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Chapter 1
Gaussian Variables and Gaussian Processes

1.1 Exercise 1.15

Let (Xt)t∈[0,1] be a centered Gaussian process. We assume that the mapping (t, w) 7→ Xt(w) from [0, 1]× Ω into R
is measurable. We denote the covariance function of X by K(u, v).

1. Show that the mapping t 7→ Xt from [0, 1] into L2(Ω) is continuous if and only if K(u, v) is continuous on
[0, 1]2. In what follows, we assume that this condition holds.

2. Let h : [0, 1]→ R be a measurable function such that∫ 1

0

|h(t)|
√
K(t, t)dt <∞.

Show that the integral, for a.e., the integral ∫ 1

0

h(t)Xt(w)dt

is absolutely integral. We set Z(w) =
∫ 1

0
h(t)Xt(w)dt.

3. We now make the stronger assumption ∫ 1

0

|h(t)|dt <∞.

Show that Z is the L2 limit of the variables

Zn =

n∑
i=1

X i
n

∫ i
n

i−1
n

h(t)dt

when n→∞ and infer that Z is a Gaussian random variable.

4. We assume that K(u, v) is twice continuously differentiable. Show that, for every t ∈ [0, 1], the limit

X̃t = lim
s→t

Xs −Xt

s− t

exists in L2. Verify that (X̃t)t∈[0,1] is a centered Gaussian process and compute its covariance function.

Proof.

1. First, we assume that K(u, v) is continuous. Note that

||Xt+h −Xt||2L2(Ω) = E[|Xt+h −Xt|2] = K(t+ h, t+ h)− 2K(t+ h, t) +K(t, t).

By letting h ↓ 0, we see that the mapping t 7→ Xt is continuous.

Conversely, we assume that the mapping t 7→ Xt is continuous. By using Cauchy Schwarz inequality, we get

|K(u+ t, v + s)−K(u, v)|
≤ |K(u+ t, v + s)−K(u, v + s)|+ |K(u, v + s)−K(u, v)|
= E[|(Xu+t −Xu)Xv+s|] + E[|(Xv+s −Xv)Xu|]
= ||Xu+t −Xu||L2 ||Xv+s||L2 + ||Xv+s −Xv||L2 ||Xu||L2

Since ||Xv+s||L2 is bounded for small s, we see that K(u, v) is continuous.
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2. It’s clear that ∫
Ω

∫ 1

0

|Xt(w)||h(t)|dtP (dw)

=

∫ 1

0

∫
Ω

|Xt(w)||h(t)|P (dw)dt

=

∫ 1

0

||Xt||L1 |h(t)|dt

≤
∫ 1

0

||Xt||L2 |h(t)|dt

=

∫ 1

0

√
K(t, t)|h(t)|dt <∞

Thus, the integral, for a.e., the integral ∫ 1

0

h(t)Xt(w)dt

is absolutely integral.

3. It suffices to show that Zn → Z in L2. Indeed, since {Zn}n≥1 are Gaussian random variables and Zn → Z in
L2, we see that Z is a Gaussian random variable. Note that

Zn(w) =

∫ 1

0

n∑
i=1

X i
n

(w)1[ i−1
n , in )(t)h(t)dt.

Thus,

E[|Z − Zn|2]
1
2

= (

∫
Ω

|
∫ 1

0

h(t)(Xt(w)−
n∑
i=1

X i
n

(w)1[ i−1
n , in )(t))dt|

2P (dw))
1
2

≤
∫ 1

0

(

∫
Ω

|h(t)|2|(Xt(w)−
n∑
i=1

X i
n

(w)1[ i−1
n , in )(t))|

2P (dw))
1
2 dt

=

∫ 1

0

|h(t)|(
∫

Ω

|(Xt(w)−
n∑
i=1

X i
n

(w)1[ i−1
n , in )(t))|

2P (dw))
1
2 dt

=

∫ 1

0

|h(t)| × ||(Xt −
n∑
i=1

X i
n

1[ i−1
n , in )(t))||L2dt.

For each t ∈ [0, 1) and n ≥ 1 such that k−1
n ≤ t <

k
n , we get

||(Xt −
n∑
i=1

X i
n

1[ i−1
n , in )(t))||L2 = ||Xt −X k

n
||L2 ≤ ||Xt||L2 + ||X k

n
||L2 ≤ 2 sup

t∈[0,1]

√
K(t, t) <∞.

and therefore

|h(t)| × ||(Xt −
n∑
i=1

X i
n

1[ i−1
n , in )(t))||L2 ≤ C|h(t)|

for each t ∈ [0, 1) and some 0 < C <∞.

Fix t ∈ [0, 1). Choose {kn} such that kn−1
n ≤ t < kn

n for each n ≥ 1. Since t 7→ Xt is continuous, we have

||(Xt −
n∑
i=1

X i
n

1[ i−1
n , in )(t))||L2 = ||Xt −X kn

n
||L2 → 0 as n→∞.
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By using dominated convergence theorem, we have

lim sup
n→∞

E[|Z − Zn|2]
1
2 ≤ lim

n→∞

∫ 1

0

|h(t)| × ||(Xt −
n∑
i=1

X i
n

1[ i−1
n , in )(t))||L2dt = 0

and, hence, Zn → Z in L2.

4. To show that lims→t
Xs−Xt
s−t exists in L2, it suffices to show that

||Xt+h1
−Xt

h1
− Xt+h2

−Xt

h2
||L2 → 0 as h1, h2 → 0.

Note that

||Xt+h1
−Xt

h1
− Xt+h2

−Xt

h2
||2L2 = A+B − 2C,

where

A =
1

|h1|2
E[(Xt+h1 −Xt)

2] =
1

|h1|2
(E[X2

t+h1
] + E[X2

t ]− 2E[Xt+h1Xt]),

B =
1

|h2|2
E[(Xt+h2

−Xt)
2] =

1

|h2|2
(E[X2

t+h2
] + E[X2

t ]− 2E[Xt+h2
Xt]),

and

C =
1

|h1|
1

|h2|
E[(Xt+h2

−Xt)(Xt+h1
−Xt)]

=
1

|h2||h1|
(E[Xt+h2

Xt+h1
] + E[X2

t ]−E[Xt+h2
Xt]−E[Xt+h1

Xt]).

First, we show that C → ∂2K
∂u∂v (t, t) as h1, h2 → 0. Without loss of generality, we may suppose h1, h2 > 0. Set

g(z) = K(t+ h1, z)−K(t, z).

Then

C =
1

h1

1

h2
(g(t+ h2)− g(t)).

Since K ∈ C2([0, 1]2), there exist t∗1, t
∗
2 such that

C =
1

h1
g′(t∗2) =

1

h1
(
∂K(t+ h1, t

∗
2)

∂v
− ∂K(t, t∗2)

∂v
) =

∂2K(t∗1, t
∗
2)

∂u∂v

By using the continuity of ∂2K
∂u∂v , we see that C → ∂2K

∂u∂v (t, t) as h1, h2 → 0.

Similarly, we have A→ ∂2K
∂u∂v (t, t) and B → ∂2K

∂u∂v (t, t) as h1, h2 → 0. Therefore,

||Xt+h1
−Xt

h1
− Xt+h2

−Xt

h2
||L2 → 0 as h1, h2 → 0

and, hence, lims→t
Xs−Xt
s−t exists in L2. Since Xs−Xt

s−t is a centered Gaussian random variable for all s 6= t, we

see that X̃t ≡ lims→t
Xs−Xt
s−t is a centered Gaussian random variable. Moreover, since any linear combination∑n

k=1 ck
Xsk−Xtk
sk−tk is a centered Gaussian random, we see that (X̃t)t∈[0,1] is a centered Gaussian process.

Finally, we show that

K̃(t, s) =
∂2K

∂u∂v
(t, s),
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where K̃(t, s) is the covariance function of (X̃t)t∈[0,1]. By using similar argument as in (3), there exist th, sh
such that

E[
Xt+h −Xt

h

Xs+h −Xs

h
] =

∂2K

∂u∂v
(th, sh)

for each h 6= 0 and th → t and sh → s as h→ 0. Since K(u, v) ∈ C2([0, 1]2), there exist 0 < C <∞ such that

|E[
Xt+h −Xt

h

Xs+h −Xs

h
]| = | ∂

2K

∂u∂v
(th, sh)| ≤ C

for all h 6= 0. By using dominated convergence theorem and the continuity of ∂2K
∂u∂v , we have

K̃(t, s) = E[X̃tX̃s] = lim
h→0

E[
Xt+h −Xt

h

Xs+h −Xs

h
] = lim

h→0

∂2K

∂u∂v
(th, sh) =

∂2K

∂u∂v
(t, s).

1.2 Exercise 1.16 (Kalman filtering)

Let (εn)n≥0 and (ηn)n≥0 be two independent sequences of independent Gaussian random variables such that, for
every n, εn is distributed according to N (0, σ2) and ηn is distributed according to N (0, δ2), where σ > 0 and δ > 0.
We consider two other sequences (Xn)n≥0 and (Yn)n≥0 defined by the properties X0 = 0, and , for every n ≥ 0,

Xn+1 = anXn + εn+1 and Yn = cXn + ηn,

where c and an are positive constants. We set

X̂n/n = E[Xn|Y0, ..., Yn]

and
X̂n+1/n = E[Xn+1|Y0, ..., Yn].

The goal of the exercise is to find a recursive formula allowing one to compute these conditional expectations.

1. Verify that X̂n+1/n = anX̂n/n, for every n ≥ 0.

2. Show that, for every n ≥ 1,

X̂n/n = X̂n/n−1 +
E[XnZn]

E[Z2
n]

Zn,

where Zn = Yn − cX̂n/n−1.

3. Evaluate E[XnZn] and E[Z2
n] in terms of Pn ≡ E[(Xn − X̂n/n−1)2] and infer that, for every n ≥ 1,

X̂n+1/n = an(X̂n/n−1 +
cPn

c2Pn + δ2
Zn)

4. Verify that P1 = σ2 and that, for every n ≥ 1, the following induction formula holds:

Pn+1 = σ2 + a2
n

δ2Pn
c2Pn + δ2

.

Proof.
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1. By observing the construction of Xn and Yn, we see that Y0 = η0 and for every n ≥ 1, Xn is a σ(εk, k = 0, ..., n)-
measurable centered Gaussian random variable and Yn is a σ(ηn, εk, k = 0, ..., n)-measurable centered Gaussian
random variable. Since σ(Y0) = σ(η0) and for each n ≥ 1, σ(Y0, ..., Yn) ⊆ σ(εk, ηk, k = 0, ..., n), we have

X̂n+1/n = E[Xn+1|Y0, ..., Yn]

= anE[Xn|Y0, ..., Yn] + E[εn+1|Y0, ..., Yn]

= anX̂n/n + E[εn+1]

= anX̂n/n.

2. Given n ≥ 1. Set Kn = span{Y0, ..., Yn}. Then, for each centered Gaussian random variable X ∈ L2(Ω,F ,P ),

E[X|Y0, ..., Yn] = pKn(X),

where pKn is the orthogonal projection onto Kn in the Hilbert space L2(Ω,F ,P ). Observe that

Zn = Yn − cX̂n/n−1

= Yn − cE[Xn|Y0, ..., Yn−1]

= Yn + E[ηn − Yn|Y0, ..., Yn−1]

= Yn + E[ηn]−E[Yn|Y0, ..., Yn−1]

= Yn − pKn−1
(Yn)

Set Vn = span{Zn}. Then Kn = span{Y0, ..., Yn−1, Zn} = Kn−1 ⊕ Vn. Thus,

X̂n/n = E[Xn|Y0, ..., Yn]

= pKn(Xn)

= pKn−1
(Xn) + pVn(Xn)

= E[Xn|Y0, ..., Yn−1]+ < Xn,
Zn

||Zn||L2(Ω)
>L2(Ω)

Zn
||Zn||L2(Ω)

= X̂n/n−1 +
E[XnZn]

E[Z2
n]

Zn

3. First, we show that
E[Z2

n] = c2Pn + δ2.

Note that

E[Z2
n] = E[(Yn − cX̂n/n−1)2]

= E[(Yn − cXn + cXn − cX̂n/n−1)2]

= E[(ηn + cXn − cX̂n/n−1)2]

= c2Pn + E[η2
n] + 2cE[ηn(Xn − X̂n/n−1)]

= c2Pn + δ2 + 2cE[ηn(Xn − X̂n/n−1)]

Since Xn is σ(εk, k = 0, ..., n)-measurable, X̂n/n−1 is σ(Yk, k = 0, ..., n− 1)-measurable, and σ(Yk, k = 0, ..., n−
1) ⊆ σ(ηk, εk, k = 0, ..., n− 1), we see that

E[ηn(Xn − X̂n/n−1)] = E[ηn]E[Xn − X̂n/n−1] = 0

and therefore
E[Z2

n] = c2Pn + δ2.
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Next, we show that
E[XnZn] = cPn.

Observe that

E[X̂n/n−1(Xn − X̂n/n−1)]

= E[pKn−1(Xn)(Xn − pKn−1(Xn))].

Since Xn is σ(εk, k = 0, ..., n)-measurable, we have E[Xnηn] = 0 and therefore

E[XnZn] = E[Xn(Yn − cX̂n/n−1)]

= E[Xn(Yn − cXn + cXn − cX̂n/n−1)]

= E[Xn(ηn + cXn − cX̂n/n−1)]

= cE[Xn(Xn − X̂n/n−1)]

= cE[Xn(Xn − X̂n/n−1)]− cE[X̂n/n−1(Xn − X̂n/n−1)]

= cPn.

Finally, we have

X̂n+1/n = anX̂n/n

= an(X̂n/n−1 +
E[XnZn]

E[Z2
n]

Zn)

= an(X̂n/n−1 +
cPn

c2Pn + δ2
Zn).

4. Note that
P1 = E[(X1 −E[X1|η0])2] = E[(ε1 −E[ε1|η0])2] = E[(ε1 −E[ε1])2] = σ2

and

Pn+1 = E[(Xn+1 − X̂n+1/n)2]

= E[(anXn + εn+1 − anX̂n/n)2]

= E[(εn+1 − an(Xn − X̂n/n))2]

= E[ε2n+1] + a2
nE[(Xn − X̂n/n)2]− 2anE[εn+1(Xn − X̂n/n)]

Since Xn is σ(εk, k = 0, ..., n)-measurable, X̂n/n is σ(Yk, k = 0, ..., n)-measurable, and σ(Yk, k = 0, ..., n) ⊆
σ(ηk, εk, k = 0, ..., n), we see that

E[εn+1(Xn − X̂n/n)] = 0

and therefore
Pn+1 = E[ε2n+1] + a2

nE[(Xn − X̂n/n)2] = σ2 + a2
nE[(Xn − X̂n/n)2].

8



Because Zn and X̂n/n−1 are orthogonal and Zn is centered Gaussian, we get E[ZnX̂n/n−1] = 0 and, hence,

Pn+1 = σ2 + a2
nE[(Xn − X̂n/n)2]

= σ2 + a2
nE[(Xn − X̂n/n−1 + X̂n/n−1 − X̂n/n)2]

= σ2 + a2
nE[(Xn − X̂n/n−1 −

E[XnZn]

E[Z2
n]

Zn)2]

= σ2 + a2
n(Pn + (

E[XnZn]

E[Z2
n]

)2E[Z2
n]− 2

E[XnZn]

E[Z2
n]

E[Zn(Xn − X̂n/n−1)])

= σ2 + a2
n(Pn +

E[XnZn]2

E[Z2
n]

− 2
E[XnZn]

E[Z2
n]

E[ZnXn])

= σ2 + a2
n(Pn −

E[XnZn]2

E[Z2
n]

)

= σ2 + a2
n(Pn −

c2P 2
n

c2Pn + δ2
)

= σ2 + a2
n

δ2Pn
c2Pn + δ2

1.3 Exercise 1.17

Let H be a (centered) Gaussian space and let H1 and H2 be linear subspaces of H. Let K be a closed linear subspace
of H. We write pK for the orthogonal projection onto K. Show that the condition

∀X1 ∈ H1,∀X2 ∈ H2, E[X1X2] = E[pK(X1)pK(X2)] (1)

implies that the σ-fields σ(H1) and σ(H2) are conditionally independent given σ(K). (This means that, for every
nonnegative σ(H1)-measurable random variable X1, and for every nonnegative σ(H2)-measurable random variable
X2, one has

E[X1X2|σ(K)] = E[X1|σ(K)]E[X2|σ(X2)].) (2)

Hint: Via monotone class arguments explained in Appendix A1, it is enough to consider the case where X1, resp.
X2, is the indicator function of an event depending only on finitely many variables in H1, resp. in H2.

Proof.
To show (2), it suffices to show that

E[1{X1
1∈Γ1

1}...1{X1
n1
∈Γ1

n1
} × 1{X1

2∈Γ2
1}...1{X2

n2
∈Γ2

n2
} | σ(K)]

= E[1{X1
1∈Γ1

1}...1{X1
n1
∈Γ1

n1
}|σ(K)]×E[1{X1

2∈Γ2
1}...1{X2

n2
∈Γ2

n2
} | σ(K)] (3)

for each Zsi ∈Ms, Γsi ∈ BR, ms ∈ N, and s = 1, 2.
Let {Zsi : i = 1, 2, ...,ms} be an orthonormal basis of linear subspace space Ms of L2 spanned by {Xs

i : i = 1, 2, ..., ns}.
Then {Zs1 , Zs2 , ..., Zsms} ⊆ Hs are independent centered Gaussians. To show (3), it suffices to show that

E[1{Z1
1∈Γ1

1}...1{Z1
m1
∈Γ1

m1
} × 1{Z1

2∈Γ2
1}...1{Z2

m2
∈Γ2

m2
} | σ(K)]

= E[1{Z1
1∈Γ1

1}...1{Z1
m1
∈Γ1

m1
}|σ(K)]×E[1{Z1

2∈Γ2
1}...1{Z2

m2
∈Γ2

m2
} | σ(K)] (4)

for each Γsi ∈ BR. Indeed, by the theorem of monotone class, we get

E[1{E1}1{E2} | σ(K)] = E[1{E1} | σ(K)]E[1{E2} | σ(K)] ∀Es ∈ σ(Ms) and s = 1, 2.
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and so

E[1{X1
1∈Γ1

1}...1{X1
n1
∈Γ1

n1
} × 1{X1

2∈Γ2
1}...1{X2

n2
∈Γ2

n2
} | σ(K)]

= E[1{X1
1∈Γ1

1}...1{X1
n1
∈Γ1

n1
}|σ(K)]×E[1{X1

2∈Γ2
1}...1{X2

n2
∈Γ2

n2
} | σ(K)]

for each Γsi ∈ BR.
By independence of {Zs1 , Zs2 , ..., Zsms}, we have

E[(Zsi − pK(Zsi ))(Zsj − pK(Zsj ))] = 0 ∀i 6= j,∀s = 1, 2. (5)

By (1) and Corollary 1.10, we get

E[(Z1
i − pK(Z1

i ))(Z2
j − pK(Z2

j ))]

= E[Z1
i Z

2
j ] + E[pK(Z1

i )pK(Z2
j )]−E[Z1

i pK(Z2
j )]−E[pK(Z1

i )Z2
j ]

= E[pK(Z1
i )pK(Z2

j )] + E[pK(Z1
i )pK(Z2

j )]−E[E[Z1
i |σ(K)]pK(Z2

j )]−E[pK(Z1
i )E[Z2

j |σ(K)]]

= E[pK(Z1
i )pK(Z2

j )] + E[pK(Z1
i )pK(Z2

j )]−E[pK(Z1
i )pK(Z2

j )]−E[pK(Z1
i )pK(Z2

j )] = 0 ∀i, j (6)

and

P (Zsi ∈ Γsi |σ(K)) =
1

σsi
√

2π

∫
Γsi

exp(− (y − pK(Zsi ))2

2(σsi )
2

)dy,

where (σsi )
2 = E[(Zsi − pK(Zsi ))2]. Set

Y si = Zsi − pK(Zsi ).

By (5) and (6), {Y si : s = 1, 2 and i = 1, 2, ...,ms} are independent centered Gaussians. Set

F (z1
1 , ..., z

1
m1
, z2

1 , ..., z
2
m2

) = 1{Γ1
1}(z

1
1)...1{Γ1

m1
}(z

1
m1

)× 1{Γ2
1}(z

2
1)...1{Γ2

m2
}(z

2
m2

).

Since {Y si : s = 1, 2 and i = 1, 2, ..., ns} is independent of σ(K), we get

E[1{Z1
1∈Γ1

1}...1{Z1
m1
∈Γ1

m1
} × 1{Z1

2∈Γ2
1}...1{Z2

m2
∈Γ2

m2
} | σ(K)]

= E[F (Z1
1 , ..., Z

1
m1
, Z2

1 , ..., Z
2
m2

) | σ(K)]

= E[F (Y 1
1 + pK(Z1

1 ), ..., Y 1
m1

+ pK(Z1
m1

), Y 2
1 + pK(Z2

1 ), ..., Y 2
m2

+ pK(Z2
m2

)) | σ(K)]

=

∫
F (y1

1 + pK(Z1
1 ), ..., y1

m1
+ pK(Z1

m1
), y2

1 + pK(Z2
1 ), ..., y2

m2
+ pK(Z2

m2
))

P Y 1
s ,...,Y

1
m1
,Y 2

1 ,...,Y
2
m2

(dy1
1 × ...× dy1

m1
× dy2

1 × ...× dy2
m2

)

=

∫
F (y1

1 + pK(Z1
1 ), ..., y1

m1
+ pK(Z1

m1
), y2

1 + pK(Z2
1 ), ..., y2

m2
+ pK(Z2

m2
))

P Y 1
1

(dy1
1)...P Y 1

m1
(dy1

m1
)P Y 2

1
(dy2

1)...P Y 2
m2

(dy2
m2

)

=
∏

1≤s≤2,1≤i≤ms

∫
1{Γsi}(y

s
i + pK(Zsi ))P Y si

(dysi )

1.4 Exercise 1.18 (Levy’s construction of Brownian motion)

For each t ∈ [0, 1], we set h0(t) = 1, and then, for every integer n ≥ 0 and every k ∈ {0, 1, ..., 2n − 1},

hn,k(t) = 2
n
2 1[ 2k

2n+1 ,
2k+1

2n+1 )(t)− 2
n
2 1[ 2k+1

2n+1 ,
2k+2

2n+1 )(t).
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1. Verify that the functions (Haar system) H := {hn,k|n ≥ 0 and k = 0, 1, ..., 2n−1}
⋃
{h0} form an orthonormal

basis of L2([0, 1],B[0,1], dt). (Hint: Observe that, for every fixed n ≥ 0, any function f : [0, 1) 7→ R that is

constant on every interval of the form [ j−1
2n ,

j
2n ), for every 1 ≤ j ≤ 2n, is a linear combination of the functions

in H).

2. Suppose that {N0}
⋃
{Nn,k} are independent N (0, 1) random variables. Justify the existence of the (unique)

Gaussian white noise G on [0, 1] with intensity dt, such that G(h0) = N0 and G(hnk ) = Nn
k for every n ≥ 0 and

0 ≤ k ≤ 2n − 1.

3. For every t ∈ [0, 1), set Bt = G(1[0,t]). Show that

Bt = tN0 +

∞∑
n=0

2n−1∑
k=0

gn,k(t)Nn,k,

where the series converges in L2 , and the functions gn,k : [0, 1] 7→ [0,∞) are given by

gn,k(t) =

∫ t

0

hn,k(s)ds.

Note that the functions gn,k are continuous and satisfy the following property: For every fixed n ≥ 0, the
functions gn,k, 0 ≤ k ≤ 2n − 1 , have disjoint supports and are bounded above by 2−

n
2 .

4. For every integer m ≥ 0 and every t ∈ [0, 1] set

Bmt = tN0 +

m−1∑
n=0

2n−1∑
k=0

gn,k(t)Nn,k.

Verify that the continuous functions t 7→ Bmt converge uniformly on [0, 1] as m → ∞ (a.s.) (Hint: If N is

N (0, 1) distributed, prove the bound P (|N | ≥ a) ≤ exp(−a
2

2 ) for every a ≥ 1, and use this estimate to bound
the probability of the event {sup0≤k≤2n−1 |Nn,k| > 2

n
4 }, for every fixed n ≥ 0.)

5. Conclude that we can, for every t ≥ 0, select a random variable Wt which is a.s. equal to Bt, in such a way
that the mapping t 7→Wt is continuous for every w ∈ Ω.

Proof.

1. It’s clear that H is an orthonormal system in L2([0, 1],B[0,1], dt). Now, we show that H is complete. Since

V = L2([0, 1],B[0,1], dt),

where V := span(S), S =
⋃∞
n=0 Sn, and

Sn := {f : [0, 1] 7→ R : f(x) =

2n−1∑
k=0

ck1[ k2n ,
k+1
2n )} ∀n ≥ 0,

it suffices to show that S ⊆ span(H).
Fix f ∈ Sm such that

f(x) =

2m−1∑
k=0

cm1[ k
2m , k+1

2m )(x) for some m ≥ 0.

It’s clear that f ∈ span(H) if m = 0. Now, we assume that m ≥ 1. To show that f ∈ span(H), it suffices to
show that there exists real numbers α0, ..., α2m−1−1 such that

f(x)−
2m−1−1∑
k=0

αkhm−1,k(x) ∈ Sm−1

11



Set

αk =
1

2
m+1

2

(c2k − c2k+1) ∀0 ≤ k ≤ 2m−1 − 1.

Then

c2k1[ 2k
2m , 2k+1

2m )(x) + c2k+11[ 2k+1
2m , 2k+2

2m )(x)− αkhm−1,k(x)

=
c2k + c2k+1

2
1[ 2k

2m , 2k+1
2m )(x) +

c2k + c2k+1

2
1[ 2k+1

2m , 2k+2
2m )(x)

=
c2k + c2k+1

2
1[ k

2m−1 ,
k+1

2m−1 ) ∀0 ≤ k ≤ 2m−1 − 1

and so f(x)−
∑2m−1−1
k=0 αkhm−1,k(x) ∈ Sm−1.

2. Let {N0}
⋃
{Nn,k} be independent N (0, 1) random variables. Define

G(c0h0 +
∞∑
n=0

2n−1∑
k=0

cn,khn,k) = c0N0 +

∞∑
n=0

2n−1∑
k=0

cn,kNn,k.

It’s clear that G is a Gaussian white noise with intensity dt.

3. It’s clear that

Bt := G(1[0,t]) = tN0 +

∞∑
n=0

2n−1∑
k=0

gn,k(t)Nn,k,

where

gn,k(t) = (1[0,t], hn,k)L2 =

∫ t

0

hn,k(s)ds.

By the definition of hn,k, we get gn,k(t) is continuous, 0 ≤ gn,k(t) ≤ 2
n
2 , and supp(gn,k) ⊆ [ k2n ,

k+1
2n ] for n ≥ 0

and k = 0, 1, ..., 2n − 1.

4. Note that

∞∑
n=0

P ( sup
0≤k≤2n−1

|Nn,k| > 2
n
4 ) ≤

∞∑
n=0

2n−1∑
k=0

P (|Nn,k| > 2
n
4 ) ≤

∞∑
n=0

2n exp(−2
n
2−1) <∞.

By Borel Cantelli lemma, we have P (E) = 1, where

E :=

∞⋃
m=1

∞⋂
n=m

{ sup
0≤k≤2n−1

|Nn,k| ≤ 2
n
4 }.

Fix w ∈ E. By problem 3, we get

sup
t∈[0,1]

|
2n−1∑
k=0

gn,k(t)Nn,k| ≤ sup
t∈[0,1]

2n−1∑
k=0

gn,k(t)|Nn,k| = sup
0≤k≤2n−1

( sup
t∈[0,1]

gn,k(t)|Nn,k|)

≤ (2−
n
2 sup

0≤k≤2n−1
|Nn,k|) ≤ 2−

n
2 × 2

n
4 = 2−

n
4 for large n

and so

sup
t∈[0,1]

|
m2∑

n=m1

2n−1∑
k=0

gn,k(t)Nn,k| ≤
m2∑

n=m1

sup
t∈[0,1]

|
2n−1∑
k=0

gn,k(t)Nn,k| ≤
m2∑

n=m1

2−
n
4
m1,m2→∞→ 0.
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Thus,
∑∞
n=0

∑2n−1
k=0 gn,kNn,k(w) converge uniformly on [0, 1] and so

t ∈ [0, 1] 7→ Bt := tN0 +

∞∑
n=0

2n−1∑
k=0

gn,k(t)Nn,k is continuous (a.s.).

Moreover, since
E[(Bt −Bs)2] = E[G(1(s,t])

2] = t− s ∀0 ≤ s ≤ t ≤ 1

and
E[(Bt −Bs)Br] = E[G(1(s,t])G(1[0,r])] = 0 ∀0 ≤ r ≤ s ≤ t ≤ 1,

we see that Bt −Bs ∼ N (0, t− s) and Bt −Bs |= σ(Br, 0 ≤ r ≤ s) for every 0 ≤ s ≤ t ≤ 1.

5. Let {Nm
0 : m ≥ 1}

⋃
{Nm

n,k : m ≥ 1, n ≥ 0, 0 ≤ k ≤ 2n − 1} be independent N (0, 1). Define Gaussian white
noises

Gm(c0h0 +

∞∑
n=0

2n−1∑
k=0

cn,khn,k) := c0N
m
0 +

∞∑
n=0

2n−1∑
k=0

cn,kN
m
n,k ∀m ≥ 1

and

Bmt := Gm(1[0,t]) = tNm
0 +

∞∑
n=0

2n−1∑
k=0

gn,k(t)Nm
n,k ∀m ≥ 1, t ∈ [0, 1].

Then B1, B2, ... are independent. Define

Wt :=

m−1∑
k=1

Bk1 +Bmt−btc if m− 1 ≤ t < m.

Since (Bmt )t∈[0,1] is continuous for every m ≥ 1, we see that (Wt)t≥0 has continuous sample path. Moreover,
since

Wt−Ws = Bmt−btc+Bm−1
1 + ...+Bn+1

1 +Bn1 −Bns−bsc ∼ N (0, t− s) ∀0 ≤ s < t, n−1 ≤ s < n,m−1 ≤ t < m

and
E[(Wt −Ws)Wr] = 0 ∀0 ≤ r ≤ s ≤ t,

we see that we see that Wt −Ws |= σ(Wr, 0 ≤ r ≤ s) for every 0 ≤ s ≤ t and so (Wt)t≥0 is a Brownian motion.
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Chapter 2
Brownian Motion

2.1 Exercise 2.25 (Time inversion)

Show that the process (Wt)t≥0 defined by

Wt =

{
tB 1

t
, if t > 0

0, if t = 0.

is indistinguishable of a real Brownian motion started from 0.

Proof.
First, we show that (Wt)t≥0 is a pre-Brownian motion. That is (Wt)t≥0 is a centered Gaussian with covariance
function K(t, s) = s ∧ t. Since (Bt)t≥0 is a centered Gaussian process, we see that (Wt)t≥0 is a centered Gaussian
process. Let t > 0 and s > 0. Then

E[WsWt] = E[tsB 1
t
B 1
s
] = ts(

1

s
∧ 1

t
) = t ∧ s

and
E[WsW0] = 0

Thus, (Wt)t≥0 is a pre-Brownian motion.
Next, we show that

lim
t→∞

Wt = lim
t→∞

Bt
t

= 0 a.s.

By considering (Bk+1 −Bk)k≥0 and using the strong law of large number, we get

Bn
n
→ 0 a.s.

Let m,n ≥ 0. By using Kolmogorov’s inequality, we see that

P ( max
0≤k≤2m

|Bn+ k
2m
−Bn| ≥ n

2
3 ) ≤ 1

n
4
3

E[(Bn+1 −Bn)2] =
1

n
4
3

.

By letting m→∞, we get

P ( sup
t∈[n,n+1]

|Bt −Bn| ≥ n
2
3 ) ≤ 1

n
4
3

.

By using Borel-Cantelli is lemma, we have a.s.

|Bt
t
| ≤ 1

n
1
3

+
Bn
n

for large n and n ≤ t ≤ n+ 1

and, hence,

lim
t→∞

Bt
t

= 0 a.s.

Therefore, Wt is continuous at t = 0 a.s.
Finally, we set E = {limt→∞

Bt
t = 0} and

W̃t(w) =

{
Wt(w), if w ∈ E
0, otherwise

for all t ≥ 0. Then (W̃t)t≥0 and (Wt)t≥0 are indistinguishable. Since (W̃t)t≥0 has continuous sample path, we see

that (W̃t)t≥0 is the Brownian motion. Thus, (Wt)t≥0 is indistinguishable of a real Brownian motion (W̃t)t≥0 started
from 0.
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2.2 Exercise 2.26

For each real a ≥ 0, we set Ta = inf{t ≥ 0|Bt = a}. Show that the process (Ta)a≥0 has stationary independent
increments, in the sense that, for every 0 ≤ a ≤ b, the variable Tb − Ta is independent of the σ-field σ(Tc, 0 ≤ c ≤ a)
and has the same distribution as Tb−a.

Proof.

1. First, we show that Tb − Ta
D
= Tb−a for each 0 ≤ a < b. Given 0 ≤ a < b. Set

B̃t = 1Ta<∞(BTa+t −BTa).

Since Ta <∞ a.s., we see that (B̃t)t≥0 is a Brownian motion on probability space (Ω,F ,P ). Set

T̃c = inf{t ≥ 0|B̃t = c}

for each c ∈ R. Then we see that T̃b−a
D
= Tb−a. Since Ta <∞ a.s., we have a.s. s ≥ Ta if Bs = b. Thus, we see

that a.s.

T̃b−a = inf{t ≥ 0|B̃t = b− a}
= inf{t+ Ta|BTa+t = b and t ≥ 0} − Ta
= inf{s|Bs = b and s ≥ Ta} − Ta
= inf{s|Bs = b} − Ta = Tb − Ta

and therefore
Tb − Ta

D
= Tb−a.

2. Next, we show that Tb − Ta is independent of the σ-field σ(Tc, 0 ≤ c ≤ a). Given 0 ≤ a < b. By using strong

Markov property, we see that B̃t is independent of FTa . Since Tc ≤ Ta for 0 ≤ c ≤ a, we have FTc ⊆ FTa for
each 0 ≤ c ≤ a. Indeed, if A ∈ FTc , then

A
⋂
{Ta ≤ t} = (A

⋂
{Tc ≤ t})

⋂
{Ta ≤ t} ∈ Ft.

Therefore
{Tc1 ≤ t1, ..., Tcn ≤ tn} ∈ FTa

for each n ≥ 1, 0 ≤ c1 ≤ .. ≤ cn ≤ a, and non-negative real number t1, ..., tn. By using monotone class theorem,
we have

σ(Tc, 0 ≤ c ≤ a) ⊆ FTa .

Note that Tb−Ta = T̃b−a a.s. To show Tb−Ta is independent of σ(Tc, 0 ≤ c ≤ a), it suffices to show that T̃b−a
is independent of σ(Tc, 0 ≤ c ≤ a). Since {T̃b−a ≤ t} = {infs∈Q∩[0,t] |B̃s − (b− a)| = 0} and B̃t is independent

of FTa , we see that T̃b−a is independent of FTa . Because σ(Tc, 0 ≤ c ≤ a) ⊆ FTa , we see that Tb − Ta is
independent of σ(Tc, 0 ≤ c ≤ a).

2.3 Exercise 2.27 (Brownian bridge)

We set Wt = Bt − tB1 ∀t ∈ [0, 1].

1. Show that (Wt)t∈[0,1] is a centered Gaussian process and give its covariance function.
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2. Let 0 < t1 < t2 < ... < tm < 1. Show that the law of (Wt1 ,Wt2 , ...,Wtm) has density

g(x1, x2, ..., xm) =
√

2πpt1(x1)pt2−t2(x2 − x1)...ptm−tm−1
(xm − xm−1)p1−tp(−xm),

where pt(x) = 1√
2πt

exp(−x
2

2t ). Explain why the law of (Wt1 ,Wt2 , ...,Wtm) can be interpreted as the conditional

law of (Bt1 , Bt2 , ..., Btm) knowing that B1 = 0.

3. Verify that the two processes (Wt)t∈[0,1] and (W1−t)t∈[0,1] have the same distribution (similarly as in the
definition of Wiener measure, this law is a probability measure on the space of all continuous functions from
[0, 1] into R).

Proof.

1. Let 0 < t1 < t2 < ... < tm < 1, Q :=
∑m
i=1 tici ,and Rj :=

∑m
i=j ci ∀1 ≤ j ≤ m. Then

m∑
i=1

ciWti = −Q(B1 −Btm) + (Q+Rm)(Btm −Btm−1) + ...+ (Q+R2)(Bt2 −Bt1) + (Q+R1)Bt1

is a centered Gaussian and so (Wt)t∈[0,1] is a centered Gaussian process. Moreover, the its covariance function

E[WtWs] = E[(Bt − tB1)(Bs − sB1)] = t ∧ s− ts− ts+ ts = t ∧ s− ts ∀t, s ∈ [0, 1].

2. Let 0 = t0 < t1 < t2 < ... < tm < tm+1 = 1 and F (x1, ..., xm) be nonnegative measurable function on Rm.
Then

E[F (Wt1 ,Wt2 , ...,Wtm)] = E[F (Bt1 − t1B1, Bt2 − t2B1, ..., Btm − tmB1)]

=

∫
Rm+1

F (x1 − t1xm+1, x2 − t2xm+1, ..., xm − tmxm+1)

m+1∏
i=1

pti−ti−1
(xi − xi−1)dx1...dxm+1(x0 = 0)

=

∫
Rm+1

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1
(yi − yi−1 + (ti − ti−1)ym+1)p1−tm(ym+1 − ym − tmym+1)dy1...dym+1

(Set y0 = 0, yi = xi − tixm+1 ,and ym+1 = xm+1).

Note that

pti−ti−1(yi − yi−1 + (ti − ti−1)ym+1) = pti−ti−1(yi − yi−1) exp(−ym+1(yi − yi−1)) exp(−1

2
(ti − ti−1)y2

m+1)

for each 1 ≤ i ≤ m and

p1−tm(ym+1 − ym − tmym+1) = p1−tm(−ym) exp(ymym+1) exp(−1

2
(1− tm)y2

m+1).

Then
m∏
i=1

pti−ti−1
(yi−yi−1+(ti−ti−1)ym+1)p1−tm(ym+1−ym−tmym+1) =

m∏
i=1

pti−ti−1
(yi−yi−1)p1−tm(−ym) exp(−1

2
y2
m+1)

and so

E[F (Wt1 ,Wt2 , ...,Wtm)]

=

∫
Rm+1

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1
(yi − yi−1 + (ti − ti−1)ym+1)p1−tm(ym+1 − ym − tmym+1)dy1...dym+1

=

∫
Rm

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1
(yi − yi−1)p1−tm(−ym)(

∫
R

exp(−1

2
y2
m+1)dym+1)dy1...dym

=

∫
Rm

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1
(yi − yi−1)p1−tm(−ym)

√
2πdy1...dym.

16



3. We have twos ways to explain why the law of Brownian bridge (Wt)t∈[0,1] can be interpreted as the conditional
law of (Bt)t∈[0,1] knowing that B1 = 0.

(a) First, we show that, if B1(w) = 0, then

E[F (Bt1 , ..., Btm)|B1](w) =

∫
Rm

F (x1, ..., xm)g(x1, ..., xm)dx1...dxm

for every 0 = t0 < t1 < t2 < ... < tm < tm+1 = 1 and F (x1, ..., xm) be nonnegative measurable function
on Rm. Observe that

E[F (Bt1 , ..., Btm)|B1] = ϕ(B1),

where x0 = 0,

q(xm+1) =

∫
Rm

fBt1 ,...,Btm ,B1
(x1, ..., xm, xm+1)dx1...dxm =

∫
Rm

m+1∏
i=1

pti−ti−1
(xi − xi−1)dx1...dxm,

and

ϕ(xm+1) =
1

q(xm+1)

∫
Rm

F (x1, ..., xm)fBt1 ,...,Btm ,B1(x1, ..., xm, xm+1)dx1...dxm

=
1

q(xm+1)

∫
Rm

F (x1, ..., xm)

m+1∏
i=1

pti−ti−1
(xi − xi−1)dx1...dxm.

Note that

q(0) =

∫
Rm

m∏
i=1

pti−ti−1(xi − xi−1)p1−tm(−xm)dx1...dxm =
1√
2π

∫
Rm

g(x1, ..., xm)dx1...dxm =
1√
2π

and

ϕ(0) =
1

q(0)

∫
Rm

F (x1, ..., xm)

m+1∏
i=1

pti−ti−1
(xi − xi−1)dx1...dxm

=
√

2π

∫
Rm

F (x1, ..., xm)

m∏
i=1

pti−ti−1
(xi − xi−1)p1−tm(−xm)dx1...dxm

=
√

2π

∫
Rm

F (x1, ..., xm)
1√
2π
g(x1, ..., xm)dx1...dxm

=

∫
Rm

F (x1, ..., xm)g(x1, ..., xm)dx1...dxm.

Thus, if w ∈ {B1 = 0}, then

E[F (Bt1 , ..., Btm)|B1](w) = ϕ(0) =

∫
Rm

F (x1, ..., xm)g(x1, ..., xm)dx1...dxm.

(b) Next, we show that

((Bt1,...,Btm )||B1| ≤ ε)
d→ (Wt1 , ...,Wtm)

for every 0 < t1 < t2 < ... < tm < 1 and so the conditional law of (Bt)t∈[0,1] knowing that |B1| ≤ ε
converges weakly to the law of (Wt)t∈[0,1]. Given 0 < t1 < t2 < ... < tm < 1 and F (x1, ..., xm) be
nonnegative measurable function on Rm. Set

µε(dx1...dxm) := P ((Bt1 , ..., Btm ∈ dx1...dxm)||B1| ≤ ε) ∀ε > 0.
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Then ∫
F (x1, ...., xm)µε(dx1...dxm) = P (|B1| ≤ ε)−1E[F (Bt1 , ..., Btm)1{|B1|≤ε}]

= P (|B1| ≤ ε)−1E[E[F (Bt1 , ..., Btm)|B1]1{|B1|≤ε}]

= P (|B1| ≤ ε)−1E[ϕ(B1)1{|B1|≤ε}]

=

∫
R
ϕ(x)× (P (|B1| ≤ ε)−1 1√

2π
e−x

2/21{|x|≤ε})dx.

It’s clear that ϕ(x) is continuous and so∫
F (x1, ...., xm)µε(dx1...dxm)→ ϕ(0) =

∫
Rm

F (x1, ..., xm)g(x1, ..., xm)dx1...dxm as ε→ 0.

4. Let 0 = t0 < t1 < t2 < ... < tm < tm+1 = 1 and F (x1, ..., xm) be nonnegative measurable function on Rm. Set
si = 1− tm+1−i for every 0 ≤ i ≤ m+ 1. Then

E[F (W1−t1 , ...,W1−tm)] = E[F (Wsm , ...,Ws1)]

=

∫
Rm

F (ym, ym−1, ..., y1)

m∏
i=1

psi−si−1
(yi − yi−1)p1−sm(ym)

√
2πdy1...dym

=

∫
Rm

F (x1, ..., xm)

m∏
i=1

psi−si−1
(xi − xi−1)p1−sm(xm)

√
2πdx1...dxm

=

∫
Rm

F (x1, ..., xm)

m∏
i=1

pti−ti−1
(xi − xi−1)p1−tm(xm)

√
2πdx1...dxm

= E[F (Wt1 , ...,Wtm)]

and so (Wt)t∈[0,1] and (W1−t)t∈[0,1] have the same distribution.

