Solutions to Exercises on Le Gall's Book: Brownian Motion, Martingales, and Stochastic Calculus

Te-Chun Wang

Department of Applied Mathematics National Chiao Tung University Hsinchu, Taiwan Email: lieb.am07g@nctu.edu.tw

January 5, 2021

Contents

Chapter 1

Gaussian Variables and Gaussian Processes

1.1 Exercise 1.15

Let $(X_t)_{t\in[0,1]}$ be a centered Gaussian process. We assume that the mapping $(t, w) \mapsto X_t(w)$ from $[0, 1] \times \Omega$ into R is measurable. We denote the covariance function of X by $K(u, v)$.

- 1. Show that the mapping $t \mapsto X_t$ from $[0, 1]$ into $L^2(\Omega)$ is continuous if and only if $K(u, v)$ is continuous on $[0, 1]^2$. In what follows, we assume that this condition holds.
- 2. Let $h : [0, 1] \to \mathbb{R}$ be a measurable function such that

$$
\int_0^1 |h(t)| \sqrt{K(t,t)} dt < \infty.
$$

Show that the integral, for a.e., the integral

$$
\int_0^1 h(t)X_t(w)dt
$$

is absolutely integral. We set $Z(w) = \int_0^1 h(t)X_t(w)dt$.

3. We now make the stronger assumption

$$
\int_0^1 |h(t)|dt < \infty.
$$

Show that Z is the L^2 limit of the variables

$$
Z_n = \sum_{i=1}^{n} X_{\frac{i}{n}} \int_{\frac{i-1}{n}}^{\frac{i}{n}} h(t) dt
$$

when $n \to \infty$ and infer that Z is a Gaussian random variable.

4. We assume that $K(u, v)$ is twice continuously differentiable. Show that, for every $t \in [0, 1]$, the limit

$$
\widetilde{X_t} = \lim_{s \to t} \frac{X_s - X_t}{s - t}
$$

exists in L^2 . Verify that $(\bar{X}_t)_{t\in[0,1]}$ is a centered Gaussian process and compute its covariance function.

Proof.

1. First, we assume that $K(u, v)$ is continuous. Note that

$$
||X_{t+h} - X_t||_{L^2(\Omega)}^2 = \mathbf{E}[|X_{t+h} - X_t|^2] = K(t+h, t+h) - 2K(t+h, t) + K(t, t).
$$

By letting $h \downarrow 0$, we see that the mapping $t \mapsto X_t$ is continuous.

Conversely, we assume that the mapping $t \mapsto X_t$ is continuous. By using Cauchy Schwarz inequality, we get

$$
|K(u+t, v+s) - K(u, v)|
$$

\n
$$
\leq |K(u+t, v+s) - K(u, v+s)| + |K(u, v+s) - K(u, v)|
$$

\n
$$
= \mathbf{E}[|(X_{u+t} - X_u)X_{v+s}|| + \mathbf{E}[|(X_{v+s} - X_v)X_u|]
$$

\n
$$
= ||X_{u+t} - X_u||_{L^2}||X_{v+s}||_{L^2} + ||X_{v+s} - X_v||_{L^2}||X_u||_{L^2}
$$

Since $||X_{v+s}||_{L^2}$ is bounded for small s, we see that $K(u, v)$ is continuous.

2. It's clear that

$$
\int_{\Omega} \int_{0}^{1} |X_{t}(w)||h(t)|dt \mathbf{P}(dw)
$$
\n
$$
= \int_{0}^{1} \int_{\Omega} |X_{t}(w)||h(t)| \mathbf{P}(dw)dt
$$
\n
$$
= \int_{0}^{1} ||X_{t}||_{L^{1}} |h(t)|dt
$$
\n
$$
\leq \int_{0}^{1} ||X_{t}||_{L^{2}} |h(t)|dt
$$
\n
$$
= \int_{0}^{1} \sqrt{K(t,t)} |h(t)|dt < \infty
$$

Thus, the integral, for a.e., the integral

$$
\int_0^1 h(t)X_t(w)dt
$$

is absolutely integral.

3. It suffices to show that $Z_n \to Z$ in L^2 . Indeed, since $\{Z_n\}_{n\geq 1}$ are Gaussian random variables and $Z_n \to Z$ in L^2 , we see that Z is a Gaussian random variable. Note that

$$
Z_n(w) = \int_0^1 \sum_{i=1}^n X_{\frac{i}{n}}(w) 1_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(t) h(t) dt.
$$

Thus,

$$
\begin{split} &E[|Z-Z_n|^2]^{\frac{1}{2}}\\ &= (\int_{\Omega}|\int_0^1 h(t)(X_t(w)-\sum_{i=1}^n X_{\frac{i}{n}}(w)1_{[\frac{i-1}{n},\frac{i}{n})}(t))dt|^2\boldsymbol{P}(dw))^{\frac{1}{2}}\\ &\leq \int_0^1 (\int_{\Omega}|h(t)|^2|(X_t(w)-\sum_{i=1}^n X_{\frac{i}{n}}(w)1_{[\frac{i-1}{n},\frac{i}{n})}(t))|^2\boldsymbol{P}(dw))^{\frac{1}{2}}dt\\ &= \int_0^1|h(t)|(\int_{\Omega}|(X_t(w)-\sum_{i=1}^n X_{\frac{i}{n}}(w)1_{[\frac{i-1}{n},\frac{i}{n})}(t))|^2\boldsymbol{P}(dw))^{\frac{1}{2}}dt\\ &= \int_0^1|h(t)| \times ||(X_t-\sum_{i=1}^n X_{\frac{i}{n}}1_{[\frac{i-1}{n},\frac{i}{n})}(t))||_{L^2}dt. \end{split}
$$

For each $t \in [0, 1)$ and $n \geq 1$ such that $\frac{k-1}{n} \leq t < \frac{k}{n}$, we get

$$
||(X_t - \sum_{i=1}^n X_{\frac{i}{n}} 1_{[\frac{i-1}{n}, \frac{i}{n})}(t))||_{L^2} = ||X_t - X_{\frac{k}{n}}||_{L^2} \le ||X_t||_{L^2} + ||X_{\frac{k}{n}}||_{L^2} \le 2 \sup_{t \in [0,1]} \sqrt{K(t,t)} < \infty.
$$

and therefore

$$
|h(t)| \times ||(X_t - \sum_{i=1}^n X_{\frac{i}{n}} 1_{[\frac{i-1}{n}, \frac{i}{n})}(t))||_{L^2} \le C|h(t)|
$$

for each $t \in [0, 1)$ and some $0 < C < \infty$.

Fix $t \in [0,1)$. Choose $\{k_n\}$ such that $\frac{k_n-1}{n} \le t < \frac{k_n}{n}$ for each $n \ge 1$. Since $t \mapsto X_t$ is continuous, we have

$$
||(X_t - \sum_{i=1}^n X_{\frac{i}{n}} 1_{\left[\frac{i-1}{n}, \frac{i}{n}\right)}(t))||_{L^2} = ||X_t - X_{\frac{k_n}{n}}||_{L^2} \to 0 \text{ as } n \to \infty.
$$

By using dominated convergence theorem, we have

$$
\limsup_{n \to \infty} \mathbf{E} [|Z - Z_n|^2]^{\frac{1}{2}} \le \lim_{n \to \infty} \int_0^1 |h(t)| \times ||(X_t - \sum_{i=1}^n X_{\frac{i}{n}} 1_{[\frac{i-1}{n}, \frac{i}{n})}(t))||_{L^2} dt = 0
$$

and, hence, $Z_n \to Z$ in L^2 .

