and 7 € (0,1) such that P, (T, > nt) < (1—mn)" for every integer n > 1.)

Proof.

1. By Fubini’s theorem and the strong Markov properpty, we get
El[l{T<oo}e_>\T/ e Mg(Xry)dt] = / E[lircoye e M g(Xpyy)]dt
0 0
— [ Bullgeme e N BLlg(Xrs) | Frlli
OOO
— [ Bullgese e N By o)
0
= / E:v[1{T<oo}6_>\T6_)\tth(XT)]dt
0
— Bullgresae ™ [ e M Qug(Xr)a
0
= E.[l{r<oore " Rag(X7)].
2. By (29), we get

T
B, / e M g(X)dt) + Ball g eoye T Rag(Xr)]
0

T oo
= Em[/ e Mg(Xy)dt] + EI[I{T<OO}67)\T/ e Mg(Xppy)dt]
0 0

T ']
B / e g(X,)dt] + Byllirene) / e g(X,)di
0 T

= EI[/OOo e_’\tg(Xt)dt] = /OO e_’\th[g(Xt)}dt = /00 e_’\tth(x)dt = Ryg(z).

0 0
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3. Fix f € D(L). By proposition 6.12, there exists g € Cy(E) such that f = Ryg € D(L) and (A\—L)f = g. By
(30), we get

T
f(2) = B, | / NS — LX) + Byl conye T f(X0)]

4. Note that f, L(f) are bounded and E.[T] < oo. By Lebesgue’s dominated convergence theorem, we get

T
lim B[ [ O - (X

T
— i B, (L /0 e MO — L) (X0)dt]
T
= Buliren i [ e OF - LX)
T
= Eoflre [ Jime O - LX)

T
B[ LA

and therefore

T

T
f(@) = lim E, | /0 MO = LA(X)dl] + lim Bullgreye ™7 f(X1)] = ~E, | /0 Lf(Xo)d] + o [f(Xr)].

Next, we prove (31) directly. By theorem 6.14, we see that (My);>0 = (f(X) — jg Lf(Xs)ds)i>o is a (Ft)i>o0-
martingale. Let K > 0. Then (Miak):>0 is a uniformly integrable martingale. By optional stopping theorem,
we have

TAK
B [f (Xrax) - /0 LF(X,)ds] = f().

Since E,[T] < oo, we see that
A f(Xrar) = f(Xr)  Psas.

By Lebesgue’s dominated convergence theorem, we get

f(2) = B [f(Xr)] - E,| / LF(X.)ds).

0

5. Fix f € D(L). Given n > 0. Since Lf is continuous at z, there exists § > 0 such that |Lf(y) — Lf(z)| < n
whenever d(y, z) < §. For sufficiently small € such that E,[T. ;] < oo and € < §, we have

|Lf(X:) = Lf(z)l<n  VO<t < Ty, Py-as.
and therefore

Te,x

E,[T. ]
_ |Ex[foT” Lf(Xy) — Lf()di]
_ BT ]
B[ |Lf(X,) — Lf(x)|dt)
E,[T..]




By (31), we get

g 2K ) = 7)o Belfo ™" LI (Xdi] f(=)
€l0 Em [TE@] €l0 Ez [Te,z] -

. Since Qi(x,{x}) < 1, there exists r > 0 such that Q.(x,B(x,r)) < 1. Then E \ B(z,r) is an open set
and Qi(z,F \ B(z, )) > 0. Choose z € E \ B(x,r). Then there exists R > 0 such that Q.(x,(E \
B(z,r))B(z,R)) > 0. Set G = (E \ B(z,r))(B(2,R). Then G is an bounded open set and Q:1g(x) =
Q+(x,G) > 0. Set

d(y, B\ G)
1+d(y, E\G)

s

Fe(y) = ( ) Vk > 1.

Then
0< fu(y) Tla(y) VyeE
and fi, € Co(E) for all k > 1. Since (Q;);>0 is Feller,

Qifr € Co(E) Vk>1
and i
Qi fr(x) = Qi(z, G).

Choose large k such that Q:fx(x) > 0 and set h = fi. Then 0 < Q:h(x) < 1 and, hence, there exists 0 < o < r
and 0 < 1 < 1 such that

Qi(y,G) > Qith(y) >n >0  Vye B(z,a).
Thus,
Qi(y, E\G) < (1-n) Vye€ B(z,a).

For n > 1, by the simple Markov property, we get

P, (Taz > nt)

Lix,eB(z.0)} - 1{X (0 1y1€B(x.0)} L{X € B(z,00)}]

o[ L{xieB@a)} X 1 €B@a)} BX 1. [IxieB@all

E,|
[
e[ L xieBaa)} 1 {X 1y eB@.a)} Qt(X(n—1)t, B(z, @))]
o[LxieB@a)} (X 1eB@a)}Qt(Xm-1) B\ G)]

[

IAIA
SECEICENS

z ]-{X,EB(Q: a)}'~'1{X(,L,1)16B(x,a)}](1 - 77)

<(T-m"

Therefore

for all € < a.
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Chapter 7

Brownian Motion and Partial Differential Equations

7.1 Exercise 7.24
Let B(0,1) be the open ball of R? (d > 2), and B(0,1)* = B(0,1)\ {0}. Let g be the continuous function defined on

0B(0,1)* by
_Jo, iffz[=1
9(@) = {1, if 2 = 0.

Prove that the Dirichlet problem in B(0,1)* with boundary condition g has no solution.
Proof.

We prove this by contradiction. Assume that there exists a u € C?(B(0,1)*)(C(B(0,1)) such that

Au(z) =0, if x € B(0,1)*
limyep(0,1)* »ecan(0,1) Wy) = g(z), if z € 9B(0,1)".

By proposition 7.7, we see that
u(z) = E.[g(Br)]  Vz e B(0,1)",

where T'= Uy A Uy and U, = inf{t > 0 | |B;| = a}. By proposition 7.16, we see that
limeyo G020, if d = 2

li 1—]z|?~ . =0
imeyo —g=a, ifd>3

Pm(UO < Ul) = lling(UE < U1) = {

and, hence,
u(z) = Ey[g(Br)] = Ez[9(Bu,)l{v,<vy] =0 Vo € B(0,1)"
which contradict to

li =0+#£1=g(0).
yeB(égl)*—mu(y) #1=g(0)

7.2 Exercise 7.25 (Polar sets)

Throughout this exercise, we consider a nonempty compact subset K of R? (d > 2). Weset T = inf{t > 0| T} € K}.
We say that K is polar if there exists an « € K¢ such that P,(Tx < 00) = 0.

1. Using the strong Markov property as in the proof of Proposition 7.7 (ii), prove that the function z — P, (Tx <
00) is harmonic on every connected component of K°.

2. From now on until question 4., we assume that K is polar. Prove that K¢ is connected, and that the property
P,(Tx < 00) =0 holds for every z € K°. Hint: Observe that {z € K¢ | P,(Tk < co) = 0} is both open and
closed.

3. Let D be a bounded domain containing K, and D’ = D\ K. Prove that any bounded harmonic function h on
D’ can be extended to a harmonic function on D. Does this remain true if the word “bounded” is replaced by
“positive”?
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4. Define

(z) = 0, ifxedD
T =31, iteeoD\ap.

Prove that the Dirichlet problem in D’ with boundary condition g has no solution. (Note that this generalizes
the result of Exercise 7.24.)

5. If a € (0,d], we say that the compact set K has zero a-dimensional Hausdorff measure if, for every € > 0, we
can find an integer N, > 1 and N, open balls B(cg, %), k = 1,2, ..., N, such that

Ne N
K C U B(eg, i) and ZT? <e.
k=1 k=1

Prove that if d > 3 and K has zero d — 2-dimensional Hausdorff measure then K is polar.

Proof.
We define Ty = inf{t > 0| B; € A} for all closed subset A of R

1. Define ¢ : K¢ — R by ¢(x) = P,(Tk < 00). To show that ¢ is harmonic on every connected component of
K¢, it suffices to show that ¢ satisfies the mean value property for every x € K¢. Fix x € K°¢. Let r > 0 such
that B(z,r) C K€ Set T, = inf{t > 0| |B; — x| = r}. Then

Tpr <Tk, Tpr<oo P,-as.
By the strong Markov property, we get

90(33) = Em[l{TK<OO}] = Ew[EBTz,T [1{TK<OO}H = Ez[(p(BTz,r)]'

Since the distribution of Br, . under P, is the uniform probability measure o, , on the OB(z,r), we have

o) = BalpBr )= [ oty)onia)

2. First, we show that K¢ is connected. We prove this by contradiction. Assume that K¢ =J!"", G,,, where G,,
is a connected component of K¢ and 2 < m < oo. Then

Cs

0G, C K.

n=1

For x € G;, choose y € G, where i # j, and r > 0 such that B(y,r) C G;. By proposition 7.16, we get

P,(Tk < ) > P, (Tog, < o) > Pm(Tm < o0) > 0.

Thus, we get
P,(Txk <o0) >0 Vo e K°

which contradict to K is polar.
Next, we show that
P, (Tk <0)=0 Vo € K€

Since K¢ is connected, it suffices to show that
F={re K| P,(Txk <) =0}

is both open and closed in K€. Indeed, since K is polar, we see that I' is nonempty and, hence, I' = K°. By
problem 1., we see that ¢(z) = P,(Tk < 00) is continuous in K¢ and so

I=¢™'({0})
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3.

is closed in K¢. Now, we show that I is open in K¢. Fix z € I". We choose r > 0 such that B(z,r)
Assume that there exists y € B(x,r) such that Py (Tx < 00) > n for some n > 0. Since ¢(z) = P,(Tx
is continuous in K¢, there exists exists ' > 0 such that B(y,r’) C B(x,r) and

P,.(Tk < o0) > g Vz € B(y, ).
By the strong Markov property, we get

<Tg < OO) = Em[EB

o3

(L{7g <oo}]] 2>

B
which is a contradiction. Thus, B(z,r) C T and therefore I' is open in K°.
(a) Choose a sequence of bounded domains {I',,} such that
KCcTl,, T,Cl. vn>1, and T, T D.
Define u : D — R by
u(z) = lim E.[h(Br,. )]

n—oo
Now we show that u satisfy
Au(z) =0, ifzxeD
uw(z) = h(z), ifxeD.

First, we show that w = h in D’ and u is well-defined.

i. Fix x € D’. Choose large n such that z € T',,. Since z € K¢ and K is polar, we get Tx = oo P,-(a.s.)
and so
Brye st €D V>0 Py-(as.).

By Ito’s formula, we have
t/\T@Fn
h(Biatyyr, ) = h(z) +/ Vh(Bs) - dBs vt >0 P.-(as.)
0

and therefore (h(Biat,y, ))i>0 is a continuous local martingale. Since h is bounded in D', (A(Biatr, ))e>0
is a uniformly integrable martingale and, hence,

h(z) = E4[h(Bry, )]
Therefore, if z € T',,, for some m > 1, then
E.[h(Br,., )] = h(x) Vn > m. (32)

Moreover,
u(z) = lim Ex[h(BTapn )] = h(x).

n—o0
ii. Fix z € K. We show that
B, [h(Br,., )| = Ealh(Br,,,)]  Yn>m>1. (33)
Fix n > m. Then I';,, CT',,. By the strong Markov property, we get
Eo[h(Bry, ) = Eo[Epy, [h(Bry, )]l
By (32), we have
Ep.,. [MBry, )|l = W(Br,r, ) Pa-(as.)
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and so
E.[0(Bry, )] = Ex[M(Bryy,, ).

Moveover,
lim E;[h(Br,, )] = E.[h(Br,)]

n—oo
and, hence, u is well-defined.
Next, we show that w is harmonic on D. It suffices to show that u satisfies the mean value property. Fix

xz € D and r > 0 such that B(z,r) C D. Choose n > 1 such that B(z,r) CT',,. Set T, , = inf{t > 0 |
|B; — x| =r}. By (32) and (33), we have

E.[h(Br,., )] = u(z) Vz eIy,
By the strong Markov property, we get
w(z) = Eu[h(Bry, )| = Ex[Epy,  [M( By, )l| = Ex[u(Br, )]

Since the distribution of By, , under P, is the uniform probability measure o, , on the dB(z,r), we have

u(z) = /6 o 1) ).

Therefore u is a harmonic function on D such that u(z) = h(x) for all x € D’.

(b) Now we show that boundedness is necessary for this statement. Set K = {0}. By proposition 7.16, K is a
polar. Choose D = B(0,r) for some 0 < r < 1. Then D’ = B(0,r) \ {0}. Define ® to be the fundamental
solution of Laplace equation. That is,

+ log(|z) if d=2
P — 27 ’
(z) { 1 if d> 3.

1
n(n—2)w, |z[4=2"

Then ® is a unbounded, positive harmonic function on D’ and ® can’t be extended to a harmonic function
on D.

4. We prove this by contradiction. Assume that there exists a u € C?(D’)(C(D’) such that
Au(z) =0, ifxeD
limyeprzeap w(y) = g(x), if z € 0D

By proposition 7.7, we see that
u(x) = E.[g(Br)] Vo e D,

where T' = Typ A Topnap- Note that
Toprnop =Tk  Pg-as. Vo e D'

Fix x € D'. Since Tx = 0o P,-(a.s.), we see that T = Tpp P,-(a.s.) and, hence,
u(z) = E.[g(Br)] = E.[g(Br,,)] = 0.

Thus, we see that
wlx)=0 VzeD

which contradict to

li =0+#1= Yy € D'\ OD.
reD,ﬁ;géD,\aDu(x) #1=g(y) Yy \
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5. To show that K is polar, we show that P,(Tx < oo) =0 for all x € K°. Fix x € K°. Then
hek =inf{lz —z| | z€ K} > 0.