2.4 Exercise 2.28 (Local maxima of Brownian paths)

Show that, a.s., the local maxima of Brownian motion are distinct: a.s., for any choice of the rational numbers
0 ≤ p < q < r < s, we have

sup
p≤t≤q

Bt 6= sup
r≤t≤s

Bt.

Proof.
Fixed any rational numbers 0 ≤ p < q < r < s. We show that

P ( sup
p≤t≤q

Bt = sup
r≤t≤s

Bt) = 0.

Set
X = sup

p≤t≤q
Bt −Br

and
Y = sup

r≤t≤s
Bt −Br.

Since {Br −Bt|p ≤ t ≤ q} and {Bt −Br|r ≤ t ≤ s} are independent, we see that X and Y are independent

18



By using simple Markov property, we see that (Bt −Br)t≥r is a Brownian motion. Set St = supt≥r Bt −Br. By
using reflection principle, we have

P (St ≥ a) = P (sup
t≥r

Bt −Br ≥ a)

= P (sup
t≥r

Bt−r ≥ a)

= P (|Bt−r| ≥ a)

and, hence, St is a continuous random variable for each t ≥ r. Therefore,

P ( sup
p≤t≤q

Bt = sup
r≤t≤s

Bt) = P ( sup
p≤t≤q

Bt −Br = sup
r≤t≤s

Bt −Br)

= P (X − Y = 0)

=

∫
R2

1{0}(x+ y)P (X,−Y )(dx× dy)

=

∫
R2

1{0}(x+ y)P (X,−Y )(dx× dy)

=

∫
R

∫
R

1{0}(x+ y)P−Y (dy)PX(dx)

=

∫
R

∫
R

1{−x}(y)P−Y (dy)PX(dx)

=

∫
R
P (−Y = −x)PX(dx) = 0

Thus, we have

P (
⋃

0≤p<q<r<s are rational

sup
p≤t≤q

Bt = sup
r≤t≤s

Bt) = 0

2.5 Exercise 2.29 (Non-differentiability)

Show that, a.s.,

lim sup
t↓0

Bt√
t

=∞ and lim inf
t↓0

Bt√
t

= −∞,

and infer that, for each s ≥ 0, the function t 7→ Bt has a.s. no right derivative at s.

Proof.

1. First, we show that a.s.,

lim sup
t↓0

Bt√
t

=∞ and lim inf
t↓0

Bt√
t

= −∞.

Given M > 0. Since

lim sup
t↓0

Bt√
t

= lim
c↓0

sup
0≤t≤c

Bt√
t
∈ F0+

and therefore

{lim sup
t↓0

Bt√
t
≥M} ∈ F0+.
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Now, by Fatou’s lemma, we have

P (lim sup
t↓0

Bt√
t
≥M)

≥ P (lim sup
n→∞

Bn−1√
n−1

≥M)

= P (
Bn−1√
n−1

≥M i.o )

= P (lim sup
n→∞

{ Bn
−1√
n−1

≥M})

≥ lim sup
n→∞

P (
Bn−1√
n−1

≥M)

=

∫ ∞
M

1√
2π

exp(−x
2

2
)dx > 0

Therefore, by zero-one law, we have a.s.

lim sup
t↓0

Bt√
t
≥M.

Since M is arbitrary, we get

P (lim sup
t↓0

Bt√
t

=∞) = lim
n→∞

P (lim sup
t↓0

Bt√
t
≥ n) = 1.

Because (−Bt)t≥0 is a Brownian motion, we see that

P (lim inf
t↓0

Bt√
t

= −∞) = P (lim sup
t↓0

−Bt√
t

=∞) = 1.

2. We show that, for each s ≥ 0, the function t 7→ Bt has a.s. no right derivative at s. Given s ≥ 0. Observe that

P (lim sup
t↓s

Bt −Bs
t− s

=∞)

= P (lim sup
t↓s

Bt −Bs√
t− s

× 1√
t− s

=∞)

= P (lim sup
t↓s

Bt−s√
t− s

=∞) = 1

and

P (lim inf
t↓s

Bt −Bs
t− s

= −∞)

= P (lim inf
t↓s

Bt −Bs√
t− s

× 1√
t− s

= −∞)

= P (lim inf
t↓s

Bt−s√
t− s

= −∞) = 1

Then the function t 7→ Bt has a.s. no right derivative at s.
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2.6 Exercise 2.30 (Zero set of Brownian motion)

Let H = {t ∈ [0, 1]|Bt = 0}. Show that H is a.s. a compact subset of [0, 1] with no isolated point and zero Lebesgue
measure.

Proof.
Since (Bt)t∈[0,1] is continuous, we see that H is closed and so H is compact. Observe that

E[λR(H)] =

∫
Ω

∫ 1

0

1{s∈[0,1]:Bs=0}(t)dtP (dw) =

∫ 1

0

∫
Ω

1{s∈[0,1]:Bs=0}(t)P (dw)dt =

∫ 1

0

P (Bt = 0)dt = 0

and so λR(H) = 0 (a.s.).
Now, we show that H has no isolated points (a.s.). Define

Tq := inf{t ≥ q : Bt = 0} ∀q ∈ [0, 1)
⋂

Q.

Observe that

P ( sup
0≤s≤ε

BTq+s > 0 and inf
0≤s≤ε

BTq+s < 0 ∀ε ∈ (0, 1− q)
⋂

Q, ∀q ∈ [0, 1)
⋂

Q) = 1.

Indeed, by proposition 2.14 and the strong Markov property, we get

P ( sup
0≤s≤ε

BTq+s > 0 and inf
0≤s≤ε

BTq+s < 0 ∀ε ∈ (0, 1− q)
⋂

Q)

= P ( sup
0≤s≤ε

Bs > 0 and inf
0≤s≤ε

Bs < 0 ∀ε ∈ (0, 1− q)
⋂

Q) = 1 ∀q ∈ [0, 1)
⋂

Q.

Set
E :=

⋂
q∈[0,1)

⋂
Q

⋂
ε∈(0,1−q)

⋂
Q

{∃p ∈ (0, 1)
⋂

Q Tq < Tp < Tq + ε}.

Then P (E) = 1 and so Tq is not an isolated point for every q ∈ [0, 1)
⋂

Q (a.s.). Fix w ∈ E. Let t ∈ H \ {Tq : q ∈
[0, 1)

⋂
Q}. Choose qn ∈ [0, 1)

⋂
Q such that qn ↑ t. Since qn < t and Bt = 0, we have

qn ≤ Tqn ≤ t ∀n ≥ 1

and so Tqn ↑ t. Thus, t is not an isolated. Therefore, H has no isolated points (a.s.).

2.7 Exercise 2.31 (Time reversal)

We set B′t = B1 −B1−t for every t ∈ [0, 1]. Show that the two processes (Bt)t∈[0,1] and (B′t)t∈[0,1] have the same law
(as in the definition of Wiener measure, this law is a probability measure on the space of all continuous functions
from [0, 1] into R).

Proof.
Let 0 = t0 < t1 < t2 < ... < tm < tm+1 = 1 and F (x1, ..., xm) be nonnegative measurable function on Rm. Set
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si = 1− tm+1−i for every 0 ≤ i ≤ m+ 1 and pt(x) = 1√
2πt

exp(−x
2

2t ). Then

E[F (B′t1 , ..., B
′
tm)] = E[F (B1 −Bsm , ..., B1 −Bs1)]

=

∫
Rm+1

F (xm+1 − xm, xm+1 − xm−1, ..., xm+1 − x1)

m+1∏
i=1

psi−si−1
(xi − xi−1)dx1...dxm+1(x0 = 0)

=

∫
Rm+1

F (y1, y2, ..., ym)

m+1∏
i=1

ptm+1−(i−1)−tm+1−i(ym+1−(i−1) − ym+1−i)dy1...dym+1 (yi = xm+1 − xm+1−i ∀0 ≤ i ≤ m+ 1)

=

∫
Rm+1

F (y1, y2, ..., ym)

m+1∏
i=1

pti−ti−1(yi − yi−1)dy1...dym+1

=

∫
Rm

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1(yi − yi−1)× (

∫
R
ptm+1−tm(ym+1 − ym)dym+1)dy1...dym

=

∫
Rm

F (y1, y2, ..., ym)

m∏
i=1

pti−ti−1
(yi − yi−1)× 1dy1...dym = E[F (Bt1 , ..., Btm)]

and so (Bt)t∈[0,1] and (B′t)t∈[0,1] have the same distribution.

2.8 Exercise 2.32 (Arcsine law)

Set T := inf{t ≥ 0 : Bt = S1}.

1. Show that T < 1 a.s. (one may use the result of the previous exercise) and then that T is not a stopping time.

2. Verify that the three variables St, St −Bt and |Bt| have the same law.

3. Show that T is distributed according to the so-called arcsine law, whose density is

g(t) =
1

π
√
t(1− t)

1(0,1)(t).

4. Show that the results of questions 1. and 3. remain valid if T is replaced by

L := sup{t ≤ 1 : Bt = 0}.

Proof.

1. It’s clear that P (T ≤ 1) = 1. Suppose that P (T = 1) > 0. By exercise 2.31 and proposition 2.14, we get

P ( inf
0≤s≤ε

B′s < 0 ∀ε ∈ (0, 1)) = P ( inf
0≤s≤ε

Bs < 0 ∀ε ∈ (0, 1)) = 1,

where B′t = B1 −B1−t for every t ∈ [0, 1]. On the other hand,

0 < P (T = 1) ≤ P (B′s ≥ 0 ∀s ∈ [0, 1])

which is a contradiction. Thus, we have P (T < 1) = 1.
Now, we show that T is not a stopping time by contradiction. Assume that T is a stopping time. By theorem
2.20 (strong Markov property), we see that BTt = BT+t − BT is a Brownian motion. Since P (T < 1) = 1, we
get

P ( sup
0≤s≤ε

BTs ≤ 0 for some ε > 0) = 1,
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which contradiction to (proposition 2.14)

P ( sup
0≤s≤ε

BTs > 0 ∀ε > 0) = 1.

Thus, we see that T is not a topping time.

2. Fix t > 0. By theorem 2.21, we have St
d
= |Bt|. Now, we show that St

d
= St −Bt. By similar argument as the

proof of exercise 2.31, we get (B′s)s∈[0,t]
d
= (Bs)s∈[0,t], where B′s = Bt −Bt−s for every s ∈ [0, t]. It’s clear that

(B′s)s∈[0,t]
d
= (−B′s)s∈[0,t]. Thus, we have

St = sup
0≤s≤t

Bs
d
= sup

0≤s≤t
−B′s = sup

0≤s≤t
Bt−s −Bt = sup

0≤s≤t
Bs −Bt = St −Bt.

3. Since
P ( sup

p1≤s≤q1
Bs 6= sup

p2≤s≤q2
Bs for all rational numbers p1 < q1 < p2 < q2) = 1,

we see that the global maximum of (Bt)t∈[0,1] is attained at a unique time (a.s.). That is,

P (∃!t ∈ [0, 1] Bt = S1) = 1.

Let r ∈ (0, 1) and Z1, Z2
i.i.d∼ N (0, 1). Then

P (T < r) = P ( max
0≤t≤r

Bt > max
r≤s≤1

Bs) = P ( max
0≤t≤r

Bt −Br > max
r≤s≤1

Bs −Br).

Since
max

0≤t≤r
Bt −Br |= max

r≤s≤1
Bs −Br,

max
0≤t≤r

Bt −Br = max
0≤t≤r

(Br−t −Br)
d
= max

0≤t≤r
Bt = Sr

d
= |
√
rZ1|,

and
max
r≤s≤1

Bs −Br = max
r≤s≤1

(Bs −Br)
d
= max

0≤s≤1−r
Bs = S1−r

d
=
√

1− r|Z2|,

we get

P (T < r) = P (
√
r|Z1| >

√
1− r|Z2|) = P (

|Z2|2

|Z1|2 + |Z2|2
< r)

and so T
d
= |Z2|2
|Z1|2+|Z2|2 . Since

E[f(
|Z2|2

|Z1|2 + |Z2|2
)] =

∫
R2

f(
y2

x2 + y2
)

1

2π
exp(−x

2 + y2

2
)dxdy

= 4

∫ ∞
0

∫ ∞
0

f(
y2

x2 + y2
)

1

2π
exp(−x

2 + y2

2
)dxdy

= 4

∫ π
2

0

∫ ∞
0

f(sin(θ)2)
1

2π
exp(−x

2 + y2

2
)rdrdθ

=
2

π

∫ 1

0

f(t)
1

2
√

1− t
√
t
dt

=

∫
R

1

π

1√
t(1− t)

1(0,1)(t)dt,

we see that

g(t) =
1

π
√
t(1− t)

1(0,1)(t)

is the density function of T .
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4. We redefine L(f) as the latest time of f ∈ C([0, 1]) such that f(t) = f(0). That is,

L(f) = sup{t ≤ 1 : f(t) = f(0)}.

Then L = L((|Bt|)t∈[0,1]). Since the global maximum of (Bt)t∈[0,1] is attained at a unique time (a.s.), we see

that T = L((St −Bt)t∈[0,1]) (a.s.). Since St −Bt
d
= |Bt| for every t ≥ 0 and they have continuous sample path,

we see that (St −Bt)t≥0
d
= (|Bt|)t≥0 and so L

d
= T . Thus, g(t) is the density function of L, L < 1 (a.s.), and L

is not a stopping time. Indeed, if L is a stopping time,

B′t := BL+t −BL
(a.s.)

= BL+t ∀t ≥ 0

is a Brownian motion with 0 is an isolated point of {t ∈ [0, 1] : B′t = 0} (a.s.) which contradict to Exercise 2.30.

2.9 Exercise 2.33 (Law of the iterated logarithm)

The goal of the exercise is to prove that

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

We set h(t) =
√

2t log log t.

1. Show that, for every t > 0,

P (St > u
√
t) ∼ 2

u
√

2π
exp(−u

2

2
),

when u→∞.

2. Let r and c be two real numbers such that 1 < r < c2 and set St = sups≤tBs. From the behavior of the
probabilities P (Srn > ch(rn−1)) when n→∞, infer that, a.s.,

lim sup
t→∞

Bt√
2t log log 2t

≤ 1.

3. Show that a.s. there are infinitely many values of n such that

Brn −Brn−1 ≥
√
r − 1

r
h(rn).

Conclude that the statement given at the beginning of the exercise holds.

4. What is the value of

lim inf
t→∞

Bt√
2t log log t

?

Proof.

1. Given t > 0. By using the reflection principle, we have

P (St > u
√
t)

= P (St > u
√
t, Bt > u

√
t) + P (St > u

√
t, Bt ≤ u

√
t)

= P (Bt > u
√
t) + P (Bt ≥ u

√
t)

= 2P (Bt ≥ u
√
t)

= 2

∫ ∞
u
√
t

1√
2πt

exp(−x
2

2t
)dx

=
2√
2π

∫ ∞
u

exp(−y
2

2
)dy
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Note that, for x > 0,

(
1

x
− 1

x3
) exp(−x

2

2
) ≤

∫ ∞
x

exp(−y
2

2
)dy ≤ 1

x
exp(−x

2

2
).

Indeed, since exp(− z
2

2 ) ≤ 1 and∫ ∞
x

(1− 3

y4
) exp(−y

2

2
)dy = (

1

x
− 1

x3
) exp(−x

2

2
),

we have ∫ ∞
x

exp(−y
2

2
)dy =

∫ ∞
0

exp(− (z + x)2

2
)dz ≤ exp(−x

2

2
)

∫ ∞
0

exp(−xz)dz =
1

x
exp(−x

2

2
)

and

(
1

x
− 1

x3
) exp(−x

2

2
) ≤

∫ ∞
x

exp(−y
2

2
)dy.

Thus,
2√
2π

(
1

u
− 1

u3
) exp(−u

2

2
) ≤ P (St > u

√
t) ≤ 2√

2π

1

u
exp(−u

2

2
)

and therefore

P (St > u
√
t) ∼ 2

u
√

2π
exp(−u

2

2
),

when u→∞.

2. Given 1 < r < c2. By using similar argument, we have

P (Srn > ch(rn−1)) = 2

∫ ∞
ch(rn−1)

1√
2πrn

exp(− x2

2rn
)dx =

2√
2π

∫
ch(rn−1)√

rn

exp(−y
2

2
)dy.

Because
h(rn−1)√

rn
→∞ as n→∞

and ∫ ∞
x

exp(−y
2

2
)dy ≤ 1

x
exp(−x

2

2
),

we get

lim
n→∞

P (Srn > ch(rn−1)) ≤ lim
n→∞

2√
2π

√
rn

ch(rn−1)
exp(−1

2

c2h(rn−1)2

rn
) = 0.

Choose {nk} such that
∞∑
k=1

P (Srnk > ch(rnk−1)) <∞.

By using Borel-Cantelli lemma, we get

P (
Srnk

h(rnk)
> c

h(rnk−1)

h(rnk)
i.o. ) = P (Srnk > ch(rnk−1) i.o. ) = 0.

Observe that

lim
k→∞

h(rnk−1)

h(rnk)
=

1√
r
.

Then

P (lim sup
t→∞

St
h(t)

≥ c√
r

) = 0
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and, hence,

P (lim sup
t→∞

Bt
h(t)

≤ c√
r

) ≥ P (lim sup
t→∞

St
h(t)

≤ c√
r

) = 1.

Fixed r > 1. Choose {cn} such that 1 < r < c2n and c2n ↓ r. Then

P (lim sup
t→∞

Bt
h(t)

≤ cn√
r

) = 1

for each n ≥ 1. By letting n→∞, we have

P (lim sup
t→∞

Bt
h(t)

≤ 1) = 1

3. Given r > 1. Set d to be the positive number such that d = log(r). By using the fact that the increments of
Brownian motion are Gaussian random variables, we have

P (Brn −Brn−1 ≥
√
r − 1

r
h(rn))

= P (
Brn −Brn−1√
rn − rn−1

≥
√

2 log log rn)

= P (
Brn −Brn−1√
rn − rn−1

≥
√

2 log dn)

=

∫ ∞
√

2 log dn

1√
2π

exp(−x
2

2
)dx

≥ 1√
2π

(
1√

2 log dn
− 1

(2 log dn)
3
2

)
1

dn

Because
∑∞
n=2

1
n
√

logn
=∞ and

∑∞
n=2

1

n(logn)
3
2
<∞, we see that

∞∑
n=1

P (Brn −Brn−1 ≥
√
r − 1

r
h(rn)) =∞.

Note that {Brn −Brn−1}n≥1 are independent. By using Borel-Cantelli lemma, we have

P (Brn −Brn−1 ≥
√
r − 1

r
h(rn) i.o. ) = 1.

Now, we show that

P (lim sup
t→∞

Bt
h(t)

= 1) = 1.

It remain to show that

P (lim sup
t→∞

Bt
h(t)

≥ 1) = 1.

Given r > 1. Since

P (Brn −Brn−1 ≥
√
r − 1

r
h(rn) i.o. ) = 1,

we have

P (
Brn

h(rn)
≥

√
r − 1

r
+

√
log log rn−1

log log rn

√
1

r

Brn−1

h(rn−1)
i.o. ) = 1,

26



and, hence, we have a.s.

lim sup
t→∞

Bt
h(t)

≥ r − 1

r
+

√
1

r
lim sup
t→∞

Bt
h(t)

.

Thus,

P ((lim sup
t→∞

Bt
h(t)

)2 ≥ r − 1

r − 2
√
r + 1

) = 1 for each r > 1.

Choose {rn|rn > 1} such that rn ↓ 1. Since r−1
r−2
√
r+1
→ 1 as r ↓ 1, we see that

P ((lim sup
t→∞

Bt
h(t)

)2 ≥ 1) = lim
n→∞

P ((lim sup
t→∞

Bt
h(t)

)2 ≥ rn − 1

rn − 2
√
rn + 1

) = 1

and, hence,

P (lim sup
t→∞

Bt
h(t)

≥ 1) = 1.

4. Since (−Bt)t≥0 is a Brownian motion, we see that

P (lim inf
t→∞

Bt
h(t)

= −1) = P (lim sup
t→∞

−Bt
h(t)

= 1) = 1

and, hence, we have a.s.

lim inf
t→∞

Bt
h(t)

= −1.
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Chapter 3
Filtrations and Martingales

3.1 Exercise 3.26

1. Let M be a martingale with continuous sample paths such that M0 = x ∈ R+. We assume that Mt ≥ 0 for
each t ≥ 0, and that Mt → 0 as when t→∞, a.s. Show that, for each y > x,

P (sup
t≥0

Mt ≥ y) =
x

y
.

2. Give the law of
sup
t≤T0

Bt

when B is a Brownian motion started from x > 0 and T0 = inf{t ≥ 0|Bt = 0}.

3. Assume now that B is a Brownian motion started from 0, and let µ > o. Using an appropriate exponential
martingale, show that

sup
t≥0

(Bt − µt)

is exponentially distributed with parameter 2µ.

Proof.

1. Given y > x > 0. First, we suppose (Mt)t≥0 is uniformly integrable. Then (Mt)t≥0 is bounded in L1 and,
hence,

M∞ = lim
t→∞

Mt = 0 a.s.

Set T = inf{t ≥ 0|Mt = y}. Then T is a stopping time. By optional stopping times, we have

E[MT ] = E[M0] = x.

Observe that
E[MT ] = yP (T <∞) + P (T =∞)× 0 = yP (T <∞)

and
P (T <∞) = P (sup

t≥0
Mt ≥ y).

Thus, we have

P (sup
t≥0

Mt ≥ y) =
x

y
.

Next, we consider a general martingale (Mt)t≥0. For each n ≥ 1, we set

N
(n)
t = Mt∧n.

Then (N
(n)
t )t≥0 is an uniformly integrable martingale for each n ≥ 1 and therefore

P ( sup
0≤t≤n

Mt ≥ y) = P (sup
t≥0

N
(n)
t ≥ y) =

x

y
.

Letting n→∞, gives

P (sup
t≥0

Mt ≥ y) =
x

y
.
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2. If y ≤ x, it’s clear that
P ( sup

t≤T0

Bt ≥ y) = 1.

Now we consider y > x. Set
Nt = Bt∧T0

for each t ≥ 0. Then (Nt)t≥0 is a martingale. Since T0 <∞ a.s., we get Nt → 0 when t→∞. Thus,

P ( sup
t≤T0

Bt ≥ y) = P (sup
t≥0

Nt ≥ y) =
x

y
.

3. Given µ > 0. If y ≤ 0, it’s clear that
P (sup

t≥0
(Bt − µt) ≥ y) = 1.

Now, we suppose y > 0. Observe that

P (sup
t≥0

(Bt − µt) ≥ y)

= P (sup
t≥0

(B( 1
2µ )2t − µ((

1

2µ
)2t)) ≥ y)

= P (sup
t≥0

(2µB( 1
2µ )2t −

1

2
t) ≥ 2µy)

= P (sup
t≥0

(Bt −
1

2
t) ≥ 2µy)

= P (sup
t≥0

eBt−
1
2 t ≥ e2µy)

Set Mt = eBt−
1
2 t for each t ≥ 0. Then (Mt)t≥0 is a nonnegative martingale with continuous simple path. Since

limt→∞
Bt
t = 0 a.s., we get

lim
t→∞

(Bt −
1

2
t) = lim

t→∞
t(
Bt
t
− 1

2
) = −∞ a.s.

and, hence, limt→∞Mt = 0 a.s. Because e2µy > 1 = M0, we get

P (sup
t≥0

(Bt − µt) ≥ y) = P (sup
t≥0

Mt ≥ e2µy) = e−2µy.

Therefore, we have

P (sup
t≥0

(Bt − µt) ≤ y) =

{
1− e−2µy, if y ≥ 0,

0, otherwise.

and, hence, supt≥0(Bt − µt) has exponentially distributed with parameter 2µ.

3.2 Exercise 3.27

Let B be an Ft-Brownian motion started from 0. Recall the notation Tx = inf{t ≥ 0|Bt = x}, for each x ∈ R. We
fix two real numbers a and b with a < 0 < b, and we set

T = Ta ∧ Tb.

1. Show that, for every λ > 0,

E[e−λT ] =
cosh( b+a2

√
2λ)

cosh( b−a2

√
2λ)

.

29



2. Show similarly that, for every λ > 0,

E[e−λT 1{T=Ta}] =
sinh(b

√
2λ)

sinh((b− a)
√

2λ)
.

3. Show that

P (Ta < Tb) =
b

b− a
.

Proof.

1. Set α = b+a
2 and

Mt = e
√

2λ(Bt−α)−λt + e−
√

2λ(Bt−α)−λt

for each t ≥ 0.

Since

(Ut)t≥0 ≡ (e
√

2λBt− (
√

2λ)2

2 t)t≥0

and

(Vt)t≥0 ≡ (e−
√

2λBt− (
√

2λ)2

2 t)t≥0

are martingales, we see that

Mt = e−
√

2λαUt + e
√

2λαVt

is a martingale. Because

0 ≤ Ut∧T ≤ e
√

2λb

and
0 ≤ Vt∧T ≤ e

√
2λ(−a)

for each t ≥ 0, we see that ((Ut∧T ))t≥0 and ((Vt∧T ))t≥0 are uniformly integrable martingales and, hence,
(Mt∧T )t≥0 is a uniformly integrable martingale. Thus, by optional stopping theorem, we get

E[MT ] = E[M0] = 2 cosh(
√

2λ
b+ a

2
).

Observe that

E[MT ] = e−
√

2λ b−a2 E[e−λT 1Ta≤Tb ] + e
√

2λ b−a2 E[e−λT 1Ta≤Tb ]

+ e
√

2λ b−a2 E[e−λT 1Ta>Tb ] + e−
√

2λ b−a2 E[e−λT 1Ta>Tb ]

= E[e−λT ](e
√

2λ b−a2 + e−
√

2λ b−a2 )

= E[e−λT ]2 cosh(
√

2λ
b− a

2
)

and therefore

E[e−λT ] =
cosh( b+a2

√
2λ)

cosh( b−a2

√
2λ)

.

2. Set α = b+a
2 and

Nt = e
√

2λ(Bt−α)−λt − e−
√

2λ(Bt−α)−λt

for each t ≥ 0. By using similar arguments as above, we get

E[NT ] = E[N0] = −2 sinh(
√

2λ
a+ b

2
)
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and

E[NT ] = e−
√

2λ b−a2 E[e−λT 1Ta≤Tb ]− e
√

2λ b−a2 E[e−λT 1Ta≤Tb ]

+ e
√

2λ b−a2 E[e−λT 1Ta>Tb ]− e−
√

2λ b−a2 E[e−λT 1Ta>Tb ]

= −2 sinh(
√

2λ
b− a

2
)E[e−λT 1Ta≤Tb ] + 2 sinh(

√
2λ
b− a

2
)E[e−λT 1Ta>Tb ]

Observe that

2 cosh(
√

2λ
b+ a

2
) = E[MT ]

= 2 cosh(
√

2λ
b− a

2
)E[e−λT 1Ta≤Tb ] + 2 cosh(

√
2λ
b− a

2
)E[e−λT 1Ta>Tb ]

Thus, we have{
cosh(

√
2λ b+a2 ) = cosh(

√
2λ b−a2 )E[e−λT 1T=Ta ] + cosh(

√
2λ b−a2 )E[e−λT 1T=Tb ]

− sinh(
√

2λa+b
2 ) = − sinh(

√
2λ b−a2 )E[e−λT 1T=Ta ] + sinh(

√
2λ b−a2 )E[e−λT 1T=Tb ]

By using the formula
sinh(x+ y) = sinh(x) cosh(y) + sinh(y) cosh(x),

we get

E[e−λT 1{T=Ta}] =
sinh(b

√
2λ)

sinh((b− a)
√

2λ)
.

3. By using dominated convergence theorem and the result in problem 2, we have

P (Ta < Tb) = E[1T=Ta ]

= lim
λ→0+

E[e−λT 1T=Ta ]

= lim
λ→0+

sinh(b
√

2λ)

sinh((b− a)
√

2λ)

=
b

b− a

3.3 Exercise 3.28

Let B be an (Ft)-Brownian motion started from 0. Let a > 0 and

σa = inf{t ≥ 0 | Bt ≤ t− a}.

1. Show that σa is a stopping time and that σa <∞ a.s.

2. Using an appropriate exponential martingale, show that, for every λ ≥ 0,

E[e−λσa ] = e−a(
√

1+2λ−1).

The fact that this formula remains valid for λ ∈ [− 1
2 , 0] can be obtained via an argument of analytic continua-

tion.

31



3. Let µ ∈ R and Mt = eµBt−
µ2

2 t. Show that the stopped martingale Mσa∧t is closed if and only if µ ≤ 1.

Proof.

1. Since lim inft→∞Bt = −∞ a.s., we see that lim inft→∞(Bt − t) = −∞ a.s. and σa <∞ a.s.

2. Given λ ≥ 0. Set µ = 1−
√

1 + 2λ. Then −µ
2

2 +µ = −λ and (Mt)t≥0 ≡ (eµB
σa
t −

µ2

2 σa∧t)t≥0 is a local martingale.
Moreover, since

−a ≤ Bσat − (σa ∧ t) <∞

and
0 ≤ eµ(Bσat −(σa∧t)) ≤ e−µa

for all t ≥ 0, we see that

|Mt| ≡ |eµB
σa
t −

µ2

2 σa∧t| = |eµB
σa
t −µ(σa∧t)eµ(σa∧t)−µ

2

2 σa∧t| ≤ e−µa

for all t ≥ 0 and therefore M is an uniformly integrable martingale. By optional stopping theorem, we have

E[eµσa−µa−
µ2

2 σa ] = E[eµBσ−
µ2

2 σa ] = 1.

Since
µ = 1−

√
1 + 2λ

and

−µ
2

2
+ µ = −λ,

we get

E[e−λσa ] = eµa = e−a(
√

1+2λ−1).

Next, we show that the statement is true when λ ∈ [− 1
2 , 0]. Set Ω = {z ∈ C | Re(z) > − 1

2}. Define f : Ω 7→ Z
by

f(z) = E[e−zσa ].

Note that ∫ ∞
0

1

s
3
2

e−A
2s−B2

s ds =

√
πe−2AB

B

for A,B ≥ 0 and

P (σa ≤ t) =

∫ t

0

a√
2πs3

e−
(a−s)2

2s ds.

For z = c+ id ∈ Ω, we have

|E[e−zσa ]| = |
∫ ∞

0

e−zs
a√

2πs3
e−

(a−s)2
2s ds|

≤
∫ ∞

0

e−cs
a√

2πs3
e−

(a−s)2
2s ds

=
aea√

2π

∫ ∞
0

1

s
3
2

e−
a2

2
1
s−( 1

2 +c)sds

=
aea√

2π

√
πe
−2 a√

2

√
1
2 +c

a√
2

<∞
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and, hence, f(z) is well-defined. Let Γ be a triangle in Ω. By using Fubini’s theorem, we have∫
Γ

f(z)dz =

∫
Ω

∫
Γ

e−zσadzP (dw) = 0.

Thus, f(z) is holomorphic in Ω. Set g(z) = e−a(
√

2z+1−1). Then g(z) is holomorphic in Ω. Since f(z) = g(z)
on the positive real line, we get g = f in Ω and, hence,

E[e−λσa ] = eµa = e−a(
√

1+2λ−1)

for λ ∈ (− 1
2 , 0]. By monotone convergence theorem, we have

E[e
1
2σa ] = lim

λ↓− 1
2

E[e−λσa ] = lim
λ↓− 1

2

e−a(
√

1+2λ−1) = ea

and, hence,

E[e−λσa ] = eµa = e−a(
√

1+2λ−1)

for λ ∈ [− 1
2 , 0].

3. Note that

1 = E[Mσa ] = E[eµ(σa−a)−µ
2

2 σa ] = E[e−(µ
2

2 −µ)σa−µa]

if and only if

E[e−(µ
2

2 −µ)σa ] = eµa

Since µ2

2 − µ ≥ −
1
2 for µ ∈ R, we get, by the result in problem 2,

E[e−(µ
2

2 −µ)σa ] = e−a(
√

(µ−1)2−1) =

{
e−a(µ−2), if µ > 1

eaµ, if µ ≤ 1

and, hence,
1 = E[Mσa ] if and only if µ ≤ 1.

Now, we show that
Mσa∧t is closed if and only if µ ≤ 1.

It’s clear that
1 = E[M0∧σa ] = E[M∞∧σa ] = E[Mσa ]

whenever Mσa∧t is closed. It remains to show that Mσa∧t is closed when 1 = E[Mσa ].
Let t ≥ 0. By using optional stopping theorem for supermartinale(Theorem 3.25), we have

Mt∧σa ≥ E[Mσa |Ft∧σa ], a.s..

If
P (Mt∧σa > E[Mσa |Ft∧σa ]) > 0,

then we have
1 = E[M0∧σa ] = E[Mt∧σa ] > E[E[Mσa |Ft∧σa ]] = E[Mσa ] = 1

which is a contradiction. Thus, we have

Mt∧σa = E[Mσa |Ft∧σa ], a.s.

This shows that Mt∧σa is closed.
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3.4 Exercise 3.29

Let (Yt)t≥0 be a uniformly integrable martingale with continuous sample paths, such that Y0 = 0. We set Y∞ =
limt→∞ Yt. Let p ≥ 1 be a fixed real number. We say that Property (P) holds for the martingale Y if there exists a
constant C such that, for every stopping time T, we have

E[|Y∞ − YT |p|FT ] ≤ C

1. Show that Property (P) holds for Y if Y∞ is bounded

2. Let B be an {Ft}-Brownian motion started from 0. Show that Property (P) holds for the martingale Yt = Bt∧1.

3. Show that Property (P) holds for Y, with the constant C, if and only if, for any stopping time T,

E[|YT − Y∞|p] ≤ CP (T <∞).

4. We assume that Property (P) holds for Y with the constant C. Let S be a stopping time and let Y S be the
stopped martingale defined by Y St = YS∧t. Show that Property (P) holds for Y S with the same constant C.

5. We assume in this question and the next one that Property (P) holds for Y with the constant C = 1. Let
a > 0, and let (Rn)n≥0 0 be the sequence of stopping times defined by induction by

R0 = 0 and Rn+1 = inf{t ≥ Rn||Yt − YRn | ≥ a} (inf ∅ =∞).

Show that, for every integer n ≥ 0,

apP (Rn+1 <∞) ≤ P (Rn <∞).

6. Infer that, for every x > 0,
P (sup

t≥0
Yt > x) ≤ 2p2−

px
2 .

Proof.

1. Since (Yt)t≥0 is an uniformly integrable martingale,

Yt = E[y∞|Ft]

for each 0 ≤ t ≤ ∞. Because Y∞ is bounded, there exists C > 0 such that a.s. |Yt| ≤ C. Since the sample path
is continuous, we have a.s. supt≥0 |Yt| ≤ C and therefore a.s. |YT | ≤ C. Thus, if p ≥ 1, then

E[|Y∞ − YT |p|FT ] ≤ E[(|Y∞|+ |YT |)p|FT ] ≤ (2C)p

and therefore Property (P) holds for Y.

2. First, note that Yt is a uniformly integrable martingale, since Yt = E[Y1|Ft] for t ≥ 1.

Now, we show that Property (P) holds for the martingale Yt = Bt∧1. First, we consider the case p = 1. Let
F ∈ FT . Then

E[E[|YT − Y∞||FT ]1F ] = E[|YT − Y∞|1F ] ≤ E[|Y∞|1F ] + E[|YT |1F ].

Since Yt is a uniformly integrable martingale, YT = E[Y∞|FT ] and, hence,

E[|YT |1F ] = E[|E[Y∞|FT ]|1F ] ≤ E[E[|Y∞||FT ]1F ] = E[|Y∞|].

Thus,
E[E[|YT − Y∞||FT ]1F ] ≤ 2E[|Y∞|]
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for each F ∈ FT . Since E[|YT − Y∞||FT ] is FT -measurable, we get

E[|YT − Y∞||FT ] ≤ 2E[|Y∞|]

and therefore property (P) holds for the martingale Yt = Bt∧1 when p = 1.

Next, we suppose p > 1. By Doob’s inequality in Lp, we get

E[sup
t≥0
|Yt|p] ≤ E[ sup

0≤t≤1
|Bt|p] ≤ (

p

p− 1
)pE[|B1|p]

and therefore supt≥0 |Yt|p is in Lp. Then, for each F ∈ FT ,

E[E[|Y∞ − YT |p|FT ]1F ] = E[|Y∞ − YT |p1F ]

≤ E([|Y∞|+ |YT |)p1F ]

= E[(2 sup
t≥0
|Yt|)p1F ]

= 2pE[sup
t≥0
|Yt|p1F ]

≤ 2pE[sup
t≥0
|Yt|p]

≤ 2p(
p

p− 1
)pE[|B1|p] <∞

Since E[|Y∞ − YT |p|FT ] is FT -measurable, we get

E[|Y∞ − YT |p|FT ] ≤ 2p(
p

p− 1
)pE[|B1|p]

and therefore property (P) holds for the martingale Yt = Bt∧1 when p > 1.

3. Suppose property (P) holds for the uniformly integrable martingale (Yt)t≥0. Since {T <∞} ∈ FT , we get

E[|Y∞ − YT |p] = E[|Y∞ − YT |p1T<∞] = E[E[|Y∞ − YT |p|FT ]1T<∞] ≤ CP (T <∞).

Conversely, suppose that
E[|Y∞ − YT |p] ≤ CP (T <∞)

for each stopping time T. Let T be any stopping time and F ∈ FT . Then

E[E[|Y∞ − YT |p|FT ]1F ] = E[|Y∞ − YT |p1F ] ≤ C.

Since E[|Y∞ − YT |p|FT ] is FT -measurable, we get

E[|Y∞ − YT |p|FT ] ≤ C

and therefore property (P) holds for the martingale (Yt)t≥0

4. Let S and T be stopping times. Since (Yt)t≥0 is an uniformly integrable martingale, (Y St )t≥0 and (Y Tt )t≥0 are
also uniformly integrable martingales. Thus, we have

Y TS = E[Y T∞|FS ] = E[YT |FS ]

and therefore
Y ST = YS∧T = Y TS = E[YT |FS ].

Hence we get

E[|Y ST − Y S∞|p] = E[|E[YT |FS ]− YS |p]
= E[|E[YT |FS ]−E[Y∞|FS ]|p]
≤ E[|YT − Y∞|p]
≤ CP (T <∞).

and therefore property (P) holds for (Y St )t≥0 with the same constant C.
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5. Given a > 0. By the definition of {Rn}n≥0, we have Rn+1 ≥ Rn for all n ≥ 0. By considering uniformly

integrable martingale (Y
Rn+1

t )t≥0 and using the result in problem 4, we get

E[|YRn+1
− YRn |p] = E[|Y Rn+1

Rn
− Y Rn+1
∞ |p] ≤ P (Rn <∞).

Since |YRn+1 − YRn | ≥ a on {Rn+1 <∞}, we have

E[|YRn+1 − YRn |p] ≥ apP (Rn+1 <∞)

and, hence,
apP (Rn+1 <∞) ≤ P (Rn <∞).

6. Observe that if 0 < x ≤ 2, then 21− x2 ≥ 1 and, hence, the inequality is true. Now, we suppose x > 2. Set

R0 = 0 and Rn+1 = inf{t ≥ Rn||Yt − YRn | ≥ 2}

for each n ≥ 0. According the conclusion in problem 5, we get

P (Rn <∞) ≤ 2−np

for all n ≥ 1. Let m be the smallest integer such that 2m ≥ x. Then

P (sup
t≥0

Yt > x) ≤ P (Rm−1 <∞) ≤ 2−(m−1)p ≤ 2(− x2 +1)p = 2p2−
xp
2 .
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Chapter 4
Continuous Semimartingales

4.1 Exercise 4.22

Let Z be a F0-measurable real random variable, and let M be a continuous local martingale. Show that the process
Nt = ZMt is a continuous local martingale.

Proof.
Without loss of generality, we may assume M0 = 0. Set

Tn = inf{t ≥ 0||Nt| ≥ n}

for each n ≥ 1. Then Tn is a stopping time for each n ≥ 1. Clearly, Tn ↑ ∞, (Tn) reduce M, and |ZMTn | ≤ n for all
n ≥ 1. Thus, ZMTn is bounded in L1 for each n ≥ 1. Now, we show that ZMTn is a martingale for each n ≥ 1. Fix
n ≥ 1. Choose a sequence of bounded simple function {Zk} such that Zk → Z and |Zk| ≤ |Z| for each k ≥ 1 and for
all w ∈ Ω. Note that,

|ZkMTn
t | ≤ |ZM

Tn
t | ≤ n.

Fix 0 ≤ s < t. Let Γ ∈ Fs. By Lebesgue’s dominated convergence theorem, we get

E[ZMTn
t 1Γ] = lim

k→∞
E[ZkM

Tn
t 1Γ] = lim

k→∞
E[ZkM

Tn
s 1Γ] = E[ZMTn

s 1Γ].

Thus,
ZMTn

s = E[ZMTn
t |Fs]

for all 0 ≤ s < t and, hence, ZMTn is a martingale. Therefore ZM is a continuous local martingale.

4.2 Exercise 4.23

1. Let M be a martingale with continuous sample paths, such that M0 = 0. We assume that (Mt)t≥0 is also a
Gaussian process. Show that, for every t > 0 and every s > 0, the random variable Mt+s −Mt is independent
of σ(Mr, 0 ≤ r ≤ t).

2. Under the assumptions of question 1., show that there exists a continuous monotone nondecreasing function
f : R+ 7→ R+ such that 〈M,M〉t = f(t) for all t ≥ 0.

Proof.

1. Observe that
E[Ms+tMt] = E[M2

t ]

for all s > 0 and t > 0. Since

E[(Mt+s −Mt)Mr] = E[M2
r ]−E[M2

r ] = 0

for all 0 ≤ r ≤ t, we get span{Mt+s−Mt} and span{Mr|0 ≤ r ≤ t} are orthogonal. It followings form Theorem
1.9 that Mt+s −Mt is independent of σ(Mr, 0 ≤ r ≤ t).

2. Observe that if B is Brownian motion, B is both continuous martingale and a Gaussian process. Moreover, we
have

〈B,B〉t = t = E[B2
t ].

Therefore we consider the function
f(t) = E[M2

t ].
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Now, we set Ft = σ(Mr|0 ≤ r ≤ t) for all t ≥ 0. First, we show that f(t) is a continuous monotone
nondecreasing function. Let 0 ≤ s < t. Since

M2
s = E[Mt|Fs]

2 ≤ E[M2
t |Fs],

we have
f(s) = E[M2

s ] ≤ E[M2
t ] = f(t)

and, hence, f(t) is monotone nondecreasing function. Let T > 0 and {tn}
⋃
{t} ⊆ [0, T ] such that tn → t. By

using Doob’s maximal ieuqiality in L2, we have

E[ sup
0≤s≤T

|Ms|2] ≤ 4E[|MT |2] <∞.

By using dominated convergence theorem, we get

lim
n→∞

f(tn) = lim
n→∞

E[M2
tn ] = E[M2

t ] = f(t)

and, hence, f(t) is continuous.

Next, we show that 〈M,M〉t = f(t) for all t ≥ 0. Set N to be the class of all (σ(Mt|t ≥ 0),P )-negligible sets.
That is,

N := {A : ∃A′ ∈ σ(Mt|t ≥ 0) A ⊆ A′ and P (A′) = 0}.