4. To show that $\lim_{s \to t} \frac{X_s - X_t}{s - t}$ exists in L^2 , it suffices to show that

$$
||\frac{X_{t+h_1} - X_t}{h_1} - \frac{X_{t+h_2} - X_t}{h_2}||_{L^2} \to 0 \text{ as } h_1, h_2 \to 0.
$$

Note that

$$
\left\|\frac{X_{t+h_1} - X_t}{h_1} - \frac{X_{t+h_2} - X_t}{h_2}\right\|_{L^2}^2 = A + B - 2C,
$$

where

$$
A = \frac{1}{|h_1|^2} \mathbf{E}[(X_{t+h_1} - X_t)^2] = \frac{1}{|h_1|^2} (\mathbf{E}[X_{t+h_1}^2] + \mathbf{E}[X_t^2] - 2\mathbf{E}[X_{t+h_1}X_t]),
$$

\n
$$
B = \frac{1}{|h_2|^2} \mathbf{E}[(X_{t+h_2} - X_t)^2] = \frac{1}{|h_2|^2} (\mathbf{E}[X_{t+h_2}^2] + \mathbf{E}[X_t^2] - 2\mathbf{E}[X_{t+h_2}X_t]),
$$

and

$$
C = \frac{1}{|h_1|} \frac{1}{|h_2|} \mathbf{E}[(X_{t+h_2} - X_t)(X_{t+h_1} - X_t)]
$$

=
$$
\frac{1}{|h_2||h_1|} (\mathbf{E}[X_{t+h_2}X_{t+h_1}] + \mathbf{E}[X_t^2] - \mathbf{E}[X_{t+h_2}X_t] - \mathbf{E}[X_{t+h_1}X_t]).
$$

First, we show that $C \to \frac{\partial^2 K}{\partial u \partial v}(t, t)$ as $h_1, h_2 \to 0$. Without loss of generality, we may suppose $h_1, h_2 > 0$. Set

$$
g(z) = K(t + h_1, z) - K(t, z).
$$

Then

$$
C = \frac{1}{h_1} \frac{1}{h_2} (g(t + h_2) - g(t)).
$$

Since $K \in C^2([0,1]^2)$, there exist t_1^*, t_2^* such that

$$
C = \frac{1}{h_1} g'(t_2^*) = \frac{1}{h_1} \left(\frac{\partial K(t + h_1, t_2^*)}{\partial v} - \frac{\partial K(t, t_2^*)}{\partial v} \right) = \frac{\partial^2 K(t_1^*, t_2^*)}{\partial u \partial v}
$$

By using the continuity of $\frac{\partial^2 K}{\partial u \partial v}$, we see that $C \to \frac{\partial^2 K}{\partial u \partial v}(t, t)$ as $h_1, h_2 \to 0$. Similarly, we have $A \to \frac{\partial^2 K}{\partial u \partial v}(t, t)$ and $B \to \frac{\partial^2 K}{\partial u \partial v}(t, t)$ as $h_1, h_2 \to 0$. Therefore,

$$
||\frac{X_{t+h_1} - X_t}{h_1} - \frac{X_{t+h_2} - X_t}{h_2}||_{L^2} \to 0 \text{ as } h_1, h_2 \to 0
$$

and, hence, $\lim_{s\to t}\frac{X_s-X_t}{s-t}$ exists in L^2 . Since $\frac{X_s-X_t}{s-t}$ is a centered Gaussian random variable for all $s\neq t$, we see that $\widetilde{X}_t \equiv \lim_{s \to t} \frac{X_s - X_t}{s - t}$ is a centered Gaussian random variable. Moreover, since any linear combination $\sum_{k=1}^{n} c_k \frac{X_{s_k} - X_{t_k}}{s_k - t_k}$ is a centered Gaussian random, we see that $(\widetilde{X}_t)_{t \in [0,1]}$ is a centered Gaussian process. Finally, we show that

$$
\widetilde{K}(t,s) = \frac{\partial^2 K}{\partial u \partial v}(t,s),
$$

where $\widetilde{K}(t, s)$ is the covariance function of $(\widetilde{X}_t)_{t \in [0,1]}$. By using similar argument as in (3), there exist t_h, s_h such that

$$
E[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h}] = \frac{\partial^2 K}{\partial u \partial v}(t_h, s_h)
$$

for each $h \neq 0$ and $t_h \to t$ and $s_h \to s$ as $h \to 0$. Since $K(u, v) \in C^2([0, 1]^2)$, there exist $0 < C < \infty$ such that

$$
|\mathbf{E}[\frac{X_{t+h} - X_t}{h}\frac{X_{s+h} - X_s}{h}]| = |\frac{\partial^2 K}{\partial u \partial v}(t_h, s_h)| \le C
$$

for all $h \neq 0$. By using dominated convergence theorem and the continuity of $\frac{\partial^2 K}{\partial u \partial v}$, we have

$$
\widetilde{K}(t,s) = \mathbf{E}[\widetilde{X}_t \widetilde{X}_s] = \lim_{h \to 0} \mathbf{E}[\frac{X_{t+h} - X_t}{h} \frac{X_{s+h} - X_s}{h}] = \lim_{h \to 0} \frac{\partial^2 K}{\partial u \partial v}(t_h, s_h) = \frac{\partial^2 K}{\partial u \partial v}(t, s).
$$

1.2 Exercise 1.16 (Kalman filtering)

Let $(\epsilon_n)_{n\geq 0}$ and $(\eta_n)_{n\geq 0}$ be two independent sequences of independent Gaussian random variables such that, for every n, ϵ_n is distributed according to $\mathcal{N}(0, \sigma^2)$ and η_n is distributed according to $\mathcal{N}(0, \delta^2)$, where $\sigma > 0$ and $\delta > 0$. We consider two other sequences $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ defined by the properties $X_0 = 0$, and, for every $n \geq 0$,

$$
X_{n+1} = a_n X_n + \epsilon_{n+1}
$$
 and $Y_n = cX_n + \eta_n$,

where c and a_n are positive constants. We set

$$
\hat{X}_{n/n} = \boldsymbol{E}[X_n|Y_0, ..., Y_n]
$$

and

$$
\hat{X}_{n+1/n} = \mathbf{E}[X_{n+1}|Y_0, ..., Y_n].
$$

The goal of the exercise is to find a recursive formula allowing one to compute these conditional expectations.

- 1. Verify that $\hat{X}_{n+1/n} = a_n \hat{X}_{n/n}$, for every $n \geq 0$.
- 2. Show that, for every $n \geq 1$,

$$
\hat{X}_{n/n} = \hat{X}_{n/n-1} + \frac{E[X_n Z_n]}{E[Z_n^2]} Z_n,
$$

where $Z_n = Y_n - c\hat{X}_{n/n-1}$.

3. Evaluate $\mathbf{E}[X_n Z_n]$ and $\mathbf{E}[Z_n^2]$ in terms of $P_n \equiv \mathbf{E}[(X_n - \hat{X}_{n/n-1})^2]$ and infer that, for every $n \geq 1$,

$$
\hat{X}_{n+1/n} = a_n (\hat{X}_{n/n-1} + \frac{cP_n}{c^2 P_n + \delta^2} Z_n)
$$

4. Verify that $P_1 = \sigma^2$ and that, for every $n \geq 1$, the following induction formula holds:

$$
P_{n+1} = \sigma^2 + a_n^2 \frac{\delta^2 P_n}{c^2 P_n + \delta^2}.
$$

Proof.

 \Box

1. By observing the construction of X_n and Y_n , we see that $Y_0 = \eta_0$ and for every $n \ge 1$, X_n is a $\sigma(\epsilon_k, k = 0, ..., n)$ measurable centered Gaussian random variable and Y_n is a $\sigma(\eta_n, \epsilon_k, k = 0, ..., n)$ -measurable centered Gaussian random variable. Since $\sigma(Y_0) = \sigma(\eta_0)$ and for each $n \geq 1$, $\sigma(Y_0, ..., Y_n) \subseteq \sigma(\epsilon_k, \eta_k, k = 0, ..., n)$, we have

$$
\hat{X}_{n+1/n} = \mathbf{E}[X_{n+1}|Y_0, ..., Y_n]
$$

= $a_n \mathbf{E}[X_n|Y_0, ..., Y_n] + \mathbf{E}[\epsilon_{n+1}|Y_0, ..., Y_n]$
= $a_n \hat{X}_{n/n} + \mathbf{E}[\epsilon_{n+1}]$
= $a_n \hat{X}_{n/n}$.