Given € > 0. There exists N > 1 and N, open balls B(ck, 1), k = 1,2, ..., N, such that

N. Ne
K C U B(cg, ) and Zr}f*z <e.
k=1 k=1

Without loss of generality, we assume that
Blewm) (VK #0  Vk=1,2,.. N..

Choose ¢, € Blek, ) [V K and set 7, = 21y, for all k =1,2,..., N.. Then

N€ NE
K C | J B(@.7) and Y 772 <2972
k=1 k=1
Set T, = inf{t > 0| |B; — ¢x| = 7%} for all k =1,2,..., N.. Then
Ne
P, (Tx < 00) < Po(ApeyTh < 00) <> Py(Ty < 00).
k=1
By proposition 7.16, we get

T
P, (T < ) = (ﬁ)d*2 Vk=1,2,..... N,

and, hence,
N, ~

N.  ~
Tk )4=2 <
P, (Tx < ) SZ Z a2 ¢
k=1 |x—ck\ hx,K

By letting € | 0, we have P, (Tk < co) = 0.

7.3 Exercise 7.26

In this exercise, d > 3. Let K be a compact subset of the open unit ball of R?, and Tk = inf{t > 0: B; € K}. We
assume that D := R?\ K is connected. We also consider a function g defined and continuous on K. The goal of the
exercise is to determine all functions v : D + R that satisfy:

(P) u is bounded and continuous on D, harmonic on D, and u(y) = g(y) if y € OD.

(This is the Dirichlet problem in D, but in contrast with Sect. 7.3 above, D is unbounded here.) We fix an increasing
sequence { Ry, }n>1 of reals, with By > 1 and R,, T co as n — co. For every n > 1, we set T;, = inf{¢t > 0: |B;| > R, }.

1. Suppose that u satisfies (P). Prove that, for every n > 1 and every x € D such that |z| < R,,
u(z) = Eulg(Bry ) ri<m,3] + Eolu(Br,) 11, <1y}]-

2. Show that, by replacing the sequence {R, } with a subsequence if necessary, we may assume that there exists
a constant a € R such that, for every = € D,

lim E,[u(Br,)] = «a,

n— o0
and that we then have

lim wu(z) = a.
|z|—o0
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3. Show that, for every x € D,
’LL(LL') = EI[g(BTK)]-{TK<oo}] + aPm(TK — OO)

4. Assume that D satisfies the exterior cone condition at every y € 9D (this is defined in the same way as when
D is bounded). Show that, for any choice of « € R the formula of question 3. gives a solution of the problem

(P).

Proof.
We define T4 := inf{t > 0: B; € A} for all closed subset A of RY.

1. Fix n > 1. Set continuous function

_ Ju(z), ifyedB(0,R,)
f@) = {g(x), if y € 0K,

By using proposition 7.7 on the bounded domain B(0, R,,) \ K, we get
u(r) = E.[g(Bri )l {1 <r,y] + Bolu(Br, )11, <15}] V¥ € DﬂB(O7 Ry).

2. Denote M := sup_ 5 |u(z)|.

(a) We show that there exists 1 < ny < ny < n3 < ... such that limy_, o Ey [u(BT”k )] converges uniformly on
every compact subset K C R for every x € R%. Denote

fn(z) := E.[u(Br,)] Vxe B(0,R,), n>1.

By the strong Markov property, we get f, is harmonic on B(0, R,,) for every n > 1.

First, we show that {f,} is equicontinuous on B(p,r) for every p € Q? and r € Q. Fix p € Q¢ and
r € Q4. Choose N > 1 such that B(p,r) C B(0,Ry) and n := d(B(p,r),0B(0,Ry)) > 0. By local
estimates for harmonic function, there exists C; > 0 such that

C CiM
< — 1 < — > N.
|Dfn((£)| = (n/z)d+1 ||fn||L (B(z,m/2)) = 77/2 Vr € B(par + 77/2)3 n = N

Fix € > 0. Let z,y € B(p,r) such that |z — y| < 55l5;¢. Then

|falz) = fay) < sup [Dfu(2)l|lz -yl <e Vn=N.
z€B(p,r+n/2)

Moreover, by Arzela—Ascoli theorem, there exists a subsequence N < ny < ng < ng < ... such that f,, ()
converges uniformly on B(p, r).

Next, by a standard diagonalization procedure, there exists 1 < nj; < ng < ng < ... such that f,, (x) con-
verges uniformly on B(p;, r;) for each i > 1, where Q¢ = {p;};>1 and Q4 = {r;};>1, and s0, limg_ 00 fn, (¥)
uniformly on every compact subset K of R

(b) We show that there exists a € R such that
lim E,[u(Br, )]=a VzeD.

k—o0

Set
f(z):= lim f,, (z) VoeR%
k—o0

By the strong Markov property, we get

[ f@)srtin) = ti [ Byfu(Br,, Vow(dy) = Jim Buful(Br,,)] = @)

and so f is a bounded, harmonic function. By Liouville’s theorem, we see that f = « for some o € R.
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(¢) We show that limj;| e u(z) = a. Fix € > 0. Choose R > 0 such that - < €
large j > 1 such that |z| < R, ,

J

B.u(Br,)] ol <.

. Let |x| > R. Choose

and 2—d | |2 d
Ry~¢ — |z|*™
Ty ST
Set B := B(0,1). Then
R27d — |g|2—d
P.(Tp <T,,) = W <Pl e < R*7TTpe< 2
U -

and so

u() = ol = [Ea[9(Br )Ly <, 3] = Ealw(Br, )1, >1}] + Eo[u(Br, )] -

< MP,(T,, > Tx) + MP,(T,, > T) + ¢ < (4M + 1)e.

3. Since lim;_,o | Bt| = 00 and u(z) |-’K\:>>oo

k
E.[u(Br, ), <riy] = Eo[u(Br,, )11, <1i <o}l +Ea[u(Br,, )1{r,, <o} N{Tr=00}]
By problem 1 and problem 2, we have

u(z) = Jim E, [9(Bri ) T <ty + Jim B, [u(Br, )11, <7 }] = E2l9(Bry )1 {15 <00

y € dD. Choose § > 0 such that

9(z) —g(y)| < e Vze K[)B(y,d).

Choose i > 0 such that

)
Py(sup |B:| > =) < e.
t<n 2

Observe that

2B, Pl =) =0

(This proof is the same as the proof of lemma 7.9) and so there exists ¢’ > 0 such that
P,(Tx >n) <e Vo eD[B(y,d).

Let 2 € D(\B(y,d' A 3). Then

) 1)
P,(sup|B; —z| > =) = Po(sup |Bs| > =) < e
t<n 2 t<n 2
and so
lu(z) — 9(y)|
< Eul|l9(Bry) — 9W) L ire<ny] + Exllg(Bri) — 9(W) 1<t <00}l + (9(y) + @)

5
< Eull9(Bry) = 9L izie<ny Lsup, o, 1B —a1< 53] + 2MPm(§1<lp |Be —a| 2 5)+
- =n

E.[l9(Bri) = 9L (n<tic<ocy] + (9(y) + @) Po(Tx = o0)
<e+2Me+2MP,(n < Tk < 00) + (g(y) + o) P(Tk = o0)
<e+2Me+ (3M + )P, (Tk >n) < € +2Me+ (3M + a)e.
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a, we get T, < oo for every k > 1 (a.s.) and so

= 0+aP,(Tx = o).

}] + Osz(TK = OO)

. It suffices to show that lim,ecp_, u(x) = g(y) for every y € 0D. Denote M := sup,cg |g(z)|. Fix € > 0 and

PI(TK = OO)



7.4 Exercise 7.27

Let f : C+— C be a nonconstant holomorphic function. Use planar Brownian motion to prove that the set {f(x) : z €
C} is dense in C. (Much more is true, since Picard’s little theorem asserts that the complement of {f(z) : z € C} in
C contains at most one point: This can also be proved using Brownian motion, but the argument is more involved)

Proof.
We prove this by contradiction. Assume that there exists z € C and r > 0 such that B(z,r) C G¢, where G = {f(z) :
z € C}. For any filtration (% ):>0 and (%;):>0-adapted process (A;);>0 on C, we define a stopping time

TH =inf{t >0: A, € F}

for closed subset F of C. Let (B;);>0 be a complex Brownian motion that starts from 0 under the probability measure
Py. Since B(z,7) C G°, we get

f(B) _
PO(TB(z,r) < OO) =0.

By Theorem 7.18, there exists a complex Brownian motion I' that starts from f(0) under Py, such that
f(By)=T¢, Vt>0 Po(as.),

where

t
ct=/ F'(B)[2ds W >0,
0

By Proposition 7.16, we see that
PO(T% < o0) = 1.

Since (C});>0 is a continuous increasing process and Cy, = 00 Py-(a.s.), we have

B
Py(1T2 §>) < 00) = Po(Te 5 < 00) = 1

which is a contradiction. O

7.5 Exercise 7.28 (Feynman—-Kac formula for Brownian motion)

This is a continuation of Exercise 6.26 in Chap. 6. With the notation of this exercise, we assume that £ = R? and
X; = B;. Let v be a nonnegative function in Co(Rd), and assume that v is continuously differentiable with bounded
first derivatives. As in Exercise 6.26, set, for every ¢ € B(R?),

Qrp(x) = Ey[p(X;)e Jo vX)ds],

1. Using the formula derived in question 2. of Exercise 6.26, prove that, for every t > 0, and every ¢ € Co(R?),
the function Q¢ is twice continuously differentiable on R, and that Q}y and its partial derivatives up to
order 2 belong to Cy(R?). Conclude that Q}y € D(L).

2. Let ¢ € Cp(R?Y) and set ui(z) = Q%p(x) for every t > 0 and = € RY. Using question 3. of Exercise 6.26, prove
that, for every x € R%, the function ¢ — u;(x) is continuously differentiable on (0, c0), and

0 1
&ut = §Aut — VU,
Proof.

1. For f:R?+— R, we set ||f|| = sup,ega |f(x)|. Observe that we have the following facts:
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(a) Fix p € B(R?) and ¢ > 0. By the definition of Q} ¢, we get
1Qz el < llel]-

(b) Fix ¢ € Cp(R?) and ¢ > 0. By question 2. of Exercise 6.26, we get

t
Qo) = Quele) = [ QU@ P)w)is Vo e R,
where {Q;} is the semigroup of (By);>o.
(c) Fix f € Cy(RY) and t > 0. Since Q;f(x) = f * ky(x), where

a _|z|? d T

k(x):= (2m)"2e” 2 and ks(z) := (s)_fk(j),

we see that Q;f € C(RY), and that Q,f and all its partial derivatives belong to Cy(R?). Moreover, if
t > 0, then

1
I1D;Qef < %HDjk”Ll(Rd)Hf”' (34)

Indeed, since

D,Quf(e) = Dy + k) = [ (2mt)de 5 (<) o)y = —(D,10) = (e
we have . .
1D;Qcf ()] < ﬁ”((Djk)t) «fll < ﬁHDjknLl(Rd)”fH'
(d) Let s > 0. Then
Dika(x) = %(Dik)s(x) vz € RY
(e) Let ¢ € Co(R?Y). Then
1Qrell < llell

for all 7 > 0. We will show that = € R? — Qp(x) is continuous for all r > 0. Therefore vQ}p € Co(R?),

Qs(vQrp)(x) = (vQrp) * ky)(z) € CX(RY),

and that Q,(vQZ%p)(x) and all its derivatives belong to Co(R?) for all r, s > 0. Moreover,

t t
[ Q.0Qi o)@is = [ (@i o) s k)whds Vo e R
0 0
(f) Note that
{h € C*(RY) | h and Ah € Cy(RY)} C D(L),
where L is the generator of B and D(L) is the domain of L.

Fix ¢ € Cyg(R%). To prove problem 1, it suffices to show that 2 € R? fg Qs(wQi_,p)(x)ds is twice

continuously differentiable, and that x € R% fot Qs(vQ;_,p)(z)ds and its partial derivatives up to order 2
belong to Cy(R?).
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(a)

We show that z € R? fot Qs (vQ;_,p)(x)ds belong to Co(R?). It suffices to show that € R — Qry(x)

is continuous for all » > 0. Indeed, since

Qs (vQ;_ ) € Co(RY) Vs € [0,1]

and
Qs (vQi_sp)l| < [vl[llell Vs €0,2],

we get
t

t
lim [ QuuQp .p)(@)ds = / lim Q. (vQ}_,¢)(x)ds =
0 0

r—a r—a

{fé Q.(0Q;_.)(a)ds, ifa+oc

0, otherwise
and, hence, z € R? fot Qs (vQ;_,p)(z)ds belong to Cy(R?).
Now we show that 2 € R4 — Qr¢(x) is continuous for all » > 0. Fix r > 0. Observe that

72 v(Xir)

E,[p(X,)e "= 1" Qrp(x) = Ex[gp(XT)e_fOT v(Xo)ds] yniformly on RY.

Indeed, since

5 i v(Xir) & i v(Xir +2)

E.[p(X,)e " == | = Eolp(X, +2)e " ] Vn>1,

Eg;[cp(Xr)ef Jo 'U(Xs)dﬁ} _ EO[SD(XT + :L')€7 Jo U(Xs+z)ds] Vn > 1’
and

+x) = / v(X, + x)ds uniformly on R? Py-(as.),
0

we get

— 5 Xz v(Xir) Zy3 o v(Xir+x)
n n

lim E.[p(X,)e " ] = lim Eo[p(X, +x)e "~ ]
n—oo

= Eolo(X, + ) Jo v(Xst)ds)
=E,[p(X,)e” 5 ”(XS)ds] uniformly on R4,
By Lebesgue’s dominated convergence theorem, we get

T RY s EO[SO(XT +l‘)67% i=1 ”(X%er)} _ Em[go(Xr)67% i=1 ”(X%)

]

is continuous for all n > 1 and so
z € R o By lp(X,)e Jo VX% = Qro(x)

is continuous.