Define
Gt := σ(Ms|s ≤ t) ∨ σ(N ) t ≥ 0

and
G∞ := σ(Mt|t ≥ 0) ∨ σ(N ) t ≥ 0.

Then (Gt)t∈[0,∞] is a complete filtration, Gt ⊆ Ft for every 0 ≤ t ≤ ∞, Mt+s −Mt |= Gt for every t, s > 0, and
(Mt)t≥0 is a (Gt)t∈[0,∞]-martingale.
To show that 〈M,M〉t = f(t) for every t ≥ 0, it suffices to show that M2

t − f(t) is a (Gt)t∈[0,∞]- continuous
local martingale. Indeed, since

pn∑
i=1

(Mtni
−Mtni−1

)2 P→ 〈M,M〉t,

we see that finite variation process (〈M,M〉t)t≥0 does not depend on the filtration of (Mt)t≥0.
Now, we show that M2

t − f(t) is a (Gt)t∈[0,∞]-martingale. Let 0 ≤ s < t. Observe that

E[(Mt −Ms)
2|Gs] = E[M2

t −M2
s |Gs]

Since Mt −Ms is independent of Gs, we have

E[(Mt −Ms)
2|Gs] = E[(Mt −Ms)

2] = E[M2
t −M2

s ].

Thus, if 0 ≤ s < t, we get

E[M2
t |Gs]−E[M2

t ] = E[M2
t −M2

s |Fs] +M2
s −E[M2

t ] = E[M2
t −M2

s ] +M2
s −E[M2

t ] = M2
s −E[M2

s ]

and therefore M2
t − f(t) is a (Gt)t∈[0,∞]-martingale.
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4.3 Exercise 4.24

Let M be a continuous local martingale with M0 = 0.

1. For every integer n ≥ 1, we set Tn = inf{t ≥ 0||Mt| = n}. Show that, a.s.

{ lim
t→∞

Mt exists and finite } =
⋃
n≥1

{Tn =∞} ⊆ {〈M,M〉∞ <∞}.

2. We set
Sn = inf{t ≥ 0|〈M,M〉t = n}

for each n ≥ 1. Show that, a.s.,

{〈M,M〉∞ <∞} =
⋃
n≥1

{Sn =∞} ⊆ { lim
t→∞

Mt exists and finite }

and conclude that
{ lim
t→∞

Mt exists and is finite } = {〈M,M〉∞ <∞} , a.s.

Proof.

1. Since M has continuous sample paths, we see that

Tn = inf{t ≥ 0||Mt| ≥ n}

and (Tn)n≥1 reduces M and, hence, MTn is a uniformly integrable martingale for each n ≥ 1. Thus, for each
n ≥ 1,

MTn
∞ exists a.s.

Since |MTn | ≤ n for each n ≥ 1, MTn is bounded in L2 and, hence, E[〈MTn ,MTn〉∞] < ∞. Thus, for each
n ≥ 1,

〈M,M〉Tn <∞ a.s.

Set
E =

⋃
n≥1

{MTn
∞ exists and 〈M,M〉Tn <∞}.

Then P (E) = 1. To complete the proof, it suffices to show that the statement is true for each w ∈ E. Let

w ∈ { lim
t→∞

Mt exists and finite }
⋂
E.

Since M(w) has continuous sample path and M∞(w) < ∞, there exists K > 0 such that |Mt(w)| ≤ K for all
t ≥ 0 and, hence, Tm(w) = ∞ for each m > K. Thus, w ∈ E

⋂
(
⋃
n≥1{Tn = ∞}). Conversely, let w ∈ E and

Tm(w) =∞ for some m ≥ 1. Then
M∞(w) = MTm

∞ (w) exists

and
|Mt(w)| = |MTm

t (w)| < m for all 0 ≤ t ≤ ∞.
Thus, w ∈ {M∞ exists and M∞ <∞}

⋂
E. Moreover, since w ∈ E, we have

〈M,M〉∞(w) = 〈M,M〉Tm(w) <∞

Thus, we get

E
⋂
{ lim
t→∞

Mt exists and finite } = E
⋂

(
⋃
n≥1

{Tn =∞}) ⊆ E
⋂
{〈M,M〉∞ <∞}

and therefore a.s.
{ lim
t→∞

Mt exists and finite } =
⋃
n≥1

{Tn =∞} ⊆ {〈M,M〉∞ <∞}.
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2. Since 〈M,M〉 is an increasing process, it’s clear that

{〈M,M〉∞ <∞} =
⋃
n≥1

{Sn =∞}.

Let n ≥ 1. Then
〈MSn ,MSn〉t = 〈M,M〉Sn∧t ≤ n

for all t ≥ 0 and, hence, E[〈MSn ,MSn〉∞] ≤ n. Thus, we see that MSn is a L2 bounded martingale and, hence,
limt→∞MSn

t exists and finite (a.s.). Set

F =
⋃
n≥1

{ lim
t→∞

MSn
t exists and is finite }.

Then P (F ) = 1. Fix w ∈ F
⋂

(
⋃
n≥1{Sn =∞}). Then Sm(w) =∞ for some m ≥ 1 and, hence,

lim
t→∞

Mt(w) = lim
t→∞

MSm
t (w)

exists and is finite. Thus, a.s.,

{〈M,M〉∞ <∞} =
⋃
n≥1

{Sn =∞} ⊆ { lim
t→∞

Mt exists and is finite }.

Combining the result with the above, we get

{ lim
t→∞

Mt exists and finite } = {〈M,M〉∞ <∞} , a.s.

4.4 Exercise 4.25

For every integer n ≥ 1, let Mn = (Mn
t )t≥0 0 be a continuous local martingale with Mn

0 = 0. We assume that

lim
n→∞

〈Mn,Mn〉∞ = 0 in probability.

1. Let ε > 0, and, for every n ≥ 1, let

Tnε = inf{t ≥ 0|〈Mn,Mn〉t ≥ ε}.

Justify the fact that Tnε is a stopping time, then prove that the stopped continuous local martingale

Mn,ε
t = Mn

t∧Tnε , ∀t ≥ 0

is a true martingale bounded in L2.

2. Show that
E[sup

0≤t
|Mn,ε

t |2] ≤ 4ε.

3. Writing, for every a > 0,

P (sup
t≥0
|Mn

t | ≥ a) ≤ P (sup
t≥0
|Mnε

t | ≥ a) + P (Tnε <∞),

show that
lim
n→∞

(sup
t≥0
|Mn

t |) = 0

in probability.
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Proof.

1. Since 〈Mn,Mn〉 has continuous sample paths, it follows form proposition 3.9 (iii) that

Tnε = inf{t ≥ 0||〈Mn,Mn〉t| ∈ [ε,∞)}

is a stopping time. Hence Mn,ε = (Mn)T
n
ε is a continuous local martingale with

〈Mn,ε,Mn,ε〉∞ ≤ ε.

Thus, Mn,ε is a L2 bounded martingale.

2. Since (Mn,ε
t )t≥0 is a martingale bounded in L2, we see that

E[(Mn,ε
∞ )2] = E[〈Mn,ε,Mn,ε〉∞] ≤ ε.

By Doob’s maximal inequality, we get

E[ sup
0≤s≤t

|Mn,ε
s |2] ≤ 4E[|Mn,ε

t |2]

for each t > 0. Since Mn,ε is a martingale, we see that

E[(Mn,ε
s )2] ≤ E[(Mn,ε

t )2]

for each s ≤ t. Thus,
E[ sup

0≤s≤t
|Mn,ε

s |2] ≤ 4E[|Mn,ε
t |2] ≤ 4E[|Mn,ε

∞ |2] ≤ 4ε.

By the Monotone convergence theorem, we have

E[sup
s≥0
|Mn,ε

s |2] ≤ 4ε.

3. Given a > 0 and ε > 0. It’s clear that

P (sup
t≥0
|Mn

t | ≥ a) ≤ P (sup
t≥0
|Mn

t | ≥ a, Tnε =∞) + P (Tnε <∞)

= P (sup
t≥0
|Mn,ε

t | ≥ a, Tnε =∞) + P (Tnε <∞)

≤ P (sup
t≥0
|Mn,ε

t | ≥ a) + P (Tnε <∞).

Note that

P (sup
t≥0
|Mn,ε

t | ≥ a) ≤ 1

a2
E[sup

0≤t
|Mn,ε

t |2] ≤ 4ε

a2

and
P (Tnε <∞) = P (〈Mn,Mn〉∞ ≥ ε).

Thus,

P (sup
t≥0
|Mn

t | ≥ a) ≤ 4ε

a2
+ P (〈Mn,Mn〉∞ ≥ ε).

By letting n→∞ and then ε ↓ 0, we get

lim
n→∞

P (sup
t≥0
|Mn

t | ≥ a) = 0.

Since a is arbitrary, we have
lim
n→∞

sup
t≥0
|Mn

t = 0 in probability.
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4.5 Exercise 4.26

1. Let A be an increasing process (adapted, with continuous sample paths and such that A0 = 0) such that
A∞ <∞ a.s., and let Z be an integrable random variable. We assume that, for every stopping time T,

E[A∞ −AT ] ≤ E[Z1{T<∞}].

Show, by introducing an appropriate stopping time, that, for every λ > 0,

E[(A∞ − λ)1{A∞>λ}] ≤ E[Z1{A∞>λ}].

2. Let f : R+ 7→ R be a continuously differentiable monotone increasing function such that f(0) = 0 and set
F (x) =

∫ x
0
f(t)dt for each x ≥ 0. Show that, under the assumptions of question 1., one has

E[F (A∞)] ≤ E[Zf(A∞)].

3. Let M be a (true) martingale with continuous sample paths and bounded in L2 such that M0 = 0, and let M∞
be the almost sure limit of Mt as t → ∞. Show that the assumptions of question 1 hold when At = 〈M,M〉t
and Z = M2

∞. Infer that, for every real q ≥ 1,

E[(〈M,M〉∞)q+1] ≤ (q + 1)E[(〈M,M〉∞)qM2
∞].

4. Let p ≥ 2 be a real number such that E[(〈M,M〉∞)p] <∞. Show that

E[(〈M,M〉∞)p] ≤ ppE[|M∞|2p].

5. Let N be a continuous local martingale such that N0 = 0, and let T be a stopping time such that the stopped
martingale NT is uniformly integrable. Show that, for every real p ≥ 2,

E[(〈N,N〉T )p] ≤ ppE[|NT |2p].

6. Give an example showing that this result may fail if NT is not uniformly integrable.

Proof.

1. Set T = inf{t ≥ 0|At > λ}. Then {T <∞} = {A∞ > λ} and therefore

E[Z1{A∞>λ}] = E[Z1{T<∞}] ≥ E[A∞ −AT ]

= E[(A∞ −AT )1{T<∞}]

= E[(A∞ − λ)1{T<∞}]

= E[(A∞ − λ)1{A∞>λ}].

2. Note that

F (x) = xf(x)−
∫ x

0

λf ′(λ)dλ

and f ′(λ) ≥ 0 for all x, λ ≥ 0. Since

{1{A∞>λ} = 1} = {(w, λ) ∈ Ω× R+|A∞ > λ} =
⋃
q∈Q+

({A∞ > q}
⋂

[0, q]) ∈ F ⊗ BR+

for all λ ∈ R+, we see that 1{A∞>λ}(w, λ)f ′(λ) is F ⊗ BR+
-measurable and, hence,

E[

∫ ∞
0

1{A∞>λ}f
′(λ)dλ] = E[

∫ A∞

0

f ′(λ)dλ]
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is well-defined. Then

E[F (A∞)]

= E[A∞f(A∞)]−E[

∫ A∞

0

λf ′(λ)dλ]

= E[A∞

∫ ∞
0

1{A∞>λ}f
′(λ)dλ]−E[

∫ ∞
0

1{A∞>λ}λf
′(λ)dλ]

=

∫ ∞
0

E[A∞1{A∞>λ}]f
′(λ)dλ−

∫ ∞
0

E[λ1{A∞>λ}]f
′(λ)dλ

≤
∫ ∞

0

E[Z1{A∞>λ}]f
′(λ)dλ

By using Fubini’s theorem, we get∫ ∞
0

E[Z1{A∞>λ}]f
′(λ)dλ = E[Z

∫ ∞
0

1{A∞>λ}f
′(λ)dλ] = E[Zf(A∞)]

and, hence,
E[F (A∞)] ≤ E[Zf(A∞)].

3. First, we show that the assumptions of question 1. hold when At = 〈M,M〉t and Z = M2
∞. Let T be any

stopping time. Since M is L2- bounded martingale, we see that M2 − 〈M,M〉 is an uniformly integrable
martingale and, hence,

E[M2
T − 〈M,M〉T ] = E[M2

∞ − 〈M,M〉∞].

Thus,

E[〈M,M〉∞ − 〈M,M〉T ] = E[M2
∞ −M2

T ]

= E[(M2
∞ −M2

T )1{T<∞}]

≤ E[M2
∞1{T<∞}]

and therefore
E[A∞ −AT ] ≤ E[Z1{T<∞}].

Next, by taking F (x) = xq+1 in problem 2, we have

E[(〈M,M〉∞)q+1] ≤ (q + 1)E[(〈M,M〉∞)qM2
∞].

4. Given p ≥ 2. Set q = p
p−1 . Then 1

p + 1
q = 1. By Holder’s inequality, we get

E[(〈M,M〉∞)p] ≤ pE[(〈M,M〉∞)p−1M2
∞]

≤ pE[(〈M,M〉∞)q(p−1)]
1
qE[|M∞|2p]

1
p

= pE[(〈M,M〉∞)p]
1
qE[|M∞|2p]

1
p .

By assumption, we have E[(〈M,M, 〉∞)p] <∞ and, hence,

E[(〈M,M, 〉∞)p]q−1 ≤ pqE[|M∞|2p]
q
p .

That is,

E[(〈M,M, 〉∞)p] ≤ p
q
q−1E[|M∞|2p]

q
(q−1)p = ppE[|M∞|2p].
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5. Given p ≥ 2. If E[|NT |2p] = ∞, then there is nothing to prove. Now, we suppose E[|NT |2p] < ∞. Observe
that NT is a L2p- bounded martingale. Indeed, since NT is uniformly integrable martingale, one has

NT∧t = E[NT |Ft]

for all t ≥ 0 and, hence,
E[|NT∧t|2p] ≤ E[|NT |2p] <∞

for all t ≥ 0. Thus we see that NT is a L2p- bounded martingale, which implies that NT is a L2- bounded
martingale. Set

τn = {t ≥ 0|〈NT , NT 〉t ≥ n}

for each n ≥ 1. Since NT is uniformly integrable martingale, we have

NT∧τn = E[NT |FT∧τn ]

for each n ≥ 1 and, hence,
E[|NT∧τn |2p] ≤ E[|NT |2p]

for each n ≥ 1. Note that NT∧τn = (NT )τn is a L2–martingale with continuous sample paths and

E[〈NT∧τn , NT∧τn〉p∞] ≤ np.

By using the result in problem 4, we get

E[(〈N,N〉T∧τn)p] = E[(〈NT∧τn , NT∧τn〉∞)p] ≤ ppE[|NT∧τn |2p]

for each n ≥ 1. By using monotone convergence theorem, we have

E[(〈N,N〉T )p] = lim
n→∞

E[(〈N,N〉T∧τn)p] ≤ lim sup
n→∞

ppE[|NT∧τn |2p] ≤ ppE[|NT |2p].

6. Let a 6= 0, p ≥ 1, and B is a Brownian motion starting from 0. Then B is a marintgale and 〈B,B〉t = t. Set
T = inf{t ≥ 0|Bt = a}. Note that T <∞ (a.s.) and

E[|BT |2p] = |a|2p <∞.

By using the result in Chapter 2(Corollary 2.22), we see that E[T ] =∞ and, hence, E[T p] =∞. Thus,

∞ = E[T p] = E[(〈B,B〉T )p] > pp|a|2p = ppE[|BT |2p]

and, hence, the inequality fails.
Finally, BT isn’t uniformly integrable. Indeed, if BT is uniformly integrable, then

0 = E[BT0 ] = E[BT∞] = E[BT ] = a 6= 0

which is a contradiction.

4.6 Exercise 4.27

Let (Xt)t≥0 be an adapted process with continuous sample paths and taking nonnegative values. Let (At)t≥0 be
an increasing process (adapted, with continuous sample paths and such that A0 = 0). We consider the following
condition:

(D) For every bounded stopping time T, we have E[XT ] ≤ E[AT ].

1. Show that, if M is a square integrable martingale with continuous sample paths and M0 = 0 , the condition
(D) holds for Xt = M2

t and At = 〈M,M〉t.
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2. Show that the conclusion of the previous question still holds if one only assumes that M is a continuous local
martingale with M0 = 0.

3. We set X∗t = sups≤tXs. Show that, under the condition (D), we have, for every bounded stopping time S and
every c > 0,

P (X∗S ≥ c) ≤
1

c
E[AS ].

4. Infer that, still under the condition (D), one has, for every (finite or not) stopping time S,

P (X∗S > c) ≤ 1

c
E[AS ].

(when S takes the value ∞, we of course define X∗∞ = sups≥0Xs)

5. Let c > 0 and d > 0, and S = inf{t ≥ 0|At ≥ d}. Let T be a stopping time. Noting that

{X∗T > c} ⊆ {X∗T∧S > c}
⋃
{AT ≥ d}.

Show that, under the condition (D), one has

P (X∗T > c) ≤ 1

c
E[AT ∧ d] + P (AT ≥ d).

6. Use questions (2) and (5) to verify that, if M (n) is a sequence of continuous local martingales and T is a
stopping time such that 〈M (n),M (n)〉T converges in probability to 0 as n→∞, then,

lim
n→∞

(sup
s≤T
|M (n)

s |) = 0, in probability.

Proof.

1. Let T be a bounded stopping time. Since M is a L2-bounded martingale, we see that M2−〈M,M〉 is uniformly
integrable and, hence,

E[M2
T − 〈M,M〉T ] = E[M2

0 − 〈M,M〉0] = 0.

Thus,
E[XT ] = E[M2

T ] = E[〈M,M〉T ] = E[AT ].

2. Let T be a bounded stopping time. Set

τn = inf{t ≥ 0||Mt| ≥ n}

for each n ≥ 1. Then τn →∞ as n→∞, (τn) reduce M,and Mτn is a bounded martingale for each n ≥ 1. By
(1), we have

E[M2
T∧τn ] ≤ E[〈M,M〉τ∧T ]

for each n ≥ 1. By Fatou’s lemma and monotone convergence theorem, we get

E[(MT )2] ≤ lim inf
n→∞

E[(Mτn∧T )2] = lim
n→∞

E[〈M,M〉τn∧T ] = E[〈M,M〉T ].

3. Given a bounded stopping time S and c > 0. Set R = inf{t ≥ 0|Xt ≥ c} and T = S ∧ R. According to the
assumption, we have

E[XT ] ≤ E[AT ] ≤ E[AS ].

Note that
{T = R} = {R ≤ S} = {X∗S ≥ c}.
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Since X is continuous and S is bounded, we see that

XR = c on {T = R}

and, hence,
E[XT 1{T=R}] = cP (T = R) = cP (X∗S ≥ c).

Therefore

P (X∗S ≥ c) =
1

c
E[XT 1{T=R}] ≤

1

c
E[XT ] ≤ 1

c
E[AS ].

4. Given a stopping time S (finite or not) and c > 0. Set Sn = S ∧ n. Then Sn ↑ S and Sn is a bounded stopping
time for each n ≥ 1. By using the result in problem 3, we get

P (X∗Sn > c) ≤ 1

c
E[ASn ].

By using monotone convergence theorem, we get

E[AS ] = lim
n→∞

E[ASn ].

Note that
{X∗Sn > c} ⊆ {X∗Sn+1

> c}
for each n ≥ 1 and ⋃

n≥1

{X∗Sn > c} = {X∗S > c}.

Thus

P (X∗S > c) = lim
n→∞

P (X∗Sn > c) ≤ 1

c
lim
n→∞

E[ASn ] =
1

c
E[AS ].

5. Note that

{X∗T > c} ⊆ {AT < d,X∗T > c}
⋃
{AT ≥ d}

⊆ {T ≤ S,X∗T∧S > c}
⋃
{AT ≥ d}

⊆ {X∗T∧S > c}
⋃
{AT ≥ d}.

and, hence,
P (X∗T > c) ≤ P (X∗S∧T > c) + P (AT ≥ d).

Since AS∧T = AT ∧ d, by using the result in problem 4, we get

P (X∗S∧T > c) ≤ 1

c
E[AT∧S ] =

1

c
E[AT ∧ d].

and, so,

P (X∗T > c) ≤ 1

c
E[AT ∧ d] + P (AT ≥ d).

6. Given ε > 0. Let d > 0. Set X(n) = (M (n))2 and A(n) = 〈M (n),M (n)〉. Then A
(n)
T → 0 in probability. By

using the result in problem 5, we get

P ( sup
0≤s≤T

|M (n)
s |2 > ε) ≤ 1

ε
E[A

(n)
T ∧ d] + P (A

(n)
T ≥ d) ≤ d

ε
+ P (A

(n)
T ≥ d).

By letting n→∞ and d ↓ 0, we have

lim
n→∞

P ( sup
0≤s≤T

|M (n)
s | >

√
ε) = lim

n→∞
P ( sup

0≤s≤T
|M (n)

s |2 > ε) = 0

and therefore
lim
n→∞

(sup
s≤T
|M (n)

s |) = 0, in probability.
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Chapter 5
Stochastic Integration

5.1 Exercise 5.25

Let B be an (Ft)-Brownian motion with B0 = 0, and let H be an adapted process with continuous sample paths.

Show that 1
Bt

∫ t
0
HsdBs converges in probability when t→ 0 and determine the limit.

Proof.
To determine the limit of 1

Bt

∫ t
0
HsdBs, consider the special case

Hs(w) =

p−1∑
i=0

H(i)(w)1(ti,ti+1](s),

where H(i) be Fti -measurable and 0 < t < t1. We see that

1

Bt

∫ t

0

HsdBs =
1

Bt
(

p−1∑
i=0

H(i)(Bti+1∧t −Bti∧t)) =
1

Bt
H(0)Bt = H(0).

From the above observation, we will show that

1

Bt

∫ t

0

HsdBs
p→ H0

and we may suppose that H0 = 0.
First, we consider the case that H is bounded. By Cauchy–Schwarz’s inequality and Jensen’s inequality, we get

E[| 1

Bt

∫ t

0

HsdBs|
1
4 ] ≤ E[|Bt|−

1
2 ]

1
2E[(|

∫ t

0

HsdBs|2)
1
4 ]

1
2

≤ E[|Bt|−
1
2 ]

1
2E[|

∫ t

0

HsdBs|2]
1
8

= E[|Bt|−
1
2 ]

1
2E[

∫ t

0

H2
sds]

1
8

≤ E[|Bt|−
1
2 ]

1
2E[ sup

0≤s≤t
H2
s × t]

1
8

≤ E[|Bt|−
1
2 ]

1
2E[ sup

0≤s≤t
H2
s ]

1
8 t

1
8 .

Note that

E[|Bt|−
1
2 ]

1
2 = (2

∫ ∞
0

1√
x

1√
2πt

e−
x2

2t dx)
1
2

= (2

∫ ∞
0

1
√
y

1

(2t)
1
4

1√
π
e−y

2

dy)
1
2

= c× t− 1
8 ,

where 0 < c = ( 2

2
1
4
√
π

∫∞
0

1√
y e
−y2

dy)
1
2 <∞. By Lebesgue dominated convergence theorem, we shows that

E[ sup
0≤s≤t

H2
s ]

1
8 → 0 as t→ 0+
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and therefore

P (| 1

Bt

∫ t

0

HsdBs| ≥ ε) ≤
1

ε
1
4

E[| 1

Bt

∫ t

0

HsdBs|
1
4 ]

≤ 1

ε
1
4

E[|Bt|−
1
2 ]

1
2E[ sup

0≤s≤t
H2
s ]

1
8 t

1
8

≤ 1

ε
1
4

c× t− 1
8E[ sup

0≤s≤t
H2
s ]

1
8 t

1
8

=
1

ε
1
4

cE[ sup
0≤s≤t

H2
s ]

1
8 → 0 as t→ 0+.

Next, we prove the statement for unbounded case. Set

H(R)
s (w) =


Hs(w) if |Hs(w)| < R

R, if Hs(w) ≥ R
−R, if Hs(w) ≤ −R.

Then H
(R)
s (w) is an adapted process with continuous sample paths. Now, we show that, for 0 < a < 1, a.s.∫ a

0

HsdBs =

∫ a

0

H(R)
s dBs in { sup

0≤s≤1
|Hs| < R}.

That is,

P (

∫ a

0

HsdBs =

∫ a

0

H(R)
s dBs, sup

0≤s≤1
|Hs| < R) = 1.

Given 0 < a < 1. Note that, if 0 = t0 < ... < tp and w ∈ {sup0≤s≤1 |Hs| < R}, then

p−1∑
i=0

H(i)(w)(Bti+1∧a(w)−Bti∧a(w)) =

p−1∑
i=0

H
(R)
(i) (w)(Bti+1∧a(w)−Bti−1∧a(w)).

Choose 0 = tn0 < ... < tnpn = a of subdivisions of [0, a] whose mesh tends to 0. By using Proposition 5.9, we have

An ≡
pn−1∑
i=0

Htni
(Btni+1∧a −Btni ∧a)→

∫ a

0

HsdBs in probability

and

Bn ≡
pn−1∑
i=0

H
(R)
tni

(Btni+1∧a −Btni ∧a)→
∫ a

0

H(R)
s dBs in probability..

Choose some subsequences Ank and Bnk such that a.s.

Ank →
∫ a

0

HsdBs

and

Bnk →
∫ a

0

H(R)
s dBs.

Since Ank = Bnk in {sup0≤s≤1 |Hs| < R}, we see that a.s.∫ a

0

HsdBs =

∫ a

0

H(R)
s dBs in { sup

0≤s≤1
|Hs| < R}.
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Given ε > 0. Let R > 0 and 0 < t < 1. Then

P (| 1

Bt

∫ t

0

HsdBs| ≥ ε) ≤ P ( sup
0≤s≤1

|Hs| < R, | 1

Bt

∫ t

0

HsdBs| ≥ ε) + P ( sup
0≤s≤1

|Hs| ≥ R)

= P ( sup
0≤s≤1

|Hs| < R, | 1

Bt

∫ t

0

H(R)
s dBs| ≥ ε) + P ( sup

0≤s≤1
|Hs| ≥ R)

≤ P (| 1

Bt

∫ t

0

H(R)
s dBs| ≥ ε) + P ( sup

0≤s≤1
|Hs| ≥ R).

By using the result in first case, we get

lim
t→0+

P (| 1

Bt

∫ t

0

H(R)
s dBs| ≥ ε) = 0.

Because H is continuous and H0 = 0, we see that

P ( sup
0≤s≤1

|Hs| ≥ R)→ 0 as R→∞.

By letting t→ 0+ and then R→∞, we get

P (| 1

Bt

∫ t

0

HsdBs| ≥ ε)→ 0 as t→ 0+.

5.2 Exercise 5.26

1. Let B be a one-dimensional (Ft)-Brownian motion with B0 = 0. Let f be a twice continuously differentiable
function on R, and let g be a continuous function on R. Verify that the process

Xt = f(Bt)e
−

∫ t
0
g(Bs)ds

is a semimartingale, and give its decomposition as the sum of a continuous local martingale and a finite variation
process.

2. Prove that X is a continuous local martingale if and only if the function f satisfies the differential equation

f ′′ = 2gf.

3. From now on, we suppose in addition that g is nonnegative and vanishes outside a compact subinterval of
(0,∞). Justify the existence and uniqueness of a solution f1 of the equation f ′′ = 2fg such that f1(0) = 1 and
f ′1(0) = 0. Let a > 0 and Ta = inf{t ≥ 0 | Bt = a}. Prove that

E[e−
∫ Ta
0

g(Bs)ds] =
1

f1(a)
.

Proof.

1. Set F (x, y) = f(x)e−y. Then F ∈ C2(R2). Note that (
∫ t

0
g(Bs)ds)t≥0 is a finite variation process. By using

Itô’s formula, we get

Xt = F (Bt,

∫ t

0

g(Bs)ds)

= f(0) +

∫ t

0

f ′(Bs)e
−

∫ s
0
g(Br)drdBs +

∫ t

0

−f(Bs)e
−

∫ s
0
g(Br)drg(Bs)ds+

1

2

∫ t

0

f ′′(Bs)e
−

∫ s
0
g(Br)drds.
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Since

f(0) +

∫ t

0

f ′(Bs)e
−

∫ s
0
g(Br)drdBs

is a continuous local martingale and∫ t

0

−f(Bs)e
−

∫ s
0
g(Br)drg(Bs)ds+

1

2

∫ t

0

f ′′(Bs)e
−

∫ s
0
g(Br)drds

is a finite variation process, we see that

Xt = f(Bt)e
−

∫ t
0
g(Bs)ds

is a simimartingale.

2. Note that X is a continuous local martingale if and only if∫ t

0

e−
∫ s
0
g(Br)dr(f ′′(Bs)− 2f(Bs)g(Bs))ds = 0,∀t ≥ 0 a.s.

It’s clear that X is a continuous local martingale whenever f ′′ = 2fg. Now, we show that f ′′ = 2fg when∫ t

0

e−
∫ s
0
g(Br)dr(f ′′(Bs)− 2f(Bs)g(Bs))ds = 0,∀t ≥ 0 a.s.

We prove it by contradiction. Without loss of generality, we assume that there exists a ∈ R and δ > 0 such
that

f ′′(x)− 2f(x)g(x) > 0 on B(a, δ).

Choose ta > a+ δ. Set T = inf{t ≥ 0 | Bt = a}. Then

P (

∫ t

0

e−
∫ s
0
g(Br)dr(f ′′(Bs)− 2f(Bs)g(Bs))ds 6= 0 for some t ∈ (0, ta)) ≥ P (T < ta) > 0

which is a contradiction.

3. We show that existence and uniqueness of the problem:
f ′′(x) = 2g(x)f(x), ∀x ∈ R
f ∈ C2(R)

f(0) = 1 and f ′(0) = 0.

(a) Choose [α, β] ⊆ (0,∞) such that g(x) = 0 for every x 6∈ [α, β]. Observe that if f is a solution of the
problem, then f ′′(x) = 0 for every x ≤ α and so

f(x) = 1 ∀x ≤ α.

(b) Let f(x) be a solution of the problem. By continuity, we see that f(α) = 1 and f ′(α) = 0. By [[2],
Theorem 4.1.1], there exists a unique solution F ∈ C2([α, β]) such that{

F ′′(x) = 2g(x)F (x), ∀x ∈ [α, β]

F (α) = 1 and F ′(α) = 0.

(c) Since g(x) = 0 for every x ≥ β, we see that f ′′(x) = 0 for every x ≥ β and so

f(x) = F ′(β)x+ F (β)− F ′(β)β ∀x ≥ β.
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Thus, we define

f1(x) =


1, if −∞ < x ≤ α
F (x), if α ≤ x ≤ β
F ′(β)x+ F (β)− F ′(β)β, if β ≤ x <∞.

and so f1 is a solution of the problem. Moreover, by the construction as mentioned above, f1 is the unique
solution of the problem.

4. Now, we show that

E[exp(−
∫ Ta

0

g(Bs)ds)] =
1

f1(a)
.

Fix a > 0. Define Ta := inf{t ≥ 0 : Bt = a}. Let c > 0. Then

M c
t := Xt∧Ta∧c ∀t ≥ 0

is a continuous local martingale. It’s clear that supx≤a |f ′1(x)| ≤M <∞ for some M > 0. Thus,

E[〈M c,M c〉∞] = E[

∫ c∧Ta

0

f ′1(Bs)
2 exp(−2

∫ s

0

g(Bu)du)ds] ≤M2c <∞

and so M c is a L2-bounded martingale. Therefore, we have

E[f1(Bc∧Ta) exp(−
∫ c∧Ta

0

g(Bs)ds)] = E[M c
∞] = E[M c

0 ] = f1(0) = 1.

Note that supx≤a |f(x)| <∞ and P (Ta <∞) = 1. By dominated convergence theorem, we get

E[f1(a) exp(−
∫ Ta

0

g(Bs)ds)] = lim
c→∞

E[f1(Bc∧Ta) exp(−
∫ c∧Ta

0

g(Bs)ds)] = 1

and so

E[exp(−
∫ Ta

0

g(Bs)ds)] =
1

f1(a)
.

5.3 Exercise 5.27 (Stochastic calculus with the supremum)

1. Let m : R+ 7→ R be a continuous function such that m(0) = 0, and let s : R+ 7→ R be the monotone increasing
function defined by

s(t) = sup
0≤r≤t

m(r).

Show that, for every bounded Borel function h on R and every t > 0,∫ t

0

(s(r)−m(r))h(r)ds(r) = 0.

2. Let M be a continuous local martingale such that M0 = 0, and for every t ≥ 0, let

St = sup
0≤r≤t

Mt.

Let ϕ : R+ 7→ R be a twice continuously differentiable function. Justify the equality

ϕ(St) = ϕ(0) +

∫ t

0

ϕ′(Ss)dSs.
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3. Show that

(St −Mt)ϕ(St) = Φ(St)−
∫ t

0

ϕ(Ss)dMs

where Φ(x) =
∫ x

0
ϕ(y)dy for each x ∈ R.

4. Infer that, for every λ > 0,
e−λSt + λ(St −Mt)e

−λSt

is a continuous local martingale.

5. Let a > 0 and T = inf{t ≥ 0 | St −Mt = a}. We assume that a.s. 〈M,M〉∞ =∞. Show that T <∞ a.s. and
ST is exponentially distributed with parameter 1

a .

Proof.

1. Given t > 0 and a bounded Borel function h on R. Observe that s(r) is a nonnegative continuous function.
Then

E ≡ {r ∈ [0, t] | s(r)−m(r) > 0}
is an open subset in [0, t] and, hence, there exists a sequence of disjoint intervals {In}n≥1 in [0, t] (these intervals
may be open or half open) such that

E =
⋃
n≥1

In.

Moreover, s is a constant in In for each n ≥ 1. Indeed, if r0 ∈ In = (an, bn) (In may be half open interval, but
the argument remain the same) for some n ≥ 1, there exists δ > 0 such that

m(r) < s(r0) in B(r0, δ)

and, hence, s is a constant in B(r0, δ). By using the connectedness of In, we see that s is a constant in In.
Thus ∫

In

(s(r)−m(r))h(r)ds(r) = 0

for each n ≥ 1 and, hence,∫ t

0

(s(r)−m(r))h(r)ds(r) =

∫
E

(s(r)−m(r))h(r)ds(r) +

∫
[0,t]\E

(s(r)−m(r))h(r)ds(r)

=

∞∑
n=1

∫
In

(s(r)−m(r))h(r)ds(r) + 0 = 0

2. Since S is an increasing process, we see that S is a finite variation process and, hence, 〈S, S〉 = 0. By Itô’s
formula, we get

ϕ(St) = ϕ(0) +

∫ t

0

ϕ′(Ss)dSs +
1

2

∫ t

0

ϕ′′(Ss)d〈S, S〉s = ϕ(0) +

∫ t

0

ϕ′(Ss)dSs.

3. Set
F (x, y) = (y − x)ϕ(y)− Φ(y).

Then F ∈ C2(R2), ∂F
∂y (x, y) = (y − x)ϕ′(y), and ∂2F

∂x2 (x, y) = 0. By Itô’s formula, we get

(St −Mt)ϕ(St)− Φ(St) = F (Mt, St)

= F (0, 0) +

∫ t

0

∂F

∂x
(Ms, Ss)dMs +

∫ t

0

∂F

∂y
(Ms, Ss)dSs +

1

2

∫ t

0

∂2F

∂x2
(Ms, Ss)d〈M,M〉s

= −
∫ t

0

ϕ(Ss)dMs +

∫ t

0

(Ss −Ms)ϕ
′(Ss)dSs.
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Fix w ∈ Ω. Note that s ∈ [0, t] 7→ ϕ′(Ss(w)) is continuous and, hence ϕ′(Ss(w)) is bounded in [0, t]. It
followings for, problem 1 that

(

∫ t

0

(Ss −Ms)ϕ
′(Ss)dSs)(w) = 0

and therefore

(St −Mt)ϕ(St) = Φ(St)−
∫ t

0

ϕ(Ss)dMs.

4. Given λ > 0. Set ϕ(x) = λe−λx. Then Φ(x) = 1− e−λx. Fix t ≥ 0. By using the result in problem 4, we get

e−λSt + λ(St −Mt)e
−λSt = 1−

∫ t

0

λe−λSsdMs.

Because
∫ t

0
λe−λSsdMs is a continuous local martingale, so is

e−λSt + λ(St −Mt)e
−λSt .

5. Fix a > 0. By Theorem 5.13, we see that there exists a Brownian motion (βs)s≥0 such that

Mt = β〈M,M〉t ,∀t ≥ 0, a.s.

By Proposition 2.14, we have a.s. lim inft→∞ βt = −∞. Because 〈M,M〉∞ =∞ a.s., we have a.s.

lim inf
t→∞

Mt = −∞.

Since S is nonnegative, we have a.s. T = inf{t ≥ 0 | St−Mt = a} <∞. Now, we show that ST is exponentially
distributed with parameter 1

a . For this, it suffices to show that

E[e−λST ] =
1

1 + λ× a

for each λ ≥ 0. Let λ > 0. By using the result in problem 4, we see that

e−λSt + λ(St −Mt)e
−λSt

is a continuous local martingale and, hence, there exists a sequence of stopping times {σn}n≥1 such that σn ↑ ∞
and

e−λSt∧Tn + λ(St∧Tn −Mt∧Tn)e−λSt∧Tn

is an uniformly integrable martingale where Tn ≡ σn ∧ T and n ≥ 1. Then Tn ↑ T and

E[e−λSTn ] + λE[(STn −MTn)e−λSTn ] = E[e−λS0∧Tn ] + λE[(S0∧Tn −M0∧Tn)e−λS0∧Tn ] = 1

for each n ≥ 1. Note that
0 ≤ STn −MTn ≤ a

for all n ≥ 1. By using Lebesgue dominated convergence theorem, we see that

1 = lim
n→∞

E[e−λSTn ] + lim
n→∞

λE[(STn −MTn)e−λSTn ]

= E[e−λST ] + λE[(ST −MT )e−λST ]

= E[e−λST ](1 + λ× a).

and, hence,

E[e−λST ] =
1

1 + λ× a
.
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5.4 Exercise 5.28

Let B be an (Ft)-Brownian motion started from 1. We fix ε ∈ (0, 1) and set Tε = {t ≥ 0 | Bt = ε}. We also let λ > 0
and α ∈ R \ {0}.

1. Show that Zt = (Bt∧Tε)
α is a semimartingale and give its canonical decomposition as the sum of a continuous

local martingale and a finite variation process.

2. Show that the process

Zt = (Bt∧Tε)
αe
−λ

∫ t∧Tε
0

1
B2
s
ds

is a continuous local martingale if α and λ satisfy a polynomial equation to be determined.

3. Compute

E[e
−λ

∫ Tε
0

1
B2
s
ds

].

Proof.

1. Observe that
Tε <∞ a.s.

and
Bt∧Tε ≥ ε ∀t ≥ 0 a.s.

Define F : R+ 7→ R by F (x) = xα. By Itô’s formula, we have

(Bt∧Tε)
α = 1 + α

∫ t

0

(Bs∧Tε)
α−1dBs +

α(α− 1)

2

∫ t

0

(Bs∧Tε)
α−2ds a.s.

for all t ≥ 0.

2. Define F : R+ 7→ R by F (x) = ln(x). By Itô’s formula, we have

ln(Bt∧Tε)
α = α ln(Bt∧Tε) = α

∫ t∧Tε

0

1

B
s

dBs −
α

2

∫ t∧Tε

0

1

B2
s

ds.

and, hence,

Zt = (Bt∧Tε)
αe
−λ

∫ t∧Tε
0

1
B2
s
ds

= eln(Bt∧Tε )αe
−λ

∫ t∧Tε
0

1
B2
s
ds

= e
α
∫ t∧Tε
0

1
Bs

dBs−α2
∫ t∧Tε
0

1
B2
s
ds−λ

∫ t∧Tε
0

1
B2
s
ds

is a continuous loacl martingal whenever α2

2 = α
2 + λ (i.e. α = 1±

√
1+8λ
2 ).

3. Let λ > 0. Set α = 1−
√

1+8λ
2 be a negative real number. Choose stopping times (Tn)n≥1 such that Tn → ∞

and ZTn is an uniformly integrable martingale for n ≥ 1. Then

1 = E[ZTn0 ] = E[ZTnTε ] = E[(BTn∧Tε)
αe
−λ

∫ Tn∧Tε
0

1
B2
s
ds

]

for all n ≥ 1. Observe that

0 ≤ (BTn∧Tε)
αe
−λ

∫ Tn∧Tε
0

1
B2
s
ds ≤ (BTn∧Tε)

α ≤ εα a.s.

for all n ≥ 1. By using the Lebesgue dominated convergence theorem, we have

1 = lim
n→∞

E[(BTn∧Tε)
αe
−λ

∫ Tn∧Tε
0

1
B2
s
ds

] = E[εαe
−λ

∫ Tε
0

1
B2
s
ds

]

and therefore

E[e
−λ

∫ Tε
0

1
B2
s
ds

] =
1

εα
.
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5.5 Exercise 5.29

Let (Xt)t≥0 be a semimartingale. We assume that there exists an (Ft)-Brownian motion (Bt)t≥0 started from 0 and
a continuous function b : R 7→ R, such that

Xt = Bt +

∫ t

0

b(Xs)ds. (7)

1. Let F : R 7→ R be a twice continuously differentiable function on R. Show that, for F (Xt) to be a continuous
local martingale, it suffices that F satisfies a second-order differential equation to be determined.

2. Give the solution of this differential equation which is such that F (0) = 0 and F ′(0) = 1. In what follows, F
stands for this particular solution, which can be written in the form

F (x) =

∫ x

0

e−2β(y)dy,

with a function β that will be determined in terms of b.

3. In this question only, we assume that b is integrable, i.e
∫
R |b(x)|dx <∞.

(a) Show that the continuous local martingale Mt = F (Xt) is a martingale.

(b) Show that 〈M,M〉∞ =∞ a.s.

(c) Infer that
lim sup
t→∞

Xt = +∞, lim inf
t→∞

Xt = −∞, a.s.

4. We come back to the general case. Let c < 0 and d > 0, and

Tc = inf{t ≥ 0 | Xt ≤ c}, Td = inf{t ≥ 0 | Xt ≥ d}.

Show that, on the event {Tc ∧ Td}, the random variables |Bn+1 − Bn| for n ≥ 0, are bounded above by a
(deterministic) constant which does not depend on n. Infer that

P (Tc ∧ Td =∞) = 0.

5. Compute P (Tc < Td) in terms of F (c) and F (d).

6. We assume that b vanishes on (−∞, 0] and that there exists a constant α > 1
2 such that b(x) ≥ α

x for all x ≥ 1.
Show that, for every ε > 0, one can choose c < 0 such that

P (Tn < Tc, ∀n ≥ 1) ≥ 1− ε.

Infer that Xt →∞ as t→∞ a.s.

7. Suppose now b(x) = 1
2x for all x ≥ 1. Show that

lim inf
t→∞

Xt = −∞, a.s.

Proof.