2. Given $n \geq 1$. Set $K_n = span{Y_0, ..., Y_n}$. Then, for each centered Gaussian random variable $X \in L^2(\Omega, \mathcal{F}, \mathbf{P})$,

$$
\boldsymbol{E}[X|Y_0, ..., Y_n] = p_{K_n}(X),
$$

where p_{K_n} is the orthogonal projection onto K_n in the Hilbert space $L^2(\Omega, \mathcal{F}, P)$. Observe that

$$
Z_n = Y_n - c\hat{X}_{n/n-1}
$$

= $Y_n - cE[X_n|Y_0, ..., Y_{n-1}]$
= $Y_n + E[\eta_n - Y_n|Y_0, ..., Y_{n-1}]$
= $Y_n + E[\eta_n] - E[Y_n|Y_0, ..., Y_{n-1}]$
= $Y_n - p_{K_{n-1}}(Y_n)$

Set $V_n = span{Z_n}$. Then $K_n = span{Y_0, ..., Y_{n-1}, Z_n} = K_{n-1} \oplus V_n$. Thus,

$$
\hat{X}_{n/n} = E[X_n|Y_0, ..., Y_n]
$$
\n
$$
= p_{K_n}(X_n)
$$
\n
$$
= p_{K_{n-1}}(X_n) + p_{V_n}(X_n)
$$
\n
$$
= E[X_n|Y_0, ..., Y_{n-1}] + \langle X_n, \frac{Z_n}{||Z_n||_{L^2(\Omega)}} \rangle_{L^2(\Omega)} \frac{Z_n}{||Z_n||_{L^2(\Omega)}}
$$
\n
$$
= \hat{X}_{n/n-1} + \frac{E[X_n Z_n]}{E[Z_n^2]} Z_n
$$

3. First, we show that

$$
\mathbf{E}[Z_n^2] = c^2 P_n + \delta^2.
$$

Note that

$$
\begin{aligned} \nE[Z_n^2] &= \mathbf{E}[(Y_n - c\hat{X}_{n/n-1})^2] \\ \n&= \mathbf{E}[(Y_n - cX_n + cX_n - c\hat{X}_{n/n-1})^2] \\ \n&= \mathbf{E}[(\eta_n + cX_n - c\hat{X}_{n/n-1})^2] \\ \n&= c^2 P_n + \mathbf{E}[\eta_n^2] + 2c\mathbf{E}[\eta_n(X_n - \hat{X}_{n/n-1})] \\ \n&= c^2 P_n + \delta^2 + 2c\mathbf{E}[\eta_n(X_n - \hat{X}_{n/n-1})] \n\end{aligned}
$$

Since X_n is $\sigma(\epsilon_k, k = 0, ..., n)$ -measurable, $\hat{X}_{n/n-1}$ is $\sigma(Y_k, k = 0, ..., n-1)$ -measurable, and $\sigma(Y_k, k = 0, ..., n-1)$ $1) \subseteq \sigma(\eta_k, \epsilon_k, k = 0, ..., n-1)$, we see that

$$
\mathbf{E}[\eta_n(X_n - \hat{X}_{n/n-1})] = \mathbf{E}[\eta_n] \mathbf{E}[X_n - \hat{X}_{n/n-1}] = 0
$$

and therefore

$$
\mathbf{E}[Z_n^2] = c^2 P_n + \delta^2
$$

.

Next, we show that

$$
\boldsymbol{E}[X_n Z_n] = c P_n.
$$

Observe that

$$
E[\hat{X}_{n/n-1}(X_n - \hat{X}_{n/n-1})]
$$

=
$$
E[p_{K_{n-1}}(X_n)(X_n - p_{K_{n-1}}(X_n))].
$$

Since X_n is $\sigma(\epsilon_k, k = 0, ..., n)$ -measurable, we have $\mathbf{E}[X_n \eta_n] = 0$ and therefore

$$
\begin{aligned} \nE[X_n Z_n] &= \mathbf{E}[X_n (Y_n - c\hat{X}_{n/n-1})] \\ \n&= \mathbf{E}[X_n (Y_n - cX_n + cX_n - c\hat{X}_{n/n-1})] \\ \n&= \mathbf{E}[X_n (\eta_n + cX_n - c\hat{X}_{n/n-1})] \\ \n&= c\mathbf{E}[X_n (X_n - \hat{X}_{n/n-1})] \\ \n&= c\mathbf{E}[X_n (X_n - \hat{X}_{n/n-1})] - c\mathbf{E}[\hat{X}_{n/n-1} (X_n - \hat{X}_{n/n-1})] \\ \n&= cP_n. \n\end{aligned}
$$

Finally, we have

$$
\hat{X}_{n+1/n} = a_n \hat{X}_{n/n}
$$

= $a_n (\hat{X}_{n/n-1} + \frac{E[X_n Z_n]}{E[Z_n^2]} Z_n)$
= $a_n (\hat{X}_{n/n-1} + \frac{cP_n}{c^2 P_n + \delta^2} Z_n).$

4. Note that

$$
P_1 = \boldsymbol{E}[(X_1 - \boldsymbol{E}[X_1|\eta_0])^2] = \boldsymbol{E}[(\epsilon_1 - \boldsymbol{E}[\epsilon_1|\eta_0])^2] = \boldsymbol{E}[(\epsilon_1 - \boldsymbol{E}[\epsilon_1])^2] = \sigma^2
$$

and

$$
P_{n+1} = \mathbf{E}[(X_{n+1} - \hat{X}_{n+1/n})^2]
$$

= $\mathbf{E}[(a_n X_n + \epsilon_{n+1} - a_n \hat{X}_{n/n})^2]$
= $\mathbf{E}[(\epsilon_{n+1} - a_n (X_n - \hat{X}_{n/n}))^2]$
= $\mathbf{E}[\epsilon_{n+1}^2] + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n})^2] - 2a_n \mathbf{E}[\epsilon_{n+1} (X_n - \hat{X}_{n/n})]$

Since X_n is $\sigma(\epsilon_k, k = 0, ..., n)$ -measurable, $\hat{X}_{n/n}$ is $\sigma(Y_k, k = 0, ..., n)$ -measurable, and $\sigma(Y_k, k = 0, ..., n)$ $\sigma(\eta_k, \epsilon_k, k = 0, ..., n)$, we see that

$$
\mathbf{E}[\epsilon_{n+1}(X_n - \hat{X}_{n/n})] = 0
$$

and therefore

$$
P_{n+1} = \mathbf{E}[\epsilon_{n+1}^2] + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n})^2] = \sigma^2 + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n})^2].
$$

Because Z_n and $\hat{X}_{n/n-1}$ are orthogonal and Z_n is centered Gaussian, we get $\mathbf{E}[Z_n\hat{X}_{n/n-1}] = 0$ and, hence,

$$
P_{n+1} = \sigma^2 + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n})^2]
$$

\n
$$
= \sigma^2 + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n-1} + \hat{X}_{n/n-1} - \hat{X}_{n/n})^2]
$$

\n
$$
= \sigma^2 + a_n^2 \mathbf{E}[(X_n - \hat{X}_{n/n-1} - \frac{\mathbf{E}[X_n Z_n]}{\mathbf{E}[Z_n^2]} Z_n)^2]
$$

\n
$$
= \sigma^2 + a_n^2 (P_n + (\frac{\mathbf{E}[X_n Z_n]}{\mathbf{E}[Z_n^2]})^2 \mathbf{E}[Z_n^2] - 2\frac{\mathbf{E}[X_n Z_n]}{\mathbf{E}[Z_n^2]} \mathbf{E}[Z_n(X_n - \hat{X}_{n/n-1})])
$$

\n
$$
= \sigma^2 + a_n^2 (P_n + \frac{\mathbf{E}[X_n Z_n]^2}{\mathbf{E}[Z_n^2]} - 2\frac{\mathbf{E}[X_n Z_n]}{\mathbf{E}[Z_n^2]} \mathbf{E}[Z_n X_n])
$$

\n
$$
= \sigma^2 + a_n^2 (P_n - \frac{\mathbf{E}[X_n Z_n]^2}{\mathbf{E}[Z_n^2]})
$$

\n
$$
= \sigma^2 + a_n^2 (P_n - \frac{c^2 P_n^2}{c^2 P_n + \delta^2})
$$

\n
$$
= \sigma^2 + a_n^2 \frac{\delta^2 P_n}{c^2 P_n + \delta^2}
$$

 \Box

1.3 Exercise 1.17

Let H be a (centered) Gaussian space and let H_1 and H_2 be linear subspaces of H. Let K be a closed linear subspace of H. We write p_K for the orthogonal projection onto K. Show that the condition

$$
\forall X_1 \in H_1, \forall X_2 \in H_2, \quad \mathbf{E}[X_1 X_2] = \mathbf{E}[p_K(X_1) p_K(X_2)] \tag{1}
$$

implies that the σ -fields $\sigma(H_1)$ and $\sigma(H_2)$ are conditionally independent given $\sigma(K)$. (This means that, for every nonnegative $\sigma(H_1)$ -measurable random variable X_1 , and for every nonnegative $\sigma(H_2)$ -measurable random variable X_2 , one has

$$
\boldsymbol{E}[X_1 X_2 | \sigma(K)] = \boldsymbol{E}[X_1 | \sigma(K)] \boldsymbol{E}[X_2 | \sigma(X_2)]. \tag{2}
$$

Hint: Via monotone class arguments explained in Appendix A1, it is enough to consider the case where X_1 , resp. X_2 , is the indicator function of an event depending only on finitely many variables in H_1 , resp. in H_2 .