We show that

D, / Qu(vQ;_ o) (x)ds = D, / (0Q;_ ) * o) (w)ds = / (0Q;_y) * (Diks))(x)ds

for all x € R? and

t
zeR— Di/ Qs(vQ;_.p)(x)ds
0
belong to Co(RY) for all i = 1,2, ...,d. Since vQ}_,¢ is bounded, we have

Di((vQ;_ ) * ks)(@) = (vQi_op) * (Diks)) () Vo € RY.
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Note that, if s € [0,¢], then

| (w@Qi—sp) * (Diks)|| < [|vQi_ sl X || Diks| L1 me)

1
< [lvllllel] x ﬁ”(Dik)sHLl(Rd)
1
< |lllllell x —=[IDikl| 1 (ray € L'([0,1]).

NG

By mean value theorem and Lebesgue’s dominated convergence theorem, we have

D, / (VQ}_y0) * ko) (x)ds = / Dil(vQ;_ ) * ) (@)ds = / (0Q:_u) % (Diks))()ds

for all 2 € R%. Given a € R?|J{oo}. By Lebesgue’s dominated convergence theorem, we have

i D; [ (0@ ) ki) ()ds = lim | (07 ) (D)) (@)
= [t (@i )+ (Dik ) )

= /0 lim D;((vQ;_sp) * (ks))(z)ds

T—a

r—a

:/O lim D;(Qs(vQ;_.¢))(x)ds.

Since D;Qs(vQ;_,¢) € Co(R?), we see that

t
li Dz s *73 ds =
| im i@, 07 o @i otherwise

{fé Di(Qu(vQ;_0))(a)ds, if a # oo

0,

_ D [(@Qs(v@;_s9))(@)ds, if a # oo
0, otherwise.

and so ¢
v e R D, / Qu(v Q) (w)ds
0

belong to Co(R?).
(¢c) We show that

t

Dj,i/ Qs (vQ;_sp)(2)ds = Dj,i ((vQZ'LM)*ks)(x)ds:/ (D (vQi_s)) * (Diks))(x)ds
0 0 0

for all z € R? and .
zeR o D, / Qu(vQ7_ ) (x)ds
0

belong to Co(R?) for all 4,5 = 1,2,...,d. Since we have shown that

D;Qip(x) = D;Qup(x) — D, / Qu(vQ;_ ) (x)ds

and

D;Qro(x), D; /O Qs (vQr_p)(2)ds € Co(R?)
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forall>0and j =1,2,...,d, we see that
vQrp € CH(RY) and D;(vQlp) € Co(RY).

Thus fo i (VQi_ o)) * (Diks))(x)ds is well-defined.
Fix 0 <s < t First, we show that

D;iQs(vQi—sp)(x) = D;((vQ;—s) * (Diks))(x) = ((D;(vQ;_s)) * (Diks))(x)
for all z € R%. Note that D;ks € L'(R®) and

1D (vQi— )| = [[(D;0)Q7 s + vD;Q7_¢l|
t—s

= (D)@} o+ 0D, Qs =D, [ QueGi )]
= (DIQap 0D Qs = [ DRl

= (Do + 0D Qs D00 ) * (k)

= DR oD Qs [ Q)+ (Dol

< 1D;0llell+ 101D Qull + [ 105 (i)

< Dol + D@ sll+ [ Qi -sa D s

t
1
< IDjvllllell + o[l D; Qi—seell +/ ||U||||90H7\/>|‘Djk||L1(]Rd)du
0 u

By (34), we get
)
Vi—s"
where C is a constant independent of s and j (We may set C' = maxj<;<¢ C; and so C is independent of
i). Fix x € R%. By mean value theorem, we get

(0Qi_)(x —y +hey) — (vQi_y2) (& —y + hey) 1
; <+

1D (0@ )l < C(1 +

| Diks(y)( )| Diks(y)| € L' (RY).

By Lebesgue’s convergence theorem, we have

D;iQs(vQi_.p)(x) = D;((vQ;_,) * (Diks))(x) = (D (vQ;_ %)) * (Diks)) ().
Next, we show that

t

Dys [ QuoQio)w)ds = Dy [ (007 o) x k) @)ds = [ (D307 0)) * (Dik))(w)ds
0 0 0

for all z € R?. Note that we already have

D, / Qu(0Q;_ o) (x)ds = / (WQ;_y ) * (Dika))(@)ds.

It suffices to show that

D;j / i (V@) * (Diks))(x)d8=/0 ((D; (vQi_s)) * (Diks))(x)ds.
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Fix x € R%. If 0 < s < ¢, then

|((UQZZS<P) * (Diks))(w + hej) — (vQi_yp) * (Diks))($)|
h
(D (vQi_sp)) * (Diks)l|
1D (vQi_s@) || Diks|| L1 (mey
1 1
<C(1+ \/ﬁ)*SH(Dik)sHLI(Rd)
1

Vt—s

By Lebesgue’s dominated convergence theorem, we have

<
<

o1+

1
)—=lIDikllza ey € L1((0,1)).

D,0: [ QuuGi)w)is = D; [ (0Qi_e) (D)) (@ds = [ (D005 )+ (Dik) o).
Given a € R%|J{co}. Note that
Dj7i/0 QS(UQI—S‘P)(m)dSZ/O (Dj(vQ;_sp)) * (Diks))(x)ds
_ /0 D;i(vQ;_,9)) * (k) (x)ds
_ / D;,iQs(vQ;_ ) (x)ds
and

D;iQs(vQ;_ ) € Co(R?) Vs € (0,1).

By Lebesgue’s dominated convergence theorem, we have

r—a

t
lim Dj,i Qs (UQLSW) (SL’)dS
0

T—ra

_ {fot D;Qs(vQi_,p)(a)ds, if a# oo

0, otherwise.

t
_ / lim D;,,Q. (vQF_,p)(x)ds

_ {Dm iy Qs(wQi_yp)(a)ds, if a# o

0, otherwise.
. Since ut(z) = Qro(x) — fot Qs(vQ;r_,p)(x)ds, we show that

9 ! 1
57(@re— [ Q.01 p)ds) = 5Au = vu

and
t €[0,00) — %Aut(m) — v(z)us(x)

is continuous for all € R%. Note that

t t
() = Qup / Qu(v Q] 0)ds = Qrp — / Qus(vQ?p)ds.
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By Theorem 7.1 and Leibniz integral rule, we get

0

0
Sui(a) = 5 Quele) — (Ol /“m@va&>

- %Athp(x) v(t)Q; p(x / SAQu—s(vQ5p)ds

Since we have shown that

t t t t
Di,j/o Qth(UQzSD)dSZDi,j/O QS(UQ;LSQO)dSZ/O Di’jQS(UQ;lsSD)dSZ/O Di,thfS(UQZSD)dSa

we get

Zn(e) = 18(Quee) — [ Q@A) — Q) = S Bu(a) ~ v(a)un(s)

Now we show that )
€ 10,00) — §Aut(x) — v(z)u(z)

is continuous for all z € R%. Fix 2 € R%. By Lebesgus’s dominated convergence theorem, we see that
t € [0,00) = wp(w) = Qf (¢) = Exlp(Xy)e™ o "X
is continuous. It remain to show that ¢ € [0, 00) — Auw;(x) is continuous. Let h > 0. Because
t
D iug () = / ((D;(vQf_p)) * (Diks))(x)ds ¥t >0,
0
we get

|D;, iut-i-h( ) — Di iug ()]

<q/ z@whw»ﬂmmmmM—A«Dm@LMM»wmmmm@
-H/ 1@Hhw»ﬂammmw—éunm@pwnwmmmwwL

< [ 1D 0@ 5 (Dikollds + [ (D0 Qi) (D100 » (Dik D @)
=a+p.
Note that
t+h
o [ D 0Q Dk 13 s
t+h 1 1
<), ‘IS

Now we show that 8 "290. Fix 0 < s < t. First, we show that

Dk L1 (ayds "3 0.

h—0

(D (vQi1h—s)) — (D (vQi_s))) * (Diks))(z)| "= 0
for all x € R%. Note that
|(D; (vQiyh—s)) (@ — y) — (D;(vQ7_ ) (& — y)) X (Diks)) ()]
< (1D (vQi -0l + IID-(UQI sP)DIDiks)) (y)

< (C(1+ ) + O+ (D) )]

< 20(1+ ) (Dik) )| € L' ()
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By Lebesgue convergence theorem, we have

((Dy (0@ —s9)) — (D3 (0Q7_,9)) * (Dik))(@)] "= 0.

Next, we show that g "390). Note that

(D5 (v@%1h—s#)) — (D (vQi_s))) * (Diks))|
< (D5 (vQ7 4 h—s0)) = (D (vQi_ @)D X [|(Dikis))|| L1 (re)
< (I[((D; (vQpyn—s DI + (D5 (vQi_s ) X |[(Diks)) | 1 me)

1 1 1
<(C(1+ \/ﬁ) +C(1+ \/ﬁ)) X %HDik”Ll(Rd)

1 1
) X 78||Dik”L1(Rd) € L'((0,1)).

<20(1 + ——
<20(1+ —

By Lebesgue’s convergence theorem, we have /3 "300andsot € [0,00) — Auy(z) is right continuous. By using
similar way, we get ¢t € [0, 00) — Aug(z) is left continuous and, hence, ¢ € [0, 00) — Auy(z) is continuous which
complete the proof.

O

7.6 Exercise 7.29

In this exercise d = 2 and R? is identified with the complex plane C. Let o € (0,27), and consider the open cone
G ={re" 117 >0,0 € (—a,a)}.

Set T :=inf{t > 0: By € .}

1. Show that the law of log |Br| under P is the law of Bin¢14>0:/v,|=a}, Where 5 and v are two independent linear
Brownian motions started from 0.

2. Verify that, for every A € R,
1

B, [ ‘BTl] - cosh(a\)’

Proof.
1. By the skew-product representation (Theorem 7.19), there exist two independent linear Brownian motions (3
and v that start from 0 under P; such that
B, = ePritivm, Vit >0 Pi-(as.),

where H; = fot ﬁds. Set S :=inf{t > 0 : || = a}. Since (H;):>o is a continuous increasing process and
H,, = o P;-(a.s.), we have

Hr = Hint(1>0:)yp, |=ay = I0f{t > 0: || =a} =5

and so log | Br| = Bu, = Bs = Bint{t>0:v:|=a} P1-(a.8.).

2. Note that cosh(z) is an even function. By taking complex conjugate in both side of the identity, we may assume
that A > 0. By problem 1., we get

E, [ 81511 = B, [e775] = E\[E [e™7° | o(,t > 0)]],
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Recall that, if X ~ N (u,0), then the characteristic function of X is

2

E[eigx] = ei“§7§

Since 8 and -y are independent, we get

. oy L
E\[E;[e"s t>0)]=E / P
1[ 1[6 ‘ J(Fyt - )]] 1[ ]Re m

2
Since (eAVfAS’%(tAS))tZO is an uniformly integrable martingale, we see that
)\2
E[Ms 75 =1,

and so

a2 “Aa _22
A Er[e” 7 ny] Fe B e T oo y] = 1.
By symmetry (—y is a Brownian motion), we have
P _az 1 _az
El[e_ 2 Sl{vs:a}] = E1[6 2 Sl{vs:fa}] = §E1[e 2 S]
and, hence,

1

A2
Ee 7%= ———.
ke cosh(a)
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Chapter 8

Stochastic Differential Equations

8.1 Exercise 8.9 (Time change method)
We consider the stochastic differential equation
E(0,0) : dX; = o(X;)dB,
where the function o : R — R is continuous and there exist constants € > 0 and M such that e < o < M.

1. In this question and the next one, we assume that X solves E(o,0) with X = x, for every t > 0,
t
A = / 0(Xs)ds, T =inf{s>0]| A, >t}.
0

Justify the equalities

¢ 1 s 1
— - d A, =inf{s >0 ——d th.
K / (K, Ar=infls 2 '/o o, >

2. Show that there exists a real Brownian motion 8 = (8;)>0 started from x such that, a.s. for every ¢ > 0,
Xt = Bint(s20| [ 0(8,)-2dr>t}-

3. Show that weak existence and weak uniqueness hold for E(o,0). (Hint: For the existence part, observe that,
if X is defined from a Brownian motion 8 by the formula of question 2., X is (in an appropriate filtration) a

continuous local martingale with quadratic variation (X, X); = fot o (X, )%dr.

Proof.
For the sake of simplicity, sometimes we denote A; and 7; as A(t) and 7(t), respectively.

1. Since o0 € C(R) and A’(t) = 0(X;)? > €2 > 0, we see that A(t) is strickly increasing and so A(t) is injective.
Because A(7(t)) =t for all t > 0, we see that 7(¢t) = A~1(¢) and, hence, 7(t) € C*(R). By setting s = 7(r), we
get 7 = A(s), dr = A’(s)ds, and so

¢ 1 t L e )
/OWdT=/OA(T(r)) dr = ; A'(s) "1 Al (s)ds = 7(t).

Moreover,

At)=inf{s >0]s> A(t)} =inf{s > 0| 7(s) > ¢t} =inf{s >0 | /OS U(Xl())zdr > t}.