1. By Itô’s formula, we get

F (Xt) =

∫ t

0

F ′(Xs)dBs +

∫ t

0

F ′(Xs)b(Xs)ds+
1

2

∫ t

0

F ′′(Xs)ds.
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Thus,

F (Xt) =

∫ t

0

F ′(Xs)dBs ∀t ≥ 0 a.s. (8)

is a continuous local martingale whenever

1

2
F ′′(x) + F ′(x)b(x) = 0 for all x ∈ R.

2. By integrating both sides of the equation, we get

F ′(x) = e
∫ x
0
−2b(t)dt (9)

and, hence,

F (x) =

∫ x

0

e
∫ y
0
−2b(t)dtdy (10)

3. (a) Since b ∈ L1(R), there exists 0 < l < L <∞ such that

l ≤ e
∫ x
0
−2b(t)dt ≤ L (11)

for all x ∈ R. By the formula (1), we get

l ≤ F ′(Xs)(w) ≤ L (12)

for all s ≥ 0 and w ∈ Ω and, hence, (F ′(Xt))t≥0 ∈ L2(Ba) for all a > 0. Thus (
∫ t∧a

0
F ′(Xs)dBs)t≥0 is a

L2-bounded martingale for a > 0 and therefore (
∫ t

0
F ′(Xs)dBs)t≥0 is a martingale. By (32), we see that

Mt = F (Xt) is a martingale.

(b) By (32) and (12)

〈M,M〉t =

∫ t

0

F ′(Xs)
2ds ≥ l2 × t ∀t ≥ 0 a.s.

and, hence, 〈M,M〉∞ =∞ a.s.

(c) Since
Mt = β〈M,M〉t ∀t ≥ 0 a.s.

for some Brownian motion β and 〈M,M〉∞ =∞ a.s., we see that

lim sup
t→∞

Mt = +∞, lim inf
t→∞

Mt = −∞, a.s.

By (9), (10), and (11), we see that F is nondecreasing and

F (±∞) ≡ lim
x→±∞

F (x) = ±∞.

Since Mt = F (Xt), we have
lim sup
t→∞

Xt = +∞, lim inf
t→∞

Xt = −∞, a.s.

4. Given c < 0 and d > 0 . Let w ∈ {Tc ∧ Td =∞}. Then c < Xt(w) < d for all t ≥ 0. By (7), we get

|Bn −Bn−1| = |Xn −Xn−1 −
∫ n

n−1

b(Xs)ds| ≤ |Xn|+ |Xn−1|+
∫ n

n−1

|b(Xs)|ds

≤ 2× (d ∨ (−c)) + sup
t∈[c,d]

|b(t)| ≡ R <∞.
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for all n ≥ 1. Thus, we see that

{Tc ∧ Td =∞} ⊆ {|Bn −Bn−1| ≤ R, ∀n ≥ 1}.

Because {Bn −Bn−1 | n ≥ 1} are independent and

0 < P (|Bn −Bn−1| ≤ R) ≡ c < 1

for all n ≥ 1, we see that

P (|Bn −Bn−1| ≤ R, ∀n ≥ 1) = lim
m→∞

P (|Bn −Bn−1| ≤ R, ∀1 ≤ n ≤ m) = lim
m→∞

cm = 0

and, hence,
P (Tc ∧ Td =∞) = 0. (13)

5. Set T = Tc ∧ Td. Because P (T <∞) = 1 and M is a continuous local martingale, we get

|MT
t | = |F (XT

t )| ≤ sup
x∈[c,d]

|F (x)| <∞, ∀t ≥ 0, a.s.

and, hence, MT is an uniformly integrable martingale. Thus,

0 = E[MT
0 ] = E[MT

∞] = E[MT ] = E[1Tc<TdMTc ] + E[1Td≤TcMTd ] = F (c)P (Tc < Td) + F (d)P (Td ≤ Tc)

and, hence,

P (Tc < Td) =
F (d)

F (d)− F (c)
, P (Td ≤ Tc) =

−F (c)

F (d)− F (c)
. (14)

6. Observe that, for each x ≥ 1 and z < 0,

F (x) =

∫ x

0

e−2
∫ y
0
b(t)dtdy

=

∫ 1

0

e−2
∫ y
0
b(t)dtdy + e−2

∫ 1
0
b(t)dt

∫ x

1

e−2
∫ y
1
b(t)dtdy

≤
∫ 1

0

e−2
∫ y
0
b(t)dtdy + e−2

∫ 1
0
b(t)dt

∫ x

1

e−2
∫ y
1
α
t dtdy

=

∫ 1

0

e−2
∫ y
0
b(t)dtdy + e−2

∫ 1
0
b(t)dt

∫ x

1

1

y2α
dy

and

F (z) = −
∫ 0

z

e
∫ 0
y

2b(t)dtdy = −
∫ 0

z

1dy = z.

This implies that
0 < F (∞) <∞ and F (−∞) = −∞. (15)

Given ε > 0. By (15), there exists c < 0 such that F (∞)
F (∞)−F (c) < ε. Since Tn ≥ Tn−1, we see that

P (Tn < Tc, ∀n ≥ 1) = lim
n→∞

P (Tn < Tc) = 1− F (∞)

F (∞)− F (c)
≥ 1− ε.

For k ≥ 1, there exists ck < 0 such that

P (Tn ≥ Tck for some n ≥ 1) ≤ 2−k.
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By Borel Cantelli’s lemma, we see that P (Ec) = 0, where

Ec = {{Tn ≥ Tck for some n ≥ 1} i.o k}.

For k ≥ 1, since F (ck) ≤ Mt∧Tck = F (Xt∧Tck ) ≤ F (∞) < ∞, we see that MTck is an uniformly integrable

martingale and, hence, limt→∞M
Tck
t exists (a.s.). Set

G =
⋂
k≥1

{ lim
t→∞

M
Tck
t exists }.

Then P (G
⋂
E) = 1. Let w ∈ E

⋂
G. Then Tn(w) < Tck(w) for some k ≥ 1 and all n ≥ 1. Since Tn(w) ↑ ∞,

we see that Tck(w) =∞, and, hence, limt→∞Mt(w) = limt→∞M
Tck
t (w) exist. Because

lim
t→∞

Mt(w) = lim
n→∞

MTn(w) = lim
n→∞

F (n) = F (∞),

we get limt→∞Xt(w) =∞. Therefore limt→∞Xt =∞ (a.s.).

7. Let x > 1. We see that

F (x) =

∫ 1

0

e−2
∫ y
0
b(t)dtdy + e−2

∫ 1
0
b(t)dt

∫ x

1

1

y
dy

and, hence, F (∞) =∞. Choose {ck} ⊆ R− such that ck → −∞. For k ≥ 1, by (14), there exists dk > 0 such
that

P (Tck ≥ Tdk) ≤ 2−k.

By Borel Cantelli’s lemma, we see that P (Γc) = 0, where

Γc = {{Tck ≥ Tdk} i.o. k}.

Let w ∈ Γ. There exists K ≥ 1 such that Tck(w) < Tdk(w) for all k ≥ K and, hence, Tck(w) <∞ for all k ≥ K.
Thus,

lim
k→∞

XTck
(w) = lim

k→∞
ck = −∞.

Therefore lim inft→∞Xt = −∞ (a.s.).

5.6 Exercise 5.30 (Lévy Area)

Let (Xt, Yy)t≥0 be a two-dimensional (Ft)-Brownian motion started from 0. We set, for every t ≥ 0:

At =

∫ t

0

XsdYs −
∫ t

0

YsdXs (Lévy area)

1. Compute 〈A ,A 〉t and infer that (At)t≥0 is a square-integrable (true) martingale.

2. Let λ > 0. Justify the equality
E[eiλAt ] = E[cos(λAt)].

3. Let f ∈ C3(R+). Give the canonical decomposition of the semimartingales

Zt = cos(λAt),Wt = −f
′(t)

2
(X2

t + Y 2
t ) + f(t).

Verify that 〈Z,W 〉t = 0.
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4. Show that, for the process Zte
Wt to be a continuous local martingale, it suffices that f solves the differential

equation
f ′′(t) = f ′(t)2 − λ2.

5. Let r > 0. Verify that the function
f(t) = − ln(cosh(λ(r − t)))

solves the differential equation of question 4. and derive the formula

E[eiλAr ] =
1

cosh(λr)
.

Proof.

1. By Fubini’s theorem, we get

E[〈A ,A 〉t] = E[

∫ t

0

X2
sds] + E[

∫ t

0

Y 2
s ds]

=

∫ t

0

E[X2
s ]ds+

∫ t

0

E[Y 2
s ]ds

=

∫ t

0

sds+

∫ t

0

sds = t2

for all t ≥ 0. By Theorem 4.13, we see that A is a true martingale and At ∈ L2 for all t ≥ 0.

2. Fix λ > 0 and t > 0. Let 0 = tn0 < tn1 < ... < tnpn = t be a sequence of subdivisions of [0, t] whose mesh tends
to 0. By Proposition 5.9, we have

pn−1∑
i=0

Xtni
(Ytni+1

− Ytni−1
)−

pn−1∑
i=0

Ytni (Xtni+1
−Xtni−1

)
p→
∫ t

0

XsdYs −
∫ t

0

YsdXs = At

and
pn−1∑
i=0

Ytni (Xtni+1
−Xtni−1

)−
pn−1∑
i=0

Xtni
(Ytni+1

− Ytni−1
)
p→
∫ t

0

YsdXs −
∫ t

0

XsdYs = −At.

Let

p(x) =
1

(2π)
n
2

√
t1(t2 − t1)...(tp − tp−1)

e
−

∑pn−1
k=0

(xi+1−xi)
2

2(ti+1−ti) .

Since (Xt, Yy)t≥0 is two-dimensional Brownian motion, we get

E[e
iξ(

∑pn−1
i=0 Xtn

i
(Ytn

i+1
−Ytn

i−1
)−

∑pn−1
i=0 Ytn

i
(Xtn

i+1
−Xtn

i−1
))

]

=

∫
Rp

∫
Rp
eiξ(

∑pn−1
k=0 xi(yi+1−yi)−

∑pn−1
k=0 yi(xi+1−xi))p(x)p(y)dxdy

= E[e
iξ(

∑pn−1
i=0 Ytn

i
(Xtn

i+1
−Xtn

i−1
)−

∑pn−1
i=0 Xtn

i
(Ytn

i+1
−Ytn

i−1
))

]

for all n ≥ 1 and ξ ∈ R. By Lévy’s continuity theorem, we see that

E[eiξAt ] = E[eiξ(−At)]

for all ξ ∈ R and, hence At
D
= −At Therefore

E[cos(λAt)] + iE[sin(λAt)] = E[cos(λAt)]− iE[sin(λAt)]

and, hence E[sin(λAt)] = 0.
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3. By Itô’s formula, we get

Zt = 1− λ
∫ t

0

sin(λAs)dAs −
1

2
λ2

∫ t

0

cos(λAs)d〈A ,A 〉s

= 1− λ
∫ t

0

sin(λAs)dAs −
1

2
λ2

∫ t

0

cos(λAs)(X
2
s + Y 2

s )ds

= 1− λ
∫ t

0

sin(λAs)dAs −
1

2
λ2

∫ t

0

Zs(X
2
s + Y 2

s )ds.

Also we have

f ′(t)(X2
t + Y 2

t )

=

∫ t

0

f ′′(s)(X2
s + Y 2

s )ds+

∫ t

0

f ′(s)2XsdXs +

∫ t

0

f ′(s)2YsdYs +
1

2

∫ t

0

f ′(s)× 2ds+
1

2

∫ t

0

f ′(s)× 2ds

=

∫ t

0

f ′′(s)(X2
s + Y 2

s )ds+

∫ t

0

f ′(s)2XsdXs +

∫ t

0

f ′(s)2YsdYs + 2(f(t)− f(0))

and, hence,

Wt =
−1

2
f ′(t)(X2

t + Y 2
t ) + f(t) = f(0)−

∫ t

0

f ′(s)XsdXs −
∫ t

0

f ′(s)YsdYs −
1

2

∫ t

0

f ′′(s)(X2
s + Y 2

s )ds.

Therefore

〈W,Z〉t = Xtf
′(t)λ sin(λAt)〈X,A 〉t + Ytf

′(t)λ sin(λAt)〈Y,A 〉t
= Xtf

′(t)λ sin(λAt)× (−Ytt) + Ytf
′(t)λ sin(λAt)(Xtt) = 0

4. By Itô’s formula, we get

Zte
Wt =

∫ t

0

eWsdZs +

∫ t

0

Zse
WsdWs +

1

2

∫ t

0

Zse
Wsd〈W,W 〉s.

Note that

dZs = −λ sin(λAs)dAs −
1

2
λ2Zs(X

2
s + Y 2

s )ds,

dWs = f ′(s)XsdXs − f ′(s)YsdYs −
1

2
f ′′(s)(X2

s + Y 2
s )ds,

and
d〈W,W 〉s = (X2

s f
′(s)2 + Y 2

s f
′(s)2)ds.

Thus, Zte
Wt is a continuous local martingale when

f ′′(t) = f ′(t)2 − λ2.

5. Fix r > 0 and λ > 0. It’s clear that f(t) = − ln(cosh(λ(r − t))) ∈ C3(R+) and satisfy

f ′′(t) = f ′(t)2 − λ2.

Thus (Zte
Wt)t≥0 is a continuous local martingale. Choose (Tn)n≥1 such that (ZTnt eW

Tn
t )t≥0 is an uniformly

integrable martingale for n ≥ 1 and Tn ↑ ∞. Then

E[cos(λATn∧r)e
− 1

2 f
′(Tn∧r)(X2

Tn∧r+Y 2
Tn∧r)+f(Tn∧r)] = E[ZTnr eW

Tn
r ] = E[ZTn0 eW

Tn
0 ] =

1

cosh(λr)
.
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Because r − Tn ∧ r ≥ 0 for all n ≥ 1, we see that

f ′(Tn ∧ r) =
sinh(λ(r − Tn ∧ r))
cosh(λ(r − Tn ∧ r))

λ ≥ 0

and, hence,

0 ≤ e− 1
2 f
′(Tn∧r)(X2

Tn∧r+Y 2
Tn∧r) ≤ 1

for all n ≥ 1. Since cosh(λ(r − Tn ∧ r)) ≥ 1 for all n ≥ 1, we get

f(Tn ∧ r) = − ln(cosh(λ(r − Tn ∧ r))) ≤ 0

and, hence
0 ≤ ef(Tn∧r) ≤ 1.

By Lebesgue dominated convergence theorem, we see that

1

cosh(λr)
= lim
n→∞

E[cos(λATn∧r)e
− 1

2 f
′(Tn∧r)(X2

Tn∧r+Y 2
Tn∧r)+f(Tn∧r)]

= E[cos(λAr)e
− 1

2 f
′(r)(X2

r+Y 2
r )+f(r)]

Since f ′(r) = sinh(λ(r−t))
cosh(λ(r−t)) |t=r = 0 = f(r), we have

E[cos(λAr)e
− 1

2 f
′(r)(X2

r+Y 2
r )+f(r)] = E[cos(λAr)].

By the result in problem 2,

E[eiλAr ] = E[cos(λAr)] =
1

cosh(λr)
.

5.7 Exercise 5.31 (Squared Bessel processes)

Let B be an (Ft)t≥0-Brownian motion started from 0, and let X be a continuous semimartingale. We assume that
X takes values in R+, and is such that, for every t ≥ 0,

Xt = x+ 2

∫ t

0

√
XsdBs + αt

where x and α are nonnegative real numbers.

1. Let f : R+ 7→ R+ be a continuous function, and let ϕ be a twice continuously differentiable function on R+,
taking strictly positive values, which solves the differential equation

ϕ′′ = 2fϕ

and satisfies ϕ(0) = 1 and ϕ′(1) = 0. Observe that the function ϕ must then be decreasing over the interval
[0, 1]. We set

u(t) =
ϕ′(t)

2ϕ(t)

for every t ≥ 0. Verify that we have, for every t ≥ 0,

u′(t) + 2u(t)2 = f(t),

then show that, for every t ≥ 0,

u(t)Xt −
∫ t

0

f(s)Xsds = u(0)x+

∫ t

0

u(s)dXs − 2

∫ t

0

u(s)2Xsds.

We set

Yt = u(t)Xt −
∫ t

0

f(s)Xsds.
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2. Show that, for every t ≥ 0,
ϕ(t)−

α
2 eYt = E (N)t

where E (N)t = exp(Nt − 1
2 〈N,N〉t) denotes the exponential martingale associated with the continuous local

martingale

Nt = u(0)x+ 2

∫ t

0

u(s)
√
XsdBs.

3. Infer from the previous question that

E[exp(−
∫ 1

0

f(s)Xsds)] = ϕ(1)
α
2 exp(

x

2
ϕ′(0)).

4. Let λ > 0. Show that

E[exp(−λ
∫ 1

0

Xsds)] = (cosh(
√

2λ))−
α
2 exp(−x

2

√
2λ tanh(

√
2λ)).

5. Show that, if β = (βt)t≥0 is a real Brownian motion started from y, one has, for every λ > 0,

E[exp(−λ
∫ 1

0

β2
sds)] = (cosh(

√
2λ))−

1
2 exp(−y

2

2

√
2λ tanh(

√
2λ)).

Proof.

1. Since f ≥ 0 and ϕ > 0, we see that ϕ′′ = 2fϕ ≥ 0. Because ϕ′(1) = 0 and ϕ′ is nondecreasing, one has ϕ′ ≤ 0
in [0, 1] and, hence, ϕ is decreasing over the interval [0, 1]. Note that

u′(t) + 2u(t)2 =
ϕ′′(t)2ϕ(t)− 2ϕ(t)2

4ϕ(t)2
+ 2

ϕ′(t)2

4ϕ(t)2
=
ϕ′′(t)

2ϕ(t)
= f(t).

By Itô’s formula, we get

u(t)Xt = u(0)x+

∫ t

0

u′(s)Xsds+

∫ t

0

u(s)dXs

= u(0)x+

∫ t

0

f(s)Xsds− 2

∫ t

0

u(s)2Xsds+

∫ t

0

u(s)dXs.

and, hence,

u(t)Xt −
∫ t

0

f(s)Xsds = u(0)x+

∫ t

0

u(s)dXs − 2

∫ t

0

u(s)2Xsds.

2. Note that

Yt = u(0)x+

∫ t

0

u(s)dXs − 2

∫ t

0

u(s)2Xsds

= u(0)x+

∫ t

0

u(s)
√
XsdBs + α

∫ t

0

u(s)ds− 2

∫ t

0

u(s)2Xsds

= u(0)x+

∫ t

0

u(s)
√
XsdBs − 2

∫ t

0

u(s)2Xsds+ α

∫ t

0

ϕ′(s)

2ϕ(s)
ds

= u(0)x+

∫ t

0

u(s)
√
XsdBs − 2

∫ t

0

u(s)2Xsds+
α

2
ln(ϕ(t)).
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Then we have

E (N)t = exp(Nt − 〈N,N〉t)

= exp(u(0)x+ 2

∫ t

0

u(s)
√
XsdBs − 2

∫ t

0

u(s)2Xsds)

= exp(u(0)x+ 2

∫ t

0

u(s)
√
XsdBs − 2

∫ t

0

u(s)2Xsds+
α

2
ln(ϕ(t)))ϕ(t)−

α
2

= exp(Yt)ϕ(t)−
α
2 .

3. Choose m such that ln(ϕ(t)) ≥ m for all t ∈ [0, 1]. Fix t ∈ [0, 1]. Because ϕ′ ≤ 0 in [0, 1] (problem 1), we see
that u ≤ 0 in [0, 1]. Because f ≥ 0 in [0, 1] and Xt, α ≥ 0, we see that

E (N)t = exp(Yt)ϕ(t)−
α
2 = exp(u(t)Xt −

∫ t

0

f(s)Xsds−
α

2
ln(ϕ(t))) ≤ exp(−α

2
m) <∞.

and, hence, E (N)t∧1 is a uniformly integrable martingale. Because u(1) = ϕ′(1) = 0 and ϕ(0) = 1, we have

ϕ(1)−
α
2 E[exp(−

∫ 1

0

f(s)Xsds)] = ϕ(1)−
α
2 E[exp(u(1)X1 −

∫ 1

0

f(s)Xsds)] = E[ϕ(1)−
α
2 expY1]

= E[E (N)1] = E[E (N)0] = E[exp(N0)] = exp(u(0)x)

= exp(x
ϕ′(0)

2ϕ(0)
) = exp(

xϕ′(0)

2
)

and, so

E[exp(−
∫ 1

0

f(s)Xsds)] = ϕ(1)
α
2 exp(

x

2
ϕ′(0)).

4. Set f = λ. Then we have ϕ′′(t) − 2λϕ(t) = 0 and, hence, ϕ(t) = c1 exp(
√

2λt) + c2 exp(−
√

2λt). Combining
with initial conditions, we get

ϕ(t) =
exp(−

√
2λ)

exp(
√

2λ) + exp(−
√

2λ)
exp(
√

2λt) +
exp(
√

2λ)

exp(
√

2λ) + exp(−
√

2λ)
exp(−

√
2λt).

Thus,

ϕ(1) =
2

exp(
√

2λ) + exp(−
√

2λ)
=

1

cosh(
√

2λ)

and

ϕ′(0) =
√

2λ
− exp(

√
2λ) + exp(−

√
2λ)

exp(
√

2λ) + exp(−
√

2λ)
= −
√

2λ tanh(
√

2λ).

By problem 3, we get

E[exp(−λ
∫ 1

0

Xsds)] = (cosh(
√

2λ))−
α
2 exp(−x

2

√
2λ tanh(

√
2λ)).

5. Suppose β is a (Ft)t≥0-real Brownian motion. By Itô’s formula, we get

β2
t = y2 + 2

∫ t

0

βsdβs + t

Set Bt =
∫ t

0
sgn(βs)dβs. Then (Bt)t≥0 is a process 〈B,B〉t = t, we see that B is a (Ft)t≥0-real Brownian

motion and

β2
t = y2 + 2

∫ t

0

|βs|dBs + t.
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Thus, by problem 4, we get

E[exp(−λ
∫ 1

0

β2
sds)] = (cosh(

√
2λ))−

1
2 exp(−y

2

2

√
2λ tanh(

√
2λ)).

5.8 Exercise 5.32 (Tanaka’s formula and local time)

Let B be an (Ft)t≥0-Brownian motion started from 0. For every ε > 0, we define a function gε : R 7→ R by setting
gε(x) =

√
ε2 + x2.

1. Show that
gε(Bt) = gε(0) +M ε

t +Aεt

where M ε is a square integrable continuous martingale that will be identified in the form of a stochastic integral,
and Aε is an increasing process.

2. We set sgn(x) = 1{x>0} − 1{x<0} for all x ∈ R. Show that, for every t ≥ 0,

M ε
t →

∫ t

0

sgn(Bs)dBs in L2 as ε→ 0.

Infer that there exists an increasing process L such that, for every t ≥ 0,

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt.

3. Observing that Aεt → Lt as ε→ 0 (It seems that the author want us to prove

Aεt → Lt as ε→ 0 ∀t ≥ 0 (a.s.),

but this statement is to strong to prove. You can prove the following problems without this statement). Show
that, for every δ > 0, for every choice of 0 < u < v, the condition (|Bt| ≥ δ for every t ∈ [u, v]) a.s. implies
that Lu = Lv. Infer that the function t 7→ Lt is a.s. constant on every connected component of the open set
{t ≥ 0 | Bt 6= 0}.

4. We set βt =
∫ t

0
sgn(Bs)dBs for all t ≥ 0. Show that (βt)t≥0 is a (Ft)t≥0 Brownian motion started from 0.

5. Show that Lt = sups≤t(−βs) (a.s.). (In order to derive the bound Lt ≤ sups≤t(−βs), one may consider the last
zero of B before time t, and use question 3.) Give the law of Lt.

6. For every ε > 0, we define two sequences of stopping times (Sεn)n≥1 and (T εn)n≥1, by setting

Sε1 = 0, T ε1 = inf{t ≥ Sε1 | |Bt| = ε}

and then, by induction,

Sεn+1 = inf{t ≥ T εn | |Bt| = 0}, T εn+1 = inf{t ≥ Sεn+1 | |Bt| = ε}.

For every t ≥ 0, we set
N ε
t = sup{n ≥ 1 | T εn ≤ t},

where sup ∅ = 0. Show that

εN ε
t
L2

→ Lt as ε→ 0.

(One may observe that

Lt +

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)sgn(Bs)dBs = εN ε

t + rεt (a.s.),

where the “remainder” rεt satisfies |rεt | ≤ ε.)
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7. Show that
N1
t√
t

converges in law as t→∞ to |U |, where U is N (0, 1)-distributed.

Proof.

1. By Itô’s formula, we get

gε(Bt) = gε(0) +

∫ t

0

Bs√
ε2 +B2

s

dBs +
1

2

∫ t

0

ε2

(ε2 +B2
s )

3
2

ds.

It’s clear that

Aεt ≡
1

2

∫ t

0

ε2

(ε2 +B2
s )

3
2

ds (16)

is an increasing process. For t ≥ 0,

E[〈
∫ t

0

Bs√
ε2 +B2

s

dBs,

∫ t

0

Bs√
ε2 +B2

s

dBs〉t] = E[

∫ t

0

B2
s

ε2 +B2
s

ds] ≤ t.

By theorem 4.13, we see that

M ε
t ≡

∫ t

0

Bs√
ε2 +B2

s

dBs (17)

is a sequare integrable continuous martingale.

2. Fix t > 0. Then
Bs√
ε2 +B2

s

→ Bs
|Bs|

= sgn(Bs) as ε→ 0 ∀s ∈ [0, t] (a.s.),

where Bs
|Bs| = 0 when Bs = 0.

By Proposition 5.8, we see that∫ t

0

Bs√
ε2 +B2

s

dBs
P→

∫ t

0

sgn(Bs)dBs as ε→ 0.

Recall that

Lieb’s theorem [1, Theorem 6.2.3].
Let (E,B, µ) be a measure space, p ∈ [1,∞), and {fn}

⋃
{f} ⊆ Lp(µ;R). If supn≥1 ||fn||Lp(µ;R) < ∞ and

fn → f in µ-measure, then

||fn − f ||Lp(µ;R) → 0 whenever ||fn||Lp(µ;R) → ||f ||Lp(µ;R).

Since

||
∫ t

0

Bs√
ε2 +B2

s

dBs||2L2 = E[(

∫ t

0

Bs√
ε2 +B2

s

dBs)
2] = E[

∫ t

0

B2
s

ε2 +B2
s

ds] ≤ t

for all ε > 0 and

lim
ε→0
||
∫ t

0

Bs√
ε2 +B2

s

dBs||2L2 = t = E[(

∫ t

0

sgn(Bs)dBs)
2] = ||

∫ t

0

sgn(Bs)dBs||2L2 ,

we get

M ε
t =

∫ t

0

Bs√
ε2 +B2

s

dBs →
∫ t

0

sgn(Bs)dBs in L2 as ε→ 0.
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Let us now construct the corresponding increasing process (Lt)t≥0. We just define

Lt = |Bs| −
∫ t

0

sgn(Bs)dBs. (18)

It remains to show that (Lt)t≥0 is an increasing process. Fix t > 0. By Lieb’s theorem, we see that

gε(Bt) =
√
ε2 + |Bs|2

L2

→ |Bt| as ε→ 0

and therefore

Aεt = gε(Bt)− gε(0)−M ε
t
L2

→ |Bt| −
∫ t

0

sgn(Bs)dBs = Lt.

Since (Aεt)t≥0 is an increasing process for all ε > 0, we see that (Lt)t≥0 is an increasing process.

3. First we show that the condition (|Bt| ≥ δ for every t ∈ [u, v]) a.s. implies that Lu = Lv. Fix δ > 0 and

0 < u < v. Since Aεi
L2

→ Li for i = u, v, there exists {εk} such that εk ↓ 0 and Aεki
a.s.→ Li for i = u, v. Let

w ∈ { lim
k→∞

Aεku = Lu}
⋂
{ lim
k→∞

Aεkv = Lv}
⋂
{|Bt| ≥ δ for all t ∈ [u, v]}.

Then
ε2k

(ε2k +B2
s (w))

3
2

≤ 1

δ3

for s ∈ [u, v] and k ≥ 1. By Lebesgue’s dominated convergence theorem, we get

Lv(w)− Lu(w) = lim
k→∞

1

2

∫ v

u

ε2k
(ε2k +B2

s (w))
3
2

ds = 0.

Thus, the condition (|Bt| ≥ δ for every t ∈ [u, v]) a.s. implies that Lu = Lv.
Next, we show that the function t 7→ Lt is a.s. constant on every connected component of the open set
{t ≥ 0 | Bt 6= 0}. Set

Zcδ,u,v = {(|Bt| ≥ δ for every t ∈ [u, v]) implies that Lu = Lv}

for all positive rational numbers δ and u < v. Then

Z ≡
⋃
δ,u,v

Zδ,u,v (19)

is a zero set. Let w ∈ Zc. Let (a, b) be a connected component of {t ≥ 0 | Bt(w) 6= 0}. For any two rational
numbers u and v such that a < u < v < b, there exists positive rational number δ such that |Bt(w)| ≥ δ for all
t ∈ [u, v] and therefore Lu(w) = Lv(w). Since t ∈ (a, b) 7→ Lt(w) is increasing, we see that t ∈ (a, b) 7→ Lt(w)
is a constant. Hence t 7→ Lt is a.s. constant on every connected component of the open set {t ≥ 0 | Bt 6= 0}.

4. It’s clear that (βt)t≥0 is a (Ft)t≥0-continuous local martingale with 〈β, β〉t = t for all t ≥ 0. Thus, (βt)t≥0 is a
(Ft)t≥0 Brownian motion started from 0.

5. Fix t0 > 0. Since |Bt| = βt + Lt ∀t ≥ 0 (a.s.), we have sups≤t0(−βs) ≤ sups≤t0 Ls = Lt0 (a.s.). We show that

sup
s≤t0

(−βs) ≥ Lt0 (a.s.).

Let w ∈ Zc
⋂
{|Bt| = βt + Lt ∀t ≥ 0}, where Z is defined in (19). Set r = sup{0 ≤ s ≤ t0 | Bs(w) = 0}. Then

Br(w) = 0 and
Lt0(w) = −βt(w) ≤ sup

s≤t0
(−βs)(w) whenever Bt0(w) = 0.
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Since t ∈ R+ 7→ Lt(w) ∈ C(R+) is constant on every connected component of {t ≥ 0 | Bt(w) 6= 0}, we have

Lt(w) = Lr(w) = −βr(w) ≤ sup
s≤t

(−βs)(w) whenever Bt(w) 6= 0.

Thus
sup
s≤t0

(−βs) ≥ Lt0 (a.s.)

and therefore
sup
s≤t0

(−βs) = Lt0 (a.s.). (20)

To find the law of Lt, we define stopping times

Γa = inf{t ≥ 0 | −βt = a} (21)

for a ∈ R. By the result of problem 4 and Corollary 2.22, we get

P (Lt ≤ a) = P (sup
s≤t

(−βs) ≤ a) = P (Γa ≥ t) =

∫ ∞
t

a√
2πs3

exp(−a
2

2s
)ds.

6. Fix t > 0 and ε > 0. Note that N ε
t is the number of upcrossing from 0 to ±ε by (Bs)s∈[0,t]. First, we show that

Lt +

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)sgn(Bs)dBs = εN ε

t + rεt (a.s.),

where |rεt | ≤ ε. By (18) and Proposition 5.8, we get

Lt +

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)sgn(Bs)dBs = |Bt| −

∫ t

0

∞∑
n=1

1(T εn,S
ε
n+1)(s)sgn(Bs)dBs

= |Bt| −
∞∑
n=1

∫ t

0

1(T εn,S
ε
n+1)(s)sgn(Bs)dBs

outside a zero set N. Let w ∈ N c. We consider the following cases:

(a) Suppose that 0 = Sε1(w) < T ε1 (w) < Sε2(w)... < T εm−1(w) < Sεm(w) < t < T εm(w) for some m ≥ 1. Then
|Bt(w)| ≤ ε, N ε

t = m−1, and sgn(Bs)(w) = sgn(BT εk )(w) for s ∈ [T εk(w), Sεk+1(w)) for each k = 1, ...,m−1.
If we set rεt(w) = |Bt(w)|, then we have

|Bt(w)| − (

∞∑
k=1

∫ t

0

1(T εk ,S
ε
k+1)(s)sgn(Bs)dBs)(w)

= rεt(w)− (

m−1∑
k=1

sgn(BT εk )

∫ t

0

1(T εk ,S
ε
k+1)(s)dBs)(w)

= rεt(w)−
m−1∑
k=1

sgn(BT εk )(w)(BSεk+1
(w)−BT εk (w))

= rεt(w)−
m−1∑
k=1

sgn(BT εk )(w)(0− sgn(BT εk )(w)× ε)

= rεt(w) + (m− 1)ε

= rεt(w) +N ε
t (w)ε.
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(b) Suppose that 0 = Sε1(w) < T ε1 (w) < Sε2(w)... < T εm−1(w) < Sεm(w) < T εm(w) ≤ t < Sεm+1(w) for some
m ≥ 1. Similar, we get N ε

t = m, and sgn(Bs)(w) = sgn(BT εk )(w) for s ∈ [T εk(w), Sεk+1(w)) for each
k = 1, ...,m+ 1. If we set rεt(w) = ε, then we have

|Bt(w)| − (

∞∑
k=1

∫ t

0

1(T εk ,S
ε
k+1)(s)sgn(Bs)dBs)(w)

= |Bt(w)| − (

m∑
k=1

sgn(BT εk )

∫ t

0

1(T εk ,S
ε
k+1)(s)dBs)(w)− sgn(Bt)

∫ t

0

1(T εm,t)
(s)dBs)(w)

= |Bt(w)| −
m∑
k=1

sgn(BT εk )(w)(BSεk+1
(w)−BT εk (w))− sgn(Bt)(w)(Bt(w)−BT εm(w))

= |Bt(w)| −
m∑
k=1

sgn(BT εk )(w)(0− sgn(BT εk )(w)× ε)− sgn(Bt)(w)(Bt(w)− sgn(Bt)(w)× ε)

= ε+mε

= rεt(w) +N ε
t (w)ε.

Thus we have, a.s.,

Lt +

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)sgn(Bs)dBs = εN ε

t + rεt ,

where |rεt | ≤ ε.
Next, we show that

εN ε
t
L2

→ Lt as ε→ 0.

Fix t ≥ 0. Note that

∞∑
k=1

1[Sεn(w),T εn(w)](s) ≤ 1{|Bs|≤ε}(w) for all 0 ≤ s ≤ t and w ∈ Ω. (22)

and so

||εN ε
t − Lt||L2 ≤ ||

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)sgn(Bs)dBs||L2 + ||rεt ||L2

= E[

∫ t

0

∞∑
n=1

1[Sεn,T
ε
n](s)ds] + ||rεt ||L2

=

∫ t

0

E[

∞∑
n=1

1[Sεn,T
ε
n](s)]ds+ ||rεt ||L2

≤
∫ t

0

E[1{|Bs|≤ε}(w)]ds+ ||rεt ||L2

=

∫ t

0

P (|Bs| ≤ ε)ds+ ||rεt ||L2
ε→0→

∫ t

0

P (|Bs| = 0)ds = 0.

7. First we show that Lt√
t

d
= |U | for all t > 0. Define stopping times Γa as (33). Fix t0 > 0. By (20) and Corollary

2.22, we get

P (
Lt0√
t0
≤ a) = P (sup

s≤t0
(−βs) ≤ a×

√
t0) = P (Γa

√
t0 ≥ t0) =

∫ ∞
t0

√
t0a√

2πt3
exp(− t0a

2

2t
)dt.
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Set x =
√
t0a√
t

. Then dx = 1
2

√
t0a

t
3
2
dt and

∫ ∞
t0

√
t0a√

2πt3
exp(− t0a

2

2t
)dt =

∫ a

0

2√
2π

exp(−x
2

2
)dx = P (|U | ≤ a).

Recall that if Xn
d→ X and Yn

d→ 0, then Xn + Yn
d→ X. To show that

N1
t√
t

d→ |U |, it suffices to show that, as
t→∞,

1√
t
(N1

t − Lt) =
1√
t
(

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)dBs − r1

t )
L2

→ 0.

Note that

|| 1√
t
(

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)dBs − r1

t )||L2 ≤ || 1√
t

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)dBs||L2 + || 1√

t
r1
t ||L2

and

|| 1√
t
r1
t ||L2 ≤ 1√

t
.

It suffices to show that
1√
t

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)dBs

L2

→ 0 as t→∞.

By (32), we get

|| 1√
t

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)dBs||2L2

= E[
1

t

∫ t

0

∞∑
n=1

1[S1
n,T

1
n](s)sgn(Bs)ds] ≤ E[

1

t

∫ t

0

1{|Bs|≤1}ds]

=
1

t

∫ t

0

P (|Bs| ≤ 1)ds =
1

t

∫ t

0

P (|B1| ≤
1√
s

)ds

=
2

t

∫ t

0

∫ 1√
s

0

1√
2π

exp(−x
2

2
)dxds

=
2

t
(

∫ 1√
t

0

∫ t

0

1√
2π

exp(−x
2

2
)dsdx+

∫ ∞
1√
t

∫ 1
x2

0

1√
2π

exp(−x
2

2
)dsdx)

=
2

t
(

∫ 1√
t

0

t√
2π

exp(−x
2

2
)dx+

∫ ∞
1√
t

1

x2

1√
2π

exp(−x
2

2
)dx)

≤ 2

t
(

∫ 1√
t

0

t√
2π

exp(−x
2

2
)dx+

∫ ∞
1√
t

1

x2

1√
2π
dx)

=
2

t
(

∫ 1√
t

0

t√
2π

exp(−x
2

2
)dx+

1√
2π

√
t)

=

∫ 1√
t

0

2√
2π

exp(−x
2

2
)dx+

2√
2π

1√
t

t→∞→ 0.
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5.9 Exercise 5.33 (Study of multidimensional Brownian motion)

Let Bt = (BN1 , ..., B
N
t ) be an N-dimensional (Ft)-Brownian motion started from x = (x1, ..., xN ). We suppose that

N ≥ 2.

1. Verify that |Bt|2 is a continuous semimartingale, and that the martingale part of |Bt|2 is a true martingale.

2. We set

βt =

N∑
i

∫ t

0

Bis
|Bs|

dBis

with the convention that
Bis
|Bs| = 0 if |Bs| = 0. Justify the definition of the stochastic integrals appearing in the

definition of βt, then show that the process (βt)t≥0 is an (Ft)-Brownian motion started from 0.

3. Show that

|Bt|2 = |x|2 + 2

∫ t

0

|Bs|dβs +Nt.

4. From now on, we assume that x 6= 0. Let ε ∈ (0, |x|) and Tε = inf{t ≥ 0 | |Bt| ≤ ε}. Define f : (0,∞) 7→ R by

f(a) =

{
log(a), if N = 2

a2−N , if N ≥ 3

Verify that f(|Bt∧Tε |) is a continuous local martingale.

5. Let R > |x| and set SR = inf{t ≥ 0 | |Bt| ≥ R}. Show that

P (Tε < SR) =
f(R)− f(|x|)
f(R)− f(ε)

.

Observing that P (Tε < SR)→ 0 as ε→ 0, show that Bt 6= 0 for all t ≥ 0, a.s.

6. Show that, a.s., for every t ≥ 0,

|Bt| = |x|+ βt +
N − 1

2

∫ t

0

ds

|Bs|
.

7. We assume that N ≥ 3. Show that limt→∞ |Bt| = ∞ (a.s.) (Hint: Observe that |Bt|2−N is a nonnegative
supermartingale.)

8. We assume N = 3. Using the form of the Gaussian density, verify that the collection of random variables
(|Bt|−1)t≥0 is bounded in L2. Show that (|Bt|−1)t≥0 is a continuous local martingale but is not a (true)
martingale.

Proof.

1. By Itô’s formula and Doob’s inequality in L2, we get

|Bt|2 = |x|2 +

N∑
i=1

∫ t

0

2BisdB
i
s +Nt

and

E[〈
∫ t

0

2BisdB
i
s,

∫ t

0

2BisdB
i
s〉] = 4E[

∫ t

0

(Bis)
2ds] ≤ 4tE[ sup

0≤s≤t
(Bis)

2] ≤ 4t22E[(Bit)
2] ≤ 16t(t+ x2

i )

for 1 ≤ i ≤ N . Thus, (
∫ t

0
2BisdB

i
s)t≥0 is a true (Ft)-martingale for 1 ≤ i ≤ N .
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2. Since ( B
i

|B| )
2 ≤ 1, we see that Bi

|B| ∈ L
2
loc(B

i) and, hence,
∫ t

0
Bis
|Bs|dB

i
s is well-defined continuous local martingale.

Thus, (βt)t≥0 is a (Ft)-continuous local martingale. Because

〈β, β〉t =

N∑
i=1

∫ t

0

(Bis)
2

|Bs|2
ds = t,

we see that (βt)t≥0 is an (Ft)-Brownian motion started from 0.

3. Note that

Bit =
Bit
|Bt|
|Bt|,

where
Bit
|Bt| is defined in problem 2, and

dβt =

N∑
i=1

Bit
|Bt|

dBit.

Then

|Bt|2 = |x|2 +

N∑
i=1

∫ t

0

2BisdB
i
s +Nt = |x|2 + 2

∫ t

0

|Bs|dβs +Nt.

4. Define F : RN \ {0} 7→ R by F (x) = f(|x|). Then we have

∂F

∂xi
(x) =

{
(2−N)xi
|x|N , if N ≥ 3
xi
|x|2 , if N = 2

and

∂2F

∂x2
i

(x) =

{
N−2
|x|N (1− Nx2

i

|x|2 ), if N ≥ 3

1− 2x2
i

|x|2 , if N = 2.

Note that |Bt∧Tε(w)| ≥ ε for all t ≥ 0 and w ∈ Ω. By Itô’s formula, we get

f(|Bt∧Tε |) = F (Bt∧Tε)

= f(|x|) +

N∑
i=1

∫ t

0

∂F

∂xi
(Bs∧Tε)dB

i
s +

1

2

N∑
i=1

∫ t

0

∂2F

∂x2
i

(Bs∧Tε)ds

=

f(|x|) +
∑N
i=1

∫ t
0

(2−N)Bis∧Tε
|Bs∧Tε |N

dBis + 1
2

∑N
i=1

∫ t
0

N−2
|Bs∧Tε |N

(1− N(Bis∧Tε )2

|Bs∧Tε |2
)ds, if N ≥ 3

f(|x|) +
∑N
i=1

∫ t
0

Bis∧Tε
|Bs∧Tε |2

dBis + 1
2

∑N
i=1

∫ t
0
(1− 2(Bis∧Tε )2

|Bs∧Tε |2
)ds, if N = 2

=

f(|x|) +
∑N
i=1

∫ t
0

(2−N)Bis∧Tε
|Bs∧Tε |N

dBis, if N ≥ 3

f(|x|) +
∑N
i=1

∫ t
0

Bis∧Tε
|Bs∧Tε |2

dBis, if N = 2

and, hence, f(|Bt∧Tε |) is a continuous local martingale.

5. Set T = Tε∧SR. Then |f(|BTt |)| ≤M for some M > 0 and all t ≥ 0 (a.s.). Since f(|Bt∧Tε |) is a continuous local
martingale, we see that f(|BTt |) is a bounded continuous local martingale and, hence, f(|BTt |) is an uniformly
bounded martingale. Then we have

f(|x|) = E[f(|BT0 |)] = E[f(|BT |)] = f(ε)P (Tε < SR) + f(R)P (Tε ≥ SR).