Proof.

To show (2) , it suffices to show that

$$
\begin{split} &\pmb{E}[1_{\{X_1^1 \in \Gamma_1^1\}} \dots 1_{\{X_{n_1}^1 \in \Gamma_{n_1}^1\}} \times 1_{\{X_2^1 \in \Gamma_1^2\}} \dots 1_{\{X_{n_2}^2 \in \Gamma_{n_2}^2\}} \mid \sigma(K)] \\ &= \pmb{E}[1_{\{X_1^1 \in \Gamma_1^1\}} \dots 1_{\{X_{n_1}^1 \in \Gamma_{n_1}^1\}} \mid \sigma(K)] \times \pmb{E}[1_{\{X_2^1 \in \Gamma_1^2\}} \dots 1_{\{X_{n_2}^2 \in \Gamma_{n_2}^2\}} \mid \sigma(K)] \end{split} \tag{3}
$$

for each $Z_i^s \in M_s$, $\Gamma_i^s \in \mathcal{B}_{\mathbb{R}}$, $m_s \in \mathbb{N}$, and $s = 1, 2$.

Let $\{Z_i^s : i = 1, 2, ..., m_s\}$ be an orthonormal basis of linear subspace space M_s of L^2 spanned by $\{X_i^s : i = 1, 2, ..., n_s\}$. Then $\{Z_1^s, Z_2^s, ..., Z_{m_s}^s\} \subseteq H_s$ are independent centered Gaussians. To show [\(3\)](#page-8-2), it suffices to show that

$$
\begin{split} &E[1_{\{Z_1^1 \in \Gamma_1^1\}} \dots 1_{\{Z_{m_1}^1 \in \Gamma_{m_1}^1\}} \times 1_{\{Z_2^1 \in \Gamma_1^2\}} \dots 1_{\{Z_{m_2}^2 \in \Gamma_{m_2}^2\}} \mid \sigma(K)] \\ &= \mathbf{E}[1_{\{Z_1^1 \in \Gamma_1^1\}} \dots 1_{\{Z_{m_1}^1 \in \Gamma_{m_1}^1\}} \mid \sigma(K)] \times \mathbf{E}[1_{\{Z_2^1 \in \Gamma_1^2\}} \dots 1_{\{Z_{m_2}^2 \in \Gamma_{m_2}^2\}} \mid \sigma(K)] \end{split} \tag{4}
$$

for each $\Gamma_i^s \in \mathcal{B}_{\mathbb{R}}$. Indeed, by the theorem of monotone class, we get

$$
\boldsymbol{E}[1_{\{E_1\}}1_{\{E_2\}} \mid \sigma(K)] = \boldsymbol{E}[1_{\{E_1\}} \mid \sigma(K)] \boldsymbol{E}[1_{\{E_2\}} \mid \sigma(K)] \quad \forall E_s \in \sigma(M_s) \text{ and } s = 1, 2.
$$

and so

$$
\begin{split} &\pmb{E}[\mathbf{1}_{\{X_1^1 \in \Gamma_1^1\}} \dots \mathbf{1}_{\{X_{n_1}^1 \in \Gamma_{n_1}^1\}} \times \mathbf{1}_{\{X_2^1 \in \Gamma_1^2\}} \dots \mathbf{1}_{\{X_{n_2}^2 \in \Gamma_{n_2}^2\}} \mid \sigma(K)] \\ &= \pmb{E}[\mathbf{1}_{\{X_1^1 \in \Gamma_1^1\}} \dots \mathbf{1}_{\{X_{n_1}^1 \in \Gamma_{n_1}^1\}} | \sigma(K)] \times \pmb{E}[\mathbf{1}_{\{X_2^1 \in \Gamma_1^2\}} \dots \mathbf{1}_{\{X_{n_2}^2 \in \Gamma_{n_2}^2\}} \mid \sigma(K)] \end{split}
$$

for each $\Gamma_i^s \in \mathcal{B}_{\mathbb{R}}$.

By independence of $\{Z_1^s, Z_2^s, ..., Z_{m_s}^s\}$, we have

$$
\boldsymbol{E}[(Z_i^s - p_K(Z_i^s))(Z_j^s - p_K(Z_j^s))] = 0 \quad \forall i \neq j, \forall s = 1, 2. \tag{5}
$$

By [\(1\)](#page-8-3) and Corollary 1.10, we get

$$
\begin{split} &\boldsymbol{E}[(Z_i^1 - p_K(Z_i^1))(Z_j^2 - p_K(Z_j^2))] \\ &= \boldsymbol{E}[Z_i^1 Z_j^2] + \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] - \boldsymbol{E}[Z_i^1 p_K(Z_j^2)] - \boldsymbol{E}[p_K(Z_i^1)Z_j^2] \\ &= \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] + \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] - \boldsymbol{E}[\boldsymbol{E}[Z_i^1|\sigma(K)]p_K(Z_j^2)] - \boldsymbol{E}[p_K(Z_i^1)\boldsymbol{E}[Z_j^2|\sigma(K)]] \\ &= \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] + \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] - \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] - \boldsymbol{E}[p_K(Z_i^1)p_K(Z_j^2)] = 0 \quad \forall i, j \end{split} \tag{6}
$$

and

$$
\boldsymbol{P}(Z_i^s \in \Gamma_i^s | \sigma(K)) = \frac{1}{\sigma_i^s \sqrt{2\pi}} \int_{\Gamma_i^s} \exp\left(-\frac{(y - p_K(Z_i^s))^2}{2(\sigma_i^s)^2}\right) dy,
$$

where $(\sigma_i^s)^2 = \mathbf{E}[(Z_i^s - p_K(Z_i^s))^2]$. Set

$$
Y_i^s = Z_i^s - p_K(Z_i^s).
$$

By [\(5\)](#page-9-1) and [\(6\)](#page-9-2), $\{Y_i^s : s = 1, 2 \text{ and } i = 1, 2, ..., m_s\}$ are independent centered Gaussians. Set

$$
F(z_1^1,...,z_{m_1}^1,z_1^2,...,z_{m_2}^2) = 1_{\{\Gamma_1^1\}}(z_1^1)...1_{\{\Gamma_{m_1}^1\}}(z_{m_1}^1) \times 1_{\{\Gamma_1^2\}}(z_1^2)...1_{\{\Gamma_{m_2}^2\}}(z_{m_2}^2).
$$