2. Note that X; = Xo + fot 0(Xs)dBs is a continuous local maringale and
t
(X, X), :/ o(X,)%ds = At)  Vt>0.
0

Since o > € > 0, we see that (X, X). = 0o and, hence, there exists a Brownian motion 5 = (8;)¢>0 such that
Xi=Bixx), =Bawy V=0 (as.).

By problem 1., we get X, () = 3, and

Xy = Baw) = Buntgs>o/f¢ dr>t) = Bint{s>0([2 o(8,)~2dr>t}-

1
(X7 )2

104



3.

(a) We prove that weak existence hold for E(c,0). Fix x € R. We show that there exists a solution

(X,B),(Q, Z,(61)i>0, P) of E4(0,0). Let (Q,.Z,(%#)i>0, P) be a filtered probability space ((:%#:)i>0
is complete) and (8¢)i>0 is a (:%#;)¢>0-Brownian motion such that 8y = x. Define

T(t) == /0 o(B,)"%dr and A(t) := inf{s > 0| 7(s) > t}.

As the proof in probelm 1., we have 7(A(t)) =t for all t > 0 and A(t),7(t) € C*(R). Moreover, since
A'((t)) = 7' (t) " = 0(B:)?, we see that

Alt) = /0 o(8,)2dr.

Set
Xt = Baw) and G == F4,.

Then X is continuous. Because (:#;):>¢ is complete, we see that (6;):>0 is complete. Since A; < oo (a.s.)
and A, is a (#;);>0-stopping time for all ¢ > 0, we see that X, is %;-measuable for all ¢ > 0. Define

t
Viim [ o8 a5, Bui=Ya.
0

Then By = 0 and B; is 6;-measurable for all ¢ > 0. Now, we show that (B;);>0 is a (%;)i>o-Brownian
motion such that By = 0. It suffices to show that (B;);>0 is a (6})¢>o-martingale and (B, B), =t for all
t>0.Fix s <r <t Since Y is a (.%):>o-continuous local martingale, Y4 is a (F+)¢>0-continuous local
martingale. Moreover, since

At
(YA y Ay = / o(X,)2dr < 624, < 6 2M?*t < oo,
0

we see that Y4* is a uniform integrable (Z1)i>0-martingale. By optional stopping theorem, we get
E[B.|6.]=E[Y{' | Fa] =Y} =Ya, = B,
and so (By)i>0 is a (%;)1>0-martingale. Moreover, since (YY), = 7(t), we get
(B,B); = (Y, Y)a, =7(A(t)) =t vVt >0

and, hence, (B;)i>0 is a (4}):>0-Brownian motion. Observe that

/ o (Ba )V, = / " o(@ay..

Indeed, since
n—1

t
ZU(ﬁAQ)(YA(i+1)t —Ya, )£>/O 0(Ba.)dYa, as n — oo,

it
. n
=0

there exists {n} such that

nip—1 t
S 0B ) Vag, —Van) ™ / o(Ba.)dYa. as n — co.
i=0 k ST "k 0
Because
i1 (a.s.) A
Z 0(Bas ) Yay —Yau) — / o(Bs)dYs as n — oo,
i=0 K ny 'k 0
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we have
t Ay
/ o(Ba)dYa, = / o(8.)dY, (a.5.)
0 0

and so

t t Ay Ay
/ o(X,)dB, = / o(By, )Y, = / o (8,)dY, = / 0(83)(Bs)""dBs = Ba, — Bo = X; — .
0 0 0 0

Therefore (X, B), (Q, #, (6:)1>0, P) is a soltion of E,(0,0).

(b) We prove that weak uniqueness hold for E(c,0). Fix z € R. Let (X, B), (2, #, (%#t)t>0, P) be a soltion
of E;(c0,0). By problem 2., there exists a Borwnian motion (8;);>¢ such that

Xt = Bini(s>0/[5 0(8,)-2dr>1y (a8.) YVt >0.
Define @, : C(R4+,R) — R by

By (b) = b(inf{s > 0 | / o (b(r))2dr > 1}).
0
Let f; : R — R be bounded measuable functions for i =1,2,...,m and 0 < ¢; <ty < ... < t;,,. Then

Elf1(X0,) f2(Xe,) oo fin (X, )] = E[f1(@1,(8)) f2(Pry (B))-+- frn (P, (5))]
:/fl(@tl(W))fz(@tg(W))-~-fm(¢tm(w))W(dw)7

where W (dw) is the Wiener measure on C'(R,R). Thus, weak uniqueness hold for F,(o,0).

8.2 Exercise 8.10

We consider the stochastic differential equation
.E‘(O'7 b) : dXt = O'(Xt)dBt + b(Xt)dt

where the function o,b : R — R are bounded and continuous, and such that [, |b(x)|dz < co and o > € for some
e>0.

1. Let X be a solution of E(c,b). Show that there exists a monotone increasing function F : R — R, which is
also twice continuously differentiable, such that F(X;). Give an explicit formula for F' in terms of ¢ and b.

2. Show that the process Y; = F(X;) solves a stochastic differential equation of the form dY; = ¢/(Y;)dB;, with
a function ¢’ to be determined.

3. Using the result of the preceding exercise, show that weak existence and weak uniqueness hold for E(o,b).
Show that pathwise uniqueness also holds if ¢ is Lipschitz.

Proof.
For the sake of simplicity, we define || f||, := sup,eg [f(z)| and || f|[L1(®) := [g |f(x)]dz.

1. Suppose F € C?(R). By Ito’s formula, we get
t 1t
F(X:) = F(Xy) +/ F'(Xs)dX, + 5/ F”(Xs)d<X,X>S
0 0

:F(Xo)+/0 F’(Xs)a(Xs)stJr/O F'(Xs)b(Xs)ds+%/O F"(X)o(X,)%ds.
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Define F' : R — R by

T rs 2b(r)
F(a) = / eI S
0

Note that

z 2b(r )dr

1‘213(1') 2b
Fla) = & I8 5030 pr(g) = o I twer 2000)

o(@)?’

and
2F'(x)b(z) + F"(x)o(z)* = 0.

Then F is a monotone increasing, twice continuously differentiable function and
F(X:) = F(Xo) / F'(Xs)o(Xs)dBs
is a continuous local martingale. Since
E[F(X), F(X)):] = E[/Ot F/(X,)%0(X,)2ds] < ¢ x ||(F)2lullo®lu < t x ez PO 62]], < oo,

we see that (F(X;))¢>0 is a martingale.

. Since F'(x) > 0 for all x € R, F is strictly increasing and so F~! exist. Observe that

2b(r) 4 s 2b(r)
-5 Szl ef‘fo Sz arl > e*E%HbuLl(R) > 0.
Then
. . ¥ - I3 ELIGH S
lim F(z)= lim e "0 ds = +00
r—Fo0 r—+oo 0

and so the domain of F~! is R. Moreover, since F' € C%(R), we see that F~! € C?(R). Set
H(z) := F'(z)o(x) and o’ (y) := H(F~(y)).

Then
E'(¢"): dYy=H(X;)dB; = H(F_l(Yt))dBt =o' (Y;)dB.

. First, we show that weak existence and weak uniqueness hold for E’(¢"). By Exercise 8.9, it suffices to show
that o’ : R — R is a continuous function and the exist ¢, M > 0 such that § < ¢'(y) < M for all y € R. Since
F~! and H are continuous,

© 2b( ) © 2b(s)
H(z) = ¢ 7 205 0 (0) > 0 255 g (0) > e & Miwe =6 >0 Vo eR,
and _fm 2b(s)d’ |fa‘ 2b(s)d" >
H(z)=e 1o 707 Pg(z) < 'l c0?®lo(z) < ePlliiw ]|, .= M <00 VzeR,

we see that o’(y) = H(F~1(y)) is continuous and § < o’ (z) < M for all x € R. Thus, weak existence and weak
uniqueness hold for E’(o”).

Now, we show that weak existence hold for E(o,b). Fix x € R. Set y = F(x). There exists a solution
(Y, B), (2, F,(Ft)i>0, P) of E,(0"). Define

X :=FY(1).

By Ito’s formula, we get

tar! 1 [t"d?F~
X, = Ys)dYs + = —(Y5)d(Y,Y),.
p=o [ St g [ S oay)
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dF—1 dF ?F-1 dF dF~1 d2F
F(z =1and —— ()2 Flz) 2 (z) = 0.
a0 (F(2)) - (2) =1 and — 5= (F(2))(—(2))" + a0 (F(2)) 55 (@) =0
Thus,
dF—1 dF—1 dF Xo 2b(r) g0
Y,) = F(X,)) = (— (X)) P =¢lo a2
dy() dy(( ) = (5 (X5)) e
and
d2F~1 d?F1 dF1 d’F dF
(V) = ——(F(X,)) = (- F(X,))—= (X, (X)) 2
y? e (F(Xs)) = ( a0 (F(Xs) 5 ( ))X(dx( )
Xs 26(r) 4. _ [ Xs 20(0) 4 Qb(XS) 2f s 26(r) 4
= (—e’0 o2 — 0 o(r)? " Sz d
(—e x —e (a(Xs)2))
_ 26(X5) 2 g 2
o(X,)2°
By
Xy 2b(r)
dY, = o' (Y;)dB; = H(F~(Y;))dB; = H(X,)dB; = ¢ 7 >V 5(X,)dB,,
we get

LAt d2F !
= Y, Y,)d(Y,Y

t
fxé S~ I S x B, + L [ 26K
73”/ o(Xs)dBs + 3 o o(X,)?

X Xg 2b(r) o [Xs 2b(r)
S) 62f0 ‘,(T)2d7" 2J5 ”(T>2dr0'(Xs)2dS

:“/o (X S)dBS+/0tb(Xs)ds

and so (X, B), (Q, %, (%#)i>0, P) is a solution of E,(c,b).

Now, we show that Weak uniqueness hold for E(c,b). Fix x € R and y = F(z). Let (X, B), (, #, (%#t)t>0, P)
and (X', B), (Y, Z',(Z])i>0, P') be solutions of E,(c,b). By problem 2., we see that (Y;);>0 := (F(X}))t>0
and (Yy)i>0 := (F'(X{))>0 are solutions of E (o). Since weak uniqueness hold for £'(¢c’) and F' is injective,
we get

Ellx, er,-1x, er.] = Elly, er,)--1v,, erry))
= E'[lygleF(rl)---lwkeF(rk)]
= E/[1X;1 EFI...]-Xf{k GF}J
and, hence, weak uniqueness hold for E(o,b).
Finally, we show that pathwise uniqueness hold for E(o, b) whenever ¢ is Lipshitz. To show this, it suffices
to show that o’ is Lipshitz. Indeed, by Theorem 8.3 and ¢’ is Lipshitz, we see that pathwise uniquness hold
for E'(0’). Let X and X’ are solutions of E(o,b) under (9, %, (% )i>0, P) and (F )t>0 Brownian motion

(By)¢>o started from 0 such that P(Xo = X{) = 1. By problem 2., we get (Y)i>0 := (F(X;))i>0 and
(Y))i>0 := (F(X/))t>0 are solutions of E'(¢”) such that P(Yy =Y]) =1 and S0

F(X;) =Y, =Y/ =F(X]) Vi >0 P-(as.).

Since F' is injective, we get
X;=X;, Vt>0 P-(as.).

Now, we show that o/(y) := H(F~!(y)) is Lipshitz whenever o is Lipshitz. Choose C' > 0 such that

lo(z1) — o(22)| < Clay — a2,
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Fix real numbers y; and y2. Set z; = F~1(y;) for i = 1,2. Note that
1 ||y < e Ml < oo,

and

2Hb||u 2
2

1E | < 2ol Bl < o,

€

By mean value theorem, we get

0" (y1) — o' (y2)| = |H (1) — H(za)| = [F'(21)0(21) — F'(22)0(22)]
< |F'(x1)o(x1) — F'(x1)o(z2)| + [F'(21)0(22) — F'(v2)0 (22)]
SNFNuClay — x| + [lo|[u|[F|lu]z1 — 22| := C"|z1 — 22l

where C" := (||F'||.C) V (||o||u||F"|].). Because

dF1 @ 26(r) 4 B
S @I =1 (F @) < 1) = supeld =0 < e Mo < oc,
€
we get
_ _ _ dF—1
29 — 1| = [F~(ya) — F 1 (y)| =" <] 0 [uly2 — 11
and so
lo’(y1) — o’ (y2)| < Clyr — v,
where C := Hdls;l l[.C".

8.3 Exercise 8.11

We suppose that, for every © € Ry, one can construct on the same filtered probability space (2, .Z, (F)i>0, P) a
process X7* taking nonnegative values, which solves the stochastic differential equation

dXt =V 2XtdBt
XO = .

and that the processes X* are Markov processes with values in Ry, with the same semigroup (Q¢):>0, with respect
to the filtration (#;);>0 (This is, of course, close to Theorem 8.6, which however cannot be applied directly because
the function v/2z is not Lipschitz.)

1. We fix z € Ry, and real T > 0. We set, for every ¢ € [0, 7]

>\Xf
M, = ¢~ TG0,

Show that the process (M;ar) is a martingale.
2. Show that (Q;):>0 is the semigroup of Feller’s branching diffusion (see the end of Chap. 6).

Proof.
Note that A > 0.
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1. Fix T' > 0. By Ito’s formula, we get

—AXE
M, = eTHTD
Az t —\ -AX7Z t —\2x= —AXE
— eTHAD AR e ¢ =V ) ¢d AT B eo e =) |
‘ +/0 T+ AT =) +/ T+ AT - 92" ’
L[ % TR 4(XT, X
+ = — eI+ X(T-?) 357 x s
QA(1+MT—@V < )
—a ¢ -\ —AXT t —\2x=® —AXT
™™ + [ — 2 _eThT 2X§st+/ A RS e Yo = I
A T+ AT —s) Vaxy s Lt AT —9))?