Since P (Tε < SR) + P (Tε ≥ SR) = 1,we get

P (Tε < SR) =
f(R)− f(|x|)
f(R)− f(ε)

.
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Because f(ε) → ±∞(depending on N) as ε → 0, we see that P (Tε < SR) → 0 as ε → 0. Next we show that
Bt 6= 0 for all t ≥ 0 (a.s.). Choose a sequence of positive real number {εn} such that εn ↓ 0 and

∞∑
n=1

P (Tεn < Sn) <∞.

By Borel Cantelli’s lemma, we get P (Z) = 0, where Z = lim supn→∞{Tεn < Sn}. Then Bt 6= 0 for all
t ≥ 0 in Zc. Indeed, if w ∈ Zc and Bt(w) = 0 for some t > 0, then Tεn(w) < t for all n ≥ 1 and, hence,
Sn(w) < t for some m ≥ 1 and all n ≥ m. Since {Sn(w)} is nondecreasing, we see that limn→∞ Sn(w) exists,
s ≡ limn→∞ Sn(w) ≤ t and, hence, Bs(w) =∞ which is a contradiction. Thus, Bt 6= 0 for all t ≥ 0, a.s.

6. Define F : RN \ {0} → R+ by F (x) = |x|. Then F ∈ C∞(RN \ {0}), ∂F
∂xi

(x) = xi
|x| , and ∂2F

∂x2
i

(x) =
|x|2−x2

i

|x|3 . Since

Bt ∈ RN \ {0} for all t ≥ 0 (a.s.), we get

|Bt| = F (Bt) = |x|+
N∑
i=1

∫ t

0

Bis
|Bs|

dBis +
1

2

N∑
i=1

∫ t

0

|Bs|2 − (Bis)
2

|Bs|3
ds = |x|+ βt +

N − 1

2

∫ t

0

ds

|Bs|

7. Define F : RN \ {0} → R+ by F (x) = |x|2−N . Then F ∈ C∞(RN \ {0}). Since Bt ∈ RN \ {0} for all t ≥ 0
(a.s.), we get (see the proof of problem 4)

|Bt|2−N = |x|2−N +

N∑
i=1

∫ t

0

(2−N)Bis
|Bs|N

dBis.

Then |Bt|2−N is a non-negative continuous local martingale and, hence, |Bt|2−N is a non-negative supermartin-
gale. Thus,

E[|Bt|2−N ] ≤ E[|B0|2−N ] = |x|2−N

for all t ≥ 0. By Theorem 3.19, |B∞|2−N exists (a.s.) and, hence, limt→∞ |Bt| exists (a.s.). Since lim supt→∞B1
t =

∞ (a.s.), we see that limt→∞ |Bt| =∞ (a.s.).

8. First, we show that (|Bt|−1)t≥0 is bounded in L2. Set δ = |x|
2 > 0. Then

E[|Bt|−2] =

∫
R3

1

|y|2(2πt)
3
2

exp(
−|y − x|2

2t
)dy =

∫
|y|<δ

+

∫
|y|≥δ

.

Since ∫
|y|≥δ

1

|y|2(2πt)
3
2

exp(
−|y − x|2

2t
)dy ≤ 1

δ2

∫
R3

1

(2πt)
3
2

exp(
−|y − x|2

2t
)dy ≤ 1

δ2

for all t > 0, it suffices to show that ∫
|y|<δ

1

|y|2(2πt)
3
2

exp(
−|y − x|2

2t
)dy

is bounded in t > 0. Note that, if |y| < δ = |x|
2 , then |y − x| ≥ |x| − |y| ≥ |x|2 . Then we see that∫

|y|<δ

1

|y|2(2πt)
3
2

exp(
−|y − x|2

2t
)dy ≤ 1

(2πt)
3
2

exp(
−|x|2

8t
)

∫
|y|<δ

1

|y|2
dy =

1

(2πt)
3
2

exp(
−|x|2

8t
)w3δ,

where w3 is the area of unit sphere in R3. Define ϕ : (0,∞)→ R+ by

ϕ(t) =
1

(2πt)
3
2

exp(
−|x|2

8t
).
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Then ϕ ∈ C0((0,∞)) and limt↓0 ϕ(t) = 0. There exists M > 0 such that supt>0 |ϕ(t)| ≤M <∞. Thus,

sup
t>0

∫
|y|<δ

1

|y|2(2πt)
3
2

exp(
−|y − x|2

2t
)dy ≤Mw3δ

and therefore (|Bt|−1)t≥0 is bounded in L2. Now we show that (|Bt|−1)t≥0 is a continuous local martingale
but is not a true martingale. Assume that (|Bt|−1)t≥0 is a true martingale. Then (|Bt|−1)t≥0 is a L2-bounded
martingale. Recall that limt→∞ |Bt| =∞ (a.s.). Together with Theorem 4.13, we get

0 = E[|B∞|−2] = E[|B0|−2] + E[〈|B|−1, |B|−1〉∞]

which is a contradiction. Thus (|Bt|−1)t≥0 is a continuous local martingale (see the proof of problem 7) but is
not a true martingale.
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Chapter 6
General Theory of Markov Processes

6.1 Exercise 6.23 (Reflected Brownian motion)

We consider a probability space equipped with a filtration (Ft)t∈[0,∞]. Let a ≥ 0 and let B = (Bt)t≥0 be an
(Ft)-Brownian motion such that B0 = a. For every t > 0 and every z ∈ R, we set

pt(z) =
1√
2πt

exp(−z
2

2t
).

1. We set Xt = |Bt| for every t ≥ 0. Verify that, for every s ≥ 0 and t ≥ 0, for every bounded measurable function
f : R+ 7→ R,

E[f(Xs+t) | Fs] = Qtf(Xs),

where Q0f = f and, for every t > 0, for every x ≥ 0,

Qtf(x) =

∫ ∞
0

(pt(y − x) + pt(y + x))f(y)dy.

2. infer that (Qt)t≥0 is a transition semigroup, then that (Xt)t≥0 is a Markov process with values in E = R+,
with respect to the filtration (Ft)t≥0, with semigroup (Qt)t≥0.

3. Verify that (Qt)t≥0 is a Feller semigroup. We denote its generator by L.

4. Let f be a twice continuously differentiable function on R+, such that f and f ′′ belong to C0(R+). Show that,
if f ′(0) = 0, f belongs to the domain of L, and Lf = 1

2f
′′. (Hint: One may observe that the function g : R 7→ R

defined by g(y) = f(|y|) is then twice continuously differentiable on R.) Show that, conversely, if f(0) 6= 0, f
does not belong to the domain of L.

Proof.

1. Set QBt to be the semigroup of real Brownian motion (i.e. QBt (x, dy) = pt(y − x)dy). Given a bounded
measurable function f : R+ 7→ R. Define g : R 7→ R by g(y) = f(|y|). By definition of Markov process,

E[f(Xs+t) | Fs] = E[g(Bs+t) | Fs] = QBt g(Bs)

=

∫ ∞
−∞

f(|y|) 1√
2πt

exp(− (y −Bs)2

2t
)dy

=

∫ ∞
0

f(|y|) 1√
2πt

exp(− (y −Bs)2

2t
)dy +

∫ 0

−∞
f(|y|) 1√

2πt
exp(− (y −Bs)2

2t
)dy

=

∫ ∞
0

f(|y|) 1√
2πt

exp(− (y −Bs)2

2t
)dy +

∫ ∞
0

f(|y|) 1√
2πt

exp(− (y +Bs)
2

2t
)dy

=

∫ ∞
0

f(y)
1√
2πt

exp(− (y −Bs)2

2t
)dy +

∫ ∞
0

f(y)
1√
2πt

exp(− (y +Bs)
2

2t
)dy

= Qtf(Xs).

2. It’s clear that

(t, x) ∈ R+ × R+ 7→ Qt(x,A) =

∫ ∞
0

(
1√
2πt

exp(− (y − x)2

2t
) +

1√
2πt

exp(− (y + x)2

2t
))1A(y)dy
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is a measurable function. Thus, it suffices to show that (Qt)t≥0 satisfy Chapman-Kolmogorov’s identity. Let
f be a bounded measuable function on R+. Define g : R 7→ R by g(y) = f(|y|). By using similar argument as
the proof of problem 1, we have

Qtf(|x|) = QBt g(x) ∀x ∈ R. (23)

and therefore

Qt+sf(x) = QBt+sg(x) = QBt Q
B
s g(x) =

∫
R
QBs g(y)

1√
2πt

exp(− (y − x)2

2t
)dy

=

∫
R+

QBs g(y)
1√
2πt

exp(− (y − x)2

2t
)dy +

∫
R−

QBs g(y)
1√
2πt

exp(− (y − x)2

2t
)dy

=

∫
R+

QBs g(y)
1√
2πt

exp(− (y − x)2

2t
)dy +

∫
R+

QBs g(−y)
1√
2πt

exp(− (y + x)2

2t
)dy

=

∫
R+

Qsf(y)
1√
2πt

exp(− (y − x)2

2t
)dy +

∫
R+

Qsf(y)
1√
2πt

exp(− (y + x)2

2t
)dy

= QtQsf(x) ∀x ∈ R+.

3. Given f ∈ C0(R+). Then g(x) ≡ f(|x|) ∈ C0(R). Since (QBt )t≥0 is Feller semigroup, we see that Qtf(x) =
QBt g(x) ∈ C0(R+) and

sup
x∈R+

|Qtf(x)− f(x)| ≤ sup
x∈R
|QBt g(x)− g(x)| t→0→ 0.

Therefore (Qt)t≥0 is a Feller semigroup.

4. Let f be a twice continuously differentiable function on R+, such that f and f ′′ belong to C0(R+). Define
g : R 7→ R by g(y) = f(|y|). Observe that

lim
t→0+

g(x)− g(0)

x
= lim
t→0+

f(x)− f(0)

x
= f ′(0).

and

lim
t→0−

g(x)− g(0)

x
= lim
t→0−

f(−x)− f(0)

x
= −f ′(0).

Since f ′(0) = 0, g′(0) exists and therefore

g′(y) = f ′(|y|)sgn(y)

and
g′′(y) = f ′′(|y|),

where sgn(y) = 1{y>0} − 1{y<0}. Thus g is a twice continuously differentiable function on R, such that g and

g′′ belong to C0(R). Let LB be the generator of (QBt )t≥0. Then LBh = 1
2h
′′ (see the example after Corollary

6.13). By (32), we have

Lf(x) = lim
t→0

Qtf(x)− f(x)

t
= lim
t→0

QBt g(x)− g(x)

t
=

1

2
g′′(x) =

1

2
f ′′(x) ∀x ∈ R+

and therefore Lf = 1
2f
′′. Conversely, assume that there exists f ∈ C0(R+)

⋂
D(L) such that f ′(0) 6= 0. Then

g′(0) doesn’t exist and limt→0
Qtf(x)−f(x)

t exists for all ∀x ∈ R+. By (32), we see that

lim
t→0

QBt g(x)− g(x)

t
= lim
t→0

Qtf(x)− f(x)

t
= Ltf(x) ∀x ≥ 0,

lim
t→0

QBt g(x)− g(x)

t
= lim
t→0

Qtf(−x)− f(−x)

t
= Ltf(−x) ∀x < 0,
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and therefore LBt g(x) = Ltf(|x|) for all x ∈ R. Since Ltf ∈ C0(R+), we see that LBg ∈ C0(R) and, hence,
g ∈ D(LB) = {h ∈ C2(R) | h and h′′ ∈ C0(R)} (see the example after Corollary 6.13) which is a contradiction.
Thus, we see that

D(L) = {h ∈ C2(R+) | h, h′′ ∈ C0(R+) and h′(0) = 0}.

and Lf = 1
2f
′′.

6.2 Exercise 6.24

Let (Qt)t≥0 be a transition semigroup on a measurable space E. Let π be a measurable mapping from E onto another
measurable space F. We assume that, for any measurable subset A of F, for every x, y ∈ E such that π(x) = π(y),
we have

Qt(x, π
−1(A)) = Qt(y, π

−1(A)) ∀t > 0. (24)

We then set, for every z ∈ F and every measurable subset A of F, for every t > 0,

Q′t(z,A) = Qt(x, π
−1(A)) (25)

where x is an arbitrary point of E such that π(x) = z. We also set Q′0(z,A) = 1A(z). We assume that the mapping
(t, z) 7→ Q′t(z,A) is measurable on R+ × F , for every fixed A.

1. Verify that (Q′t)t≥0 forms a transition semigroup on F.

2. Let (Xt)t≥0 be a Markov process in E with transition semigroup (Qt)t≥0 with respect to the filtration (Ft)t≥0.
Set Yt = π(Xt) for every t ≥ 0. Verify that (Yt)t≥0 is a Markov process in F with transition semigroup (Q′t)t≥0

with respect to the filtration (Ft)t≥0.

3. Let (Bt)t≥0 be a d-dimensional Brownian motion, and set Rt = Bt for every t ≥ 0. Verify that (Rt)t≥0 is
a Markov process and give a formula for its transition semigroup (the case d = 1 was treated via a different
approach in Exercise 6.23).

Proof.

1. To show that (Q′t)t≥0 forms a transition semigroup on F, it remain to show that (Q′t)t≥0 satisfies Chap-
man–Kolmogorov identity. Since∫

F

1A(y)Q′t(π(x), dy) =

∫
E

1A(π(y))Qt(x, dy),

we get
(Q′tf)(π(x)) = Qtg(x), (26)

where f is a bounded measurable function on F, g = f ◦π, and x ∈ E. Given z ∈ F . Since π is surjective, there
exists x ∈ E such that z = π(x). By (26) and (25), we get

Q′t+sf(z) = Qt+sg(x) = QtQsg(x) =

∫
E

Qsg(y)Qt(x, dy)

=

∫
E

Q′sf(π(y))Qt(x, dy) =

∫
F

Q′sf(w)Qt(π(x), dw)

= Q′tQ
′
sf(π(x)) = Q′tQ

′
sf(z).

2. It’s clear that (Yt)t≥0 is an adapted process. It remain to show that has (Yt)t≥0 Markov property. Let f be a
bounded measurable function on F and g = f ◦ π. By (26), we get

E[f(Yt+s) | Fs] = E[g(Xt+s) | Fs] = Qtg(Xs) = Q′tf(π(Xs)) = Q′tf(Ys).
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3. The case d = 1 was solved in Exercise 6.23. Now we assume that d ≥ 2. Recall that

Qtf(x) =

∫
Rd

1√
2πtd

exp(−|w − x|
2

2t
)f(w)dw.

for all bounded measurable function f on Rd. Define π(x) = |x| and Q′t(z,A) as (25) for z ∈ R+ and A ∈ BR+
.

First we show that (Qt)t≥0 satisfies condition (24). Let A ∈ BR+
and B = π−1(A). Then

OB ≡ {Ox | x ∈ B} = B

for all orthogonal matrix O. Given x, y ∈ Rd such that π(x) = π(y). Choose an orthogonal matrix O such that
x = Oy. Then

Qt(x, π
−1(A)) = Qt(x,B) =

∫
Rd

1√
2πtd

exp(−|w − x|
2

2t
)1B(w)dw

=

∫
Rd

1√
2πtd

exp(−|Ou−Oy|
2

2t
)1B(Ou)du (w = Ou)

=

∫
Rd

1√
2πtd

exp(−|u− y|
2

2t
)1O−1B(u)du

=

∫
Rd

1√
2πtd

exp(−|u− y|
2

2t
)1B(u)du

= Qt(y,B) = Qt(y, π
−1(A))

Next we show that the mapping (t, z) 7→ Q′t(z,A) is measurable on R+×R+ for all A ∈ BR+
. Given a bounded

measurable function f on R+ and z ∈ R+. Set x = (z, 0, ..., 0) and g = f ◦ π. By (26), we have

Q′tf(z) = Qtg(x) =

∫
Rd

1√
2πtd

exp(− 1

2t
((w1 − z)2 +

d∑
k=2

w2
k))f(|w|)dw. (27)

This shows that the mapping (t, z) 7→ Q′t(z,A) is measurable on R+ × R+ for all A ∈ BR+
. By problem 2, we

see that (Rt)t≥0 is a Markov process with semigroup (27).

In the remaining exercises, we use the following notation. (E, d) is a locally compact metric space, which is
countable at infinity, and (Qt)t≥0 is a Feller semigroup on E. We consider an E-valued process (Xt)t≥0 with càdlàg
sample paths, and a collection (P x)x∈E of probability measures on E, such that, under P x, (Xt)t≥0 is a Markov
process with semigroup (Qt)t≥0 with respect to the filtration (Ft)t≥0 and P x(X0 = x) = 1. We write L for the
generator of the semigroup (Qt)t≥0, D(L) for the domain of L and Rλ for the λ-resolvent, for every λ > 0.

6.3 Exercise 6.25 (Scale Function)

In this exercise, we assume that E = R+ and that the sample paths of X are continuous. For every x ∈ R+, we set

Tx ≡ inf{t ≥ 0 | Xt = x}

and
ϕ(x) ≡ P x(T0 <∞).

1. Show that, if 0 ≤ x ≤ y,
ϕ(y) = ϕ(x)P y(Tx <∞).

2. We assume that ϕ(x) < 1 and P x(supt≥0Xt =∞) = 1, for every x > 0. Show that, if 0 < x ≤ y,

P x(T0 < Ty) =
ϕ(x)− ϕ(y)

1− ϕ(y)
.
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Proof.

1. By strong Markov property, we have

P y(T0 <∞) = P y(T0 <∞, Tx <∞) = Ey[1{Tx<∞}1{T0<∞}] = Ey[1{Tx<∞}EXTx
[1{T0<∞}]].

Since (Xt)t≥0 has continuous sample path, we get XTx = x on {Tx <∞} and therefore

P y(T0 <∞) = Ey[1{Tx<∞}EXTx
[1{T0<∞}]] = P y(Tx <∞)P x(T0 <∞) = ϕ(x)P y(Tx <∞).

2. Because P x(Ty <∞) = 1, we get

P x(T0 <∞) = P x(T0 < Ty) + P x(T0 <∞, Ty < T0).

By strong Markov property, we have

Ex[1{Ty<T0}1{T0<∞}] = Ex[1{Ty<T0}EXTy
[1{T0<∞}]].

Since (Xt)t≥0 has continuous sample path, we get XTy = y (a.s.) and therefore

Ex[1{Ty<T0}1{T0<∞}] = P x(Ty < T0)P y(T0 <∞).

Hecen

ϕ(x) = P x(T0 <∞) = P x(T0 < Ty) + P x(Ty < T0)P y(T0 <∞) = P x(T0 < Ty) + P x(Ty < T0)ϕ(y).

Since
1 = P x(T0 < Ty) + P x(Ty < T0)

and
ϕ(x) < 1 ∀x > 0,

we have

P x(T0 < Ty) =
ϕ(x)− ϕ(y)

1− ϕ(y)
.

6.4 Exercise 6.26 (Feynman–Kac Formula)

Let v be a nonnegative function in C0(E). For every x ∈ E and every t ≥ 0, we set, for every ϕ ∈ B(E),

Q∗tϕ(x) ≡ Ex[ϕ(Xt) exp(−
∫ t

0

v(Xs)ds)].

1. Show that, for every ϕ ∈ B(E), and s, t ≥ 0, Q∗s+tϕ = Q∗t (Q
∗
sϕ).

2. After observing that

1− exp(−
∫ t

0

v(Xs)ds) =

∫ t

0

v(Xs) exp(−
∫ t

s

v(Xu)du)ds,

show that, for every ϕ ∈ B(E),

Qtϕ−Q∗tϕ =

∫ t

0

Qs(vQ
∗
t−sϕ)ds. (28)

3. Assume that ϕ ∈ D(L). Show that
d

dt
Q∗tϕ|t=0 = Lϕ− vϕ.
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Proof.

1. Fix s, t ≥ 0. Define Φ(s)(f) = ϕ(f(s)) exp(−
∫ s

0
v(f(u))du). By simple Markov property, we get

Q∗t (Q
∗
sϕ)(x) = Ex[EXt [ϕ(Xs) exp(−

∫ s

0

v(Xu)du)] exp(−
∫ t

0

v(Xu)du)]

= Ex[EXt [Φ(s)] exp(−
∫ t

0

v(Xu)du)]

= Ex[Ex[Φ(s)((Xt+r)r≥0) : Ft] exp(−
∫ t

0

v(Xu)du)]

= Ex[Φ(s)((Xt+r)r≥0) exp(−
∫ t

0

v(Xu)du)]

= Ex[ϕ(Xs+t) exp(−
∫ s

0

v(Xu+t)du) exp(−
∫ t

0

v(Xu)du)]

= Ex[ϕ(Xs+t) exp(−
∫ t+s

t

v(Xu)du) exp(−
∫ t

0

v(Xu)du)] = Q∗s+tϕ(x)

2. Observe that
d

ds
exp(−

∫ t

s

v(Xu)du) = v(Xs) exp(−
∫ t

s

v(Xu)du).

Then we have

1− exp(−
∫ t

0

v(Xs)ds) =

∫ t

0

v(Xs) exp(−
∫ t

s

v(Xu)du)ds.

By Fubini’s theorem and simple Markov property, we get

Qtϕ(x)−Q∗tϕ(x) = Ex[ϕ(Xt)]−Ex[ϕ(Xt) exp(−
∫ t

0

v(Xs)ds)]

= Ex[ϕ(Xt)(1− exp(−
∫ t

0

v(Xs)ds))]

= Ex[ϕ(Xt)×
∫ t

0

v(Xs) exp(−
∫ t

s

v(Xu)du)ds]

=

∫ t

0

Ex[ϕ(Xt)× v(Xs) exp(−
∫ t

s

v(Xu)du)]ds

=

∫ t

0

Ex[v(Xs)× ϕ(Xt) exp(−
∫ t−s

0

v(Xu+s)du)]ds

=

∫ t

0

Ex[v(Xs)Φ
(t−s)((Xs+r)r≥0)]ds

=

∫ t

0

Ex[v(Xs)Ex[Φ(t−s)((Xs+r)r≥0) : Fs]ds

=

∫ t

0

Ex[v(Xs)EXs [Φ(t−s)]ds

=

∫ t

0

Ex[v(Xs)EXs [ϕ(Xt−s) exp(−
∫ t−s

0

v(Xu)du)]ds

=

∫ t

0

Ex[v(Xs)Q
∗
t−sϕ(Xs)]ds

=

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds
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3. Note that

Qtϕ(x) = ϕ(x) +

∫ t

0

Qs(Lϕ)(x)ds

and Q∗0ϕ(x) = ϕ(x). By differentiating (32), we have

d

dt
Q∗tϕ(x)|t=0 = Lϕ(x)− v(x)ϕ(x).

6.5 Exercise 6.27 (Quasi left-continuity)

Throughout the exercise we fix the starting point x ∈ E. For every t > 0, we write Xt−(w) for the left-limit of the
sample path s 7→ Xs(w) at t.
Let (Tn)n≥1 be a strictly increasing sequence of stopping times, and T = limn→∞ Tn. We assume that there exists a
constant C <∞ such that T ≤ C. The goal of the exercise is to verify that XT = XT−, P x-a.s.

1. Let f ∈ D(L) and h = Lf . Show that, for every n ≥ 1,

Ex[f(XT ) | FTn ] = f(XTn) + Ex[

∫ T

Tn

h(Xs)ds | FTn ].

2. We recall from the theory of discrete time martingales that

Ex[f(XT ) | FTn ]
a.s.,L1

→ Ex[f(XT ) | F̃T ],

where

F̃T =

∞∨
n=1

FTn .

Infer from question (1) that

E[f(XT ) | F̃T ] = f(XT−).

3. Show that the conclusion of question (2) remains valid if we only assume that f ∈ C0(E), and infer that, for
every choice of f, g ∈ C0(E),

Ex[f(XT )g(XT−)] = Ex[f(XT−)g(XT−)].

Conclude that XT− = XT , P x-a.s.

Proof.

1. By Theorem 6.14, we see that (f(Xt)−
∫ t

0
h(Xs)ds)t≥0 is a martingale with respect to (Ft)t≥0. By Corollary

3.23, we have

Ex[f(XT )−
∫ T

0

h(Xs)ds | FTn ] = f(XTn)−
∫ Tn

0

h(Xs)ds

and so

Ex[f(XT ) | FTn ] = f(XTn) + Ex[

∫ T

Tn

h(Xs)ds | FTn ].

2. Note that
Ex[f(XT ) | F̃T ] ≤ ||f ||u <∞,

where ||f ||u = supx∈E |f(x)|. Then the discrete time martingale

(Ex[f(XT ) | FTn ])n≥0 = (Ex[Ex[f(XT ) | F̃T ] | FTn ])n≥0
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is closed and, hence,

f(XTn) + Ex[

∫ T

Tn

h(Xs)ds | FTn ] = Ex[f(XT ) | FTn ]
a.s.,L1

→ Ex[f(XT ) | F̃T ].

Note that limn→∞XTn = XT−, P x-a.s. and ||h||u < ∞. By Lebesgue’s dominated convergence theorem, we
get

||f(XT−)− f(XTn)−Ex[

∫ T

Tn

h(Xs)ds | FTn ]||L1

≤ ||f(XT−)− f(XTn)||L1 + ||Ex[

∫ T

Tn

h(Xs)ds | FTn ]||L1

≤ Ex[|f(XT−)− f(XTn)|] + Ex[

∫ T

Tn

|h(Xs)|ds]

≤ Ex[|f(XT−)− f(XTn)|] + ||h||uEx[T − Tn]
n→∞→ 0

and therefore E[f(XT ) | F̃T ] = f(XT−), P x-a.s.

3. First, we show that

E[f(XT ) | F̃T ] = f(XT−) ∀f ∈ C0(E).

By proposition 6.8 and proposition 6.12, we see that

D(L) = R ≡ {Rλf | f ∈ C0(E)}

is dense in C0(E). Given f ∈ C0(E) and ε > 0. Choose g ∈ D(L) such that ||f − g||u < ε. Then

E[g(XT ) | F̃T ] = g(XT−)

and, hence,

Ex[|E[f(XT ) | F̃T ]− f(XT−)|]

≤ Ex[|E[f(XT ) | F̃T ]−E[g(XT ) | F̃T ]|] + Ex[|g(XT−)− f(XT−)|]
≤ Ex[|g(XT )− f(XT )|] + Ex[|g(XT−)− f(XT−)|]
≤ 2||f − g||u ≤ 2ε.

By letting ε→ 0, we get

E[f(XT ) | F̃T ] = f(XT−).

Next, we show that XT− = XT . Let f, g ∈ C0(E). Then g(XT−) is F̃T -measurable and, hence,

Ex[f(XT )g(XT−)] = Ex[Ex[f(XT ) | F̃T ]g(XT−)] = Ex[f(XT−)g(XT−)].

Thus, we have
Ex[f(XT )g(XT−)] = Ex[f(XT−)g(XT−)] ∀f, g ∈ C0(E).

Hence
Ex[f(XT )g(XT−)] = Ex[f(XT−)g(XT−)] ∀f, g ∈ B(E)

and therefore
Ex[h(XT , XT−)] = Ex[h(XT−, XT−)] ∀h ∈ B(E × E).

For ε > 0, if we set h(x, y) = 1d(x,y)>ε(x, y), then

P x(d(XT , XT−) > ε) = Ex[h(XT , XT−)] = Ex[h(XT−, XT−)] = 0.

Therefore XT− = XT , P x-a.s.
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6.6 Exercise 6.28 (Killing operation)

In this exercise, we assume that X has continuous sample paths. Let A be a compact subset of E and

TA = inf{t ≥ 0 | Xt ∈ A}.

1. We set, for every t ≥ 0 and every bounded measurable function ϕ on E,

Q∗tϕ(x) = Ex[ϕ(Xt)1{t<TA}], ∀x ∈ E.

Verify that Q∗t+sϕ = Q∗t (Q
∗
sϕ), for every s, t > 0.

2. We set E = (E \ A)
⋃
{∆}, where ∆ is a point added to E \ A as an isolated point. For every bounded

measurable function ϕ on E and every t ≥ 0, we set

Qtϕ(x) =

{
Ex[ϕ(Xt)1{t<TA}] + P x(TA ≤ t)ϕ(∆), if x ∈ E \A
ϕ(∆), if x = ∆.

Verify that (Qt)t≥0 is a transition semigroup on E. (The proof of the measurability of the mapping (t, x) 7→
Qtϕ(x) will be omitted.)

3. Show that, under the probability measure P x, the process X defined by

Xt =

{
Xt, if t < TA

∆, if t ≥ TA.

is a Markov process with semigroup (Qt)t≥0, with respect to the canonical filtration of X.

4. We take it for granted that the semigroup (Qt)t≥0 is Feller, and we denote its generator by L. Let f ∈ D(L)
such that f and Lf vanish on an open set containing A. Write f for the restriction of f to E \A, and consider
f as a function on E by setting f(∆) = 0. Show that f ∈ D(L) and Lf(x) = Lf(x) for every x ∈ E \A.

Proof.

1. By the simple Markov property, we have

Q∗t (Q
∗
sϕ)(x) = Ex[Q∗sϕ(Xt)1{t<TA}]

= Ex[EXt [ϕ(Xs)1{s<TA}]1{t<TA}]

= Ex[Ex[ϕ(Xs+t)1{s<inf{r≥0|Xr+t∈A}} | Ft]1{t<TA}]

= Ex[ϕ(Xs+t)1{s<inf{r≥0|Xr+t∈A}}1{t<TA}]

= Ex[ϕ(Xs+t)1{t+s<TA}] = Q∗t+sϕ(x)

2. First, we show that x ∈ E 7→ Qtϕ(x) is measurable for every bounded measurable function ϕ on E and every
t ≥ 0. Observe that

{x ∈ E | Qtϕ(x) ∈ Γ} = ({Qtϕ ∈ Γ}
⋂

(E \A))
⋃{

{∆}, if ϕ(∆) ∈ Γ

∅, otherwise.

Define ϕ̃ : E 7→ R by

ϕ̃(x) =

{
ϕ(x), if x ∈ E \A
0, if x ∈ A.
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Then ϕ̃ is a bounded measurable function on E and, hence,

x ∈ E 7→ Ex[ϕ̃(Xt)1{t<TA}]

is measurabale on E. Note that
ϕ̃(Xt) = ϕ(Xt) in {t < TA}.

Then we see that
x ∈ E \A 7→ Ex[ϕ̃(Xt)1{t<TA}] = Ex[ϕ(Xt)1{t<TA}]

is measurable on E \A. Similarly, we see that

x ∈ E \A 7→ P x(TA ≤ t)

is measurable on E \A. Thus,

x ∈ E \A 7→ Ex[ϕ(Xt)1{t<TA}] + P x(TA ≤ t)ϕ(∆) = Qtϕ(x)

is measurable on E \A and, hence,

{x ∈ E | Qtϕ(x) ∈ Γ} = ({Qtϕ ∈ Γ}
⋂

(E \A))
⋃{

{∆}, if ϕ(∆) ∈ Γ

∅, otherwise.

is a meausbale set on E \A.
Next, we show that QtQsϕ = Qt+sϕ for all bounded meausable funciotn ϕ on E. It’s clear that

QtQsϕ(∆) = Qsϕ(∆) = ϕ(∆) = Qt+sϕ(∆).

Now, we suppose x ∈ E \A. By the simple Markov property, we get

QtQsϕ(x)

= Ex[Qsϕ(Xt)1{t<TA}] + P x(TA ≤ t)Qsϕ(∆)

= Ex[Qsϕ(Xt)1{t<TA}] + P x(TA ≤ t)ϕ(∆)

= Ex[(EXt [ϕ(Xs)1{s<TA}] + PXt(TA ≤ s)ϕ(∆))1{t<TA}] + P x(TA ≤ t)ϕ(∆)

= Ex[EXt [ϕ(Xs)1{s<TA}]1{t<TA}] + Ex[PXt(TA ≤ s)ϕ(∆)1{t<TA}] + P x(TA ≤ t)ϕ(∆)

= Ex[ϕ(Xs+t)1{s<inf{r≥0|Xr+t∈A}}1{t<TA}] + Ex[1{inf{r≥0|Xr+t∈A}≤s}ϕ(∆)1{t<TA}] + P x(TA ≤ t)ϕ(∆)

= Ex[ϕ(Xs+t)1{t+s<TA}] + ϕ(∆)Ex[(1{inf{r≥0|Xr+t∈A}≤s}1{t<TA} + 1{TA≤t})]

= Ex[ϕ(Xs+t)1{t+s<TA}] + P x(TA ≤ s+ t)ϕ(∆) = Qs+t(x).

3. For t ≥ 0 and a measurable set Γ of E such that ∆ 6∈ Γ,

{Xt ∈ Γ} = {Xt ∈ Γ}
⋂
{t < TA} ∈ Ft

and, hence, (Xt)t≥0 is a (Ft)t≥0-adapted process. Now, we show that (Xt)t≥0 is a (Ft)t≥0-Markov process on
E. Let ϕ ∈ B(E). Note that

ϕ(Xt) =

{
ϕ(Xt), if t < TA

ϕ(∆), if t ≥ TA.
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By the simple Markov property, we get

Ex[ϕ(Xt+s) | Fs]

= Ex[ϕ(Xt+s)1{t+s<TA} | Fs] + Ex[ϕ(Xt+s)1{t+s≥TA} | Fs]

= Ex[ϕ(Xt+s)1{t+s<TA} | Fs] + Ex[ϕ(∆)1{t+s≥TA} | Fs]

= Ex[ϕ(Xt+s)1{s<TA}1{t<inf{r≥0|Xs+r∈A}} | Fs] + Ex[ϕ(∆)(1{s<TA}1{t≥inf{r≥0|Xs+r∈A}} + 1{s≥TA}) | Fs]

= 1{s<TA}EXs [ϕ(Xt)1{t<TA}] + ϕ(∆)1{s<TA}PXs(t ≥ TA) + ϕ(∆)1{s≥TA}

= 1{s<TA}(EXs
[ϕ(Xt)1{t<TA}] + ϕ(∆)PXs

(t ≥ TA)) + ϕ(Xs)1{s≥TA}

= Qtϕ(Xs).

4. Let us show that

L f(x) =

{
Lf(x), if x ∈ E \A
0, if x = ∆.

Since ∆ is an isolated point of E \ A and f, Lf ∈ C0(E), we see that f, Lf ∈ C0(E). By thoerem 6.14, it

suffices to show that (f(Xt)−
∫ t

0
Lf(Xs)ds)t≥0 is a (Ft)t≥0-martingale under P x for all x ∈ E. If x = ∆, then

Xt = ∆ ∀t ≥ 0 P x-a.s.

and so
f(Xt) = Lf(Xt) = 0 ∀t ≥ 0 P x-a.s.

Thus (f(Xt)−
∫ t

0
Lf(Xs)ds)t≥0 is a zero process. Now, we suppose x ∈ E \ A. Since f and Lf vanish on an

open set containing A, we see that

f(Xt∧TA) = Lf(Xt∧TA) = 0 ∀t ≥ TA.

Thus, we have
f(Xt) = f(Xt∧TA) ∀t ≥ 0

and ∫ t

0

Lf(Xs)ds =

∫ t

0

Lf(Xs∧TA)ds =

∫ t∧TA

0

Lf(Xs)ds ∀t ≥ 0.

Since (f(Xt)−
∫ t

0
Lf(Xs)ds)t≥0 is a (Ft)t≥0-martingale under P x, we get

(f(Xt)−
∫ t

0

Lf(Xs)ds)t≥0 = (f(Xt∧TA)−
∫ t∧TA

0

Lf(Xs)ds)t≥0

is a (Ft)t≥0-martingale under P x. Thus f ∈ D(L) and

L f(x) = Lf(x) =

{
Lf(x), if x ∈ E \A
0, if x = ∆.

6.7 Exercise 6.29 (Dynkin’s formula)

1. Let g ∈ C0(E) and x ∈ E, and let T be a stopping time. Justify the equality

Ex[1{T<∞}e
−λT

∫ ∞
0

e−λtg(XT+t)dt] = Ex[1{T<∞}e
−λTRλg(XT )] (29)
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2. Infer that

Rλg(x) = Ex[

∫ T

0

e−λtg(Xt)dt] + Ex[1{T<∞}e
−λTRλg(XT )]. (30)

3. Show that, if f ∈ D(L),

f(x) = Ex[

∫ T

0

e−λt(λf − Lf)(Xt)dt] + Ex[1{T<∞}e
−λT f(XT )].

4. Assuming that Ex[T ] <∞, infer from the previous question that

Ex[

∫ T

0

Lf(Xt)dt] = Ex[f(XT )]− f(x). (Dynkin′sformula) (31)

How could this formula have been established more directly?

5. For every ε > 0, we set Tε,x = inf{t ≥ 0 | d(x,Xt) > ε}. Assume that Ex[Tε,x] <∞, for every sufficiently small
ε. Show that (still under the assumption f ∈ D(L)) one has

Lf(x) = lim
ε↓0

Ex[f(XTε,x)]− f(x)

Ex[Tε,x]
.

6. Show that the assumption Ex[Tε,x] <∞ for every sufficiently small ε holds if the point x is not absorbing, that
is, if there exists a t > 0 such that Qt(x, {x}) < 1. (Hint: Observe that there exists a nonnegative function
h ∈ C0(E) which vanishes on a ball centered at x and is such that Qth(x) > 0. Infer that one can choose α > 0
and η ∈ (0, 1) such that P x(Tα,x > nt) ≤ (1− η)n for every integer n ≥ 1.)

Proof.

1. By Fubini’s theorem and the strong Markov properpty, we get

Ex[1{T<∞}e
−λT

∫ ∞
0

e−λtg(XT+t)dt] =

∫ ∞
0

Ex[1{T<∞}e
−λT e−λtg(XT+t)]dt

=

∫ ∞
0

Ex[1{T<∞}e
−λT e−λtEx[g(XT+t) | FT ]]dt

=

∫ ∞
0

Ex[1{T<∞}e
−λT e−λtEXT [g(Xt)]]dt

=

∫ ∞
0

Ex[1{T<∞}e
−λT e−λtQtg(XT )]dt

= Ex[1{T<∞}e
−λT

∫ ∞
0

e−λtQtg(XT )dt]

= Ex[1{T<∞}e
−λTRλg(XT )].

2. By (29), we get

Ex[

∫ T

0

e−λtg(Xt)dt] + Ex[1{T<∞}e
−λTRλg(XT )]

= Ex[

∫ T

0

e−λtg(Xt)dt] + Ex[1{T<∞}e
−λT

∫ ∞
0

e−λtg(XT+t)dt]

= Ex[

∫ T

0

e−λtg(Xt)dt] + Ex[1{T<∞}

∫ ∞
T

e−λtg(Xt)dt]

= Ex[

∫ ∞
0

e−λtg(Xt)dt] =

∫ ∞
0

e−λtEx[g(Xt)]dt =

∫ ∞
0

e−λtQtg(x)dt = Rλg(x).
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3. Fix f ∈ D(L). By proposition 6.12, there exists g ∈ C0(E) such that f = Rλg ∈ D(L) and (λ− L)f = g. By
(30), we get

f(x) = Ex[

∫ T

0

e−λt(λf − Lf)(Xt)dt] + Ex[1{T<∞}e
−λT f(XT )].

4. Note that f, L(f) are bounded and Ex[T ] <∞. By Lebesgue’s dominated convergence theorem, we get

lim
λ→0

Ex[

∫ T

0

e−λt(λf − Lf)(Xt)dt]

= lim
λ→0

Ex[1{T<∞}

∫ T

0

e−λt(λf − Lf)(Xt)dt]

= Ex[1{T<∞} lim
λ→0

∫ T

0

e−λt(λf − Lf)(Xt)dt]

= Ex[1{T<∞}

∫ T

0

lim
λ→0

e−λt(λf − Lf)(Xt)dt]

= −Ex[

∫ T

0

Lf(Xt)dt]

and therefore

f(x) = lim
λ→0

Ex[

∫ T

0

e−λt(λf − Lf)(Xt)dt] + lim
λ→0

Ex[1{T<∞}e
−λT f(XT )] = −Ex[

∫ T

0

Lf(Xt)dt] + Ex[f(XT )].

Next, we prove (31) directly. By theorem 6.14, we see that (Mt)t≥0 ≡ (f(Xt)−
∫ t

0
Lf(Xs)ds)t≥0 is a (Ft)t≥0-

martingale. Let K > 0. Then (Mt∧K)t≥0 is a uniformly integrable martingale. By optional stopping theorem,
we have

Ex[f(XT∧K)−
∫ T∧K

0

Lf(Xs)ds] = f(x).

Since Ex[T ] <∞, we see that
lim
K→∞

f(XT∧K) = f(XT ) P x-a.s.

By Lebesgue’s dominated convergence theorem, we get

f(x) = Ex[f(XT )]−Ex[

∫ T

0

Lf(Xs)ds].

5. Fix f ∈ D(L). Given η > 0. Since Lf is continuous at x, there exists δ > 0 such that |Lf(y) − Lf(x)| < η
whenever d(y, x) < δ. For sufficiently small ε such that Ex[Tε,x] <∞ and ε < δ, we have

|Lf(Xt)− Lf(x)| < η ∀0 ≤ t ≤ Tε,x,P x-a.s.

and therefore

|
Ex[

∫ Tε,x
0

Lf(Xt)dt]

Ex[Tε,x]
− Lf(x)|

= |
Ex[

∫ Tε,x
0

Lf(Xt)− Lf(x)dt]

Ex[Tε,x]
|

=
Ex[

∫ Tε,x
0
|Lf(Xt)− Lf(x)|dt]
Ex[Tε,x]

<
Ex[Tε,x]

Ex[Tε,x]
η = η
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By (31), we get

lim
ε↓0

Ex[f(XTε,x)]− f(x)

Ex[Tε,x]
= lim

ε↓0

Ex[
∫ Tε,x

0
Lf(Xt)dt]

Ex[Tε,x]
= Lf(x).

6. Since Qt(x, {x}) < 1, there exists r > 0 such that Qt(x,B(x, r)) < 1. Then E \ B(x, r) is an open set
and Qt(x,E \ B(x, r)) > 0. Choose z ∈ E \ B(x, r). Then there exists R > 0 such that Qt(x, (E \
B(x, r))

⋂
B(z,R)) > 0. Set G = (E \ B(x, r))

⋂
B(z,R). Then G is an bounded open set and Qt1G(x) =

Qt(x,G) > 0. Set

fk(y) = (
d(y,E \G)

1 + d(y,E \G)
)

1
k ∀k ≥ 1.

Then
0 ≤ fk(y) ↑ 1G(y) ∀y ∈ E

and fk ∈ C0(E) for all k ≥ 1. Since (Qt)t≥0 is Feller,

Qtfk ∈ C0(E) ∀k ≥ 1

and
Qtfk(x)

k→∞→ Qt(x,G).

Choose large k such that Qtfk(x) > 0 and set h = fk. Then 0 < Qth(x) ≤ 1 and, hence, there exists 0 < α < r
and 0 < η < 1 such that

Qt(y,G) ≥ Qth(y) > η > 0 ∀y ∈ B(x, α).

Thus,
Qt(y,E \G) ≤ (1− η) ∀y ∈ B(x, α).

For n ≥ 1, by the simple Markov property, we get

P x(Tα,x > nt)

≤ Ex[1{Xt∈B(x,α)}...1{X(n−1)t∈B(x,α)}1{Xnt∈B(x,α)}]

= Ex[1{Xt∈B(x,α)}...1{X(n−1)t∈B(x,α)}EX(n−1)t
[1Xt∈B(x,α)]]

= Ex[1{Xt∈B(x,α)}...1{X(n−1)t∈B(x,α)}Qt(X(n−1)t, B(x, α))]

≤ Ex[1{Xt∈B(x,α)}...1{X(n−1)t∈B(x,α)}Qt(X(n−1)t, E \G)]

≤ Ex[1{Xt∈B(x,α)}...1{X(n−1)t∈B(x,α)}](1− η)

...