Since $\{Y_i^s : s = 1, 2 \text{ and } i = 1, 2, ..., n_s\}$ is independent of $\sigma(K)$, we get

$$
\begin{split} &\boldsymbol{E}[1_{\{Z_{1}^{1}\in\Gamma_{1}^{1}\}}\ldots 1_{\{Z_{m_{1}}^{1}\in\Gamma_{m_{1}}^{1}\}}\times 1_{\{Z_{2}^{1}\in\Gamma_{1}^{2}\}}\ldots 1_{\{Z_{m_{2}}^{2}\in\Gamma_{m_{2}}^{2}\}}\mid\sigma(K)] \\ &=\boldsymbol{E}[F(Z_{1}^{1},...,Z_{m_{1}}^{1},Z_{1}^{2},...,Z_{m_{2}}^{2})\mid\sigma(K)] \\ &=\boldsymbol{E}[F(Y_{1}^{1}+p_{K}(Z_{1}^{1}),...,Y_{m_{1}}^{1}+p_{K}(Z_{m_{1}}^{1}),Y_{1}^{2}+p_{K}(Z_{1}^{2}),...,Y_{m_{2}}^{2}+p_{K}(Z_{m_{2}}^{2}))\mid\sigma(K)] \\ &=\int F(y_{1}^{1}+p_{K}(Z_{1}^{1}),...,y_{m_{1}}^{1}+p_{K}(Z_{m_{1}}^{1}),y_{1}^{2}+p_{K}(Z_{1}^{2}),...,y_{m_{2}}^{2}+p_{K}(Z_{m_{2}}^{2})) \\ &\boldsymbol{P}_{Y_{s}^{1},...,Y_{m_{1}}^{1},Y_{1}^{2},...,Y_{m_{2}}^{2}}(dy_{1}^{1}\times...\times dy_{m_{1}}^{1}\times dy_{1}^{2}\times...\times dy_{m_{2}}^{2}) \\ &=\int F(y_{1}^{1}+p_{K}(Z_{1}^{1}),...,y_{m_{1}}^{1}+p_{K}(Z_{m_{1}}^{1}),y_{1}^{2}+p_{K}(Z_{1}^{2}),...,y_{m_{2}}^{2}+p_{K}(Z_{m_{2}}^{2})) \\ &\boldsymbol{P}_{Y_{1}^{1}}(dy_{1}^{1})...\boldsymbol{P}_{Y_{m_{1}}^{1}}(dy_{m_{1}}^{1})\boldsymbol{P}_{Y_{1}^{2}}(dy_{1}^{2})...\boldsymbol{P}_{Y_{m_{2}}^{2}}(dy_{m_{2}}^{2}) \\ &=\prod_{1\leq s\leq 2,1\leq i\leq m_{s}}\int 1_{\{\Gamma_{s}^{s}\}}(y_{i}^{s}+p_{K}(Z_{i}^{s}))\boldsymbol{P}_{Y_{i}^{s}}(dy_{i}^{s}) \end{split}
$$

1.4 Exercise 1.18 (Levy's construction of Brownian motion)

For each $t \in [0,1]$, we set $h_0(t) = 1$, and then, for every integer $n \ge 0$ and every $k \in \{0, 1, ..., 2ⁿ - 1\}$,

$$
h_{n,k}(t) = 2^{\frac{n}{2}} 1_{\left[\frac{2k}{2^{n+1}}, \frac{2k+1}{2^{n+1}}\right)}(t) - 2^{\frac{n}{2}} 1_{\left[\frac{2k+1}{2^{n+1}}, \frac{2k+2}{2^{n+1}}\right)}(t).
$$

- 1. Verify that the functions (**Haar system**) $H := \{h_{n,k} | n \geq 0 \text{ and } k = 0, 1, ..., 2^{n} 1\} \cup \{h_0\}$ form an orthonormal basis of $L^2([0,1], \mathcal{B}_{[0,1]}, dt)$. (Hint: Observe that, for every fixed $n \geq 0$, any function $f : [0,1) \mapsto \mathbb{R}$ that is constant on every interval of the form $[\frac{j-1}{2^n}, \frac{j}{2^n})$, for every $1 \leq j \leq 2^n$, is a linear combination of the functions in H).
- 2. Suppose that $\{N_0\}\bigcup \{N_{n,k}\}\$ are independent $\mathcal{N}(0,1)$ random variables. Justify the existence of the (unique) Gaussian white noise G on [0, 1] with intensity dt, such that $G(h_0) = N_0$ and $G(h_k^n) = N_k^n$ for every $n \ge 0$ and $0 \le k \le 2^{n} - 1.$
- 3. For every $t \in [0, 1)$, set $B_t = G(1_{[0,t]})$. Show that

$$
B_t = tN_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} g_{n,k}(t) N_{n,k},
$$

where the series converges in L^2 , and the functions $g_{n,k} : [0,1] \mapsto [0,\infty)$ are given by

$$
g_{n,k}(t) = \int_0^t h_{n,k}(s)ds.
$$

Note that the functions $g_{n,k}$ are continuous and satisfy the following property: For every fixed $n \geq 0$, the functions $g_{n,k}$, $0 \le k \le 2ⁿ - 1$, have disjoint supports and are bounded above by $2^{-\frac{n}{2}}$.

4. For every integer $m \geq 0$ and every $t \in [0, 1]$ set

$$
B_t^m = tN_0 + \sum_{n=0}^{m-1} \sum_{k=0}^{2^n - 1} g_{n,k}(t) N_{n,k}.
$$

Verify that the continuous functions $t \mapsto B_t^m$ converge uniformly on [0, 1] as $m \to \infty$ (a.s.) (Hint: If N is $\mathcal{N}(0, 1)$ distributed, prove the bound $\boldsymbol{P}(|N| \ge a) \le \exp(-\frac{a^2}{2})$ $\left(\frac{a^2}{2}\right)$ for every $a \ge 1$, and use this estimate to bound the probability of the event $\{\sup_{0\leq k\leq 2^n-1}|N_{n,k}|>2^{\frac{n}{4}}\}$, for every fixed $n\geq 0$.)

5. Conclude that we can, for every $t \geq 0$, select a random variable W_t which is a.s. equal to B_t , in such a way that the mapping $t \mapsto W_t$ is continuous for every $w \in \Omega$.

Proof.

1. It's clear that H is an orthonormal system in $L^2([0,1], \mathcal{B}_{[0,1]}, dt)$. Now, we show that H is complete. Since

$$
\overline{V} = L^2([0,1], \mathcal{B}_{[0,1]}, dt),
$$

where $V := span(S), S = \bigcup_{n=0}^{\infty} S_n$, and

$$
S_n := \{ f : [0,1] \mapsto \mathbb{R} : f(x) = \sum_{k=0}^{2^n - 1} c_k 1_{\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]} \} \quad \forall n \ge 0,
$$

it suffices to show that $S \subseteq span(H)$. Fix $f \in S_m$ such that

$$
f(x) = \sum_{k=0}^{2^m-1} c_m 1_{\left[\frac{k}{2^m}, \frac{k+1}{2^m}\right)}(x)
$$
 for some $m \ge 0$.

It's clear that $f \in span(H)$ if $m = 0$. Now, we assume that $m \ge 1$. To show that $f \in span(H)$, it suffices to show that there exists real numbers $\alpha_0, ..., \alpha_{2^{m-1}-1}$ such that

$$
f(x) - \sum_{k=0}^{2^{m-1}-1} \alpha_k h_{m-1,k}(x) \in S_{m-1}
$$

Set

$$
\alpha_k = \frac{1}{2^{\frac{m+1}{2}}} (c_{2k} - c_{2k+1}) \quad \forall 0 \le k \le 2^{m-1} - 1.
$$

Then

$$
c_{2k}1_{\left[\frac{2k}{2^m},\frac{2k+1}{2^m}\right)}(x) + c_{2k+1}1_{\left[\frac{2k+1}{2^m},\frac{2k+2}{2^m}\right)}(x) - \alpha_k h_{m-1,k}(x)
$$

=
$$
\frac{c_{2k} + c_{2k+1}}{2} 1_{\left[\frac{2k}{2^m},\frac{2k+1}{2^m}\right)}(x) + \frac{c_{2k} + c_{2k+1}}{2} 1_{\left[\frac{2k+1}{2^m},\frac{2k+2}{2^m}\right)}(x)
$$

=
$$
\frac{c_{2k} + c_{2k+1}}{2} 1_{\left[\frac{k}{2^{m-1}},\frac{k+1}{2^m-1}\right)} \quad \forall 0 \le k \le 2^{m-1} - 1
$$

and so $f(x) - \sum_{k=0}^{2^{m-1}-1} \alpha_k h_{m-1,k}(x) \in S_{m-1}$.

2. Let $\{N_0\}\bigcup \{N_{n,k}\}\$ be independent $\mathcal{N}(0,1)$ random variables. Define

$$
G(c_0h_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} c_{n,k}h_{n,k}) = c_0N_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} c_{n,k}N_{n,k}.
$$

It's clear that G is a Gaussian white noise with intensity dt .