22 SAXE

1 7
eTHT-9 (2XT)ds

t
+2A(1+MT—@V
e t -\ —Ax?
— e TFA(T) % emha9./2X%dB,
c + /O TN —s)° s
is a continuous local martingale. Since x < e” for all x > 0, we have
T 2 x _ x T
22X 22X 1 A

E[(M,M =F — 8 eTiXT-91ds| < E — _ds
A, M) [A 1+ \NT —5))? L*[A ESYC

ds < 00

r A
_A T+MT —s)
and so (Myar)i>0 is an uniformly integrable martingale.
2. Fix T > 0. By optional stopping theorem and problem 1., we get

—Ax

e = E[Monr] = E[Moopr] = E[e 7] = /e‘*yQT(az,dy).

Thus, we have
[ty =,

where ¥ (\) = ﬁ and ¢ > 0. By the last example in chapter 6., we see that (Q:):>0 is the semigroup of

Feller’s branching diffusion.

O

8.4 Exercise 8.12
We consider two sequences (0,,)n>1 and (b, ),>1 of real functions defined on R. We assume that:
1. There exists a constant C' > 0 such that |0y, (x)| V |by(2)] < C for every n > 1 and x € R.

2. There exists a constant K > 0 such that, for every n > 1 and z,y € R,
on(z) = on(y)| V bn(z) — bn(y)| < K|z —yl.
Let B be an (.%;);>o-Brownian motion and, for every n > 1, let X™ be the unique adapted process satisfying
t t
X[ = / on(X2)dBs + / b (X1)ds.
0 0
1. Let T > 0. Show that there exists a constant A > 0 such that, for every real M > 0 and for every n > 1,

A
P(sup | X > M) < —.
(sup X712 M) < 375
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2. We assume that the sequences {o,} and {b,} converge uniformly on every compact subset of R to limiting
functions denoted by o and b respectively. Justify the existence of an adapted process X = (X;)i>o with
continuous sample paths, such that

t t
X, = / o(X.)dB, + / b(X,)ds,
0 0

then show that there exists a constant A’ such that, for every real M > 0, for every ¢t € [0,T] and n > 1,

/

t
A
Efsup |X" — X,|*] <44+ T)K> / E[| X" — X,[?|ds +
s<t 0 M

+4T(4 sup |on(x) —o(z)]? +T sup [by(x) —b(x)]?).
|| <M |z|<M

3. Infer from the preceding question that

lim Efsup | X" — X,|?] = 0.

n— oo s<T

Proof.

1. Fix T'> 0 and M > 0. By Burkholder-Davis—Gundy inequalities (Theorem 5.16), we get

1 Cs
P(sup | X" > M) < — E[sup | X"]?] < —= E[(X", X"
(thI iz2M)< 35 [tgg\ 1< 75 EN )]

Cy o T ) CTC? A
= — n < =
Bl exyad < e = 1

where A = A(T) := C,TC?.
2. Since 0, — o and b,, — b uniformly on every compact subset of R, we get
lo(x) —o(y)| V [b(x) —b(y)| < K|z —y| Vo,y €R,

and
lo(z)| V]b(z)| < C VzeR.

By Theorem 8.5, there exists an adapted process X = (X;);>0 with continuous sample paths, such that

t t
Xy = / o(Xs)dBs +/ b(Xs)ds Vt>0 P-(as.).
0 0
By similar argument, we have

VT >0 and M > 0.

A(T)
P(sup | Xy > M) <
(tg’?‘| t| —_ ) — M2

Fix T >0,t€[0,T], and M > 0. Now, we show that

t 3012
Efsup | X! — X} <2 x 42 K*(4 + T)/ E[|X" — X,|*]ds + 4+ DT 20 24(T)
s<t 0 M
+ 4T (4% sup |on(z) —o(2)]* +4T sup |b,(z) — b(z)[*)

o] <M 2| <M
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for all n > 1. (Note that this upper bound is larger then the upper bound in problem 2. However, this doesn’t
affect of the proof of problem 3.) Let n > 1. Then

S S

Efsup | X7 — X.] <4Bfup| | 0(X?) — o(X,)dB, ] + 4Bfsup | | by (X]) — b(X,)dr[].

s<t s<t 0 s<t 0

Since |0y (z)| V |o(z)] < C for all z € R, we see that ([ 0, (X") — 0(X,)dB,)s>0 is a martingale. By Doob’s
inequality in L? and Holder’s inequality, we have

S S
4E[sup | on(X)) = 0(X,)dB,|*] + 4E[sup | bn (X)) = b(X,)dr|?]
s<t Jo s<t JO
t t
<43 4B [ 0u(X7) = o(X)AB + ATE( | 0,(X2) ~ b(X) P
0 0
t t
< 4 AB[ [ [on(XD) ~ o(X)Pds) +ATB( | b (XD) - b(X )
0 0
t
<4x 4E[/0 |00 (X2) = 0(Xs)Pds sup, . |X21> M} Ufsup, g X2 01]
t
+4x 4E[/O |00 (X3) = 0(Xo)[Pds fsup, . [x71< M} Nfsup, < 1X.]<01}]
t
+4x TE[/O [ (X2) = b(Xs)PdsL {sup, - X212} Ufsup, < 1X. |20}
t
+4x TE[/O b (X2) = b(Xs)Pds] fsup, . |X71<M} (fsup,cr X <0}]
t
<4x 4E[/0 4lon (Xg) — Un(Xs)|2d51{supS§T X7 |>M} Ufsup,<q | Xo|>M}]
t
+4x 4E[/0 Aon(Xs) = 0(Xo)Pdssup, _p (X212 M) Ufsup, < [X.12 03]
t
+4x 4E[/O Ao (XT) = 0n(Xo)Pdslisup, . |X2 1M} O sup,<q X <1}]
t
+4 % 4E[/0 A|on(Xs) = 0(Xo)Pdssup, _p [x21<M) Afsup, o [X.1<00}]
t
+4x TE[/O 41b, (Xg') — bn(Xs)‘QdSI{supSST X2 |>M} Ufsup,<p | X.|>M}]
t
+4x TE[/O Albn (Xs) = b(Xs) PdsL sup, . 1X21> M} Ufsup,<r X2 M}]

t
+4x TE[/O Albn (X7) = b (Xs)[PdsLsup, _p |x21<M} O fsup, <1 1X.|<00]

t
4 TB( | 41h0(0X) = X0 S g, 157100 o . 0]
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t
< 42E[/ AK?|X] — X, [*ds] + 4%(T4C? P({sup | X!'| > M} | J{sup | X,| > M}))
0 s<T s<T

t
+ 42E[/0 AK?| X" — X,|?ds] + 43T sup |on(z) — o(x)]?

| <M

t
+ 4TE[/ AK®|XT — X, *ds] + 4°T(TAC? P({sup |X}'| > M}| J{sup [X,| > M}))
0 s<T s<T

t
+ 4TE[/ 4K X™ — X,|%ds] +4°T x T sup |b,(z) — b(z)|?
0 |z|<M

t
=2 x 42K*(4+ T)/ E[|X! — X,|*|ds + (4 + T)T4*C*P({sup | X| > M}| J{sup |X,| > M})
0 s<T s<T

FAT( sup |ou(@) — o(@) +4T sup |b,(z) - b(a)[?)

|| <M |zl <M
t
=2x 42K*(4+1T) / E[| X! — X |!]ds + (4 + T)T4*C?*(P(sup | X| > M) + P(sup | X,| > M))
0 s<T s<T

+ 4T (4% sup |on(z) — o(2)|> + 4T sup |b,(z) — b(z)[?)
el <M jel<M

t A(T
=2x 4’K*(4+7T) /O E[|X] — X.[’ds + (4 + T)T4302(2—]\(42))

+ 4T (4% sup |on(z) — o(2)|> + 4T sup |b,(z) — b(z)|?).

|z|<M |z| <M
3. Fix M,T > 0 and n > 1. By problem 2., we get

A(T)
M?2 )

t
Efsup | X" — X, ]’ <2 x4°K?(4 + T)/ E[| X! — X [*lds + (4 + T)T4*C?(2
s<t 0
+4T(4% sup |oy(z) —o(2)]* +4T sup |by(z) — b(z)[*)
|z <M lz|<M
! A(T)
<2 x 4°K?(4 + T)/ Efsup | X" — X, |?|ds + (4 + T)T43C?(2 e )
0

r<s

FAT(# sup [ou(2) — o(@) +4T sup [b(2) - b(a)[?)
|z|<M lz|<M

for all ¢ € [0, T]. Define g : [0,7] — R4 by

g(t) == Elsup| X — X,|].

s<t
Set positive real numbers

A(T)

a:= 4+ TTHC?* 25 ) +4T(A* sup |on(z) = o(@)* + 4T sup [bn(x) — b(x)[*)

| <M || <M

and
b:=2x4°K*(4+T).

Then we have

o) < b/otg(s)ds—l—a vt € [0,T].
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By Burkholder-Davis—Gundy inequalities (Theorem 5.16) and Ho6lder’s inequality, we get

g(t)] = Elsup | X} — X,|?]

s<t
<4E[sup| [ 0,(X") — o(X,.)dBr*] + 4E[sup| [ b, (X") — b(X,.)dr|?]
s<t Jo s<t Jo

< 4G, / on(X2) — 0(X,)Pds] + 4] / ba(X7) — b(X,)Pds]
< 402(408T) +4T(4C?T) < oo i
and so ¢ is bounded. By Gronwall’s lemma (Lemma 8.4), we have
Elsup [X? — X, = g(T) < a x "

s<T
<(4+ T)T4302(2%) +4T (4% sup |op(z) —o(z)|> + 4T sup |b,(z) — b(z)[*))
|z|<M |z|<M

xexp(2 x 4°K*(4+T) x T)

and so

limsup E[sup | X" — X,|?] < (4 + T)T43CQ(2A]\(4T) Yexp(2 x 4°K%(4+T) x T).

n—oo s<T ?

By letting M — oo, we get
lim Efsup | X" — X,|?] = 0.

n— oo s<T

8.5 Exercise 8.13

Let 8 = (Bt)t>0 be an (%;);>0-Brownian motion started from 0. We fix two real parameters o and r, with a > %
and r > 0. For every integer n > 1 and every = € R, we set

fulz) = % An.

1. Let n > 1. Justify the existence of unique semimartingale Z" that solves the equation
t
Z=r+ 6 + a/ fu(Z1)ds.
0
2. We set S, :=inf{t > 0| Z < L}. After observing that, for t < Sy41 A Sy,

ds,

n+1 n ‘ 1 1
Zy _Zt:aoﬁ_ﬁ
S S

show that Z'"™* = Z» for every t € [0,S,11 A S,] (a.s.). Infer that S, > S,,.

3. Let g be a twice continuously differentiable function on R. Show that the process

o) = () — [ o/ (Z2)1,(22) + 39" (22

is a continuous local martingale.
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4. We set h(z) = 2172% for every > 0. Show that, for every integer n > 1, h(Z{,s,) is a bounded martingale.
Infer that, for every ¢’ > 0, P(S, <t') — 0 as n — 00, and consequently S,, — co as n — oo P-(a.s.).

5. Infer from questions 2. and 4. that there exists a unique positive semimartingale Z such that, for every t > 0,

t
ds
Zt:'?"+ﬂt+0[ . Z

6. Let d > 3 and let B be a d-dimensional Brownian motion started from y € R¢\ {0}. Show that Y; = |B]
satisfies the stochastic equation in question 5. (with an appropriate choice of 8) with r = |y| and a = %.
One may use the results of Exercise 5.33.

Proof.

1. To prove the existence of unique of soltion of

E':  dZP =dB, + af.(Z7)dt

T

it suffices to show that f,, is Lipschitz. Observe that, if |z|,|y| > L, and if |v| < L < |u], then

L1, el
Ful@) = ful)l = | = L= | <’z —y]
@) = L= 1= 1 = P
and | — | % 1]
1 ul — |+ = 9 1 1 9
Fol0) = fulwl = = oy = P Tt A ) < o,

Hence f,, is Lipschitz. By Theorem 8.5.(iii), there exists a unique solution of E™.

2. Obsreve that, if 0 <t < 5,11 A Sy, then

t
1
Zf:r—i—ﬂt—i—a/ ﬁds Vk=n,n+1
0

S

and
1 1

t

Then Z7' > £ >0 and Z*' > 45 > 0 for every 0 <t < S, A Spp1. Fix 0 <t < S, A S, 41. Note that £ <
whenever 0 < b < a. Suppose Z"T! > Z" for all s € [0,¢]. Then

1 1

1
b

OSZ;Hle;’:a/
0

and so Z"*1 = Z" for all s € [0,¢]. Similarly, if Z"*! < Z" for all s € [0,¢], then Z*™! = Z" for all s € [0, ¢].
Thus, we get
zrtt = zn vt € [0,S5, A Sp+1] P-(as.).

Now, we show that S,,+1 > S, for every n > 1 by contradiction. Fix n > 1. Aussme that P(S,+1 < S,) > 0.
Then

P(Spi1 < Sn, ZM =271 Vte€[0,S8, A Spyi]) > 0.
Fix w € {Sni1 < S} ({27 =2Zp vVt € 0,8, ASpi1]}. Set A = S,q1(w). Since Z! (w) = Zp(w) for all
0<t<Sp(w)ASps1(w) = Spq1(w) = A, we get
1 1

<
n+1 n

Z3(w) = 23 (w) =

and so Spy1(w) = A > S, (w) which contradict to S,41(w) < S, (w). Therefore, we have

Sn+1 =S, Vn>1 P-(as.).
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3. By Itd’s formula, we get

¢ ! n n 1 ¢ n n n
oz =g+ | g(zaz+ 5 [ gz 2.

t

t t
o+ [ gz [ g@anzas«g [ oz

and so

o) = a(r) = [ (o (22122 + 59" (200 = [ g(22)as,

is a continuous local martingale.