≤ (1− η)n.

Therefore

Ex[Tε,x] ≤ Ex[Tα,x] =

∞∑
n=1

∫ nt

(n−1)t

P x(Tα,x > t)dt ≤
∞∑
n=1

(1− η)n <∞

for all ε < α.
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Chapter 7
Brownian Motion and Partial Differential Equations

7.1 Exercise 7.24

Let B(0, 1) be the open ball of Rd (d ≥ 2), and B(0, 1)∗ ≡ B(0, 1) \ {0}. Let g be the continuous function defined on
∂B(0, 1)∗ by

g(x) =

{
0, if |x| = 1

1, if x = 0.

Prove that the Dirichlet problem in B(0, 1)∗ with boundary condition g has no solution.

Proof.
We prove this by contradiction. Assume that there exists a u ∈ C2(B(0, 1)∗)

⋂
C(B(0, 1)) such that{

∆u(x) = 0, if x ∈ B(0, 1)∗

limy∈B(0,1)∗→x∈∂B(0,1)∗ u(y) = g(x), if x ∈ ∂B(0, 1)∗.

By proposition 7.7, we see that
u(x) = Ex[g(BT )] ∀x ∈ B(0, 1)∗,

where T = U0 ∧ U1 and Ua = inf{t ≥ 0 | |Bt| = a}. By proposition 7.16, we see that

P x(U0 < U1) = lim
ε↓0

P x(Uε < U1) =

{
limε↓0

0−log(|x|)
0−log(ε) , if d = 2

limε↓0
1−|x|2−d
1−ε2−d , if d ≥ 3

= 0

and, hence,
u(x) = Ex[g(BT )] = Ex[g(BU1

)1{U1<U0}] = 0 ∀x ∈ B(0, 1)∗

which contradict to
lim

y∈B(0,1)∗→0
u(y) = 0 6= 1 = g(0).

7.2 Exercise 7.25 (Polar sets)

Throughout this exercise, we consider a nonempty compact subset K of Rd (d ≥ 2). We set TK = inf{t ≥ 0 | Tt ∈ K}.
We say that K is polar if there exists an x ∈ Kc such that P x(TK <∞) = 0.

1. Using the strong Markov property as in the proof of Proposition 7.7 (ii), prove that the function x 7→ P x(TK <
∞) is harmonic on every connected component of Kc.

2. From now on until question 4., we assume that K is polar. Prove that Kc is connected, and that the property
P x(TK <∞) = 0 holds for every x ∈ Kc. Hint: Observe that {x ∈ Kc | P x(TK <∞) = 0} is both open and
closed.

3. Let D be a bounded domain containing K, and D′ = D \K. Prove that any bounded harmonic function h on
D′ can be extended to a harmonic function on D. Does this remain true if the word “bounded” is replaced by
“positive”?
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4. Define

g(x) =

{
0, if x ∈ ∂D
1, if x ∈ ∂D′ \ ∂D.

Prove that the Dirichlet problem in D′ with boundary condition g has no solution. (Note that this generalizes
the result of Exercise 7.24.)

5. If α ∈ (0, d], we say that the compact set K has zero α-dimensional Hausdorff measure if, for every ε > 0, we
can find an integer Nε ≥ 1 and Nε open balls B(ck, rk), k = 1, 2, ..., Nε, such that

K ⊆
Nε⋃
k=1

B(ck, rk) and

Nε∑
k=1

rαk ≤ ε.

Prove that if d ≥ 3 and K has zero d− 2-dimensional Hausdorff measure then K is polar.

Proof.
We define TA = inf{t ≥ 0 | Bt ∈ A} for all closed subset A of Rd.

1. Define ϕ : Kc 7→ R by ϕ(x) = P x(TK < ∞). To show that ϕ is harmonic on every connected component of
Kc, it suffices to show that ϕ satisfies the mean value property for every x ∈ Kc. Fix x ∈ Kc. Let r > 0 such
that B(x, r) ⊆ Kc. Set Tx,r = inf{t ≥ 0 | |Bt − x| = r}. Then

Tx,r < TK , Tx,r <∞ P x-a.s.

By the strong Markov property, we get

ϕ(x) = Ex[1{TK<∞}] = Ex[EBTx,r
[1{TK<∞}]] = Ex[ϕ(BTx,r )].

Since the distribution of BTx,r under P x is the uniform probability measure σx,r on the ∂B(x, r), we have

ϕ(x) = Ex[ϕ(BTx,r )] =

∫
∂B(x,r)

ϕ(y)σx,r(dy).

2. First, we show that Kc is connected. We prove this by contradiction. Assume that Kc =
⋃m
n=1Gn, where Gn

is a connected component of Kc and 2 ≤ m ≤ ∞. Then

m⋃
n=1

∂Gn ⊆ K.

For x ∈ Gi, choose y ∈ Gj , where i 6= j, and r > 0 such that B(y, r) ⊆ Gj . By proposition 7.16, we get

P x(TK <∞) ≥ P x(T∂Gi <∞) ≥ P x(T
B(y,r)

<∞) > 0.

Thus, we get
P x(TK <∞) > 0 ∀x ∈ Kc

which contradict to K is polar.
Next, we show that

P x(TK <∞) = 0 ∀x ∈ Kc.

Since Kc is connected, it suffices to show that

Γ ≡ {x ∈ Kc | P x(TK <∞) = 0}

is both open and closed in Kc. Indeed, since K is polar, we see that Γ is nonempty and, hence, Γ = Kc. By
problem 1., we see that ϕ(z) = P z(TK <∞) is continuous in Kc and so

Γ = ϕ−1({0})
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is closed in Kc. Now, we show that Γ is open in Kc. Fix x ∈ Γ. We choose r > 0 such that B(x, r) ⊆ Kc.
Assume that there exists y ∈ B(x, r) such that P y(TK < ∞) > η for some η > 0. Since ϕ(z) = P z(TK < ∞)

is continuous in Kc, there exists exists r′ > 0 such that B(y, r′) ⊆ B(x, r) and

P z(TK <∞) >
η

2
∀z ∈ B(y, r′).

By the strong Markov property, we get

P x(TK <∞) ≥ P x(T
B(y,r′)

< TK <∞) = Ex[EBT
B(y,r)

[1{TK<∞}]] ≥
η

2
> 0

which is a contradiction. Thus, B(x, r) ⊆ Γ and therefore Γ is open in Kc.

3. (a) Choose a sequence of bounded domains {Γn} such that

K ⊆ Γn, Γn ⊆ Γn+1 ∀n ≥ 1, and Γn ↑ D.

Define u : D 7→ R by
u(x) = lim

n→∞
Ex[h(BT∂Γn

)].

Now we show that u satisfy {
∆u(x) = 0, if x ∈ D
u(x) = h(x), if x ∈ D′.

First, we show that u = h in D′ and u is well-defined.

i. Fix x ∈ D′. Choose large n such that x ∈ Γn. Since x ∈ Kc and K is polar, we get TK =∞ P x-(a.s.)
and so

BT∂Γn∧t ∈ D
′ ∀t ≥ 0 P x-(a.s.).

By Itô’s formula, we have

h(Bt∧T∂Γn
) = h(x) +

∫ t∧T∂Γn

0

5h(Bs) · dBs ∀t ≥ 0 P x-(a.s.)

and therefore (h(Bt∧T∂Γn
))t≥0 is a continuous local martingale. Since h is bounded inD′, (h(Bt∧T∂Γn

))t≥0

is a uniformly integrable martingale and, hence,

h(x) = Ex[h(BT∂Γn
)].

Therefore, if x ∈ Γm for some m ≥ 1, then

Ex[h(BT∂Γn
)] = h(x) ∀n ≥ m. (32)

Moreover,
u(x) = lim

n→∞
Ex[h(BT∂Γn

)] = h(x).

ii. Fix x ∈ K. We show that

Ex[h(BT∂Γn
)] = Ex[h(BT∂Γm

)] ∀n > m ≥ 1. (33)

Fix n > m. Then Γm ⊆ Γn. By the strong Markov property, we get

Ex[h(BT∂Γn
)] = Ex[EBT∂Γm

[h(BT∂Γn
)]].

By (32), we have
EBT∂Γm

[h(BT∂Γn
)] = h(BT∂Γm

) P x-(a.s.)

90



and so
Ex[h(BT∂Γn

)] = Ex[h(BT∂Γm
)].

Moveover,
lim
n→∞

Ex[h(BT∂Γn
)] = Ex[h(BT1

)]

and, hence, u is well-defined.

Next, we show that u is harmonic on D. It suffices to show that u satisfies the mean value property. Fix
x ∈ D and r > 0 such that B(x, r) ⊆ D. Choose n ≥ 1 such that B(x, r) ⊆ Γn. Set Tx,r = inf{t ≥ 0 |
|Bt − x| = r}. By (32) and (33), we have

Ez[h(BT∂Γn
)] = u(z) ∀z ∈ Γn.

By the strong Markov property, we get

u(x) = Ex[h(BT∂Γn
)] = Ex[EBTx,r

[h(BT∂Γn
)]] = Ex[u(BTx,r )].

Since the distribution of BTx,r under P x is the uniform probability measure σx,r on the ∂B(x, r), we have

u(x) =

∫
∂B(x,r)

u(y)σx,r(dy).

Therefore u is a harmonic function on D such that u(x) = h(x) for all x ∈ D′.
(b) Now we show that boundedness is necessary for this statement. Set K = {0}. By proposition 7.16, K is a

polar. Choose D = B(0, r) for some 0 < r < 1. Then D′ = B(0, r) \ {0}. Define Φ to be the fundamental
solution of Laplace equation. That is,

Φ(x) =

{
−1
2π log(|x|), if d = 2

1
n(n−2)wn

1
|x|d−2 , if d ≥ 3.

Then Φ is a unbounded, positive harmonic function on D′ and Φ can’t be extended to a harmonic function
on D.

4. We prove this by contradiction. Assume that there exists a u ∈ C2(D′)
⋂
C(D′) such that{

∆u(x) = 0, if x ∈ D′

limy∈D′→x∈∂D′ u(y) = g(x), if x ∈ ∂D′.

By proposition 7.7, we see that
u(x) = Ex[g(BT )] ∀x ∈ D′,

where T = T∂D ∧ T∂D′\∂D. Note that

T∂D′\∂D = TK P x-a.s. ∀x ∈ D′.

Fix x ∈ D′. Since TK =∞ P x-(a.s.), we see that T = T∂D P x-(a.s.) and, hence,

u(x) = Ex[g(BT )] = Ex[g(BT∂D )] = 0.

Thus, we see that
u(x) = 0 ∀x ∈ D′

which contradict to
lim

x∈D′→y∈∂D′\∂D
u(x) = 0 6= 1 = g(y) ∀y ∈ ∂D′ \ ∂D.
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5. To show that K is polar, we show that P x(TK <∞) = 0 for all x ∈ Kc. Fix x ∈ Kc. Then

hx,K ≡ inf{|x− z| | z ∈ K} > 0.

Given ε > 0. There exists Nε ≥ 1 and Nε open balls B(ck, rk), k = 1, 2, ..., Nε, such that

K ⊆
Nε⋃
k=1

B(ck, rk) and

Nε∑
k=1

rd−2
k ≤ ε.

Without loss of generality, we assume that

B(ck, rk)
⋂
K 6= ∅ ∀k = 1, 2, ..., Nε.

Choose c̃k ∈ B(ck, rk)
⋂
K and set r̃k = 2rk for all k = 1, 2, ..., Nε. Then

K ⊆
Nε⋃
k=1

B(c̃k, r̃k) and

Nε∑
k=1

r̃d−2
k ≤ 2d−2ε.

Set Tk = inf{t ≥ 0 | |Bt − c̃k| = r̃k} for all k = 1, 2, ..., Nε. Then

P x(TK <∞) ≤ P x(∧Nεk=1Tk <∞) ≤
Nε∑
k=1

P x(Tk <∞).

By proposition 7.16, we get

P x(Tk <∞) = (
r̃k

|x− c̃k|
)d−2 ∀k = 1, 2, ...., Nε

and, hence,

P x(TK <∞) ≤
Nε∑
k=1

(
r̃k

|x− c̃k|
)d−2 ≤

Nε∑
k=1

(
r̃k
hx,K

)d−2 <
2d−2

hd−2
x,K

ε.

By letting ε ↓ 0, we have P x(TK <∞) = 0.

7.3 Exercise 7.26

In this exercise, d ≥ 3. Let K be a compact subset of the open unit ball of Rd, and TK = inf{t ≥ 0 : Bt ∈ K}. We
assume that D := Rd \K is connected. We also consider a function g defined and continuous on K. The goal of the
exercise is to determine all functions u : D 7→ R that satisfy:
(P) u is bounded and continuous on D, harmonic on D, and u(y) = g(y) if y ∈ ∂D.
(This is the Dirichlet problem in D, but in contrast with Sect. 7.3 above, D is unbounded here.) We fix an increasing
sequence {Rn}n≥1 of reals, with R1 ≥ 1 and Rn ↑ ∞ as n→∞. For every n ≥ 1, we set Tn = inf{t ≥ 0 : |Bt| ≥ Rn}.

1. Suppose that u satisfies (P). Prove that, for every n ≥ 1 and every x ∈ D such that |x| < Rn,

u(x) = Ex[g(BTK )1{TK≤Tn}] + Ex[u(BTn)1{Tn≤TK}].

2. Show that, by replacing the sequence {Rn} with a subsequence if necessary, we may assume that there exists
a constant α ∈ R such that, for every x ∈ D,

lim
n→∞

Ex[u(BTn)] = α,

and that we then have
lim
|x|→∞

u(x) = α.
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3. Show that, for every x ∈ D,

u(x) = Ex[g(BTK )1{TK<∞}] + αP x(TK =∞).

4. Assume that D satisfies the exterior cone condition at every y ∈ ∂D (this is defined in the same way as when
D is bounded). Show that, for any choice of α ∈ R the formula of question 3. gives a solution of the problem
(P).

Proof.
We define TA := inf{t ≥ 0 : Bt ∈ A} for all closed subset A of Rd.

1. Fix n ≥ 1. Set continuous function

f(x) =

{
u(x), if y ∈ ∂B(0, Rn)

g(x), if y ∈ ∂K,

By using proposition 7.7 on the bounded domain B(0, Rn) \K, we get

u(x) = Ex[g(BTK )1{TK≤Tn}] + Ex[u(BTn)1{Tn≤TK}] ∀x ∈ D
⋂
B(0, Rn).

2. Denote M := supz∈D |u(z)|.

(a) We show that there exists 1 ≤ n1 < n2 < n3 < ... such that limk→∞Ex[u(BTnk )] converges uniformly on

every compact subset K ⊆ Rd for every x ∈ Rd. Denote

fn(x) := Ex[u(BTn)] ∀x ∈ B(0, Rn), n ≥ 1.

By the strong Markov property, we get fn is harmonic on B(0, Rn) for every n ≥ 1.
First, we show that {fn} is equicontinuous on B(p, r) for every p ∈ Qd and r ∈ Q+. Fix p ∈ Qd and
r ∈ Q+. Choose N ≥ 1 such that B(p, r) ⊆ B(0, RN ) and η := d(B(p, r), ∂B(0, RN )) > 0. By local
estimates for harmonic function, there exists C1 > 0 such that

|Dfn(x)| ≤ C1

(η/2)d+1
||fn||L1(B(x,η/2)) ≤

C1M

η/2
∀x ∈ B(p, r + η/2), n ≥ N.

Fix ε > 0. Let x, y ∈ B(p, r) such that |x− y| < η
2C1M

ε. Then

|fn(x)− fn(y)| ≤ sup
z∈B(p,r+η/2)

|Dfn(z)||x− y| < ε ∀n ≥ N.

Moreover, by Arzelà–Ascoli theorem, there exists a subsequence N ≤ n1 < n2 < n3 < ... such that fnk(x)

converges uniformly on B(p, r).
Next, by a standard diagonalization procedure, there exists 1 ≤ n1 < n2 < n3 < ... such that fnk(x) con-

verges uniformly on B(pi, ri) for each i ≥ 1, where Qd = {pi}i≥1 and Q+ = {ri}i≥1, and so, limk→∞ fnk(x)
uniformly on every compact subset K of Rd.

(b) We show that there exists α ∈ R such that

lim
k→∞

Ex[u(BTnk )] = α ∀x ∈ D.

Set
f(x) := lim

k→∞
fnk(x) ∀x ∈ Rd.

By the strong Markov property, we get∫
f(y)σx,r(dy) = lim

k→∞

∫
Ey[u(BTnk )]σx,r(dy) = lim

k→∞
Ex[u(BTnk )] = f(x)

and so f is a bounded, harmonic function. By Liouville’s theorem, we see that f = α for some α ∈ R.
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(c) We show that lim|x|→∞ u(x) = α. Fix ε > 0. Choose R > 0 such that 1
Rd−2 < ε. Let |x| ≥ R. Choose

large j ≥ 1 such that |x| ≤ Rnj ,
|Ex[u(BTnj )]− α| < ε,

and
R2−d
nj − |x|

2−d

R2−d
nj − 1

≤ |x|2−d + ε.

Set B := B(0, 1). Then

P x(TB < Tnj ) =
R2−d
nj − |x|

2−d

R2−d
nj − 1

≤ |x|2−d + ε ≤ R2−d + ε < 2ε

and so

|u(x)− α| = |Ex[g(BTK )1{TK≤Tnj }]−Ex[u(BTnj )1{T
j
>TK}] + Ex[u(BTnj )]− α|

≤MP x(Tnj > TK) +MP x(Tnj > TK) + ε ≤ (4M + 1)ε.

3. Since limt→∞ |Bt| =∞ and u(x)
|x|→∞→ α, we get Tnk <∞ for every k ≥ 1 (a.s.) and so

Ex[u(BTnk )1{Tnk≤TK}] = Ex[u(BTnk )1{Tnk≤TK<∞}]+Ex[u(BTnk )1{Tnk<∞}
⋂
{TK=∞}]

k→∞→ 0+αP x(TK =∞).

By problem 1 and problem 2, we have

u(x) = lim
k→∞

Ex[g(BTK )1{TK≤Tn}] + lim
k→∞

Ex[u(BTn)1{Tn≤TK}] = Ex[g(BTK )1{TK<∞}] + αP x(TK =∞).

4. It suffices to show that limx∈D→y u(x) = g(y) for every y ∈ ∂D. Denote M := supz∈K |g(z)|. Fix ε > 0 and
y ∈ ∂D. Choose δ > 0 such that

|g(z)− g(y)| < ε ∀z ∈ K
⋂
B(y, δ).

Choose η > 0 such that

P 0(sup
t≤η
|Bt| ≥

δ

2
) < ε.

Observe that
lim

x∈D→y
P x(TK > η) = 0

(This proof is the same as the proof of lemma 7.9) and so there exists δ′ > 0 such that

P x(TK > η) < ε ∀x ∈ D
⋂
B(y, δ′).

Let x ∈ D
⋂
B(y, δ′ ∧ δ

2 ). Then

P x(sup
t≤η
|Bt − x| ≥

δ

2
) = P 0(sup

t≤η
|Bt| ≥

δ

2
) < ε

and so

|u(x)− g(y)|
≤ Ex[|g(BTK )− g(y)|1{TK≤η}] + Ex[|g(BTK )− g(y)|1{η<TK<∞}] + (g(y) + α)P x(TK =∞)

≤ Ex[|g(BTK )− g(y)|1{TK≤η}1{supt≤η |Bt−x|< δ
2}

] + 2MP x(sup
t≤η
|Bt − x| ≥

δ

2
)+

Ex[|g(BTK )− g(y)|1{η<TK<∞}] + (g(y) + α)P x(TK =∞)

≤ ε+ 2Mε+ 2MP x(η < TK <∞) + (g(y) + α)P (TK =∞)

≤ ε+ 2Mε+ (3M + α)P x(TK > η) < ε+ 2Mε+ (3M + α)ε.
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7.4 Exercise 7.27

Let f : C 7→ C be a nonconstant holomorphic function. Use planar Brownian motion to prove that the set {f(x) : z ∈
C} is dense in C. (Much more is true, since Picard’s little theorem asserts that the complement of {f(x) : z ∈ C} in
C contains at most one point: This can also be proved using Brownian motion, but the argument is more involved)

Proof.
We prove this by contradiction. Assume that there exists z ∈ C and r > 0 such that B(z, r) ⊆ Gc, where G = {f(z) :
z ∈ C}. For any filtration (Gt)t≥0 and (Gt)t≥0-adapted process (At)t≥0 on C, we define a stopping time

TAF = inf{t ≥ 0 : At ∈ F}

for closed subset F of C. Let (Bt)t≥0 be a complex Brownian motion that starts from 0 under the probability measure

P 0. Since B(z, r) ⊆ Gc, we get

P 0(T
f(B)

B(z,r)
<∞) = 0.

By Theorem 7.18, there exists a complex Brownian motion Γ that starts from f(0) under P 0, such that

f(Bt) = ΓCt ∀t ≥ 0 P 0-(a.s.),

where

Ct =

∫ t

0

|f ′(Bs)|2ds ∀t ≥ 0.

By Proposition 7.16, we see that
P 0(TΓ

B(z,r)
<∞) = 1.

Since (Ct)t≥0 is a continuous increasing process and C∞ =∞ P 0-(a.s.), we have

P 0(T
f(B)

B(z,r)
<∞) = P 0(TΓC

B(z,r)
<∞) = 1

which is a contradiction.

7.5 Exercise 7.28 (Feynman–Kac formula for Brownian motion)

This is a continuation of Exercise 6.26 in Chap. 6. With the notation of this exercise, we assume that E = Rd and
Xt = Bt. Let v be a nonnegative function in C0(Rd), and assume that v is continuously differentiable with bounded
first derivatives. As in Exercise 6.26, set, for every ϕ ∈ B(Rd),

Q∗tϕ(x) = Ex[ϕ(Xt)e
−

∫ t
0
v(Xs)ds].

1. Using the formula derived in question 2. of Exercise 6.26, prove that, for every t > 0, and every ϕ ∈ C0(Rd),
the function Q∗tϕ is twice continuously differentiable on Rd, and that Q∗tϕ and its partial derivatives up to
order 2 belong to C0(Rd). Conclude that Q∗tϕ ∈ D(L).

2. Let ϕ ∈ C0(Rd) and set ut(x) = Q∗sϕ(x) for every t > 0 and x ∈ Rd. Using question 3. of Exercise 6.26, prove
that, for every x ∈ Rd, the function t 7→ ut(x) is continuously differentiable on (0,∞), and

∂

∂t
ut =

1

2
∆ut − vut.

Proof.

1. For f : Rd 7→ R, we set ||f || = supx∈Rd |f(x)|. Observe that we have the following facts:
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(a) Fix ϕ ∈ B(Rd) and t ≥ 0. By the definition of Q∗tϕ, we get

||Q∗tϕ|| ≤ ||ϕ||.

(b) Fix ϕ ∈ C0(Rd) and t ≥ 0. By question 2. of Exercise 6.26, we get

Q∗tϕ(x) = Qtϕ(x)−
∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds ∀x ∈ Rd,

where {Qt} is the semigroup of (Bt)t≥0.

(c) Fix f ∈ C0(Rd) and t ≥ 0. Since Qtf(x) = f ∗ ks(x), where

k(x) := (2π)−
d
2 e−

|x|2
2 and ks(x) := (s)−

d
2 k(

x√
s

),

we see that Qtf ∈ C∞(Rd), and that Qtf and all its partial derivatives belong to C0(Rd). Moreover, if
t > 0, then

||DjQtf || ≤
1√
t
||Djk||L1(Rd)||f ||. (34)

Indeed, since

DjQtf(x) = Dj(f ∗ kt)(x) =

∫
Rd

(2πt)−
d
2 e−

|x−y|2
2t (−x− y

t
)f(y)dy =

−1√
t
(((Djk)t) ∗ f)(x),

we have

||DjQtf(x)|| ≤ 1√
t
||((Djk)t) ∗ f || ≤

1√
t
||Djk||L1(Rd)||f ||.

(d) Let s > 0. Then

Diks(x) =
1√
s

(Dik)s(x) ∀x ∈ Rd.

(e) Let ϕ ∈ C0(Rd). Then
||Q∗rϕ|| ≤ ||ϕ||

for all r ≥ 0. We will show that x ∈ Rd 7→ Q∗rϕ(x) is continuous for all r ≥ 0. Therefore vQ∗rϕ ∈ C0(Rd),

Qs(vQ
∗
rϕ)(x) = ((vQ∗rϕ) ∗ ks)(x) ∈ C∞(Rd),

and that Qs(vQ
∗
rϕ)(x) and all its derivatives belong to C0(Rd) for all r, s ≥ 0. Moreover,∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds =

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds ∀x ∈ Rd.

(f) Note that
{h ∈ C2(Rd) | h and ∆h ∈ C0(Rd)} ⊆ D(L),

where L is the generator of B and D(L) is the domain of L.

Fix ϕ ∈ C0(Rd). To prove problem 1, it suffices to show that x ∈ Rd 7→
∫ t

0
Qs(vQ

∗
t−sϕ)(x)ds is twice

continuously differentiable, and that x ∈ Rd 7→
∫ t

0
Qs(vQ

∗
t−sϕ)(x)ds and its partial derivatives up to order 2

belong to C0(Rd).
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(a) We show that x ∈ Rd 7→
∫ t

0
Qs(vQ

∗
t−sϕ)(x)ds belong to C0(Rd). It suffices to show that x ∈ Rd 7→ Q∗rϕ(x)

is continuous for all r ≥ 0. Indeed, since

Qs(vQ
∗
t−sϕ) ∈ C0(Rd) ∀s ∈ [0, t]

and
||Qs(vQ∗t−sϕ)|| ≤ ||v||||ϕ|| ∀s ∈ [0, t],

we get

lim
x→a

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds =

∫ t

0

lim
x→a

Qs(vQ
∗
t−sϕ)(x)ds =

{∫ t
0
Qs(vQ

∗
t−sϕ)(a)ds, if a 6=∞

0, otherwise

and, hence, x ∈ Rd 7→
∫ t

0
Qs(vQ

∗
t−sϕ)(x)ds belong to C0(Rd).

Now we show that x ∈ Rd 7→ Q∗rϕ(x) is continuous for all r ≥ 0. Fix r ≥ 0. Observe that

Ex[ϕ(Xr)e
− r
n

∑n
i=1 v(X ir

n
)
]
n→∞→ Q∗rϕ(x) := Ex[ϕ(Xr)e

−
∫ r
0
v(Xs)ds] uniformly on Rd.

Indeed, since

Ex[ϕ(Xr)e
− r
n

∑n
i=1 v(X ir

n
)
] = E0[ϕ(Xr + x)e

− r
n

∑n
i=1 v(X ir

n
+x)

] ∀n ≥ 1,

Ex[ϕ(Xr)e
−

∫ r
0
v(Xs)ds] = E0[ϕ(Xr + x)e−

∫ r
0
v(Xs+x)ds] ∀n ≥ 1,

and
r

n

n∑
i=1

v(X ir
n

+ x)
n→∞→

∫ r

0

v(Xs + x)ds uniformly on Rd P 0-(a.s.),

we get

lim
n→∞

Ex[ϕ(Xr)e
− r
n

∑n
i=1 v(X ir

n
)
] = lim

n→∞
E0[ϕ(Xr + x)e

− r
n

∑n
i=1 v(X ir

n
+x)

]

= E0[ϕ(Xr + x)e−
∫ r
0
v(Xs+x)ds]

= Ex[ϕ(Xr)e
−

∫ r
0
v(Xs)ds] uniformly on Rd.

By Lebesgue’s dominated convergence theorem, we get

x ∈ Rd 7→ E0[ϕ(Xr + x)e
− r
n

∑n
i=1 v(X ir

n
+x)

] = Ex[ϕ(Xr)e
− r
n

∑n
i=1 v(X ir

n
)
]

is continuous for all n ≥ 1 and so

x ∈ Rd 7→ Ex[ϕ(Xr)e
−

∫ r
0
v(Xs)ds] = Q∗rϕ(x)

is continuous.

(b) We show that

Di

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds = Di

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds =

∫ t

0

((vQ∗t−sϕ) ∗ (Diks))(x)ds

for all x ∈ Rd and

x ∈ Rd 7→ Di

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds

belong to C0(Rd) for all i = 1, 2, ..., d. Since vQ∗t−sϕ is bounded, we have

Di((vQ
∗
t−sϕ) ∗ ks)(x) = ((vQ∗t−sϕ) ∗ (Diks))(x) ∀x ∈ Rd.
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Note that, if s ∈ [0, t], then

||(vQ∗t−sϕ) ∗ (Diks)|| ≤ ||vQ∗t−sϕ|| × ||Diks||L1(Rd)

≤ ||v||||ϕ|| × 1√
s
||(Dik)s||L1(Rd)

≤ ||v||||ϕ|| × 1√
s
||Dik||L1(Rd) ∈ L1([0, t]).

By mean value theorem and Lebesgue’s dominated convergence theorem, we have

Di

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds =

∫ t

0

Di((vQ
∗
t−sϕ) ∗ ks)(x)ds =

∫ t

0

((vQ∗t−sϕ) ∗ (Diks))(x)ds

for all x ∈ Rd. Given a ∈ Rd
⋃
{∞}. By Lebesgue’s dominated convergence theorem, we have

lim
x→a

Di

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds = lim
x→a

∫ t

0

((vQ∗t−sϕ) ∗ (Diks))(x)ds

=

∫ t

0

lim
x→a

((vQ∗t−sϕ) ∗ (Diks))(x)ds

=

∫ t

0

lim
x→a

Di((vQ
∗
t−sϕ) ∗ (ks))(x)ds

=

∫ t

0

lim
x→a

Di(Qs(vQ
∗
t−sϕ))(x)ds.

Since DiQs(vQ
∗
t−sϕ) ∈ C0(Rd), we see that∫ t

0

lim
x→a

Di(Qs(vQ
∗
t−sϕ))(x)ds =

{∫ t
0
Di(Qs(vQ

∗
t−sϕ))(a)ds, if a 6=∞

0, otherwise

=

{
Di

∫ t
0
(Qs(vQ

∗
t−sϕ))(a)ds, if a 6=∞

0, otherwise.

and so

x ∈ Rd 7→ Di

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds

belong to C0(Rd).
(c) We show that

Dj,i

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds = Dj,i

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds

for all x ∈ Rd and

x ∈ Rd 7→ Dj,i

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds

belong to C0(Rd) for all i, j = 1, 2, ..., d. Since we have shown that

DjQ
∗
rϕ(x) = DjQrϕ(x)−Dj

∫ r

0

Qs(vQ
∗
r−sϕ)(x)ds

and

DjQrϕ(x), Dj

∫ r

0

Qs(vQ
∗
r−sϕ)(x)ds ∈ C0(Rd)
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for all r ≥ 0 and j = 1, 2, ..., d, we see that

vQ∗rϕ ∈ C1(Rd) and Dj(vQ
∗
rϕ) ∈ C0(Rd).

Thus
∫ t

0
((Dj(vQ

∗
t−sϕ)) ∗ (Diks))(x)ds is well-defined.

Fix 0 < s < t. First, we show that

Dj,iQs(vQ
∗
t−sϕ)(x) = Dj((vQ

∗
t−s) ∗ (Diks))(x) = ((Dj(vQ

∗
t−sϕ)) ∗ (Diks))(x)

for all x ∈ Rd. Note that Diks ∈ L1(Rs) and

||Dj(vQ
∗
t−sϕ)|| = ||(Djv)Q∗t−sϕ+ vDjQ

∗
t−sϕ||

= ||(Djv)Q∗t−sϕ+ vDjQt−sϕ− vDj

∫ t−s

0

Qu(vQ∗t−s−uϕ)du||

= ||(Djv)Q∗t−sϕ+ vDjQt−sϕ− v
∫ t−s

0

DjQu(vQ∗t−s−uϕ)du||

= ||(Djv)Q∗t−sϕ+ vDjQt−sϕ− v
∫ t−s

0

Dj(vQ
∗
t−s−uϕ) ∗ (ku)du||

= ||(Djv)Q∗t−sϕ+ vDjQt−sϕ− v
∫ t−s

0

(vQ∗t−s−uϕ) ∗ (Djku)du||

≤ ||Djv||||ϕ||+ ||v||||DjQt−sϕ||+
∫ t

0

||(vQ∗t−s−uϕ) ∗ (Djku)||du

≤ ||Djv||||ϕ||+ ||v||||DjQt−sϕ||+
∫ t

0

||(vQ∗t−s−uϕ)||||(Djku)||L1(Rd)du

≤ ||Djv||||ϕ||+ ||v||||DjQt−sϕ||+
∫ t

0

||v||||ϕ|| 1√
u
||Djk||L1(Rd)du.

By (34), we get

||Dj(vQ
∗
t−sϕ)|| ≤ C(1 +

1√
t− s

),

where C is a constant independent of s and j (We may set C = max1≤i≤d Ci and so C is independent of
i). Fix x ∈ Rd. By mean value theorem, we get

|Diks(y)(
(vQ∗t−sϕ)(x− y + hej)− (vQ∗t−sϕ)(x− y + hej)

h
)| ≤ C(1 +

1√
t− s

)|Diks(y)| ∈ L1(Rd).

By Lebesgue’s convergence theorem, we have

Dj,iQs(vQ
∗
t−sϕ)(x) = Dj((vQ

∗
t−s) ∗ (Diks))(x) = ((Dj(vQ

∗
t−sϕ)) ∗ (Diks))(x).

Next, we show that

Dj,i

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds = Dj,i

∫ t

0

((vQ∗t−sϕ) ∗ ks)(x)ds =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds

for all x ∈ Rd. Note that we already have

Di

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds =

∫ t

0

((vQ∗t−sϕ) ∗ (Diks))(x)ds.

It suffices to show that

Dj

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds.
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Fix x ∈ Rd. If 0 < s < t, then

|
((vQ∗t−sϕ) ∗ (Diks))(x+ hej)− ((vQ∗t−sϕ) ∗ (Diks))(x)

h
|

≤ ||(Dj(vQ
∗
t−sϕ)) ∗ (Diks)||

≤ ||Dj(vQ
∗
t−sϕ)||||Diks||L1(Rd)

≤ C(1 +
1√
t− s

)
1√
s
||(Dik)s||L1(Rd)

= C(1 +
1√
t− s

)
1√
s
||Dik||L1(Rd) ∈ L1((0, t)).

By Lebesgue’s dominated convergence theorem, we have

DjDi

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds = Dj

∫ t

0

((vQ∗t−sϕ) ∗ (Diks))(x)ds =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds.

Given a ∈ Rd
⋃
{∞}. Note that

Dj,i

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds

=

∫ t

0

Dj,i((vQ
∗
t−sϕ)) ∗ (ks)(x)ds

=

∫ t

0

Dj,iQs(vQ
∗
t−sϕ)(x)ds

and
Dj,iQs(vQ

∗
t−sϕ) ∈ C0(Rd) ∀s ∈ (0, t).

By Lebesgue’s dominated convergence theorem, we have

lim
x→a

Dj,i

∫ t

0

Qs(vQ
∗
t−sϕ)(x)ds

=

∫ t

0

lim
x→a

Dj,iQs(vQ
∗
t−sϕ)(x)ds

=

{∫ t
0
Dj,iQs(vQ

∗
t−sϕ)(a)ds, if a 6=∞

0, otherwise.

=

{
Dj,i

∫ t
0
Qs(vQ

∗
t−sϕ)(a)ds, if a 6=∞

0, otherwise.

2. Since ut(x) = Qtϕ(x)−
∫ t

0
Qs(vQ

∗
t−sϕ)(x)ds, we show that

∂

∂t
(Qtϕ−

∫ t

0

Qs(vQ
∗
t−sϕ)ds) =

1

2
∆ut − vut

and

t ∈ [0,∞) 7→ 1

2
∆ut(x)− v(x)ut(x)

is continuous for all x ∈ Rd. Note that

ut(x) = Qtϕ−
∫ t

0

Qs(vQ
∗
t−sϕ)ds = Qtϕ−

∫ t

0

Qt−s(vQ
∗
sϕ)ds.
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By Theorem 7.1 and Leibniz integral rule, we get

∂

∂t
ut(x) =

∂

∂t
Qtϕ(x)− v(t)Q∗tϕ(x)−

∫ t

0

∂

∂t
Qt−s(vQ

∗
sϕ)ds.

=
1

2
∆Qtϕ(x)− v(t)Q∗tϕ(x)−

∫ t

0

1

2
∆Qt−s(vQ

∗
sϕ)ds.

Since we have shown that

Di,j

∫ t

0

Qt−s(vQ
∗
sϕ)ds = Di,j

∫ t

0

Qs(vQ
∗
t−sϕ)ds =

∫ t

0

Di,jQs(vQ
∗
t−sϕ)ds =

∫ t

0

Di,jQt−s(vQ
∗
sϕ)ds,

we get
∂

∂t
ut(x) =

1

2
∆(Qtϕ(x)−

∫ t

0

Qt−s(vQ
∗
sϕ)(x)ds)− vQ∗tϕ(x) =

1

2
∆ut(x)− v(x)ut(x).

Now we show that

t ∈ [0,∞) 7→ 1

2
∆ut(x)− v(x)ut(x)

is continuous for all x ∈ Rd. Fix x ∈ Rd. By Lebesgus’s dominated convergence theorem, we see that

t ∈ [0,∞) 7→ ut(x) = Q∗t (x) = Ex[ϕ(Xt)e
−

∫ t
0
v(Xs)ds]

is continuous. It remain to show that t ∈ [0,∞) 7→ ∆ut(x) is continuous. Let h > 0. Because

Di,iut(x) =

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds ∀t ≥ 0,

we get

|Di,iut+h(x)−Di,iut(x)|

≤ |
∫ t+h

0

((Dj(vQ
∗
t+h−sϕ)) ∗ (Diks))(x)ds−

∫ t

0

((Dj(vQ
∗
t+h−sϕ)) ∗ (Diks))(x)ds|

+ |
∫ t

0

((Dj(vQ
∗
t+h−sϕ)) ∗ (Diks))(x)ds−

∫ t

0

((Dj(vQ
∗
t−sϕ)) ∗ (Diks))(x)ds|.

≤
∫ t+h

t

||(Dj(vQ
∗
t+h−sϕ)) ∗ (Diks)||ds+

∫ t

0

|((Dj(vQ
∗
t+h−sϕ))− (Dj(vQ

∗
t−sϕ))) ∗ (Diks))(x)|ds

= α+ β.

Note that

α ≤
∫ t+h

t

||Dj(vQ
∗
t+h−sϕ)||||Diks||L1(Rd)ds

≤
∫ t+h

t

C(1 +
1√

t+ h− s
)

1√
s
||Dik||L1(Rd)ds

h→0→ 0.

Now we show that β
h→0→ 0. Fix 0 < s < t. First, we show that

|((Dj(vQ
∗
t+h−sϕ))− (Dj(vQ

∗
t−sϕ))) ∗ (Diks))(x)| h→0→ 0

for all x ∈ Rd. Note that

|((Dj(vQ
∗
t+h−sϕ))(x− y)− (Dj(vQ

∗
t−sϕ))(x− y))× (Diks))(y)|

≤ (||Dj(vQ
∗
t+h−sϕ)||+ ||Dj(vQ

∗
t−sϕ)||)|(Diks))(y)|

≤ (C(1 +
1

t+ h− s
) + C(1 +

1

t− s
))|(Diks))(y)|

≤ 2C(1 +
1

t− s
)|(Diks))(y)| ∈ L1(Rd).
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By Lebesgue convergence theorem, we have

|((Dj(vQ
∗
t+h−sϕ))− (Dj(vQ

∗
t−sϕ))) ∗ (Diks))(x)| h→0→ 0.

Next, we show that β
h→0→ 0. Note that

||((Dj(vQ
∗
t+h−sϕ))− (Dj(vQ

∗
t−sϕ))) ∗ (Diks))||

≤ ||((Dj(vQ
∗
t+h−sϕ))− (Dj(vQ

∗
t−sϕ)))|| × ||(Diks))||L1(Rd)

≤ (||((Dj(vQ
∗
t+h−sϕ))||+ ||(Dj(vQ

∗
t−sϕ)))||)× ||(Diks))||L1(Rd)

≤ (C(1 +
1√

t+ h− s
) + C(1 +

1√
t− s

))× 1√
s
||Dik||L1(Rd)

≤ 2C(1 +
1√
t− s

)× 1√
s
||Dik||L1(Rd) ∈ L1((0, t)).

By Lebesgue’s convergence theorem, we have β
h→0→ 0 and so t ∈ [0,∞) 7→ ∆ut(x) is right continuous. By using

similar way, we get t ∈ [0,∞) 7→ ∆ut(x) is left continuous and, hence, t ∈ [0,∞) 7→ ∆ut(x) is continuous which
complete the proof.

7.6 Exercise 7.29

In this exercise d = 2 and R2 is identified with the complex plane C. Let α ∈ (0, 2π), and consider the open cone

Cα = {reiθ : r > 0, θ ∈ (−α, α)}.

Set T := inf{t ≥ 0 : Bt 6∈ Cα}.

1. Show that the law of log |BT | under P 1 is the law of βinf{t≥0:|γt|=α}, where β and γ are two independent linear
Brownian motions started from 0.

2. Verify that, for every λ ∈ R,

E1[eiλ log |BT |] =
1

cosh(αλ)
.

Proof.

1. By the skew-product representation (Theorem 7.19), there exist two independent linear Brownian motions β
and γ that start from 0 under P 1 such that

Bt = eβHt+iγHt ∀t ≥ 0 P 1-(a.s.),

where Ht =
∫ t

0
1
|Bs|2 ds. Set S := inf{t ≥ 0 : |γt| = α}. Since (Ht)t≥0 is a continuous increasing process and

H∞ =∞ P 1-(a.s.), we have

HT = Hinf{t≥0:|γHt |=α} = inf{t ≥ 0 : |γt| = α} = S

and so log |BT | = βHT = βS = βinf{t≥0:|γt|=α} P 1-(a.s.).

2. Note that cosh(x) is an even function. By taking complex conjugate in both side of the identity, we may assume
that λ ≥ 0. By problem 1., we get

E1[eiλ log |BT |] = E1[eiλβS ] = E1[E1[eiλβS | σ(γt, t ≥ 0)]].
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Recall that, if X ∼ N (µ, σ), then the characteristic function of X is

E[eiξX ] = eiµξ−
σ2

2 ξ
2

.

Since β and γ are independent, we get

E1[E1[eiλβS | σ(γt, t ≥ 0)]] = E1[

∫
R
eiλy

1√
2πS

e−
y2

2S dy] = E1[e−
S
2 λ

2

].

Since (eλγt∧S−
λ2

2 (t∧S))t≥0 is an uniformly integrable martingale, we see that

E1[eλγS−
λ2

2 S ] = 1.

and so

eλαE1[e−
λ2

2 S1{γS=α}] + e−λαE1[e−
λ2

2 S1{γS=−α}] = 1.

By symmetry (−γ is a Brownian motion), we have

E1[e−
λ2

2 S1{γS=α}] = E1[e−
λ2

2 S1{γS=−α}] =
1

2
E1[e−

λ2

2 S ]

and, hence,

E1[e−
λ2

2 S ] =
1

cosh(αλ)
.