3. It's clear that

$$
B_t := G(1_{[0,t]}) = tN_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} g_{n,k}(t) N_{n,k},
$$

where

$$
g_{n,k}(t) = (1_{[0,t]}, h_{n,k})_{L^2} = \int_0^t h_{n,k}(s)ds.
$$

By the definition of $h_{n,k}$, we get $g_{n,k}(t)$ is continuous, $0 \leq g_{n,k}(t) \leq 2^{\frac{n}{2}}$, and $supp(g_{n,k}) \subseteq \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ for $n \geq 0$ and $k = 0, 1, ..., 2ⁿ - 1$.

4. Note that

$$
\sum_{n=0}^{\infty} P\left(\sup_{0\leq k\leq 2^{n}-1}|N_{n,k}|>2^{\frac{n}{4}}\right) \leq \sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} P(|N_{n,k}|>2^{\frac{n}{4}}) \leq \sum_{n=0}^{\infty} 2^{n} \exp(-2^{\frac{n}{2}-1}) < \infty.
$$

By Borel Cantelli lemma, we have $P(E) = 1$, where

$$
E := \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{ \sup_{0 \le k \le 2^n - 1} |N_{n,k}| \le 2^{\frac{n}{4}} \}.
$$

Fix $w \in E$. By problem 3, we get

$$
\sup_{t \in [0,1]} |\sum_{k=0}^{2^n - 1} g_{n,k}(t) N_{n,k}| \le \sup_{t \in [0,1]} \sum_{k=0}^{2^n - 1} g_{n,k}(t) |N_{n,k}| = \sup_{0 \le k \le 2^n - 1} \sup_{t \in [0,1]} (\sup_{t \in [0,1]} g_{n,k}(t) |N_{n,k}|)
$$

$$
\le (2^{-\frac{n}{2}} \sup_{0 \le k \le 2^n - 1} |N_{n,k}|) \le 2^{-\frac{n}{2}} \times 2^{\frac{n}{4}} = 2^{-\frac{n}{4}} \text{ for large n}
$$

and so

$$
\sup_{t\in[0,1]}|\sum_{n=m_1}^{m_2}\sum_{k=0}^{2^n-1}g_{n,k}(t)N_{n,k}|\leq \sum_{n=m_1}^{m_2}\sup_{t\in[0,1]}|\sum_{k=0}^{2^n-1}g_{n,k}(t)N_{n,k}|\leq \sum_{n=m_1}^{m_2}2^{-\frac{n}{4}\cdot m_1,\frac{m_2}{2}\to\infty}0.
$$

Thus, $\sum_{n=0}^{\infty} \sum_{k=0}^{2^n-1} g_{n,k} N_{n,k}(w)$ converge uniformly on [0, 1] and so

$$
t \in [0, 1] \mapsto B_t := tN_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} g_{n,k}(t)N_{n,k}
$$
 is continuous $(a.s.)$.

Moreover, since

$$
\mathbf{E}[(B_t - B_s)^2] = \mathbf{E}[G(1_{(s,t]})^2] = t - s \quad \forall 0 \le s \le t \le 1
$$

and

$$
\boldsymbol{E}[(B_t - B_s)B_r] = \boldsymbol{E}[G(1_{(s,t]})G(1_{[0,r]})] = 0 \quad \forall 0 \le r \le s \le t \le 1,
$$

we see that $B_t - B_s \sim \mathcal{N}(0, t - s)$ and $B_t - B_s \perp \sigma(B_r, 0 \le r \le s)$ for every $0 \le s \le t \le 1$.

5. Let $\{N_0^m : m \geq 1\} \bigcup \{N_{n,k}^m : m \geq 1, n \geq 0, 0 \leq k \leq 2^n - 1\}$ be independent $\mathcal{N}(0,1)$. Define Gaussian white noises

$$
G^{m}(c_{0}h_{0} + \sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_{n,k}h_{n,k}) := c_{0}N_{0}^{m} + \sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_{n,k}N_{n,k}^{m} \quad \forall m \ge 1
$$

and

$$
B_t^m := G^m(1_{[0,t]}) = tN_0^m + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} g_{n,k}(t)N_{n,k}^m \quad \forall m \ge 1, t \in [0,1].
$$

Then B^1, B^2, \dots are independent. Define

$$
W_t := \sum_{k=1}^{m-1} B_1^k + B_{t-\lfloor t \rfloor}^m \text{ if } m-1 \le t < m.
$$

Since $(B_t^m)_{t\in[0,1]}$ is continuous for every $m\geq 1$, we see that $(W_t)_{t\geq 0}$ has continuous sample path. Moreover, since

$$
W_t - W_s = B_{t-\lfloor t \rfloor}^m + B_1^{m-1} + \dots + B_1^{n+1} + B_1^n - B_{s-\lfloor s \rfloor}^n \sim \mathcal{N}(0, t-s) \quad \forall 0 \le s < t, n-1 \le s < n, m-1 \le t < m
$$

and

$$
\boldsymbol{E}[(W_t - W_s)W_r] = 0 \quad \forall 0 \le r \le s \le t,
$$

we see that we see that $W_t - W_s \perp \sigma(W_r, 0 \leq r \leq s)$ for every $0 \leq s \leq t$ and so $(W_t)_{t \geq 0}$ is a Brownian motion.

 \Box

Chapter 2

Brownian Motion

2.1 Exercise 2.25 (Time inversion)

Show that the process $(W_t)_{t\geq 0}$ defined by

$$
W_t = \begin{cases} tB_{\frac{1}{t}}, & \text{if } t > 0\\ 0, & \text{if } t = 0. \end{cases}
$$

is indistinguishable of a real Brownian motion started from 0.

Proof.

First, we show that $(W_t)_{t\geq 0}$ is a pre-Brownian motion. That is $(W_t)_{t\geq 0}$ is a centered Gaussian with covariance function $K(t,s) = s \wedge t$. Since $(B_t)_{t\geq 0}$ is a centered Gaussian process, we see that $(W_t)_{t\geq 0}$ is a centered Gaussian process. Let $t > 0$ and $s > 0$. Then

$$
\boldsymbol{E}[W_s W_t] = \boldsymbol{E}[tsB_{\frac{1}{t}}B_{\frac{1}{s}}] = ts(\frac{1}{s} \wedge \frac{1}{t}) = t \wedge s
$$

and

$$
\boldsymbol{E}[W_sW_0]=0
$$

Thus, $(W_t)_{t\geq 0}$ is a pre-Brownian motion. Next, we show that

$$
\lim_{t \to \infty} W_t = \lim_{t \to \infty} \frac{B_t}{t} = 0 \text{ a.s.}
$$

By considering $(B_{k+1} - B_k)_{k \geq 0}$ and using the strong law of large number, we get

$$
\frac{B_n}{n} \to 0 \text{ a.s.}
$$

Let $m, n \geq 0$. By using Kolmogorov's inequality, we see that

$$
\mathbf{P}(\max_{0 \le k \le 2^m} |B_{n + \frac{k}{2^m}} - B_n| \ge n^{\frac{2}{3}}) \le \frac{1}{n^{\frac{4}{3}}} \mathbf{E}[(B_{n+1} - B_n)^2] = \frac{1}{n^{\frac{4}{3}}}.
$$

By letting $m \to \infty$, we get

$$
\mathbf{P}(\sup_{t \in [n,n+1]} |B_t - B_n| \ge n^{\frac{2}{3}}) \le \frac{1}{n^{\frac{4}{3}}}.
$$

By using Borel-Cantelli is lemma, we have a.s.

$$
|\frac{B_t}{t}| \le \frac{1}{n^{\frac{1}{3}}} + \frac{B_n}{n}
$$
 for large n and $n \le t \le n + 1$

and, hence,

$$
\lim_{t \to \infty} \frac{B_t}{t} = 0 \text{ a.s.}
$$

Therefore, W_t is continuous at $t = 0$ a.s. Finally, we set $E = \{\lim_{t \to \infty} \frac{B_t}{t} = 0\}$ and

$$
\widetilde{W}_t(w) = \begin{cases} W_t(w), & \text{if } w \in E \\ 0, & \text{otherwise} \end{cases}
$$

for all $t \geq 0$. Then $(\widetilde{W}_t)_{t\geq 0}$ and $(W_t)_{t\geq 0}$ are indistinguishable. Since $(\widetilde{W}_t)_{t\geq 0}$ has continuous sample path, we see that $(\widetilde{W}_t)_{t\geq0}$ is the Brownian motion. Thus, $(W_t)_{t\geq0}$ is indistinguishable of a real Brownian motion $(\widetilde{W}_t)_{t\geq0}$ started from 0. from 0.