4. Fix large n > 1 such that n > % Then S, > 0. Since Z{}, g > % for every t > 0, we have f,(Z{,s ) = 727}5
for every t > 0 and so !
t t t 9
/ 1(s)s<s,) 027 = / 1(s){s<s,1dBs + a/ 7 1(8){s<s,1ds-
0 0 0 SASy,
By Ito’s formula, we get
M = h(Zp/\Sn)
t
=pl72o 4 / (1—2a)(Zhs,) 2*1(s) {5<s5,1dZ7
0
(_20‘)(1 B 20[) ! n —2a— n n
+ f o ( s/\Sn) 2 11(5){S§Sn}d<z 7Z >s
t t 1
=l 4 / (1 —2a)(Z5s,) ¥ 1(s) {s<s5,1dBs + / (1—20)(Zhs,) > a—i—1(5) {s<s,1ds
0 0 Zs/\Sn
(—20[)(1 — 20[) ! n —2a—
+ 2, (Zrg,) 27 1(8) (s<s, 1 ds

t
iy / (1 - 20)(Z0ns,) "2 1(5) oz, dBs
0

is a continuous local martingale. Moreover, since

E[(M,M),]=E[(1- 2a)2/0 (Z0s, ) 1(8) (s<s,yds] < (1 —2a)® x t x n'* < 00

for every t > 0, we see that (h(Z}\g ))i>0 = (M¢)i>0 is a martingale. Because
0< M= h(StnASn) = ( tn/\Sn)172a < n®* ! < oo

for every t > 0, we get (h(Z,g ))t>0 = (M)i>0 is a bounded martingale.
Now, we show that lim,,_,. P(S, <) =0 for every t' > 0. Fix ' > 0. Choose large n > 1 such that n > %
Since (h(Z}, s, ))t>0 is a bounded martingale and h is positive, we get

r1—2a = h(’l“) = E[h(ZSL/\Sn” = E[h( gASn)]

= P(S, <t")n** '+ E[h(Z} g, v <s,]
> P(Sn S t/)nQa—l
and, hence,
1
P(S, <t)<(—)** ! 50asn— oo.
nr



Moreover, since S,,+1 > S, for every n > 1, S := lim,,_,, S, exist and so

P(S<t)= lim P(S,<t)=0

n—oo
for every t > 0. Thus,
lim S, =5=00 P-(as.).

n—0o0

5. (a) We show that there exists a positive semimartingale Z such that, for every t > 0,

t
ds
Zt:T+Bt+a ) Z

By problem 2., we have
ZM =27r vt €0,8,] and n > 1 outside a zero set N.
For the sake of simplicity, we redefine N as
t
NU(zr =r+8+ a/ fn(ZM)ds Wt > 0})°.
n>1 0

Define

Zu(w) ZM(w), ifw¢g N andt < S,(w)
! o, otherwise.

Then Z is a positive, adapted, continuous process. Fix w ¢ N and ¢ > 0. Choose large n > 1 such that
Sp(w) > t. Then

Zu(w) = Z7(w) = 1 + By(w) + / fu(Z0(w))ds

=71+ B (w) +/0 Z%(w)ds

S

:r—i—Bt(w)—i—/o %ds.

Thus, Z is a positive semimartingale such that

' ds

7 Vi >0 P-(as.).

Zy=r+pt+a

(b) Let Z and Z' are postive semimartingales such that

¢
d

Zy =71+ B +a @ vt >0 P-(as.)

0 Zs

and

b ds
Zi=r+p+ 7 Vt>0 P-(as.)

0 s

under filered probability space (2, %, (#;):>0, P)and Brownian motion g started from 0. Note that % < %
whenever 0 < b < a. Fix w € Q. Observe that, if there exists real number T" > 0 such that

Z,> 7, Vtelo,T),
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then
b1 b1
Zt:r—|—ﬂt—|—oz/ —ds§r+,8t+a/ —ds =7,

0o Zs 0 4§

for all ¢ € [0,T] and so Z; = Z; for all t € [0,T]. Similarly, if there exists real number T > 0 such that
Z, <7 Vtelo,T)
then Z; = Zj for all t € [0,T]. This shows that
Zy=27Z; Vt>0 P-(as.).
6. Let (2,.Z,(Z:)1>0, P) be filered probability space and B be d-dimensional Brownian motion started from
y € R4\ {0}. By Exercise 5.33, we get

d—1 [t ds

|Bel =yl + Bt + —— | =
2 Jo |Bsl

where

d tBi )
— SdB’L
& Z/ B,

is a (F)1>0 1-dimensional Brownian motion started from 0. Thus, (|B|,8), (2, .Z, (% )i>0, P) is a solution of

the stochastic equation in question
Zo =yl + 8+ 22 s
EEWITRT T ) 2

8.6 [Exercise 8.14 (Yamada—Watanabe uniqueness criterion)
The goal of the exercise is to get pathwise uniqueness for the one-dimensional stochastic differential equation
dXy = o(Xy)dB; + b(X,)dt
when the functions o and b satisfy the conditions
lo(z) —o(y)l < K[z —yl, [b(x) —b(y)| < K|z —yl,
for every x,y € R, with a constant K < oc.

1. Preliminary question. Let Z be a semimartingale such that (Z, Z); = fot hsds, where 0 < hy; < C|Z|, with a
constant C' < co. Show that, for every ¢t > 0,

n—oo

t

(Hint: Observe that, E[fot |Zs| o)z <13 d(Z, Z) ] < Ct < 0.)

2. Fir every n > 1, let ¢, be the function defined on R by

0, if || > %
on(z) = 2n(l —nz), f0<z<
2n(1+nz), if =L <z <o0.

Also write F,, for the unique twice continuously differentiable function on R such that F,,(0) = F,(0) = 0 and
F!! = ¢,. Note that, for every € R, one has F,,(z) — |z| and F},(x) — sgn(z) := l{z50} — l{z<o} When
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n — oo.
Let X and X’ be two solutions of E(c,b) on the same filtered probability space and with the same Brownian
motion B. Infer from question 1. that

n—oo

t
lim E[/ on(Xs — X)d(X — X', X — X'),] = 0.
0

/

3. Let T be a stopping time such that the semimartingale Xy 7 — X}, is bounded. By applying It6’s formula to
Fo(Xinr — X r), show that

tAT
-WKM—XMN:WKWXM+HA (b(Xa) — b(X"))sgn(X, — X!)ds].

4. Using Gronwall’s lemma, show that, if Xy = X{), one has X; = X] for every t > 0 (a.s.).
Proof.

1. Note that
t t
B[ 12, Yocizend(Z.2)] = B 120 Loz cnphads

t

= E[/ |Zs| " 02|21 <131 1 {01 sds]
0
t o

< E[/ h71{0<|Z5|§1}1{h5>0}hsd3]
0 S

< Ct

and

t t
/On1{0<|zs‘§%}d<Z,Z>S§/0 | Zs| " Ljo<iz.1<1yd(Z, Z) s ¥n > 1.

By Lebesgue’s dominated convergence theorem, we get

t t
lim E[/O n1{0<‘25|§%}d<Z, Z>5] = E[ lim o n1{0<|Z5|§%}d<Z, Z>5]

n— 00 n—r00
t
:E[ lim n1{0<|ZQ|§%}h5ds]
0 .

t
SE[ hm n1{0<|Z5|<L}C|Zs‘d8]
0 =7

n—00
! 1
SE[nh—>Holo o ”1{0<|Z5|§%}0ﬁd5]

t
:E[ lim o 1{0<|Zs‘§%}Cds]

t

n—oo

2. Since ¢, € C(R), we get F,, € C*(R). Note that

Fl(x) = /x on(tydt = 1 FT =0 n (@) F g (@), 220
" 0 (2nz + n2x)1(_i,0] (@) = 1(Coo,—1y(@), ifz<0
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and
z ~ 1)1, /\l2_ﬁ A L)3 ifx>0
Fn(x) :/ Frll(t)dt: {(l‘ n)l [5700)('1:)—’_(”(1" n) _132('%‘ n2n) )’ i 1 x—
0 @+ (o, —y(@) + (n(xV )+ F (v 7)), ifz<O.

Then F)(z) — sgn(x) and F,,(z) — |z| as n — oco. Indeed, if z > 0 and y < 0, choose large N > 1 such that
% < z and —% > vy, we have

1 1 n?1 1
1 1 n?1 1
Fo(y) = —y — — Dy y—— W¥n>N
W=-y- ot s-F5)=—y-—g Vn=
and so F,(z) — x and F,(y) = —y as n — oo.
Let X and X’ be two solutions of E(o,b) on the same filtered probability space (2, %, (%)i>0, P) and with
the same Brownian motion (B;);>o. Then

t t
X: = Xo —|—/ 0(Xs)dBg +/ b(Xs)ds

0 0

and . .
X =X +/ o(X.)dBs +/ b(X!)ds

0 0

for all t > 0. Set Z; := X; — X, and hy := (0(X;) — o(X/))? for all t > 0. Then
t

<Z, Z>t = hSdS
0

and
0<h <K?|X;— X]| = K?|Z]
for all ¢ > 0. By problem 1., we get

t
lim E[/ on(Xs — XDd(X — X', X — X')4]
0

n—oo

t
- lim E[/ SD’I‘L(XS _X;)10<‘X57X,‘<l(s)d<X —X/’X _XI>S]
0 sl=mn

n—00

n—o0

t
< lim B[ 20+ 27| ZDkoci 1y (94(2.2).
0 ,

t t
1
< lim ZTLE[/ ].0<|ZS‘<;(S)d<Z, Z>5] + lim E[/ 2n2 X —10<|ZS‘<;(s)d<Z7 Z>s] =0.
0 -n 0 n -

n—00 n—00

3. Fix M > 0. Define Th; :=inf{t > 0 | | X;| + | X}| > M}. For the sake of simplicity, we denote T" as Th;. Then
(Xinr — X7 )e>0 i1s a bounded martingale. Fix ¢t > 0. By Itd’s formula, we get

Fn(XtAT - Xé/\T) = Fn(XO - X(/))

tAT
+ / Fl(X, — X!)(0(Xs) — o(X])dB,(:= Vi)
tAT
+ / FL(X, = X0)(b(X,) — b(X!))ds
1

tAT
by [ enlXe - XDAX - XX - X0,
0
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Since

tAT
E[(Y,Y),] = E| / F (X, — X0)Plo(X.) — o(X0)ds]

tAT

SB[ 1x KX - X)) (F@)] <)
0

< K?2Mt < oo V>0,

we see that Y is a martingale and so

E[Fy(Xinr — Xipp)] = E[Fy(Xo — X))
tAT
+ B / F/(X, — X)(b(Xs) — b(X"))ds]
0

1 tAT
FBl [ oo - XD - X' X - X))
0

Note that [Xsa7| V [ X p| < M, supp, <y [b(z)| < 0o, and F,(x) are uniformly bounded over [-2M,2M]. By
Lebesgue’s domainated theorem, we get

E[|Xinr — Xt//\TH = nlLHOloE[Fn(Xt/\T - X;AT)]
= lim E[F,(X, — X('))]

n—o0
tAT
bl BL [ FLX = XD — X))
n—oo 0
tAT
+ lim B[ / on(Xs — X))d(X — X', X — X').]
n—o0o 2 0
tAT
— E[|Xo - X[] + E[/ sgn(Xs — X)(b(X,) — b(X]))ds]
0
tAT
+ lim B[ / on(Xs — X)(X — X', X — X)),
n—o0o 2 0
By problem 2., we get
. 1 [T , , , . I ’ / ’
lim E|- on(Xs — X)X — X', X — X)) < lim E[= [ @n(Xy — XD)d(X — X', X — X')s] =0
n—o00 2 0 n—oo 2 0

and so
tAT
B[ Xinr = Xiyal] = BXo = X[+ B[ [ sgn(X, = X)0(X,) - b(X.))ds]

. Fix tg >0, to < L, and M > 0. Define g : [0, L] — R, by
9(t) = E[|Xenry, — Xiag, -

Then 0 < g(t) < 2M. By problem 3., we get
tAT
o) < B[ sgn(x, — XD0(X) - 0(X))as)
0
t
< E[/O lsgn(Xsata — Xoary, ) O(Xsaty,) — 0(Xonr,,))lds]

t t
< B[ / K2 Xongy — Xlap, |ds] = K / o(s)ds.
0 0
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By Gronwall’s lemma, we get g = 0 and so
E[lXto/\TM - Xiio/\TM ” =0.
Bt letting M — oo, we get E[|X;, — X{ [] = 0 and, hence, X;, = X} (a.s.). Since X and X’ have continuous

sample path, we get
X=X, Vt>0 P-(as.).
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Chapter 9

Local Times

9.1 Exercise 9.16

Let f : R — R be a monotone increasing function, and assume that f is a difference of convex functions. Let X be
a semimartingale and consider the semimartingale Y; = f(X;). Prove that, for every a € R,

L{(Y) = fi(a)L§(X) and Li™ (V) = fL(a)L§™ (X).

In particular, if X is a Brownian motion, the local times of f(X) are continuous in the space variable if and only if
f is continuously differentiable.