103



Chapter 8
Stochastic Differential Equations

8.1 Exercise 8.9 (Time change method)

We consider the stochastic differential equation

E(σ, 0) : dXt = σ(Xt)dBt

where the function σ : R 7→ R is continuous and there exist constants ε > 0 and M such that ε ≤ σ ≤M .

1. In this question and the next one, we assume that X solves E(σ, 0) with X0 = x, for every t ≥ 0,

At =

∫ t

0

σ(Xs)
2ds, τt = inf{s ≥ 0 | As > t}.

Justify the equalities

τt =

∫ t

0

1

σ(Xτr )
2
dr, At = inf{s ≥ 0 |

∫ s

0

1

σ(Xτr )
2
dr > t}.

2. Show that there exists a real Brownian motion β = (βt)t≥0 started from x such that, a.s. for every t ≥ 0,

Xt = βinf{s≥0|
∫ s
0
σ(βr)−2dr>t}.

3. Show that weak existence and weak uniqueness hold for E(σ, 0). (Hint: For the existence part, observe that,
if X is defined from a Brownian motion β by the formula of question 2., X is (in an appropriate filtration) a

continuous local martingale with quadratic variation 〈X,X〉t =
∫ t

0
σ(Xr)

2dr.

Proof.
For the sake of simplicity, sometimes we denote At and τt as A(t) and τ(t), respectively.

1. Since σ ∈ C(R) and A′(t) = σ(Xt)
2 ≥ ε2 > 0, we see that A(t) is strickly increasing and so A(t) is injective.

Because A(τ(t)) = t for all t ≥ 0, we see that τ(t) = A−1(t) and, hence, τ(t) ∈ C1(R). By setting s = τ(r), we
get r = A(s), dr = A′(s)ds, and so∫ t

0

1

σ(Xτ(r))2
dr =

∫ t

0

A′(τ(r))−1dr =

∫ τ(t)

0

A′(s)−1A′(s)ds = τ(t).

Moreover,

A(t) = inf{s ≥ 0 | s > A(t)} = inf{s ≥ 0 | τ(s) > t} = inf{s ≥ 0 |
∫ s

0

1

σ(Xτ(r))2
dr > t}.

2. Note that Xt = X0 +
∫ t

0
σ(Xs)dBs is a continuous local maringale and

〈X,X〉t =

∫ t

0

σ(Xs)
2ds = A(t) ∀t ≥ 0.

Since σ ≥ ε > 0, we see that 〈X,X〉∞ =∞ and, hence, there exists a Brownian motion β = (βt)t≥0 such that

Xt = β〈X,X〉t = βA(t) ∀t ≥ 0 (a.s.).

By problem 1., we get Xτ(r) = βr and

Xt = βA(t) = βinf{s≥0|
∫ s
0

1
σ(Xτr )2

dr>t} = βinf{s≥0|
∫ s
0
σ(βr)−2dr>t}.
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3. (a) We prove that weak existence hold for E(σ, 0). Fix x ∈ R. We show that there exists a solution
(X,B), (Ω,F , (Ct)t≥0,P ) of Ex(σ, 0). Let (Ω,F , (Ft)t≥0,P ) be a filtered probability space ((Ft)t≥0

is complete) and (βt)t≥0 is a (Ft)t≥0-Brownian motion such that β0 = x. Define

τ(t) :=

∫ t

0

σ(βr)
−2dr and A(t) := inf{s ≥ 0 | τ(s) > t}.

As the proof in probelm 1., we have τ(A(t)) = t for all t ≥ 0 and A(t), τ(t) ∈ C1(R). Moreover, since
A′(τ(t)) = τ ′(t)−1 = σ(βt)

2, we see that

A(t) =

∫ t

0

σ(βr)
2dr.

Set
Xt := βA(t) and Ct := FAt .

Then X is continuous. Because (Ft)t≥0 is complete, we see that (Ct)t≥0 is complete. Since At <∞ (a.s.)
and At is a (Ft)t≥0-stopping time for all t ≥ 0, we see that Xt is Ct-measuable for all t ≥ 0. Define

Yt :=

∫ t

0

σ(βs)
−1dβs, Bt := YAt .

Then B0 = 0 and Bt is Ct-measurable for all t ≥ 0. Now, we show that (Bt)t≥0 is a (Ct)t≥0-Brownian
motion such that B0 = 0. It suffices to show that (Bt)t≥0 is a (Ct)t≥0-martingale and 〈B,B〉t = t for all
t ≥ 0. Fix s ≤ r < t. Since Y is a (Ft)t≥0-continuous local martingale, Y At is a (Ft)t≥0-continuous local
martingale. Moreover, since

〈Y At , Y At〉∞ =

∫ At

0

σ(Xr)
−2dr ≤ δ2At ≤ δ−2M2t <∞,

we see that Y At is a uniform integrable (Ft)t≥0-martingale. By optional stopping theorem, we get

E[Br | Cs] = E[Y AtAr
| FAs ] = Y AtAs

= YAs = Bs

and so (Bt)t≥0 is a (Ct)t≥0-martingale. Moreover, since 〈Y, Y 〉t = τ(t), we get

〈B,B〉t = 〈Y, Y 〉At = τ(A(t)) = t ∀t ≥ 0

and, hence, (Bt)t≥0 is a (Ct)t≥0-Brownian motion. Observe that∫ t

0

σ(βAs)dYAs =

∫ At

0

σ(βs)dYs.

Indeed, since
n−1∑
i=0

σ(βA it
n

)(YA (i+1)t
n

− YA it
n

)
P→

∫ t

0

σ(βAs)dYAs as n→∞,

there exists {nk} such that

nk−1∑
i=0

σ(βA it
nk

)(YA (i+1)t
nk

− YA it
nk

)
(a.s.)→

∫ t

0

σ(βAs)dYAs as n→∞.

Because
nk−1∑
i=0

σ(βA it
nk

)(YA (i+1)t
nk

− YA it
nk

)
(a.s.)→

∫ At

0

σ(βs)dYs as n→∞,
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we have ∫ t

0

σ(βAs)dYAs =

∫ At

0

σ(βs)dYs (a.s.)

and so∫ t

0

σ(Xs)dBs =

∫ t

0

σ(βYAs )dYAs =

∫ At

0

σ(βs)dYs =

∫ At

0

σ(βs)σ(βs)
−1dβs = βAt − β0 = Xt − x.

Therefore (X,B), (Ω,F , (Ct)t≥0,P ) is a soltion of Ex(σ, 0).

(b) We prove that weak uniqueness hold for E(σ, 0). Fix x ∈ R. Let (X,B), (Ω,F , (Ft)t≥0,P ) be a soltion
of Ex(σ, 0). By problem 2., there exists a Borwnian motion (βt)t≥0 such that

Xt = βinf{s≥0|
∫ s
0
σ(βr)−2dr>t} (a.s.) ∀t ≥ 0.

Define Φt : C(R+,R) 7→ R by

Φt(b) := b(inf{s ≥ 0 |
∫ s

0

σ(b(r))−2dr > t}).

Let fi : R 7→ R be bounded measuable functions for i = 1, 2, ...,m and 0 ≤ t1 < t2 < ... < tm. Then

E[f1(Xt1)f2(Xt2)...fm(Xtm)] = E[f1(Φt1(β))f2(Φt2(β))...fm(Φtm(β))]

=

∫
f1(Φt1(w))f2(Φt2(w))...fm(Φtm(w))W (dw),

where W (dw) is the Wiener measure on C(R+,R). Thus, weak uniqueness hold for Ex(σ, 0).

8.2 Exercise 8.10

We consider the stochastic differential equation

E(σ, b) : dXt = σ(Xt)dBt + b(Xt)dt

where the function σ, b : R 7→ R are bounded and continuous, and such that
∫
R |b(x)|dx < ∞ and σ ≥ ε for some

ε > 0.

1. Let X be a solution of E(σ, b). Show that there exists a monotone increasing function F : R 7→ R, which is
also twice continuously differentiable, such that F (Xt). Give an explicit formula for F in terms of σ and b.

2. Show that the process Yt = F (Xt) solves a stochastic differential equation of the form dYt = σ′(Yt)dBt, with
a function σ′ to be determined.

3. Using the result of the preceding exercise, show that weak existence and weak uniqueness hold for E(σ, b).
Show that pathwise uniqueness also holds if σ is Lipschitz.

Proof.
For the sake of simplicity, we define ||f ||u := supx∈R |f(x)| and ||f ||L1(R) :=

∫
R |f(x)|dx.

1. Suppose F ∈ C2(R). By Itô’s formula, we get

F (Xt) = F (X0) +

∫ t

0

F ′(Xs)dXs +
1

2

∫ t

0

F ′′(Xs)d〈X,X〉s

= F (X0) +

∫ t

0

F ′(Xs)σ(Xs)dBs +

∫ t

0

F ′(Xs)b(Xs)ds+
1

2

∫ t

0

F ′′(Xs)σ(Xs)
2ds.
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Define F : R 7→ R by

F (x) :=

∫ x

0

e
−

∫ s
0

2b(r)

σ(r)2
dr
ds.

Note that

F ′(x) = e
−

∫ x
0

2b(r)

σ(r)2
dr
, F ′′(x) = −e−

∫ x
0

2b(r)

σ(r)2
dr 2b(x)

σ(x)2
,

and
2F ′(x)b(x) + F ′′(x)σ(x)2 = 0.

Then F is a monotone increasing, twice continuously differentiable function and

F (Xt) = F (X0) +

∫ t

0

F ′(Xs)σ(Xs)dBs

is a continuous local martingale. Since

E[〈F (X), F (X)〉t] = E[

∫ t

0

F ′(Xs)
2σ(Xs)

2ds] ≤ t× ||(F ′)2||u||σ2||u ≤ t× e
4
ε2

∫
R |b(r)|dr||σ2||u <∞,

we see that (F (Xt))t≥0 is a martingale.

2. Since F ′(x) > 0 for all x ∈ R, F is strictly increasing and so F−1 exist. Observe that

e
−

∫ s
0

2b(r)

σ(r)2
dr ≥ e−|

∫ s
0

2b(r)

σ(r)2
dr| ≥ e−

2
ε2
||b||L1(R) > 0.

Then

lim
x→±∞

F (x) = lim
x→±∞

∫ x

0

e
−

∫ s
0

2b(r)

σ(r)2
dr
ds = ±∞

and so the domain of F−1 is R. Moreover, since F ∈ C2(R), we see that F−1 ∈ C2(R). Set

H(x) := F ′(x)σ(x) and σ′(y) := H(F−1(y)).

Then
E′(σ′) : dYt = H(Xt)dBt = H(F−1(Yt))dBt = σ′(Yt)dBt.

3. First, we show that weak existence and weak uniqueness hold for E′(σ′). By Exercise 8.9, it suffices to show
that σ′ : R 7→ R is a continuous function and the exist ε,M > 0 such that δ ≤ σ′(y) ≤ M for all y ∈ R. Since
F−1 and H are continuous,

H(x) = e
−

∫ x
0

2b(s)

σ(s)2
ds
σ(x) ≥ e−|

∫ x
0

2b(s)

σ(s)2
ds|
σ(x) ≥ e−

2
ε2
||b||L1(R)ε := δ > 0 ∀x ∈ R,

and

H(x) = e
−

∫ x
0

2b(s)

σ(s)2
ds
σ(x) ≤ e|

∫ x
0

2b(s)

σ(s)2
ds|
σ(x) ≤ e

2
ε2
||b||L1(R) ||σ||u := M <∞ ∀x ∈ R,

we see that σ′(y) = H(F−1(y)) is continuous and δ ≤ σ′(x) ≤M for all x ∈ R. Thus, weak existence and weak
uniqueness hold for E′(σ′).
Now, we show that weak existence hold for E(σ, b). Fix x ∈ R. Set y = F (x). There exists a solution
(Y,B), (Ω,F , (Ft)t≥0,P ) of E′y(σ′). Define

Xt := F−1(Yt).

By Itô’s formula, we get

Xt = x+

∫ t

0

dF−1

dy
(Ys)dYs +

1

2

∫ t

0

d2F−1

dy2
(Ys)d〈Y, Y 〉s.
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By F−1(F (x)) = x, we get

dF−1

dy
(F (x))

dF

dx
(x) = 1 and

d2F−1

dy2
(F (x))(

dF

dx
(x))2 +

dF−1

dy
(F (x))

d2F

dx2
(x) = 0.

Thus,
dF−1

dy
(Ys) =

dF−1

dy
(F (Xs)) = (

dF

dx
(Xs))

−1 = e
∫Xs
0

2b(r)

σ(r)2
dr

and

d2F−1

dy2
(Ys) =

d2F−1

dy2
(F (Xs)) = (−dF

−1

dy
(F (Xs))

d2F

dx2
(Xs))× (

dF

dx
(Xs))

−2

= (−e
∫Xs
0

2b(r)

σ(r)2
dr ×−e−

∫Xs
0

2b(r)

σ(r)2
dr

(
2b(Xs)

σ(Xs)2
))× e2

∫Xs
0

2b(r)

σ(r)2
dr

=
2b(Xs)

σ(Xs)2
e

2
∫Xs
0

2b(r)

σ(r)2
dr
.

By

dYt = σ′(Yt)dBt = H(F−1(Yt))dBt = H(Xt)dBt = e
−

∫Xt
0

2b(r)

σ(r)2
dr
σ(Xt)dBt,

we get

Xt = x+

∫ t

0

dF−1

dy
(Ys)dYs +

1

2

∫ t

0

d2F−1

dy2
(Ys)d〈Y, Y 〉s

= x+

∫ t

0

e
∫Xs
0

2b(r)

σ(r)2
dr
e
−

∫Xs
0

2b(r)

σ(r)2
dr
σ(Xs)dBs +

1

2

∫ t

0

2b(Xs)

σ(Xs)2
e

2
∫Xs
0

2b(r)

σ(r)2
dr
e
−2

∫Xs
0

2b(r)

σ(r)2
dr
σ(Xs)

2ds

= x+

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds

and so (X,B), (Ω,F , (Ft)t≥0,P ) is a solution of Ex(σ, b).
Now, we show that weak uniqueness hold for E(σ, b). Fix x ∈ R and y = F (x). Let (X,B), (Ω,F , (Ft)t≥0,P )
and (X ′, B′), (Ω′,F ′, (F ′t)t≥0,P

′) be solutions of Ex(σ, b). By problem 2., we see that (Yt)t≥0 := (F (Xt))t≥0

and (Y ′t )t≥0 := (F (X ′t))t≥0 are solutions of E′y(σ′). Since weak uniqueness hold for E′(σ′) and F is injective,
we get

E[1Xt1∈Γ1
...1Xtk∈Γk ] = E[1Yt1∈F (Γ1)...1Ytk∈F (Γk)]

= E′[1Y ′t1∈F (Γ1)...1Y ′tk∈F (Γk)]

= E′[1X′t1∈Γ1
...1X′tk∈Γk ]

and, hence, weak uniqueness hold for E(σ, b).
Finally, we show that pathwise uniqueness hold for E(σ, b) whenever σ is Lipshitz. To show this, it suffices
to show that σ′ is Lipshitz. Indeed, by Theorem 8.3 and σ′ is Lipshitz, we see that pathwise uniquness hold
for E′(σ′). Let X and X ′ are solutions of E(σ, b) under (Ω,F , (F )t≥0,P ) and (F )t≥0-Brownian motion
(Bt)t≥0 started from 0 such that P (X0 = X ′0) = 1. By problem 2., we get (Yt)t≥0 := (F (Xt))t≥0 and
(Y ′t )t≥0 := (F (X ′t))t≥0 are solutions of E′(σ′) such that P (Y0 = Y ′0) = 1 and so

F (Xt) = Yt = Y ′t = F (X ′t) ∀t ≥ 0 P -(a.s.).

Since F is injective, we get
Xt = X ′t ∀t ≥ 0 P -(a.s.).

Now, we show that σ′(y) := H(F−1(y)) is Lipshitz whenever σ is Lipshitz. Choose C > 0 such that

|σ(x1)− σ(x2)| ≤ C|x1 − x2|.
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Fix real numbers y1 and y2. Set xi = F−1(yi) for i = 1, 2. Note that

||F ′||u ≤ e
2
ε2
||b||L1(R) <∞.

and

||F ′′||u ≤
2||b||u
ε2

e
2
ε2
||b||L1(R) <∞.

By mean value theorem, we get

|σ′(y1)− σ′(y2)| = |H(x1)−H(x2)| = |F ′(x1)σ(x1)− F ′(x2)σ(x2)|
≤ |F ′(x1)σ(x1)− F ′(x1)σ(x2)|+ |F ′(x1)σ(x2)− F ′(x2)σ(x2)|
≤ ||F ′||uC|x1 − x2|+ ||σ||u||F ′′||u|x1 − x2| := C ′|x1 − x2|,

where C ′ := (||F ′||uC) ∨ (||σ||u||F ′′||u). Because

|dF
−1

dy
(y)| = |F ′(F−1(y))| ≤ ||(F ′)−1||u = sup

x∈R
e
∫ x
0

2b(r)

σ(r)2
dr ≤ e

2
ε2
||b||L1(R) <∞,

we get

|x2 − x1| = |F−1(y2)− F−1(y1)|−1 ≤ ||dF
−1

dy
||u|y2 − y1|

and so
|σ′(y1)− σ′(y2)| ≤ C|y1 − y2|,

where C := ||dF
−1

dy ||uC
′.

8.3 Exercise 8.11

We suppose that, for every x ∈ R+, one can construct on the same filtered probability space (Ω,F , (F )t≥0,P ) a
process Xx taking nonnegative values, which solves the stochastic differential equation{

dXt =
√

2XtdBt

X0 = x.

and that the processes Xx are Markov processes with values in R+, with the same semigroup (Qt)t≥0, with respect
to the filtration (Ft)t≥0 (This is, of course, close to Theorem 8.6, which however cannot be applied directly because
the function

√
2x is not Lipschitz.)

1. We fix x ∈ R+, and real T > 0. We set, for every t ∈ [0, T ]

Mt = e−
λXxt

1+λ(T−t) .

Show that the process (Mt∧T ) is a martingale.

2. Show that (Qt)t≥0 is the semigroup of Feller’s branching diffusion (see the end of Chap. 6).

Proof.
Note that λ ≥ 0.
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1. Fix T > 0. By Itô’s formula, we get

Mt = e
−λXxt

1+λ(T−t)

= e
−λx

1+λ(T ) +

∫ t

0

−λ
1 + λ(T − s)

e
−λXxs

1+λ(T−s) dXx
s +

∫ t

0

−λ2Xx
s

(1 + λ(T − s))2
e
−λXxs

1+λ(T−s) ds

+
1

2

∫ t

0

λ2

(1 + λ(T − s))2
e
−λXxt

1+λ(T−t) d〈Xx, Xx〉s

= e
−λx

1+λ(T ) +

∫ t

0

−λ
1 + λ(T − s)

e
−λXxs

1+λ(T−s)
√

2Xx
s dBs +

∫ t

0

−λ2Xx
s

(1 + λ(T − s))2
e
−λXxs

1+λ(T−s) ds

+
1

2

∫ t

0

λ2

(1 + λ(T − s))2
e
−λXxt

1+λ(T−t) (2Xx
s )ds

= e
−λx

1+λ(T ) +

∫ t

0

−λ
1 + λ(T − s)

e
−λXxs

1+λ(T−s)
√

2Xx
s dBs

is a continuous local martingale. Since x ≤ ex for all x ≥ 0, we have

E[〈M,M〉T ] = E[

∫ T

0

λ22Xx
s

(1 + λ(T − s))2
e
−2λXxs

1+λ(T−s) ds] ≤ E[

∫ T

0

λ

1 + λ(T − s)
ds]

=

∫ T

0

λ

1 + λ(T − s)
ds <∞

and so (Mt∧T )t≥0 is an uniformly integrable martingale.

2. Fix T > 0. By optional stopping theorem and problem 1., we get

e
−λx

1+λT = E[M0∧T ] = E[M∞∧T ] = E[e−λX
x
T ] =

∫
e−λyQT (x, dy).

Thus, we have ∫
e−λyQt(x, dy) = e−xψt(λ),

where ψt(λ) := λ
1+λt and t > 0. By the last example in chapter 6., we see that (Qt)t≥0 is the semigroup of

Feller’s branching diffusion.

8.4 Exercise 8.12

We consider two sequences (σn)n≥1 and (bn)n≥1 of real functions defined on R. We assume that:

1. There exists a constant C > 0 such that |σn(x)| ∨ |bn(x)| ≤ C for every n ≥ 1 and x ∈ R.

2. There exists a constant K > 0 such that, for every n ≥ 1 and x, y ∈ R,

|σn(x)− σn(y)| ∨ |bn(x)− bn(y)| ≤ K|x− y|.

Let B be an (Ft)t≥0-Brownian motion and, for every n ≥ 1, let Xn be the unique adapted process satisfying

Xn
t =

∫ t

0

σn(Xn
s )dBs +

∫ t

0

bn(Xn
s )ds.

1. Let T > 0. Show that there exists a constant A > 0 such that, for every real M > 0 and for every n ≥ 1,

P (sup
t≤T
|Xn

t | ≥M) ≤ A

M2
.
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2. We assume that the sequences {σn} and {bn} converge uniformly on every compact subset of R to limiting
functions denoted by σ and b respectively. Justify the existence of an adapted process X = (Xt)t≥0 with
continuous sample paths, such that

Xt =

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds,

then show that there exists a constant A′ such that, for every real M > 0, for every t ∈ [0, T ] and n ≥ 1,

E[sup
s≤t
|Xn

s −Xs|2] ≤ 4(4 + T )K2

∫ t

0

E[|Xn
s −Xs|2]ds+

A′

M2

+ 4T (4 sup
|x|≤M

|σn(x)− σ(x)|2 + T sup
|x|≤M

|bn(x)− b(x)|2).

3. Infer from the preceding question that

lim
n→∞

E[sup
s≤T
|Xn

s −Xs|2] = 0.

Proof.

1. Fix T > 0 and M > 0. By Burkholder–Davis–Gundy inequalities (Theorem 5.16), we get

P (sup
t≤T
|Xn

t | ≥M) ≤ 1

M2
E[sup

t≤T
|Xn

t |2] ≤ C2

M2
E[〈Xn, Xn〉T ]

=
C2

M2
E[

∫ T

0

σn(Xn
s )2ds] ≤ C2TC

2

M2
:=

A

M2
,

where A = A(T ) := C2TC
2.

2. Since σn → σ and bn → b uniformly on every compact subset of R, we get

|σ(x)− σ(y)| ∨ |b(x)− b(y)| ≤ K|x− y| ∀x, y ∈ R,

and
|σ(x)| ∨ |b(x)| ≤ C ∀x ∈ R.

By Theorem 8.5, there exists an adapted process X = (Xt)t≥0 with continuous sample paths, such that

Xt =

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds ∀t ≥ 0 P -(a.s.).

By similar argument, we have

P (sup
t≤T
|Xt| ≥M) ≤ A(T )

M2
∀T > 0 and M > 0.

Fix T > 0, t ∈ [0, T ], and M > 0. Now, we show that

E[sup
s≤t
|Xn

s −Xs|2] ≤ 2× 42K2(4 + T )

∫ t

0

E[|Xn
s −Xs|2]ds+

(4 + T )T43C22A(T )

M2

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2)
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for all n ≥ 1. (Note that this upper bound is larger then the upper bound in problem 2. However, this doesn’t
affect of the proof of problem 3.) Let n ≥ 1. Then

E[sup
s≤t
|Xn

s −Xs|2] ≤ 4E[sup
s≤t
|
∫ s

0

σn(Xn
r )− σ(Xr)dBr|2] + 4E[sup

s≤t
|
∫ s

0

bn(Xn
r )− b(Xr)dr|2].

Since |σn(x)| ∨ |σ(x)| ≤ C for all x ∈ R, we see that (
∫ s

0
σn(Xn

r ) − σ(Xr)dBr)s≥0 is a martingale. By Doob’s
inequality in L2 and Hölder’s inequality, we have

4E[sup
s≤t
|
∫ s

0

σn(Xn
r )− σ(Xr)dBr|2] + 4E[sup

s≤t
|
∫ s

0

bn(Xn
r )− b(Xr)dr|2]

≤ 4× 4E[|
∫ t

0

σn(Xn
s )− σ(Xs)dBs|2] + 4TE[

∫ t

0

|bn(Xn
s )− b(Xs)|2ds]

≤ 4× 4E[

∫ t

0

|σn(Xn
s )− σ(Xs)|2ds] + 4TE[

∫ t

0

|bn(Xn
s )− b(Xs)|2ds]

≤ 4× 4E[

∫ t

0

|σn(Xn
s )− σ(Xs)|2ds1{sups≤T |Xns |≥M}

⋃
{sups≤T |Xs|≥M}]

+ 4× 4E[

∫ t

0

|σn(Xn
s )− σ(Xs)|2ds1{sups≤T |Xns |≤M}

⋂
{sups≤T |Xs|≤M}]

+ 4× TE[

∫ t

0

|bn(Xn
s )− b(Xs)|2ds1{sups≤T |Xns |≥M}

⋃
{sups≤T |Xs|≥M}]

+ 4× TE[

∫ t

0

|bn(Xn
s )− b(Xs)|2ds1{sups≤T |Xns |≤M}

⋂
{sups≤T |Xs|≤M}]

≤ 4× 4E[

∫ t

0

4|σn(Xn
s )− σn(Xs)|2ds1{sups≤T |Xns |≥M}

⋃
{sups≤T |Xs|≥M}]

+ 4× 4E[

∫ t

0

4|σn(Xs)− σ(Xs)|2ds1{sups≤T |Xns |≥M}
⋃
{sups≤T |Xs|≥M}]

+ 4× 4E[

∫ t

0

4|σn(Xn
s )− σn(Xs)|2ds1{sups≤T |Xns |≤M}

⋂
{sups≤T |Xs|≤M}]

+ 4× 4E[

∫ t

0

4|σn(Xs)− σ(Xs)|2ds1{sups≤T |Xns |≤M}
⋂
{sups≤T |Xs|≤M}]

+ 4× TE[

∫ t

0

4|bn(Xn
s )− bn(Xs)|2ds1{sups≤T |Xns |≥M}

⋃
{sups≤T |Xs|≥M}]

+ 4× TE[

∫ t

0

4|bn(Xs)− b(Xs)|2ds1{sups≤T |Xns |≥M}
⋃
{sups≤T |Xs|≥M}]

+ 4× TE[

∫ t

0

4|bn(Xn
s )− bn(Xs)|2ds1{sups≤T |Xns |≤M}

⋂
{sups≤T |Xs|≤M}]

+ 4× TE[

∫ t

0

4|bn(Xs)− b(Xs)|2ds1{sups≤T |Xns |≤M}
⋂
{sups≤T |Xs|≤M}]
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≤ 42E[

∫ t

0

4K2|Xn
s −Xs|2ds] + 43(T4C2P ({sup

s≤T
|Xn

s | ≥M}
⋃
{sup
s≤T
|Xs| ≥M}))

+ 42E[

∫ t

0

4K2|Xn
s −Xs|2ds] + 43T sup

|x|≤M
|σn(x)− σ(x)|2

+ 4TE[

∫ t

0

4K2|Xn
s −Xs|2ds] + 42T (T4C2P ({sup

s≤T
|Xn

s | ≥M}
⋃
{sup
s≤T
|Xs| ≥M}))

+ 4TE[

∫ t

0

4K2|Xn
s −Xs|2ds] + 42T × T sup

|x|≤M
|bn(x)− b(x)|2

= 2× 42K2(4 + T )

∫ t

0

E[|Xn
s −Xs|2]ds+ (4 + T )T43C2P ({sup

s≤T
|Xn

s | ≥M}
⋃
{sup
s≤T
|Xs| ≥M})

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2)

= 2× 42K2(4 + T )

∫ t

0

E[|Xn
s −Xs|2]ds+ (4 + T )T43C2(P (sup

s≤T
|Xn

s | ≥M) + P (sup
s≤T
|Xs| ≥M))

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2)

= 2× 42K2(4 + T )

∫ t

0

E[|Xn
s −Xs|2]ds+ (4 + T )T43C2(2

A(T )

M2
)

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2).

3. Fix M,T > 0 and n ≥ 1. By problem 2., we get

E[sup
s≤t
|Xn

s −Xs|2] ≤ 2× 42K2(4 + T )

∫ t

0

E[|Xn
s −Xs|2]ds+ (4 + T )T43C2(2

A(T )

M2
)

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2)

≤ 2× 42K2(4 + T )

∫ t

0

E[sup
r≤s
|Xn

r −Xr|2]ds+ (4 + T )T43C2(2
A(T )

M2
)

+ 4T (42 sup
|x|≤M

|σn(x)− σ(x)|2 + 4T sup
|x|≤M

|bn(x)− b(x)|2)

for all t ∈ [0, T ]. Define g : [0, T ] 7→ R+ by

g(t) := E[sup
s≤t
|Xn

s −Xs|2].

Set positive real numbers

a := (4 + T )T43C2(2
A(T )

M2
) + 4T (42 sup

|x|≤M
|σn(x)− σ(x)|2 + 4T sup

|x|≤M
|bn(x)− b(x)|2)

and
b := 2× 42K2(4 + T ).

Then we have

g(t) ≤ b
∫ t

0

g(s)ds+ a ∀t ∈ [0, T ].
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By Burkholder–Davis–Gundy inequalities (Theorem 5.16) and Hölder’s inequality, we get

|g(t)| = E[sup
s≤t
|Xn

s −Xs|2]

≤ 4E[sup
s≤t
|
∫ s

0

σn(Xn
r )− σ(Xr)dBr|2] + 4E[sup

s≤t
|
∫ s

0

bn(Xn
r )− b(Xr)dr|2]

≤ 4C2E[

∫ t

0

|σn(Xn
s )− σ(Xs)|2ds] + 4tE[|

∫ t

0

|bn(Xn
s )− b(Xs)|2ds]

≤ 4C2(4C2T ) + 4T (4C2T ) <∞

and so g is bounded. By Gronwall’s lemma (Lemma 8.4), we have

E[sup
s≤T
|Xn

s −Xs|2] = g(T ) ≤ a× ebT

≤ ((4 + T )T43C2(2
A(T )

M2
) + 4T (42 sup

|x|≤M
|σn(x)− σ(x)|2 + 4T sup

|x|≤M
|bn(x)− b(x)|2))

× exp(2× 42K2(4 + T )× T )

and so

lim sup
n→∞

E[sup
s≤T
|Xn

s −Xs|2] ≤ (4 + T )T43C2(2
A(T )

M2
) exp(2× 42K2(4 + T )× T ).

By letting M →∞, we get
lim
n→∞

E[sup
s≤T
|Xn

s −Xs|2] = 0.

8.5 Exercise 8.13

Let β = (βt)t≥0 be an (Ft)t≥0-Brownian motion started from 0. We fix two real parameters α and r, with α > 1
2

and r > 0. For every integer n ≥ 1 and every x ∈ R, we set

fn(x) =
1

|x|
∧ n.

1. Let n ≥ 1. Justify the existence of unique semimartingale Zn that solves the equation

Znt = r + βt + α

∫ t

0

fn(Zns )ds.

2. We set Sn := inf{t ≥ 0 | Znt ≤ 1
n}. After observing that, for t ≤ Sn+1 ∧ Sn,

Zn+1
t − Znt = α

∫ t

0

1

Zn+1
s

− 1

Zns
ds,

show that Zn+1
t = Znt for every t ∈ [0, Sn+1 ∧ Sn] (a.s.). Infer that Sn+1 ≥ Sn.

3. Let g be a twice continuously differentiable function on R. Show that the process

g(Znt )− g(r)−
∫ t

0

(αg′(Zns )fn(Zns ) +
1

2
g′′(Zns ))ds

is a continuous local martingale.
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4. We set h(x) = x1−2α for every x > 0. Show that, for every integer n ≥ 1, h(Znt∧Sn) is a bounded martingale.
Infer that, for every t′ ≥ 0, P (Sn ≤ t′)→ 0 as n→∞, and consequently Sn →∞ as n→∞ P -(a.s.).

5. Infer from questions 2. and 4. that there exists a unique positive semimartingale Z such that, for every t ≥ 0,

Zt = r + βt + α

∫ t

0

ds

Zs
.

6. Let d ≥ 3 and let B be a d-dimensional Brownian motion started from y ∈ Rd \ {0}. Show that Yt = |Bt|
satisfies the stochastic equation in question 5. (with an appropriate choice of β) with r = |y| and α = d−1

2 .
One may use the results of Exercise 5.33.

Proof.

1. To prove the existence of unique of soltion of

Enr : dZnt = dβt + αfn(Znt )dt

it suffices to show that fn is Lipschitz. Observe that, if |x|, |y| ≥ 1
n , and if |v| < 1

n ≤ |u|, then

|fn(x)− fn(y)| = | 1

|x|
− 1

|y|
| = | |x| − |y|

|x||y|
| ≤ n2|x− y|

and

|fn(v)− fn(u)| = n− 1

|u|
=
|u| − | ± 1

n |
1
n |u|

≤ n2(|u+
1

n
| ∧ |u− 1

n
|) ≤ n2|u− v|.

Hence fn is Lipschitz. By Theorem 8.5.(iii), there exists a unique solution of Enr .

2. Obsreve that, if 0 ≤ t ≤ Sn+1 ∧ Sn, then

Zkt = r + βt + α

∫ t

0

1

Zks
ds ∀k = n, n+ 1

and

Zn+1
t − Znt = α

∫ t

0

1

Zn+1
s

− 1

Zns
ds.

Then Znt ≥ 1
n > 0 and Zn+1

t ≥ 1
n+1 > 0 for every 0 ≤ t ≤ Sn ∧ Sn+1. Fix 0 ≤ t ≤ Sn ∧ Sn+1. Note that 1

a ≤
1
b

whenever 0 < b ≤ a. Suppose Zn+1
s ≥ Zns for all s ∈ [0, t]. Then

0 ≤ Zn+1
s − Zns = α

∫ s

0

1

Zn+1
r

− 1

Znr
dr ≤ 0

and so Zn+1
s = Zns for all s ∈ [0, t]. Similarly, if Zn+1

s ≤ Zns for all s ∈ [0, t], then Zn+1
s = Zns for all s ∈ [0, t].

Thus, we get
Zn+1
t = Znt ∀t ∈ [0, Sn ∧ Sn+1] P -(a.s.).

Now, we show that Sn+1 ≥ Sn for every n ≥ 1 by contradiction. Fix n ≥ 1. Aussme that P (Sn+1 < Sn) > 0.
Then

P (Sn+1 < Sn, Z
n+1
t = Znt ∀t ∈ [0, Sn ∧ Sn+1]) > 0.

Fix w ∈ {Sn+1 < Sn}
⋂
{Zn+1

t = Znt ∀t ∈ [0, Sn ∧ Sn+1]}. Set λ = Sn+1(w). Since Zn+1
t (w) = Znt (w) for all

0 ≤ t ≤ Sn(w) ∧ Sn+1(w) = Sn+1(w) = λ, we get

Znλ (w) = Zn+1
λ (w) =

1

n+ 1
<

1

n

and so Sn+1(w) = λ ≥ Sn(w) which contradict to Sn+1(w) < Sn(w). Therefore, we have

Sn+1 ≥ Sn ∀n ≥ 1 P -(a.s.).
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3. By Itô’s formula, we get

g(Znt ) = g(r) +

∫ t

0

g′(Zns )dZns +
1

2

∫ t

0

g′′(Zns )d〈Zn, Zn〉s

= g(r) +

∫ t

0

g′(Zns )dβs +

∫ t

0

g′(Zns )αfn(Zns )ds+
1

2

∫ t

0

g′′(Zns )ds

and so

g(Znt )− g(r)−
∫ t

0

(αg′(Zns )fn(Zns ) +
1

2
g′′(Zns ))ds =

∫ t

0

g′(Zns )dβs

is a continuous local martingale.

4. Fix large n ≥ 1 such that n > 1
r . Then Sn > 0. Since Znt∧Sn ≥

1
n for every t ≥ 0, we have fn(Znt∧Sn) = 1

Znt∧Sn
for every t ≥ 0 and so∫ t

0

1(s){s≤Sn}dZ
n
s =

∫ t

0

1(s){s≤Sn}dβs + α

∫ t

0

1

Zns∧Sn
1(s){s≤Sn}ds.

By Itô’s formula, we get

Mt := h(Znt∧Sn)

= r1−2α +

∫ t

0

(1− 2α)(Zns∧Sn)−2α1(s){s≤Sn}dZ
n
s

+
(−2α)(1− 2α)

2

∫ t

0

(Zns∧Sn)−2α−11(s){s≤Sn}d〈Z
n, Zn〉s

= r1−2α +

∫ t

0

(1− 2α)(Zns∧Sn)−2α1(s){s≤Sn}dβs +

∫ t

0

(1− 2α)(Zns∧Sn)−2αα
1

Zns∧Sn
1(s){s≤Sn}ds

+
(−2α)(1− 2α)

2

∫ t

0

(Zns∧Sn)−2α−11(s){s≤Sn}ds

= r1−2α +

∫ t

0

(1− 2α)(Zns∧Sn)−2α1(s){s≤Sn}dβs

is a continuous local martingale. Moreover, since

E[〈M,M〉t] = E[(1− 2α)2

∫ t

0

(Zns∧Sn)−4α1(s){s≤Sn}ds] ≤ (1− 2α)2 × t× n4α <∞

for every t ≥ 0, we see that (h(Znt∧Sn))t≥0 = (Mt)t≥0 is a martingale. Because

0 < Mt = h(Snt∧Sn) = (Znt∧Sn)1−2α ≤ n2α−1 <∞

for every t ≥ 0, we get (h(Znt∧Sn))t≥0 = (Mt)t≥0 is a bounded martingale.

Now, we show that limn→∞P (Sn ≤ t′) = 0 for every t′ ≥ 0. Fix t′ ≥ 0. Choose large n ≥ 1 such that n > 1
r .

Since (h(Znt∧Sn))t≥0 is a bounded martingale and h is positive, we get

r1−2α = h(r) = E[h(Zn0∧Sn)] = E[h(Znt′∧Sn)]

= P (Sn ≤ t′)n2α−1 + E[h(Znt′∧Sn)1t′<Sn ]

≥ P (Sn ≤ t′)n2α−1

and, hence,

P (Sn ≤ t′) ≤ (
1

nr
)2α−1 → 0 as n→∞.
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Moreover, since Sn+1 ≥ Sn for every n ≥ 1, S := limn→∞ Sn exist and so

P (S ≤ t) = lim
n→∞

P (Sn ≤ t) = 0

for every t ≥ 0. Thus,
lim
n→∞

Sn = S =∞ P -(a.s.).

5. (a) We show that there exists a positive semimartingale Z such that, for every t ≥ 0,

Zt = r + βt + α

∫ t

0

ds

Zs
.

By problem 2., we have

Zn+1
t = Znt ∀t ∈ [0, Sn] and n ≥ 1 outside a zero set N.

For the sake of simplicity, we redefine N as

N
⋃

(
⋂
n≥1

{Znt = r + βt + α

∫ t

0

fn(Zns )ds ∀t ≥ 0})c.

Define

Zt(w) =

{
Znt (w), if w 6∈ N and t ≤ Sn(w)

0, otherwise.

Then Z is a positive, adapted, continuous process. Fix w 6∈ N and t ≥ 0. Choose large n ≥ 1 such that
Sn(w) ≥ t. Then

Zt(w) = Znt (w) = r + βt(w) +

∫ t

0

fn(Zns (w))ds

= r + βt(w) +

∫ t

0

1

Zns (w)
ds

= r + βt(w) +

∫ t

0

1

Zs(w)
ds.

Thus, Z is a positive semimartingale such that

Zt = r + βt + α

∫ t

0

ds

Zs
∀t ≥ 0 P -(a.s.).

(b) Let Z and Z ′ are postive semimartingales such that

Zt = r + βt + α

∫ t

0

ds

Zs
∀t ≥ 0 P -(a.s.)

and

Z ′t = r + βt + α

∫ t

0

ds

Z ′s
∀t ≥ 0 P -(a.s.)

under filered probability space (Ω,F , (Ft)t≥0,P )and Brownian motion β started from 0. Note that 1
a ≤

1
b

whenever 0 < b ≤ a. Fix w ∈ Ω. Observe that, if there exists real number T > 0 such that

Zt ≥ Z ′t ∀t ∈ [0, T ],
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then

Zt = r + βt + α

∫ t

0

1

Zs
ds ≤ r + βt + α

∫ t

0

1

Z ′s
ds = Z ′t

for all t ∈ [0, T ] and so Zt = Z ′t for all t ∈ [0, T ]. Similarly, if there exists real number T > 0 such that

Zt ≤ Z ′t ∀t ∈ [0, T ],

then Zt = Z ′t for all t ∈ [0, T ]. This shows that

Zt = Z ′t ∀t ≥ 0 P -(a.s.).

6. Let (Ω,F , (Ft)t≥0,P ) be filered probability space and B be d-dimensional Brownian motion started from
y ∈ Rd \ {0}. By Exercise 5.33, we get

|Bt| = |y|+ βt +
d− 1

2

∫ t

0

ds

|Bs|
,

where

βt =

d∑
i=1

∫ t

0

Bis
|Bs|

dBis

is a (Ft)t≥0 1-dimensional Brownian motion started from 0. Thus, (|B|, β), (Ω,F , (F )t≥0,P ) is a solution of
the stochastic equation in question

Zt = |y|+ βt +
d− 1

2

∫ t

0

ds

Zs
.

8.6 Exercise 8.14 (Yamada–Watanabe uniqueness criterion)

The goal of the exercise is to get pathwise uniqueness for the one-dimensional stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt

when the functions σ and b satisfy the conditions

|σ(x)− σ(y)| ≤ K
√
|x− y|, |b(x)− b(y)| ≤ K|x− y|,

for every x, y ∈ R, with a constant K <∞.

1. Preliminary question. Let Z be a semimartingale such that 〈Z,Z〉t =
∫ t

0
hsds, where 0 ≤ hs ≤ C|Zs|, with a

constant C <∞. Show that, for every t ≥ 0,

lim
n→∞

nE[

∫ t

0

1{0<|Zs|≤ 1
n}
d〈Z,Z〉s] = 0.

(Hint: Observe that, E[
∫ t

0
|Zs|−11{0<|Zs|≤1}d〈Z,Z〉s] ≤ Ct <∞.)

2. Fir every n ≥ 1, let ϕn be the function defined on R by

ϕn(x) =


0, if |x| ≥ 1

n

2n(1− nx), if 0 ≤ x ≤ 1
n

2n(1 + nx), if −1
n ≤ x ≤ 0.

Also write Fn for the unique twice continuously differentiable function on R such that Fn(0) = F ′n(0) = 0 and
F ′′n = ϕn. Note that, for every x ∈ R, one has Fn(x) → |x| and F ′n(x) → sgn(x) := 1{x>0} − 1{x<0} when
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n→∞.
Let X and X ′ be two solutions of E(σ, b) on the same filtered probability space and with the same Brownian
motion B. Infer from question 1. that

lim
n→∞

E[

∫ t

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s] = 0.

3. Let T be a stopping time such that the semimartingale Xt∧T −X ′t∧T is bounded. By applying Itô’s formula to
Fn(Xt∧T −X ′t∧T ), show that

E[|Xt∧T −X ′t∧T |] = E[|X0 −X ′0|] + E[

∫ t∧T

0

(b(Xs)− b(X ′s))sgn(Xs −X ′s)ds].