2.2 Exercise 2.26

For each real $a \geq 0$, we set $T_a = \inf\{t \geq 0 | B_t = a\}$. Show that the process $(T_a)_{a>0}$ has stationary independent increments, in the sense that, for every $0 \le a \le b$, the variable $T_b - T_a$ is independent of the σ -field $\sigma(T_c, 0 \le c \le a)$ and has the same distribution as T_{b-a} .

Proof.

1. First, we show that $T_b - T_a \stackrel{D}{=} T_{b-a}$ for each $0 \le a < b$. Given $0 \le a < b$. Set

$$
B_t = 1_{T_a < \infty} (B_{T_a + t} - B_{T_a}).
$$

Since $T_a < \infty$ a.s., we see that $(B_t)_{t>0}$ is a Brownian motion on probability space (Ω, \mathcal{F}, P) . Set

$$
\widetilde{T}_c = \inf\{t \ge 0 | \widetilde{B}_t = c\}
$$

for each $c \in \mathbb{R}$. Then we see that $\widetilde{T_{b-a}} \stackrel{D}{=} T_{b-a}$. Since $T_a < \infty$ a.s., we have a.s. $s \ge T_a$ if $B_s = b$. Thus, we see that a.s.

$$
\widetilde{T_{b-a}} = \inf\{t \ge 0 | \widetilde{B_t} = b - a\}
$$

$$
= \inf\{t + T_a | B_{T_a + t} = b \text{ and } t \ge 0\} - T_a
$$

$$
= \inf\{s | B_s = b \text{ and } s \ge T_a\} - T_a
$$

$$
= \inf\{s | B_s = b\} - T_a = T_b - T_a
$$

and therefore

$$
T_b - T_a \stackrel{D}{=} T_{b-a}.
$$

2. Next, we show that $T_b - T_a$ is independent of the σ -field $\sigma(T_c, 0 \leq c \leq a)$. Given $0 \leq a < b$. By using strong Markov property, we see that B_t is independent of \mathcal{F}_{T_a} . Since $T_c \leq T_a$ for $0 \leq c \leq a$, we have $\mathcal{F}_{T_c} \subseteq \mathcal{F}_{T_a}$ for each $0 \leq c \leq a$. Indeed, if $A \in \mathcal{F}_{T_c}$, then

$$
A \bigcap \{T_a \le t\} = (A \bigcap \{T_c \le t\}) \bigcap \{T_a \le t\} \in \mathcal{F}_t.
$$

Therefore

$$
\{T_{c_1} \le t_1, ..., T_{c_n} \le t_n\} \in \mathcal{F}_{T_a}
$$

for each $n \geq 1, 0 \leq c_1 \leq ... \leq c_n \leq a$, and non-negative real number $t_1, ..., t_n$. By using monotone class theorem, we have

 $\sigma(T_c, 0 \leq c \leq a) \subseteq \mathcal{F}_{T_a}.$

Note that $T_b - T_a = \widetilde{T_{b-a}}$ a.s. To show $T_b - T_a$ is independent of $\sigma(T_c, 0 \leq c \leq a)$, it suffices to show that $\widetilde{T_{b-a}}$ is independent of $\sigma(T_c, 0 \le c \le a)$. Since $\{\widetilde{T_{b-a}} \le t\} = \{\inf_{s \in \mathbb{Q} \cap [0,t]} |\widetilde{B_s} - (b-a)| = 0\}$ and $\widetilde{B_t}$ is independent of \mathcal{F}_{T_a} , we see that $\widetilde{T_{b-a}}$ is independent of \mathcal{F}_{T_a} . Because $\sigma(T_c, 0 \leq c \leq a) \subseteq \mathcal{F}_{T_a}$, we see that $T_b - T_a$ is independent of $\sigma(T_c, 0 \leq c \leq a)$.

 \Box

2.3 Exercise 2.27 (Brownian bridge)

We set $W_t = B_t - tB_1 \quad \forall t \in [0, 1].$

1. Show that $(W_t)_{t\in[0,1]}$ is a centered Gaussian process and give its covariance function.

2. Let $0 < t_1 < t_2 < ... < t_m < 1$. Show that the law of $(W_{t_1}, W_{t_2}, ..., W_{t_m})$ has density

$$
g(x_1, x_2, ..., x_m) = \sqrt{2\pi} p_{t_1}(x_1) p_{t_2-t_2}(x_2-x_1) ... p_{t_m-t_{m-1}}(x_m-x_{m-1}) p_{1-t_p}(-x_m),
$$

where $p_t(x) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi t}$ exp $\left(\frac{-x^2}{2t}\right)$ $\frac{2x}{2t}$). Explain why the law of $(W_{t_1}, W_{t_2}, ..., W_{t_m})$ can be interpreted as the conditional law of $(B_{t_1}, B_{t_2}, ..., B_{t_m})$ knowing that $B_1 = 0$.

3. Verify that the two processes $(W_t)_{t\in[0,1]}$ and $(W_{1-t})_{t\in[0,1]}$ have the same distribution (similarly as in the definition of Wiener measure, this law is a probability measure on the space of all continuous functions from $[0, 1]$ into \mathbb{R}).

Proof.

1. Let
$$
0 < t_1 < t_2 < ... < t_m < 1
$$
, $Q := \sum_{i=1}^{m} t_i c_i$, and $R_j := \sum_{i=j}^{m} c_i \quad \forall 1 \le j \le m$. Then
\n
$$
\sum_{i=1}^{m} c_i W_{t_i} = -Q(B_1 - B_{t_m}) + (Q + R_m)(B_{t_m} - B_{t_{m-1}}) + ... + (Q + R_2)(B_{t_2} - B_{t_1}) + (Q + R_1)B_{t_1}
$$

is a centered Gaussian and so $(W_t)_{t\in[0,1]}$ is a centered Gaussian process. Moreover, the its covariance function

$$
\boldsymbol{E}[W_t W_s] = \boldsymbol{E}[(B_t - tB_1)(B_s - sB_1)] = t \wedge s - ts - ts + ts = t \wedge s - ts \quad \forall t, s \in [0, 1].
$$

2. Let $0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = 1$ and $F(x_1, \ldots, x_m)$ be nonnegative measurable function on \mathbb{R}^m . Then

$$
\begin{split}\n\boldsymbol{E}[F(W_{t_1}, W_{t_2}, ..., W_{t_m})] &= \boldsymbol{E}[F(B_{t_1} - t_1 B_1, B_{t_2} - t_2 B_1, ..., B_{t_m} - t_m B_1)] \\
&= \int_{\mathbb{R}^{m+1}} F(x_1 - t_1 x_{m+1}, x_2 - t_2 x_{m+1}, ..., x_m - t_m x_{m+1}) \prod_{i=1}^{m+1} p_{t_i - t_{i-1}}(x_i - x_{i-1}) dx_1 ... dx_{m+1}(x_0 = 0) \\
&= \int_{\mathbb{R}^{m+1}} F(y_1, y_2, ..., y_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(y_i - y_{i-1} + (t_i - t_{i-1}) y_{m+1}) p_{1-t_m}(y_{m+1} - y_m - t_m y_{m+1}) dy_1 ... dy_{m+1} \\
(\text{Set } y_0 = 0, y_i = x_i - t_i x_{m+1} \text{ , and } y_{m+1} = x_{m+1}).\n\end{split}
$$

Note that

 $p_{t_i-t_{i-1}}(y_i - y_{i-1} + (t_i - t_{i-1})y_{m+1}) = p_{t_i-t_{i-1}}(y_i - y_{i-1}) \exp(-y_{m+1}(y_i - y_{i-1})) \exp(-\frac{1}{2})$ $\frac{1}{2}(t_i-t_{i-1})y_{m+1}^2)$ for each $1 \leq i \leq m$ and

$$
p_{1-t_m}(y_{m+1} - y_m - t_m y_{m+1}) = p_{1-t_m}(-y_m) \exp(y_m y_{m+1}) \exp(-\frac{1}{2}(1 - t_m) y_{m+1}^2).
$$