Remark.
Note that (L*(X), a € R) is the cadlag modification of local time of X. The formula

L{(Y) = fi(a) LE(X)

doesn’t hold for all increasing function f = @1 — s, where p; is a convex function on R. For example, if ¢1(x) = 2¢€*
and p2(x) = €*, and if X is a continuous semimartingale such that P(L$(X) # 0) > 0 for some a < 0 and t > 0,
then f(x) = e and so

L{(Y) = L{(f(X)) = 0 # e"L{(X) = f'(a)L{(X)

on {LE(X) # 0}.
To avoid this problem, we restatement Exercise 9.16 as following: Let f : R — R be a strictly increasing function such
that f = w1 — 2, where ; is a convex function on R. Let X be a semimartingale and consider the semimartingale
Y: = f(X}). Prove that, a.s.

L) = fL(a)L{(X) and LI7(Y) = f/ (a)L{~(X) Va€R,t>0

In particular, if X is a Brownian motion and (u,v) C R(f) := {a € R| f(a)}, we have, a.s. a € (u,v) — L*(Y) is
continuous if and only if a € (u,v) — f(a) is continuously differentiable.

Proof.

1. Since f = 1 — @2, we see that f is continuous and f/ is right continuous. We show that, a.s.
LI“Y) = fl(a)L{(X) Vt>0,a€R.

To show this, it suffices to show that P(L{(a)( Y) = fi(a)L$(X)) =1for allt > 0 and a € R. Indeed, since
a € R fi(a)L#(X) is right continuous for ¢ > 0 and

Eq={LI“Y) = f(a)L{(X) Vt>0}= () Eas Va€R,
s€Q4
where
Eos = {L{(Y) = fL(0)L{(X)} Va€eR,s>0,
we see that
P(LI'(Y) = fi(a)L{(X) VaeR,t>0)=P(()E,)
q€Q

Fix a € R and ¢t > 0. Now, we show that P(Lf(a)(Y) = fi(a)L$(X)) = 1. By generalized It6 formula, we see

that
d<Yv Y>s = fL (Xs)2d<Xa X>S,
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By Proposition 9.9 and Corollary 9.7, we have, a.s.
f(a) 1 ! / 2
Lt (V) =l = | Ls@s s <sae 2 (X6)7d(X, X

e—0 €

1
=lm = | L@ <5t <@)+e FL(0)* LY (X )db

e—0 €

1
=l = | L@ <5< @)+e F4 (0)* LY (X)db.

e—0 €
We show that, a.s.
1 .
i = L@z sm<s@+a fr 0 Li(X)db = £, (a) L{(X).

e—0 €

Fix w. Given n > 0. Choose h > 0 such that
(@) LE(X) = FL () LY (X)) <7
whenever a < b < a + h. Note that f is a continuous strictly increasing function. For ¢ > 0, define
ac :=1inf{b e R | f(b) = f(a) + €}.

Choose j > 0 such that a < a. < a+ h for every 0 < ¢ < j. Let 0 < ¢ < j. Then —0 < a < a, < o0,
fla) = f(a) + e b
[fi(a)L§(X) = fL(0) Ly (X)| <n Vb€ [a,ac,
{beR] fla) < f(b) < fla) + €} = [a, ad,
and so
flae) — f(a)

€

1 ) 1 [a
g/1{f<a)§f(b)gf(a>+e}f+(b)db: g/ fi(b)db = =1

Thus,
1 / 271b gl a
2 [ Nasrorzasa s 0P LD~ £L@LEX)
R
— I [ sornicom -1 [ o fi@L o
<t [ R®ILOLE - o

<ot [ L = ()~ f@) = nte =

Therefore, we have, a.s.

e—0 €

@ o1 a
L{“(Y) = lim - A Lt f(ay<r ()< fa)e} [o (0)2LY(X)db = f'(a) LE(X).

. We show that, a.s.
LI~ (y) = (a)L¢™(X) Vt>0,a€R.

To show this, it suffices to show that limyp, f} (b)) = f’(a) for every a € R. Indeed, if w € E, where
E={L{'"(Y) = f.(a)L{(X) Va€R,t>0}, then

L7 () = lim LIV () = lim £L0)25(X) = fL(@)1§7(X) Ya €R,1>0.
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Fix a € R. Now, we show that limy, f7, (b) = fL(a). Since f = @1 — o, it suffices to show that limy, ¢} | (b) =
@27_(61) for i = 1,2. We denote @; as ¢. It’s clear that

¢ (b) <@ (a) Vb<a.

Given n > 0. There exists ¢ < a such that

a) — o(c
o (a) - < 2 =)
a—c
By continuity, there exists ¢ < d < a such that
p(a) —¢(c) n < ¢(d) — ¢(c)
a—c d—c
and so J
¢’ (a) —2n < M <@L(b) Yd<b<a.
—c
Thus, we get

¢ (a) =2 <@\ () <¢l(a) Vd<b<a
and, hence, limyy, f/ (0) = f'(a).
. Assume that X is a Brownian motion and (u,v) C R(f). Then a — L%(X) is continuous and so, a.s.
L{(X)=L{ (X) VaeR,t>0.
Note that, a.s.
a € (u,v) — L*Y) is continuous if and only if Ly (V) = L{(Y) Va € (u,v),t > 0.
Thus, if f is continuously differentiable, then we have, a.s.
L) = J'U @)L 00 = £ @)L X0 = L (V) Va € (wv),t 20,

Now, we suppose a € (u,v) — L*(Y) is continuous. Note that —oco = liminf; ,o X; and limsup,_, X = oo.
By Theorem 9.12, we get, a.s.
YVaeR 3Jt, >0 Vt>t, LI} (X)>0

(tq also depend on w). Fix a@ € (u,v). Choose w and ¢ > 0 such that LY(X) > 0, L{(a)(Y) = fi(a)L{(X) and,
LI~ (V) = #/ (a)L¢ (X) for all @ € R. Thus,

Fi@Ly(X) = L{(Y) = L7 (V) = fL(a)Li (X) = () L (X)

and so fi (a) = f’ (a). Therefore f is differentiable at oe. Moreover, since (a, s) — L%(X) is continuous, there
exists 6 > 0 such that
LYUX)>0 VY(a,s)€(a—da+d)x (t—45t+19)

() = L0 -
and so a € (o — 6, +9) — f'(a) = Tar0)” 1S continuous.

125



9.2 Exercise 9.17

Let M be a continuous local martingale such that (M, M,) = co (a.s.) and let B be the Brownian motion associated
with M via the Dambis—Dubins—Schwarz theorem (Theorem 5.13). Prove that, a.s. for every a > 0 and ¢t > 0,

L{(M) = L{(IM,M)t (B).

Proof.
Note that (L%(X), a € R) is the cadlag modification of local time of continuous semimartingale X. Set

Eay = {L{(M) = Ly ppy,(B)} Vt>0,a € R.
Then it suffices to show that P(E, ;) =1 for all ¢ > 0 and a € R. Indeed, since
Eq:={L{(M) = L{y ppy,(B) Vt>0}= () Eay Va€R
q€Q+

and
E:={L{(M) =Ly, »py,(B) Vt>0,a€R} = )] Ea,
acQ

we see that P(E) = 1. Fix t > 0 and a € R. Now, we show that P(E,;) = 1. Note that My = By, ¥s >0
(a.s.). By Tanaka’s formula, we get, a.s.

t
|M; — a| = | My — a +/ sgn(Ms — a)dMs + L (M)
0

and

t

(M, M),
| My — al = |Ba,my, — al = [Mo — al +/0 sgn(Bs — a)dBs + Ly (B).
By Proposition 5.9, there exists {ny} such that, a.s.
nkfl

t
/ sgn(Ms — a)dMs = lim E sgn(Maie —a)(Muivny — Mas)
0 ng "

k—o0 — g
- a’)(B<M7M> (i+1)t B(M7M>A )
i=0 k np nE
Since s € Ry — (M, M), is increasing continuous function, we have, a.s.

nE—1

<M1M>t
lim sgn(Bor,ary o, — @) (B Gane T By, ) = / sgn(Bs — a)dBs

k— o0

i=0 "k "k

and so
t (M, M)
/ sgn(My — a)dM, = / sgn(Bs — a)dBs.
0 0

Thus, we have, a.s.
L{(M) = L((LM7M)t(B)~
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9.3 Exercise 9.18

Let X be a continuous semimartingale, and assume that X can be written in the form

¢ t
X; =X —|—/ o(w, s)dBs —I—/ b(w, s)ds,
0 0

where B is a Brownian motion and ¢ and b are progressive and locally bounded. Assume that o(w,s) # 0 for
Lebesgue a.e. s > 0 a.s. Show that the local times L¢(X) are jointly continuous in the pair (a,t).

Proof.
By the proof of theorem 9.4, it suffices to show that

t
/ lix,—a}(8)b(w,s)ds =0 Vt>0,acR (as.)
0

and so we show that 1;x _,3 = 0 for almost every s > 0 and for every a € R (a.s.). By density of occupation time
formula (Corollary 9.7), we have

/ @(Xs)a(w,s)2ds:/cp(a)Lf(X)da
0 R

for all nonnegative measurable function ¢ : R+ R, and ¢ > 0 (a.s.) and so
t
/ lix,—ayo(w, s)?ds=0 Vt>0,acR (a.s.).
0

Since o(w, s) # 0 for almost every s > 0 (a.s.), we get 1yx,—q3 = 0 for almost every s > 0 and for every a € R
(a.s.). O

9.4 Exercise 9.19

Let X be a continuous semimartingale. Show that the property
supp(dsLg(X)) € {s > 0| X, = a}

holds simultaneously for all a € R, outside a single set of probability zero.

Proof.
Note that (L*(X),a € R) is the cadlag modification of local time of X. Set

E, ={weQ|supp(dsL3(X)) C{s>0|X;=a}} VaeR

E=()E,.

q€Q
By Proposition 9.3, P(E) =1 and so it suffices to show that

supp(dsL3(X)) C{s >0| Xs =a} VYacRonE.

Fix w € E. Assume that there exists b € R and 0 < s < ¢ such that L8(X)(w) < L¥(X)(w) and X,.(w) # b for all
s <r <t. Suppose that b < ming<,<; X,(w). Choose ¢ > 0 such that

LX) (w) + e < LY(X)(w) — .
Since a — L%(X)(w) is right continuous, there exists ¢ € Q such that b < ¢ < mins<,<; X, and
LX) (w) = LX) ()| V L (X) (w) — L(X) (w)] < e.

Thus, we get X,.(w) # q for all s <r <t and LI(X)(w) < L{(X)(w) which is a contradiction. By similar argument,
we see that b > max<,<; X, (w) is a contradiction and so

supp(ds L¢(X)(w)) C {s > 0| Xs(w) =a} VaeR.

and
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9.5 Exercise 9.20

Let B be a Brownian motion started from 0. Show that a.s. there exists an ¢ € R such that the inclusion
supp(dsL4(X)) C {s > 0| X5 = a} is not an equality. (Hint: Consider the maximal value of B over [0, 1].)

Proof.
We denote B as X. Note that (L*(B),a € R) is the cadlag modification of local time of B. First, we show that, a.s.
max B; > Bj.
0<t<1
Note that
P(B; > max Bs) = P(min By — B; > 0) = P( min B; — By1_; > 0).
0<t<1 0<t<1 0<t<1
Define

Bl=DB, - B, Ytelo,1].
By Exercise 2.31, we see that (B})(o,1) and (By)[p,1] have the same law and so

P(min B, — B;_; > 0) = P( min B; >0).
(01%1%11 1 1—¢ > 0) (0?321 ¢ >0)

By Proposition 2.14, we get

P(max B; > B;)=1—P(B; > max B;) =1— P(min B; >0)=1.
0<i<1 0<t<1 0<t<1

Next, we show that a.s. there exists an a € R such that the inclusion
supp(dsLE(X)) C{s>0]| Xs = a}

is not an equality. Fix

1
w € {012% By > Bi}(|{L{(B) = lim - i l{a<B.<arcyds Ya € Rt > 0}.

e—0 €

Choose a = maxg<¢<1 Bs. Since maxo<;<1 By > Bi, there exists ¢ € (0,1) such that B; = a. Let b > a. Then

1!
LY(B)=1lim - [ lp<p,<prepds =0.
0

e—0 €

By right continuity, we get
Li(B) = lim L}(B) = 0

and so
te{s>0]| By = a}( \(supp(dsL$(B)))".

9.6 Exercise 9.21

Let B be a Brownian motion started from 0. Note that

/ 1{B.§>0}ds =
0

a.s. and set, for every ¢t > 0,

t
At = / 1{B‘g>0}d87 Ot = inf{s 2 0 | AS > t}
0
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3.

. Verify that the process

Tt = / 1{B5>0}d‘BS
0

is a Brownian motion in an appropriate filtration.

. Show that the process A; = Lgt (B) has nondecreasing and continuous sample paths, and that the support of

the measure ds;A; is contained in {s > 0 | B,, = 0}.

Show that the process (By,):>0 has the same distribution as (|By|)>o-

Proof.

1.

Since lim sup,_, ., Bs = 00, we see that fooo 1iB,>0}ds = oo (a.s.) and so
op<oo Yt>0 (a.s.).

Note that 7; is #,,-measurable for every ¢ > 0 and (o4)¢>0 is nondecreasing. It’s clear that ¢ — oy is right
continuous and so (7¢)¢>0 has a right continuous sample path. Observe that

B, <0 Vsé€(op—,01), Vt>0 (a.s.).