4. Using Gronwall’s lemma, show that, if X0 = X ′0, one has Xt = X ′t for every t ≥ 0 (a.s.).

Proof.

1. Note that

E[

∫ t

0

|Zs|−11{0<|Zs|≤1}d〈Z,Z〉s] = E[

∫ t

0

|Zs|−11{0<|Zs|≤1}hsds]

= E[

∫ t

0

|Zs|−11{0<|Zs|≤1}1{hs>0}hsds]

≤ E[

∫ t

0

C

hs
1{0<|Zs|≤1}1{hs>0}hsds]

≤ Ct

and ∫ t

0

n1{0<|Zs|≤ 1
n}
d〈Z,Z〉s ≤

∫ t

0

|Zs|−11{0<|Zs|≤1}d〈Z,Z〉s ∀n ≥ 1.

By Lebesgue’s dominated convergence theorem, we get

lim
n→∞

E[

∫ t

0

n1{0<|Zs|≤ 1
n}
d〈Z,Z〉s] = E[ lim

n→∞

∫ t

0

n1{0<|Zs|≤ 1
n}
d〈Z,Z〉s]

= E[ lim
n→∞

∫ t

0

n1{0<|Zs|≤ 1
n}
hsds]

≤ E[ lim
n→∞

∫ t

0

n1{0<|Zs|≤ 1
n}
C|Zs|ds]

≤ E[ lim
n→∞

∫ t

0

n1{0<|Zs|≤ 1
n}
C

1

n
ds]

= E[ lim
n→∞

∫ t

0

1{0<|Zs|≤ 1
n}
Cds]

= E[

∫ t

0

lim
n→∞

1{0<|Zs|≤ 1
n}
Cds] = 0

2. Since ϕn ∈ C(R), we get Fn ∈ C2(R). Note that

F ′n(x) =

∫ x

0

ϕn(t)dt =

{
(2nx− n2x)1[0, 1

n )(x) + 1[ 1
n ,∞)(x), if x ≥ 0

(2nx+ n2x)1(− 1
n ,0](x)− 1(−∞,− 1

n ](x), if x ≤ 0
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and

Fn(x) =

∫ x

0

F ′n(t)dt =

{
(x− 1

n )1[ 1
n ,∞)(x) + (n(x ∧ 1

n )2 − n2

3 (x ∧ 1
n )3), if x ≥ 0

−(x+ 1
n )1(−∞,− 1

n ](x) + (n(x ∨ −1
n )2 + n2

3 (x ∨ −1
n )3), if x ≤ 0.

Then F ′n(x) → sgn(x) and Fn(x) → |x| as n → ∞. Indeed, if x > 0 and y < 0, choose large N ≥ 1 such that
1
N ≤ x and − 1

N ≥ y, we have

Fn(x) = x− 1

n
+ (n

1

n2
− n2

3

1

n3
) = x− 1

3n
∀n ≥ N,

Fn(y) = −y − 1

n
+ (n

1

n2
− n2

3

1

n3
) = −y − 1

3n
∀n ≥ N

and so Fn(x)→ x and Fn(y)→ −y as n→∞.
Let X and X ′ be two solutions of E(σ, b) on the same filtered probability space (Ω,F , (Ft)t≥0,P ) and with
the same Brownian motion (Bt)t≥0. Then

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds

and

X ′t = X ′0 +

∫ t

0

σ(X ′s)dBs +

∫ t

0

b(X ′s)ds

for all t ≥ 0. Set Zt := Xt −X ′t and ht := (σ(Xt)− σ(X ′t))
2 for all t ≥ 0. Then

〈Z,Z〉t =

∫ t

0

hsds

and
0 ≤ ht ≤ K2|Xt −X ′t| = K2|Zt|

for all t ≥ 0. By problem 1., we get

lim
n→∞

E[

∫ t

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s]

= lim
n→∞

E[

∫ t

0

ϕn(Xs −X ′s)10<|Xs−X′s|≤ 1
n

(s)d〈X −X ′, X −X ′〉s]

≤ lim
n→∞

E[

∫ t

0

(2n+ 2n2|Zs|)10<|Zs|≤ 1
n

(s)d〈Z,Z〉s]

≤ lim
n→∞

2nE[

∫ t

0

10<|Zs|≤ 1
n

(s)d〈Z,Z〉s] + lim
n→∞

E[

∫ t

0

2n2 × 1

n
10<|Zs|≤ 1

n
(s)d〈Z,Z〉s] = 0.

3. Fix M > 0. Define TM := inf{t ≥ 0 | |Xt|+ |X ′t| ≥ M}. For the sake of simplicity, we denote T as TM . Then
(Xt∧T −X ′t∧T )t≥0 is a bounded martingale. Fix t ≥ 0. By Itô’s formula, we get

Fn(Xt∧T −X ′t∧T ) = Fn(X0 −X ′0)

+

∫ t∧T

0

F ′n(Xs −X ′s)(σ(Xs)− σ(X ′s))dBs(:= Yt)

+

∫ t∧T

0

F ′n(Xs −X ′s)(b(Xs)− b(X ′s))ds

+
1

2

∫ t∧T

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s.
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Since

E[〈Y, Y 〉t] = E[

∫ t∧T

0

|F ′n(Xs −X ′s)|2|σ(Xs)− σ(X ′s)|2ds]

≤ E[

∫ t∧T

0

1×K2|Xs −X ′s|ds] (|F ′n(x)| ≤ 1)

≤ K22Mt <∞ ∀t ≥ 0,

we see that Y is a martingale and so

E[Fn(Xt∧T −X ′t∧T )] = E[Fn(X0 −X ′0)]

+ E[

∫ t∧T

0

F ′n(Xs −X ′s)(b(Xs)− b(X ′s))ds]

+ E[
1

2

∫ t∧T

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s].

Note that |Xs∧T | ∨ |X ′s∧T | ≤M , sup|x|≤M |b(x)| <∞, and Fn(x) are uniformly bounded over [−2M, 2M ]. By
Lebesgue’s domainated theorem, we get

E[|Xt∧T −X ′t∧T |] = lim
n→∞

E[Fn(Xt∧T −X ′t∧T )]

= lim
n→∞

E[Fn(X0 −X ′0)]

+ lim
n→∞

E[

∫ t∧T

0

F ′n(Xs −X ′s)(b(Xs)− b(X ′s))ds]

+ lim
n→∞

E[
1

2

∫ t∧T

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s]

= E[|X0 −X ′0|] + E[

∫ t∧T

0

sgn(Xs −X ′s)(b(Xs)− b(X ′s))ds]

+ lim
n→∞

E[
1

2

∫ t∧T

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s].

By problem 2., we get

lim
n→∞

E[
1

2

∫ t∧T

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s] ≤ lim
n→∞

E[
1

2

∫ t

0

ϕn(Xs −X ′s)d〈X −X ′, X −X ′〉s] = 0

and so

E[|Xt∧T −X ′t∧T |] = E[|X0 −X ′0|] + E[

∫ t∧T

0

sgn(Xs −X ′s)(b(Xs)− b(X ′s))ds].

4. Fix t0 ≥ 0, t0 ≤ L, and M > 0. Define g : [0, L] 7→ R+ by

g(t) := E[|Xt∧TM −X ′t∧TM |].

Then 0 ≤ g(t) ≤ 2M . By problem 3., we get

g(t) ≤ |E[

∫ t∧TM

0

sgn(Xs −X ′s)(b(Xs)− b(X ′s))ds]|

≤ E[

∫ t

0

|sgn(Xs∧TM −X ′s∧TM )(b(Xs∧TM )− b(X ′s∧TM ))|ds]

≤ E[

∫ t

0

K2|Xs∧TM −X ′s∧TM |ds] = K2

∫ t

0

g(s)ds.
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By Gronwall’s lemma, we get g = 0 and so

E[|Xt0∧TM −X ′t0∧TM |] = 0.

Bt letting M → ∞, we get E[|Xt0 −X ′t0 |] = 0 and, hence, Xt0 = X ′t0 (a.s.). Since X and X’ have continuous
sample path, we get

Xt = X ′t ∀t ≥ 0 P -(a.s.).
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Chapter 9
Local Times

9.1 Exercise 9.16

Let f : R 7→ R be a monotone increasing function, and assume that f is a difference of convex functions. Let X be
a semimartingale and consider the semimartingale Yt = f(Xt). Prove that, for every a ∈ R,

Lat (Y ) = f ′+(a)Lat (X) and La−t (Y ) = f ′−(a)La−t (X).

In particular, if X is a Brownian motion, the local times of f(X) are continuous in the space variable if and only if
f is continuously differentiable.

Remark.
Note that (La(X), a ∈ R) is the càdlàg modification of local time of X. The formula

Lat (Y ) = f ′+(a)Lat (X)

doesn’t hold for all increasing function f = ϕ1−ϕ2, where ϕi is a convex function on R. For example, if ϕ1(x) = 2ex

and ϕ2(x) = ex, and if X is a continuous semimartingale such that P (Lat (X) 6= 0) > 0 for some a < 0 and t > 0,
then f(x) = ex and so

Lat (Y ) = Lat (f(X)) = 0 6= eaLat (X) = f ′(a)Lat (X)

on {Lat (X) 6= 0}.
To avoid this problem, we restatement Exercise 9.16 as following: Let f : R 7→ R be a strictly increasing function such
that f = ϕ1 − ϕ2, where ϕi is a convex function on R. Let X be a semimartingale and consider the semimartingale
Yt = f(Xt). Prove that, a.s.

L
f(a)
t (Y ) = f ′+(a)Lat (X) and L

f(a)−
t (Y ) = f ′−(a)La−t (X) ∀a ∈ R, t ≥ 0

In particular, if X is a Brownian motion and (u, v) ⊆ R(f) := {a ∈ R | f(a)}, we have, a.s. a ∈ (u, v) 7→ La(Y ) is
continuous if and only if a ∈ (u, v) 7→ f(a) is continuously differentiable.

Proof.

1. Since f = ϕ1 − ϕ2, we see that f is continuous and f ′+ is right continuous. We show that, a.s.

L
f(a)
t (Y ) = f ′+(a)Lat (X) ∀t > 0, a ∈ R.

To show this, it suffices to show that P (L
f(a)
t (Y ) = f ′+(a)Lat (X)) = 1 for all t ≥ 0 and a ∈ R. Indeed, since

a ∈ R 7→ f ′+(a)Lat (X) is right continuous for t ≥ 0 and

Ea := {Lf(a)
t (Y ) = f ′+(a)Lat (X) ∀t ≥ 0} =

⋂
s∈Q+

Ea,s ∀a ∈ R,

where
Ea,s := {Lf(a)

s (Y ) = f ′+(a)Las(X)} ∀a ∈ R, s > 0,

we see that
P (L

f(a)
t (Y ) = f ′+(a)Lat (X) ∀a ∈ R, t ≥ 0) = P (

⋂
q∈Q

Eq) = 1.

Fix a ∈ R and t > 0. Now, we show that P (L
f(a)
t (Y ) = f ′+(a)Lat (X)) = 1. By generalized Itô formula, we see

that
d〈Y, Y 〉s = f ′−(Xs)

2d〈X,X〉s.
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By Proposition 9.9 and Corollary 9.7, we have, a.s.

L
f(a)
t (Y ) = lim

ε→0

1

ε

∫ t

0

1{f(a)≤f(Xs)≤f(a)+ε}f
′
−(Xs)

2d〈X,X〉s

= lim
ε→0

1

ε

∫
R

1{f(a)≤f(b)≤f(a)+ε}f
′
−(b)2Lbt(X)db

= lim
ε→0

1

ε

∫
R

1{f(a)≤f(b)≤f(a)+ε}f
′
+(b)2Lbt(X)db.

We show that, a.s.

lim
ε→0

1

ε

∫
R

1{f(a)≤f(b)≤f(a)+ε}f
′
+(b)2Lbt(X)db = f ′+(a)Lat (X).

Fix w. Given η > 0. Choose h > 0 such that

|f ′+(a)Lat (X)− f ′+(b)Lbt(X)| < η

whenever a ≤ b < a+ h. Note that f is a continuous strictly increasing function. For ε > 0, define

aε := inf{b ∈ R | f(b) = f(a) + ε}.

Choose j > 0 such that a < aε < a + h for every 0 < ε < j. Let 0 < ε < j. Then −∞ < a < aε < ∞,
f(aε) = f(a) + ε,

|f ′+(a)Lat (X)− f ′+(b)Lbt(X)| < η ∀b ∈ [a, aε],

{b ∈ R | f(a) ≤ f(b) ≤ f(a) + ε} = [a, aε],

and so
1

ε

∫
1{f(a)≤f(b)≤f(a)+ε}f

′
+(b)db =

1

ε

∫ aε

a

f ′+(b)db =
f(aε)− f(a)

ε
= 1.

Thus,

|1
ε

∫
R

1{a≤f(b)≤a+ε}f
′
+(b)2Lbt(X)db− f ′+(a)Lat (X)|

= |1
ε

∫ aε

a

f ′+(b)2Lbt(X)db− 1

ε

∫ aε

a

f ′+(b)f ′+(a)Lat (X)db|

≤ 1

ε

∫ aε

a

f ′+(b)|f ′+(b)Lbt(X)− f ′+(a)Lat (X)|db

< η
1

ε

∫ aε

a

f ′+(b)db = η
1

ε
(f(aε)− f(a)) = η

1

ε
ε = η.

Therefore, we have, a.s.

L
f(a)
t (Y ) = lim

ε→0

1

ε

∫
R

1{f(a)≤f(b)≤f(a)+ε}f
′
+(b)2Lbt(X)db = f ′+(a)Lat (X).

2. We show that, a.s.

L
f(a)−
t (Y ) = f ′−(a)La−t (X) ∀t > 0, a ∈ R.

To show this, it suffices to show that limb↑a f
′
+(b) = f ′−(a) for every a ∈ R. Indeed, if w ∈ E, where

E = {Lf(a)
t (Y ) = f ′+(a)Lat (X) ∀a ∈ R, t ≥ 0}, then

L
f(a)−
t (Y ) = lim

b↑a
L
f(b)
t (Y ) = lim

b↑a
f ′+(b)Lbt(X) = f ′−(a)La−t (X) ∀a ∈ R, t ≥ 0.
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Fix a ∈ R. Now, we show that limb↑a f
′
+(b) = f ′−(a). Since f = ϕ1−ϕ2, it suffices to show that limb↑a ϕ

′
i,+(b) =

ϕ′i,−(a) for i = 1, 2. We denote ϕi as ϕ. It’s clear that

ϕ′+(b) ≤ ϕ′−(a) ∀b < a.

Given η > 0. There exists c < a such that

ϕ′−(a)− η ≤ ϕ(a)− ϕ(c)

a− c
.

By continuity, there exists c < d < a such that

ϕ(a)− ϕ(c)

a− c
− η ≤ ϕ(d)− ϕ(c)

d− c

and so

ϕ′−(a)− 2η ≤ ϕ(d)− ϕ(c)

d− c
≤ ϕ′+(b) ∀d < b < a.

Thus, we get
ϕ′−(a)− 2η ≤ ϕ′+(b) ≤ ϕ′−(a) ∀d < b < a

and, hence, limb↑a f
′
+(b) = f ′−(a).

3. Assume that X is a Brownian motion and (u, v) ⊆ R(f). Then a 7→ La(X) is continuous and so, a.s.

Lat (X) = La−t (X) ∀a ∈ R, t ≥ 0.

Note that, a.s.

a ∈ (u, v) 7→ La(Y ) is continuous if and only if La−t (Y ) = Lat (Y ) ∀a ∈ (u, v), t ≥ 0.

Thus, if f is continuously differentiable, then we have, a.s.

Lat (Y ) = f ′(f−1(a))L
f−1(a)
t (X) = f ′(f−1(a))L

f−1(a)−
t (X) = La−t (Y ) ∀a ∈ (u, v), t ≥ 0.

Now, we suppose a ∈ (u, v) 7→ La(Y ) is continuous. Note that −∞ = lim inft→∞Xt and lim supt→∞Xt =∞.
By Theorem 9.12, we get, a.s.

∀a ∈ R ∃ta > 0 ∀t > ta Lat (X) > 0

(ta also depend on w). Fix α ∈ (u, v). Choose w and t > 0 such that Lαt (X) > 0, L
f(a)
t (Y ) = f ′+(a)Lat (X) and,

L
f(a)−
t (Y ) = f ′−(a)La−t (X) for all a ∈ R. Thus,

f ′+(α)Lαt (X) = L
f(α)
t (Y ) = L

f(α)−
t (Y ) = f ′−(α)Lα−t (X) = f ′−(α)Lαt (X)

and so f ′+(α) = f ′−(α). Therefore f is differentiable at α. Moreover, since (a, s) 7→ Las(X) is continuous, there
exists δ > 0 such that

Las(X) > 0 ∀(a, s) ∈ (α− δ, α+ δ)× (t− δ, t+ δ)

and so a ∈ (α− δ, α+ δ) 7→ f ′(a) =
L
f(a)
t (Y )
Lat (X) is continuous.
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9.2 Exercise 9.17

Let M be a continuous local martingale such that 〈M,M, 〉 =∞ (a.s.) and let B be the Brownian motion associated
with M via the Dambis–Dubins–Schwarz theorem (Theorem 5.13). Prove that, a.s. for every a ≥ 0 and t ≥ 0,

Lat (M) = La〈M,M〉t(B).

Proof.
Note that (La(X), a ∈ R) is the càdlàg modification of local time of continuous semimartingale X. Set

Ea,t := {Lat (M) = La〈M,M〉t(B)} ∀t > 0, a ∈ R.

Then it suffices to show that P (Ea,t) = 1 for all t > 0 and a ∈ R. Indeed, since

Ea := {Lat (M) = La〈M,M〉t(B) ∀t ≥ 0} =
⋂
q∈Q+

Ea,q ∀a ∈ R

and
E := {Lat (M) = La〈M,M〉t(B) ∀t ≥ 0 , a ∈ R} =

⋂
a∈Q

Ea,

we see that P (E) = 1. Fix t > 0 and a ∈ R. Now, we show that P (Ea,t) = 1. Note that Ms = B〈M,M〉s ∀s ≥ 0
(a.s.). By Tanaka’s formula, we get, a.s.

|Mt − a| = |M0 − a|+
∫ t

0

sgn(Ms − a)dMs + Lat (M)

and

|Mt − a| = |B〈M,M〉t − a| = |M0 − a|+
∫ 〈M,M〉t

0

sgn(Bs − a)dBs + La〈M,M〉t(B).

By Proposition 5.9, there exists {nk} such that, a.s.∫ t

0

sgn(Ms − a)dMs = lim
k→∞

nk−1∑
i=0

sgn(M it
nk

− a)(M t(i+1)
nk

−M it
nk

)

= lim
k→∞

nk−1∑
i=0

sgn(B〈M,M〉 it
nk

− a)(B〈M,M〉 (i+1)t
nk

−B〈M,M〉 it
nk

).

Since s ∈ R+ 7→ 〈M,M〉s is increasing continuous function, we have, a.s.

lim
k→∞

nk−1∑
i=0

sgn(B〈M,M〉 it
nk

− a)(B〈M,M〉 (i+1)t
nk

−B〈M,M〉 it
nk

) =

∫ 〈M,M〉t

0

sgn(Bs − a)dBs

and so ∫ t

0

sgn(Ms − a)dMs =

∫ 〈M,M〉t

0

sgn(Bs − a)dBs.

Thus, we have, a.s.
Lat (M) = La〈M,M〉t(B).
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9.3 Exercise 9.18

Let X be a continuous semimartingale, and assume that X can be written in the form

Xt = X0 +

∫ t

0

σ(w, s)dBs +

∫ t

0

b(w, s)ds,

where B is a Brownian motion and σ and b are progressive and locally bounded. Assume that σ(w, s) 6= 0 for
Lebesgue a.e. s ≥ 0 a.s. Show that the local times Lat (X) are jointly continuous in the pair (a, t).

Proof.
By the proof of theorem 9.4, it suffices to show that∫ t

0

1{Xs=a}(s)b(w, s)ds = 0 ∀t ≥ 0, a ∈ R (a.s.)

and so we show that 1{Xs=a} = 0 for almost every s ≥ 0 and for every a ∈ R (a.s.). By density of occupation time
formula (Corollary 9.7), we have ∫ t

0

ϕ(Xs)σ(w, s)2ds =

∫
R
ϕ(a)Lat (X)da

for all nonnegative measurable function ϕ : R 7→ R+ and t ≥ 0 (a.s.) and so∫ t

0

1{Xs=a}σ(w, s)2ds = 0 ∀t ≥ 0, a ∈ R (a.s.).

Since σ(w, s) 6= 0 for almost every s ≥ 0 (a.s.), we get 1{Xs=a} = 0 for almost every s ≥ 0 and for every a ∈ R
(a.s.).

9.4 Exercise 9.19

Let X be a continuous semimartingale. Show that the property

supp(dsL
a
s(X)) ⊆ {s ≥ 0 | Xs = a}

holds simultaneously for all a ∈ R, outside a single set of probability zero.

Proof.
Note that (La(X), a ∈ R) is the càdlàg modification of local time of X. Set

Ea := {w ∈ Ω | supp(dsLas(X)) ⊆ {s ≥ 0 | Xs = a}} ∀a ∈ R

and
E =

⋂
q∈Q

Eq.

By Proposition 9.3, P (E) = 1 and so it suffices to show that

supp(dsL
a
s(X)) ⊆ {s ≥ 0 | Xs = a} ∀a ∈ R on E.

Fix w ∈ E. Assume that there exists b ∈ R and 0 ≤ s < t such that Lbs(X)(w) < Lbt(X)(w) and Xr(w) 6= b for all
s ≤ r ≤ t. Suppose that b < mins≤r≤tXr(w). Choose ε > 0 such that

Lbs(X)(w) + ε < Lbt(X)(w)− ε.

Since a 7→ La(X)(w) is right continuous, there exists q ∈ Q such that b < q < mins≤r≤tXr and

|Lqs(X)(w)− Lbs(X)(w)| ∨ |Lqt (X)(w)− Lqt (X)(w)| < ε.

Thus, we get Xr(w) 6= q for all s ≤ r ≤ t and Lqs(X)(w) < Lqt (X)(w) which is a contradiction. By similar argument,
we see that b > maxs≤r≤tXr(w) is a contradiction and so

supp(dsL
a
s(X)(w)) ⊆ {s ≥ 0 | Xs(w) = a} ∀a ∈ R.

127



9.5 Exercise 9.20

Let B be a Brownian motion started from 0. Show that a.s. there exists an a ∈ R such that the inclusion
supp(dsL

a
s(X)) ⊆ {s ≥ 0 | Xs = a} is not an equality. (Hint: Consider the maximal value of B over [0, 1].)

Proof.
We denote B as X. Note that (La(B), a ∈ R) is the càdlàg modification of local time of B. First, we show that, a.s.

max
0≤t≤1

Bt > B1.

Note that
P (B1 ≥ max

0≤t≤1
Bs) = P ( min

0≤t≤1
B1 −Bt ≥ 0) = P ( min

0≤t≤1
B1 −B1−t ≥ 0).

Define
B′t = B1 −B1−t ∀t ∈ [0, 1].

By Exercise 2.31, we see that (B′t)[0,1] and (Bt)[0,1] have the same law and so

P ( min
0≤t≤1

B1 −B1−t ≥ 0) = P ( min
0≤t≤1

Bt ≥ 0).

By Proposition 2.14, we get

P ( max
0≤t≤1

Bt > B1) = 1− P (B1 ≥ max
0≤t≤1

Bs) = 1− P ( min
0≤t≤1

Bt ≥ 0) = 1.

Next, we show that a.s. there exists an a ∈ R such that the inclusion

supp(dsL
a
s(X)) ⊆ {s ≥ 0 | Xs = a}

is not an equality. Fix

w ∈ {max
0≤t≤1

Bt > B1}
⋂
{Lat (B) = lim

ε→0

1

ε

∫ t

0

1{a≤Bs≤a+ε}ds ∀a ∈ R, t > 0}.

Choose a = max0≤t≤1Bs. Since max0≤t≤1Bt > B1, there exists t ∈ (0, 1) such that Bt = a. Let b > a. Then

Lb1(B) = lim
ε→0

1

ε

∫ 1

0

1{b≤Bs≤b+ε}ds = 0.

By right continuity, we get
La1(B) = lim

b↓a
Lb1(B) = 0

and so
t ∈ {s ≥ 0 | Bs = a}

⋂
(supp(dsL

a
s(B)))c.

9.6 Exercise 9.21

Let B be a Brownian motion started from 0. Note that∫ ∞
0

1{Bs>0}ds =∞

a.s. and set, for every t ≥ 0,

At =

∫ t

0

1{Bs>0}ds, σt = inf{s ≥ 0 | As > t}.
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1. Verify that the process

γt =

∫ σt

0

1{Bs>0}dBs

is a Brownian motion in an appropriate filtration.

2. Show that the process Λt = L0
σt(B) has nondecreasing and continuous sample paths, and that the support of

the measure dsΛs is contained in {s ≥ 0 | Bσs = 0}.

3. Show that the process (Bσt)t≥0 has the same distribution as (|Bt|)t≥0.

Proof.

1. Since lim supt→∞Bs =∞, we see that
∫∞

0
1{Bs>0}ds =∞ (a.s.) and so

σt <∞ ∀t ≥ 0 (a.s.).

Note that γt is Fσt-measurable for every t ≥ 0 and (σt)t≥0 is nondecreasing. It’s clear that t 7→ σt is right
continuous and so (γt)t≥0 has a right continuous sample path. Observe that

Bs ≤ 0 ∀s ∈ (σt−, σt), ∀t > 0 (a.s.).

Then

lim
t↑u

γt = lim
t↑u

∫ σt

0

1{Bs>0}dBs =

∫ σu−

0

1{Bs>0}dBs =

∫ σu

0

1{Bs>0}dBs = γu ∀u > 0 (a.s.)

and so (γt)t≥0 has a continuous sample path.
Now, we show that (γt)t≥0 is a (Fσt)t≥0-martingale. Fix s1 < s2. Since

E[〈
∫ ·∧σs2

0

1{Bs>0}dBs,

∫ ·∧σs2
0

1{Bs>0}dBs〉∞] ≤ E[

∫ σs2

0

1{Bs>0}ds] = E[Aσs2 ] = s2,

we get (
∫ t∧σs2

0
1{Bs>0}dBs)t≥0 is a L2-bounded (Ft)t≥0-martingale and so (

∫ t∧σs2
0

1{Bs>0}dBs)t≥0 is an uni-
formly integrable (Ft)t≥0-martingale. By optional stopping theorem, we get

E[

∫ σs2

0

1{Bs>0}dBs | Fσs1
] =

∫ σs1

0

1{Bs>0}dBs

and so (
∫ t∧σs2

0
1{Bs>0}dBs)t≥0 is a (Ft)t≥0-martingale. Moreover, since

〈γ, γ〉∞ =

∫ ∞
0

1{Bs>0}ds =∞ and 〈γ, γ〉t = t ∀t ≥ 0,

we see that (γt)t≥0 is a (Fσt)t≥0-Brownian motion.

2. It’s clear that (Λt)t≥0 = (L0
σt(B))t≥0 has nondecreasing and right continuous sample paths. Note that

B+
σt =

∫ σt

0

1{Bs>0}dBs +
1

2
L0
σt(B) = γt +

1

2
L0
σt(B) ∀t ≥ 0 (a.s.).

Recall that
Bs ≤ 0 ∀s ∈ (σt−, σt), ∀t > 0 (a.s.).

Observe that if σt− < σt, then limu↑tB
+
u = B+

σt− = 0 = B+
σt and so (L0

σt(B))t≥0 has a continuous sample path.
Now, we show that supp(dsΛs) ⊆ {s ≥ 0 | Bσs = 0}. Recall that

supp(dsL
0
s(B)) = {s ≥ 0 | Bs = 0} (a.s.).
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Fix w ∈ {supp(dsL0
s(B)) = {s ≥ 0 | Bs = 0}}. Let t ∈ supp(dsΛs). If σt− < σt, it’s clear that Bσt = 0.

Now, we assume that (σt)t≥0 is continuous at t. Let α < σt < β. Then there exists u < t < v such that
(σu, σv) ⊆ (α, β),

L0
α(B) ≤ L0

σu(B) < L0
σv (B) ≤ L0

β(B),

and so σt ∈ supp(dsL0
s(B)) = {s ≥ 0 | Bs = 0}.

3. Observe that Bσt ≥ 0 ∀t ≥ 0 (a.s.) and so Bσt = B+
σt ∀t ≥ 0 (a.s.). Then

Bσt = B+
σt = γt +

1

2
L0
σt(B) ∀t ≥ 0 (a.s.).

By Skorokhod’s Lemma (Appendices), we see that

sup
s≤t

(−γs) =
1

2
L0
σt(B) ∀t ≥ 0 (a.s.).

By Theorem 9.14, we get

Bσt = sup
s≤t

(−γs) + γt = sup
s≤t

(−γs)− (−γt)
d
= | − γσt |

d
= |Bt| ∀t ≥ 0

and so
(Bσt)t≥0

d
= (|Bt|)t≥0.

9.7 Exercise 9.22

9.8 Exercise 9.23

Let g : R 7→ R be a real integrable function (
∫
R |g(x)|dx <∞). Let B be a Brownian motion started from 0, and set

At =

∫ t

0

g(Bs)ds.

1. Justify the fact that the integral defining At makes sense, and verify that, for every c > 0 and every u ≥ 0,
Ac2u has the same distribution as

c2
∫ u

0

g(cBs)ds.

2. Prove that
At√
t

d→ (

∫
R
g(x)dx)|N | as t→∞,

where N is N (0, 1).

Proof.

1. Let t > 0. Then

E[

∫ t

0

|g(Bs)|ds] =

∫
R

∫ t

0

1√
2πs

exp (−x
2

2s
)ds|g(x)|dx ≤

∫
R

∫ t

0

1√
2πs
× 1ds|g(x)|dx

=

√
2t

π

∫
R
|g(x)|dx <∞
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and so
∫ t

0
|g(Bs)|ds <∞ (a.s.). Since∫ t

0

|g(Bs)|ds <∞ ∀t ∈ Q+ (a.s.),

we see that ∫ t

0

|g(Bs)|ds <∞ ∀t ∈ R (a.s.)

and so (At)t≥0 is well-defined. Moreove, by changing of variable, we get

Ac2u =

∫ c2u

0

g(Bs)ds = c2
∫ u

0

g(Bc2s)ds = c2
∫ u

0

g(c
1

c
Bc2s)ds

d
= c2

∫ u

0

g(cBs)ds.

2. By Density of occupation time formula, we get

Au√
u

=

∫
R
g(a)

1√
u
Lau(B)da (a.s.)

for every u > 0. First, we show that

(
1√
u
Lau(B))a∈R

d
= (L

a√
u

1 (B))a∈R ∀u > 0.

Fix u > 0 and a ∈ R. Define Brownian motion B̃ by B̃t = 1√
u
Btu. By Tanaka’s formula, we get

|B̃1 −
a√
u
| = | a√

u
|+ 1√

u

∫ u

0

sgn(Bs − a)dBs +
1√
u
Lau(B) (a.s.).

Choose increasing sequence {nk}k≥1 such that (1),(2) hold (a.s.):

1√
u

∫ u

0

sgn(Bs − a)dBs
(1)
=

1√
u

lim
k→∞

nk−1∑
i=0

sgn(B i
nk
u − a)(B i+1

nk
u −B i

nk
u)

= lim
k→∞

nk−1∑
i=0

sgn(B̃ i
nk

− a√
u

)(B̃ i+1
nk

− B̃ i
nk

)

(2)
=

∫ 1

0

sgn(B̃s − a)dB̃s.

Thus,

|B̃1 −
a√
u
| = | a√

u
|+

∫ 1

0

sgn(B̃s − a)dB̃s +
1√
u
Lau(B) (a.s.)

and so 1√
u
Lau(B) = L

a√
u

1 (B̃) (a.s.). By right continuity, we get

1√
u
Lau(B) = L

a√
u

1 (B̃) ∀a ∈ R (a.s.)

and so

(
1√
u
Lau(B))a∈R

d
= (L

a√
u

1 (B))a∈R ∀u > 0.

Next, we show that
Au√
u

d→ (

∫
R
g(x)dx)|N | as u→∞.
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Note that

E[exp (iξ
Au√
u

)] = E[exp (iξ

∫
R
g(a)

1√
u
Lau(B)da)] = E[exp (iξ

∫
R
g(a)L

a√
u

1 (B)da)].

Since
La1(B) = 0 ∀a 6∈ [ min

0≤s≤1
Bs, max

0≤s≤1
Bs] (a.s.),

we get
|La1(B)| ≤M for some M = M(w) <∞ (a.s.)

and so

|L
a√
u

1 (B)| ≤M(w) <∞ ∀a ∈ R, u ∈ R+ (a.s.).

By dominated convergence theorem and right continuity, we get

lim
u→∞

E[exp (iξ
Au√
u

)] = lim
u→∞

E[exp (iξ

∫
R
g(a)L

a√
u

1 (B)da)] = E[exp (iξ lim
u→∞

∫
R
g(a)L

a√
u

1 (B)da)]

= E[exp (iξ

∫
R
g(a)L0

1(B)da)].

By Theorem 9.14 and Theorem 2.21, we have

L0
1(B)

d
= sup

0≤s≤1
Bs

d
= |B1|

and so

lim
u→∞

E[exp (iξ
Au√
u

)] = E[exp (iξ

∫
R
g(a)L0

1(B)da)] = E[exp (iξ

∫
R
g(a)da|B1|)].

9.9 Exercise 9.24

Let σ and b be two locally bounded measurable functions on R+×R, and consider the stochastic differential equation

E(σ, b) : dXt = σ(t,Xt)dBt + b(t,Xt)dt.

Let X and X ′ be two solutions of E(σ, b) on the same filtered probability space and with the same Brownian motion
B.

1. Suppose that L0
t (X − X ′) = 0 for every t ≥ 0. Show that both X ∨ X ′ and X ∧ X ′ are solutions of E(σ, b).

(Hint: Write Xt ∨X ′t = Xt + (X ′t −Xt)
+, and use Tanaka’s formula.)

2. Suppose that σ(t, x) = 1 for all t,a. Show that the assumption in question 1. holds automatically. Suppose in
addition that weak uniqueness holds for E(σ, b). Show that, if X0 = X ′0 = x ∈ R, the two processes X and X ′

are indistinguishable.

Proof.

1. Note that
Xt ∨X ′t = Xt + (X ′t −Xt)

+.

By Tanaka’s formula, we get

(X ′t −Xt)
+ = (X ′0 −X0)+ +

∫ t

0

1{X′s>Xs}(σ(s,X ′s)− σ(s,Xs))dBs +

∫ t

0

1{X′s>Xs}(b(s,X
′
s)− b(s,Xs))ds

132



for all t ≥ 0 (a.s.). Since

σ(s, (X ′s ∨Xs)) = 1{X′s>Xs}σ(s,X ′s) + 1{Xs≥X′s}σ(s,Xs)

and
b(s, (X ′s ∨Xs)) = 1{X′s>Xs}b(s,X

′
s) + 1{Xs≥X′s}b(s,Xs),

we get

(X ′t ∨Xt) = Xt + (X ′t −Xt)
+

= X0 +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds

+ (X ′0 −X0)+ +

∫ t

0

1{X′s>Xs}(σ(s,X ′s)− σ(s,Xs))dBs +

∫ t

0

1{X′s>Xs}(b(s,X
′
s)− b(s,Xs))ds

= (X ′0 ∨X0) +

∫ t

0

σ(s, (X ′s ∨Xs))dBs +

∫ t

0

b(s, (X ′s ∨Xs))ds

for all t ≥ 0 (a.s.) and so X ∨X ′ is a soltion of E(σ, b). Note that

(Xt ∧X ′t) = Xt − (Xt −X ′t)+.

By similar argument, we see that X ∧X ′ is a soltion of E(σ, b).

2. Suppose σ(t, x) = 1 for all t, x. Then

Xt −X ′t = X0 −X ′0 +

∫ t

0

(b(s,Xs)− b(s,Xs))ds

for all t ≥ 0 (a.s.) and so L0
t (X − X ′) = 0 for all t ≥ 0 (a.s.). Suppose in addition that weak uniqueness

holds for E(σ, b) and X0 = X ′0 = x ∈ R. By question 1, X ∨ X ′ and X ∧ X ′ are solution of E(σ, b) and so

X ∨X ′ d= X ∧X ′. It’s clear that
Xt ∨X ′t = Xt ∧X ′t (a.s.)

for all t ≥ 0. Indeed, if P (Xt ∨ X ′t > Xt ∧ X ′t) > 0, then E[Xt ∧ X ′t] < E[Xt ∨ X ′t] which contradict to

Xt ∨X ′t
d
= Xt ∧X ′t. Thus, we have Xp = X ′p for all p ∈ Q+ (a.s.) and so

Xt = lim
p∈Q+→t

Xp = lim
p∈Q+→t

X ′p = X ′t

for all t ≥ 0 (a.s.). Therefore X and X ′ are indistinguishable.

9.10 Exercise 9.25 (Another look at the Yamada–Watanabe criterion)

Let ρ be a nondecreasing function from [0,∞) into [0,∞) such that, for every ε > 0,∫ ε

0

du

ρ(u)
=∞.

Consider then the one-dimensional stochastic differential equation

E(σ, b) : dXt = σ(Xt)dBt + b(Xt)dt

where one assumes that the functions σ and b satisfy the conditions

(σ(x)− σ(y))2 ≤ ρ(|x− y|), |b(x)− b(y)| ≤ K|x− y|,

for every x, y ∈ R, with a constant K <∞. Our goal is use local times to give a short proof of pathwise uniqueness
for E(σ, b) (this is slightly stronger than the result of Exercise 8.14).

133



1. Let Y be a continuous semimartingale such that, for every t > 0,∫ t

0

d〈Y, Y 〉s
ρ(|Ys|)

<∞ (a.s.).

Prove that L0
t (Y ) = 0 for every t ≥ 0 (a.s.).

2. Let X and X0 be two solutions of E(σ, b) on the same filtered probability space and with the same Brownian
motion B. By applying question 1. to Y = X −X ′, prove that L0

t (X −X ′) for every t ≥ 0 (a.s.) and therefore,

|Xt −X ′t| = |X0 −X ′0|+
∫ t

0

(σ(Xs)− σ(X ′s))sgn(Xs −X ′s)dBs +

∫ t

0

(b(Xs)− b(X ′s))sgn(Xs −X ′s)ds.

3. Using Gromwall’s lemma, prove that if X0 = X ′0, then Xt = X ′t for every t ≥ 0 (a.s.).

Proof.

1. Since Lat (Y )
a↓0→ L0

t (Y ) ∀t ≥ 0 (a.s.), there exists C = C(w) > 0 and ε = ε(w) > 0 such that

Lat (Y ) ≥ CL0
t (Y ) ∀0 < a < ε ∀t ≥ 0 (a.s.).

By Density of occupation time formula (Corollary 9.7), we have

∞ >

∫ t

0

d〈Y, Y 〉s
ρ(|Ys|)

=

∫
R

1

ρ(|a|)
Lat (Y )da ≥ CL0

t (Y )

∫ ε

0

1

ρ(a)
da ∀t ≥ 0 (a.s.).

Since
∫ ε

0
du
ρ(u) =∞ for all ε > 0, we get L0

t (Y ) = 0 for all t ≥ 0 (a.s.).

2. Set Y = X −X ′. Then

Yt = X0 −X ′0 +

∫ t

0

(σ(Xs)− σ(X ′s))dBs +

∫ t

0

(b(Xs)− b(X ′s))ds

and so
d〈Y, Y 〉t = (σ(Xt)− σ(X ′t))

2dt.

Thus, ∫ t

0

d〈Y, Y 〉s
ρ(|Ys|)

=

∫ t

0

(σ(Xs)− σ(X ′s))
2

ρ(|Xs −X ′s|)
ds ≤

∫ t

0

ρ(|Xs −X ′s|)
ρ(|Xs −X ′s|)

ds = t <∞ ∀t ≥ 0 (a.s.).

By question 1., we get L0
t (X −X ′) = 0 for every t ≥ 0 (a.s.). By Tanaka’s formula, we have

|Xt −X ′t| = |X0 −X ′0|+
∫ t

0

(σ(Xs)− σ(X ′s))sgn(Xs −X ′s)dBs +

∫ t

0

(b(Xs)− b(X ′s))sgn(Xs −X ′s)ds

for every t ≥ 0 (a.s.).

3. By continuity, it suffices to show that Xt = X ′t (a.s.) for every t ≥ 0. Fix t0 > 0 and choose L > t0. Define

TM = inf{s ≥ 0 | |Xs| ≥M or |X ′s| ≥M} ∀M > 0.

Fix M > 0. Since

E[〈
∫ ·

0

(σ(Xs)− σ(X ′s))sgn(Xs −X ′s)1[0,TM ]dBs,

∫ ·
0

(σ(Xs)− σ(X ′s))sgn(Xs −X ′s)1[0,TM ]dBs〉t]

= E[

∫ t

0

(σ(Xs)− σ(X ′s))
21[0,TM ]ds] ≤ E[

∫ t

0

ρ(|Xs −X ′s|)1[0,TM ]ds] ≤ ρ(2M)t <∞ ∀t > 0,
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we see that (
∫ t

0
(σ(Xs)− σ(X ′s))sgn(Xs −X ′s)1[0,TM ]dBs)t≥0 is a martingale. Thus

0 ≤ g(t) ≡ E[|Xt −X ′t|1[0,TM ](t)] ≤ 2M

and

g(t) = E[|Xt −X ′t|1[0,TM ](t)] = E[

∫ t

0

(b(Xs)− b(X ′s))sgn(Xs −X ′s)1[0,TM ]ds] ≤ 2K

∫ t

0

g(s)ds

for every t ∈ [0, L]. By Gromwall’s lemma, we get g(t) = 0 in [0, L] and so E[|Xt0∧TM − X ′t0∧TM |] = 0. By
letting M ↑ ∞, we have E[|Xt0 −X ′t0 |] = 0 and so Xt0 = X ′t0 .
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Chapter 10
Appendices

10.1 Skorokhod’s Lemma

Let y be a real-valued continuous function on [0,∞) such that y(0) ≥ 0. There exists a unique pair (z, a) of functions
on [0,∞) such that

1. z(t) = y(t) + a(t),

2. z(t) is nonnegative,

3. a(t) is increasing, continuous, vanishing at zero and supp(das) ⊆ {s ≥ 0 : z(s) = 0}.

Moreover, the function a(t) is given by
a(t) = sup

s≤t
(−y(s) ∨ 0).

Proof.
It’s clear that (y− a, a) satisfies all properties above, where a(t) = sups≤t(−y(s)∨ 0), and so, it suffices to prove the
uniqueness of the pair (z, a). Suppose that (z, a) and (z, a) satisfy all properties above. Then

z(t)− z(t) = a(t)− a(t) ∀t ≥ 0

and so

0 ≤ (a(t)− a(t))2 = 2

∫ t

0

z(s)− z(s)d(a− a)(s) ∀t ≥ 0.

Since ∫ t

0

zsda(s) =

∫ t

0

z(s)da(s) = 0 ∀t ≥ 0,

we see that

2

∫ t

0

z(s)− z(s)d(a− a)(s) = −2(

∫ t

0

z(s)da(s) +

∫ t

0

zda(s)) ≤ 0 ∀t ≥ 0

and so z(t) = z(t) for every t ≥ 0.
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