Then

lim 7, :lim/ 1(5.50ydB,s :/ 1yp,0ydB, :/ 150} dBs =7 Yu>0 (as.)
tTu ttu Jo ; 0 0

and so (y¢)¢>0 has a continuous sample path.
Now, we show that (v4)¢>0 is a (o, )t>0-martingale. Fix s1 < s2. Since

Osqy

-/\(752 ‘/\052
E[(/O 1{BS>O}dBS7/O 1B, >0}dBs) o] < E[/O Lip,>0yds] = E[A,,,] = sa,

we get (f()t/\USZ 1¢p,>0ydBs)i>0 is a L*-bounded (%;);>o-martingale and so (fgms2 1{B,>0}dBs)¢>0 is an uni-
formly integrable (% );>o-martingale. By optional stopping theorem, we get

E[/ 1{B5>0}dBS | ygﬁ] = / 1{BS>O}st
0 0

and so (fgms? LiB,>0}dBs)i>0 is a (F)i>0-martingale. Moreover, since

o0
<7a ’Y>OO = / 1{BS>O}d8 = oo and <%’Y>t =t Vi 2 07
0

we see that (7)i>0 is a (Fy, )¢>0-Brownian motion.

It’s clear that (Ay)¢>0 = (LY, (B))¢>0 has nondecreasing and right continuous sample paths. Note that

o 1 1
B — / 15500885 + 5 L8,(B) =% + 5 L8,(B) W20 (as.).
0

Recall that
Bs <0 Vse€ (ot—,0¢), Yt>0 (a.s.).

Observe that if o, < oy, then lim,y, B = BS,_ = 0= B and so (LY, (B))>0 has a continuous sample path.
Now, we show that supp(dsAs) € {s > 0] B,, = 0}. Recall that

supp(dsL%(B)) = {s > 0| B, =0} (a.s.).
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Fix w € {supp(dsL%(B)) = {s > 0 | Bs = 0}}. Let t € supp(dsAs). If oy < oy, it’s clear that B,, = 0.
Now, we assume that (o4):>0 is continuous at ¢. Let o < 0, < 8. Then there exists v < ¢t < v such that

(0w, 00) C (a, B),

Lo(B) < Ly, (B) < Ly (B) < Ly(B),

and so oy € supp(dsLY(B)) = {s > 0| Bs = 0}.

3. Observe that B,, >0 Vt>0 (a.s.) and so By, = B, Vt>0 (a.s.). Then

1
By, =B} =+ 5LE,Q(B) Vt>0 (a.s.).

By Skorokhod’s Lemma (Appendices), we see that

By Theorem 9.14, we get

1
Sup(—%)ziLgt(B) VE>0 (a.s.).
s<t

d d
By, = sup(—7s) + v = Sg}fg(—vs) (=) = =70 = [Be] Vt>0

and so

9.7 Exercise 9.22
9.8 Exercise 9.23

s<t

d
(Bs,)t>0 = (|Bt])t>o0-

Let g : R — R be a real integrable function ( [, [g(x)|dz < o0). Let B be a Brownian motion started from 0, and set

t
0

1. Justify the fact that the integral defining A; makes sense, and verify that, for every ¢ > 0 and every u > 0,
A2, has the same distribution as

2. Prove that

where N is A47(0,1).
Proof.

1. Let t > 0. Then

02/ g(cBs)ds.
0

A—; 4 (/ g(x)dx)|N| as t — oo,
R

E[/Ot|g<Bs>|ds1= / / V;%exm-;;dsmwm / / = X 1dslg(a)ldo

= ﬁ/RLq(x)dx < o0
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and so fo lg(Bs)|ds < oo (a.s.). Since

¢
/ lg(Bs)lds <00 Vte Qi (a.s.),
0

we see that .
/ |g(Bs)|ds < oo VteR (a.s.)
0

and so (A;);>o is well-defined. Moreove, by changing of variable, we get

C2U u u 1 u
A2y = / g(Bs)ds = 02/ g(Be2g)ds = 02/ g(cEBczs)ds 4 62/ g(cBs)ds.
0 0 0 0

. By Density of occupation time formula, we get
Ay
Vu

for every u > 0. First, we show that

%LZ(B))GE]R 2 (LY (B))acr  Vu > 0.

Fix © > 0 and a € R. Define Brownian motion B by Et = ﬁBm. By Tanaka’s formula, we get

‘Bl — ﬁ| = |ﬁ| + — / sgn dB -+ TLG(B) (Q.S.).

Choose increasing sequence {ny}r>1 such that (1),(2) hold (a.s.):

(

ng—1

1 [ & 1
%/0 sgn(Bs — a)dBs = NG 1;1{)10 ZE: sgn( B1 - )(Birj»klu *Bﬁu)
ne—1 _ a ~ _
= 1li B.i — —)(B: — B
Jim D sy = B — By)

1
(:2)/ sgn(Bs — a)dBs.
0

Thus,

/0 sgn(Bs — a)dB, + —L%(B) (a.s.)

~ a a 1
|B1 — ﬁ' = |ﬁ| + Vu
and so ﬁLZ(B) = L,""(B) (a.s.). By right continuity, we get

a

(B)y=LY"(B) VaeR (a.s.)

and so 1 .
(—=L%(B))acr < (L7 (B))ace Yu > 0.

Next, we show that
4 (/ g(x)dz)|N| as u — oo.
R
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Note that

Blexp (i€2)) = Blexp i€ [ gla)=L3(B)da)] = Blexp i¢ [ o)L (B)da).
Since
LI{(B)=0 Va¢] m11<113 Orgai(lB ] (a.s.),
we get
|L(B)| < M for some M = M(w) < oo (a.s.)
and so

|ILY" (B)| < M(w) <00 VYaeRueR, (as.).

By dominated convergence theorem and right continuity, we get
A Lo
Jim Blexp (i€ 7)) = lim Blesp i€ / (B)da)] = Elexp (i€ lim /R ()L (B)da)]
— Blexp (i€ [ gla)Li(B)do).
R

By Theorem 9.14 and Theorem 2.21, we have

and so

Jim Blexp (i€ )] = Blexp 6§ | g(@)L3(B)d)] = Blesp (¢ | a(a)dal 1))

9.9 Exercise 9.24

Let o and b be two locally bounded measurable functions on R xR, and consider the stochastic differential equation
E(O', b) : dXt = O'(t,Xt)dBt +b(t,Xt)dt

Let X and X' be two solutions of E(o,b) on the same filtered probability space and with the same Brownian motion
B.

1. Suppose that LY(X — X’) = 0 for every ¢t > 0. Show that both X V X’ and X A X’ are solutions of E(o,b).
(Hint: Write X; V X; = X; + (X] — X;)", and use Tanaka’s formula.)

2. Suppose that o(t,2) =1 for all t,a. Show that the assumption in question 1. holds automatically. Suppose in
addition that weak uniqueness holds for E(o,b). Show that, if Xy = X =z € R, the two processes X and X’
are indistinguishable.

Proof.

1. Note that
X VX, =X+ (X] - X))t

By Tanaka’s formula, we get

t t
(X] — X))t = (X)) — Xo)t +/ Lixrsx.y(o(s, X5) —o(s, Xs))dBs +/ Lixrsx.y(b(s, X7) — (s, X))ds
0 0
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for all t > 0 (a.s.). Since
o(s, (Xy VX)) = Lixi>x.30(8, X)) + Lix.>x1y0(s, Xs)

and
b(s, (X; VX)) = 1{X;>Xs}b(37X;) + 1{X52X;}b(57Xs)a

we get
(X[ VX)) =X+ (X]— X))t
t t
= X —|—/ o (s, Xs)dBs +/ b(s, Xs)ds
0 0

t

t
+ (X — Xo) +/ Lix;>x.y(0(s, X{) — o(s, Xs))dBs +/ Lix;sx.y (0(s, XY) — b(s, X))ds
0 0

- (X{,VXO)+/Ota(s7(X§\/XS))dBS+/0tb(s7 (X! V X,))ds

for all ¢t > 0 (a.s.) and so X V X’ is a soltion of E(o,b). Note that
(Xt AN Xt/) = Xt - (Xt - Xt/)+
By similar argument, we see that X A X’ is a soltion of E(a,b).

2. Suppose o(t,xz) = 1 for all ¢,z. Then
t
X — X, =Xo— X\ + / (b(s, Xs) — b(s, Xs))ds
0

for all t > 0 (a.s.) and so LY(X — X’) = 0 for all ¢ > 0 (a.s.). Suppose in addition that weak uniqueness
holds for E(o,b) and Xy = X) = € R. By question 1, X V X’ and X A X’ are solution of E(o,b) and so

XVX' L XAX Tt’s clear that

for all ¢ > 0. Indeed, if P(X;V X] > X; A X]) > 0, then E[X; A X]] < E[X; V X]] which contradict to
X VX 4 X; A X{. Thus, we have X, = X for all p € Q4 (a.s.) and so

Xy= lim X,= lm X, =X]
pEQ—t peEQ4—t

for all ¢ > 0 (a.s.). Therefore X and X’ are indistinguishable.

9.10 Exercise 9.25 (Another look at the Yamada—Watanabe criterion)

Let p be a nondecreasing function from [0, co) into [0, 00) such that, for every e > 0,

¢ du
Jy g =
Consider then the one-dimensional stochastic differential equation
E(o,b): dXy = o(X;)dB; + b(X,)dt
where one assumes that the functions o and b satisfy the conditions
(o(z) = o())* < pllz —yl),  |b(z) = by)| < K|z —yl,

for every z,y € R, with a constant K < co. Our goal is use local times to give a short proof of pathwise uniqueness
for E(o,b) (this is slightly stronger than the result of Exercise 8.14).
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1. Let Y be a continuous semimartingale such that, for every ¢ > 0,

LAY, Y), o (os
L Sy < @)

Prove that LY(Y) = 0 for every t > 0 (a.s.).

2. Let X and X be two solutions of E(c,b) on the same filtered probability space and with the same Brownian
motion B. By applying question 1. to Y = X — X', prove that LY(X — X') for every t > 0 (a.s.) and therefore,

X, — X]| = [Xo — X} + / (0(X.) — o(X!))sgn(X, — X!)dB, + / (b(X.) — B(X1))sgn(X, — X!)ds.

3. Using Gromwall’s lemma, prove that if Xy = X|), then X; = X for every t > 0 (a.s.).
Proof.

1. Since L{(Y) A LY(Y) Vt>0 (as.), there exists C = C(w) > 0 and € = ¢(w) > 0 such that
LY(Y)>CLY(Y) Yo<a<e YVt>0 (as.).

By Density of occupation time formula (Corollary 9.7), we have

[ [ y
> ) ey = e = 620 [ Ssda 20 (o),

Since [y % = oo for all € > 0, we get LY(Y) =0 for all t > 0 (a.s.).

2. Set Y = X — X’. Then
t t
Y, = Xo — X} + / (0(X.) — o(X!))dB, + / (B(X.) — b(X))ds
0 0

and so
dY,Y); = (0(Xs) — o(X{))?dt.

LAY, Y), . " o(X,) —a(X)))? . ¢ M - - .
A p(1Ysl) _/0 p(|Xs — X1 d S/0 p(|Xst§|)d =t< vt >0 ( : )
)

By question 1., we get LY(X — X’) = 0 for every ¢ > 0 (a.s.). By Tanaka’s formula, we have

Thus

)

¢ ¢
[ Xi = X{| = [Xo — Xg +/ (0(Xs) — o(X())sgn(Xs — X()dB, +/ (b(Xs) = b(XY))sgn(Xs — X{)ds
0 0
for every ¢ > 0 (a.s.).
3. By continuity, it suffices to show that X; = X (a.s.) for every t > 0. Fix ¢, > 0 and choose L > ty. Define
Ty =inf{s >0||Xs|>Mor |X.| >M} VM >D0.

Fix M > 0. Since
B[ (0(X) = o(X0)sgn(X. = XDl gdBer [ (2(X) = o(X0D)sgn(X. = X010, B2}
0

0
t

t
= [/ (0(Xs) — o(X2))* 10, 7p1ds] < E[/ p(|Xs — X)L,y ds] < p2M)t < 00 Yt >0,
0 0
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we see that (fg(a(Xs) —o(Xg))sgn(Xs — X()1jo,1,,1dBs)t>0 is a martingale. Thus
0 <g(t) = E[|X; — X{|1j0,7,,(t)] < 2M
and

9(t) = B[l X: = Xi[1jo,1,,)(t)] = E[/O (b(Xs) = b(XY))sgn(Xs — X)1jo,1,)ds] < 2K/0 g(s)ds

for every t € [0,L]. By Gromwall’s lemma, we get g(t) = 0 in [0, L] and so E[[Xi,a1,, — X{ A7, |] = 0. By
letting M 1 oo, we have E[|X;, — X/ |] =0 and so X;, = X .

O
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Chapter 10
Appendices

10.1 Skorokhod’s Lemma

Let y be a real-valued continuous function on [0, c0) such that y(0) > 0. There exists a unique pair (z, a) of functions
on [0, 00) such that

z(t) = y(t) + a(t),
z(t) is nonnegative,
a(t) is increasing, continuous, vanishing at zero and supp(das) C {s > 0: z(s) = 0}.
Moreover, the function a(t) is given by

a(t) = Sslg(—y(S) Vv 0).

Proof.
It’s clear that (y — a, a) satisfies all properties above, where a(t) = sups<:(—y(s) vV 0), and so, it suffices to prove the
uniqueness of the pair (z,a). Suppose that (z,a) and (Z,@) satisfy all properties above. Then

A(t) — Z(t) = a(t) —alt) Vt>0
and so t
0 < (a(t) —a(t))? =2 /0 (s) — Z(s)d(a — @)(s) Vt> 0.
Since t t
/0 zeda(s) = /0 Z(s)da(s) =0Vt >0,
we see that

2/0 z(s) —Z(s)d(a —a)(s) = —2(/0 z(s)da(s) —|—/0 Zda(s)) <0 Vt>0

and so z(t) = z(t) for every ¢ > 0.
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