Then

$$
\prod_{i=1}^{m} p_{t_i-t_{i-1}}(y_i - y_{i-1} + (t_i - t_{i-1})y_{m+1})p_{1-t_m}(y_{m+1} - y_m - t_m y_{m+1}) = \prod_{i=1}^{m} p_{t_i-t_{i-1}}(y_i - y_{i-1})p_{1-t_m}(-y_m) \exp\left(-\frac{1}{2}y_{m+1}^2\right)
$$

and so

$$
E[F(W_{t_1}, W_{t_2}, ..., W_{t_m})]
$$
\n
$$
= \int_{\mathbb{R}^{m+1}} F(y_1, y_2, ..., y_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(y_i - y_{i-1} + (t_i - t_{i-1})y_{m+1})p_{1-t_m}(y_{m+1} - y_m - t_m y_{m+1})dy_1...dy_{m+1}
$$
\n
$$
= \int_{\mathbb{R}^m} F(y_1, y_2, ..., y_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(y_i - y_{i-1})p_{1-t_m}(-y_m) (\int_{\mathbb{R}} \exp(-\frac{1}{2}y_{m+1}^2) dy_{m+1}) dy_1...dy_m
$$
\n
$$
= \int_{\mathbb{R}^m} F(y_1, y_2, ..., y_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(y_i - y_{i-1})p_{1-t_m}(-y_m) \sqrt{2\pi} dy_1...dy_m.
$$

- 3. We have twos ways to explain why the law of Brownian bridge $(W_t)_{t\in[0,1]}$ can be interpreted as the conditional law of $(B_t)_{t\in[0,1]}$ knowing that $B_1 = 0$.
	- (a) First, we show that, if $B_1(w) = 0$, then

$$
\boldsymbol{E}[F(B_{t_1},...,B_{t_m})|B_1](w) = \int_{\mathbb{R}^m} F(x_1,...,x_m)g(x_1,...,x_m)dx_1...dx_m
$$

for every $0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = 1$ and $F(x_1, \ldots, x_m)$ be nonnegative measurable function on \mathbb{R}^m . Observe that

$$
\mathbf{E}[F(B_{t_1},...,B_{t_m})|B_1] = \varphi(B_1),
$$

where $x_0 = 0$,

$$
q(x_{m+1}) = \int_{\mathbb{R}^m} f_{B_{t_1},...,B_{t_m},B_1}(x_1,...,x_m,x_{m+1}) dx_1...dx_m = \int_{\mathbb{R}^m} \prod_{i=1}^{m+1} p_{t_i-t_{i-1}}(x_i-x_{i-1}) dx_1...dx_m,
$$

and

$$
\varphi(x_{m+1}) = \frac{1}{q(x_{m+1})} \int_{\mathbb{R}^m} F(x_1, ..., x_m) f_{B_{t_1}, ..., B_{t_m}, B_1}(x_1, ..., x_m, x_{m+1}) dx_1...dx_m
$$

=
$$
\frac{1}{q(x_{m+1})} \int_{\mathbb{R}^m} F(x_1, ..., x_m) \prod_{i=1}^{m+1} p_{t_i - t_{i-1}}(x_i - x_{i-1}) dx_1...dx_m.
$$

Note that

$$
q(0) = \int_{\mathbb{R}^m} \prod_{i=1}^m p_{t_i - t_{i-1}} (x_i - x_{i-1}) p_{1-t_m}(-x_m) dx_1...dx_m = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^m} g(x_1, ..., x_m) dx_1...dx_m = \frac{1}{\sqrt{2\pi}}
$$

and

$$
\varphi(0) = \frac{1}{q(0)} \int_{\mathbb{R}^m} F(x_1, ..., x_m) \prod_{i=1}^{m+1} p_{t_i - t_{i-1}}(x_i - x_{i-1}) dx_1...dx_m
$$

\n
$$
= \sqrt{2\pi} \int_{\mathbb{R}^m} F(x_1, ..., x_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(x_i - x_{i-1}) p_{1 - t_m}(-x_m) dx_1...dx_m
$$

\n
$$
= \sqrt{2\pi} \int_{\mathbb{R}^m} F(x_1, ..., x_m) \frac{1}{\sqrt{2\pi}} g(x_1, ..., x_m) dx_1...dx_m
$$

\n
$$
= \int_{\mathbb{R}^m} F(x_1, ..., x_m) g(x_1, ..., x_m) dx_1...dx_m.
$$

Thus, if $w \in \{B_1 = 0\}$, then

$$
\boldsymbol{E}[F(B_{t_1},...,B_{t_m})|B_1](w) = \varphi(0) = \int_{\mathbb{R}^m} F(x_1,...,x_m)g(x_1,...,x_m)dx_1...dx_m.
$$

(b) Next, we show that

$$
((B_{t_1,...,B_{t_m}})||B_1| \le \epsilon) \stackrel{d}{\to} (W_{t_1},...,W_{t_m})
$$

for every $0 < t_1 < t_2 < ... < t_m < 1$ and so the conditional law of $(B_t)_{t \in [0,1]}$ knowing that $|B_1| \leq \epsilon$ converges weakly to the law of $(W_t)_{t\in[0,1]}$. Given $0 < t_1 < t_2 < \ldots < t_m < 1$ and $F(x_1,...,x_m)$ be nonnegative measurable function on \mathbb{R}^m . Set

$$
\mu_\epsilon(dx_1...dx_m):=\boldsymbol{P}((B_{t_1},...,B_{t_m}\in dx_1...dx_m)||B_1|\leq \epsilon)\quad \forall \epsilon>0.
$$

Then

$$
\int F(x_1, ..., x_m)\mu_{\epsilon}(dx_1...dx_m) = \mathbf{P}(|B_1| \leq \epsilon)^{-1}\mathbf{E}[F(B_{t_1}, ..., B_{t_m})1_{\{|B_1| \leq \epsilon\}}]
$$
\n
$$
= \mathbf{P}(|B_1| \leq \epsilon)^{-1}\mathbf{E}[\mathbf{E}[F(B_{t_1}, ..., B_{t_m})|B_1]1_{\{|B_1| \leq \epsilon\}}]
$$
\n
$$
= \mathbf{P}(|B_1| \leq \epsilon)^{-1}\mathbf{E}[\varphi(B_1)1_{\{|B_1| \leq \epsilon\}}]
$$
\n
$$
= \int_{\mathbb{R}} \varphi(x) \times (\mathbf{P}(|B_1| \leq \epsilon)^{-1}\frac{1}{\sqrt{2\pi}}e^{-x^2/2}1_{\{|x| \leq \epsilon\}})dx.
$$

It's clear that $\varphi(x)$ is continuous and so

$$
\int F(x_1, ..., x_m) \mu_{\epsilon}(dx_1...dx_m) \to \varphi(0) = \int_{\mathbb{R}^m} F(x_1, ..., x_m) g(x_1, ..., x_m) dx_1...dx_m \text{ as } \epsilon \to 0.
$$

4. Let $0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = 1$ and $F(x_1, \ldots, x_m)$ be nonnegative measurable function on \mathbb{R}^m . Set $s_i = 1 - t_{m+1-i}$ for every $0 \le i \le m+1$. Then

$$
\begin{split}\n& \mathbf{E}[F(W_{1-t_1}, ..., W_{1-t_m})] = \mathbf{E}[F(W_{s_m}, ..., W_{s_1})] \\
& = \int_{\mathbb{R}^m} F(y_m, y_{m-1}, ..., y_1) \prod_{i=1}^m p_{s_i - s_{i-1}}(y_i - y_{i-1}) p_{1-s_m}(y_m) \sqrt{2\pi} dy_1 ... dy_m \\
& = \int_{\mathbb{R}^m} F(x_1, ..., x_m) \prod_{i=1}^m p_{s_i - s_{i-1}}(x_i - x_{i-1}) p_{1-s_m}(x_m) \sqrt{2\pi} dx_1 ... dx_m \\
& = \int_{\mathbb{R}^m} F(x_1, ..., x_m) \prod_{i=1}^m p_{t_i - t_{i-1}}(x_i - x_{i-1}) p_{1-t_m}(x_m) \sqrt{2\pi} dx_1 ... dx_m \\
& = \mathbf{E}[F(W_{t_1}, ..., W_{t_m})]\n\end{split}
$$

and so $(W_t)_{t\in[0,1]}$ and $(W_{1-t})_{t\in[0,1]}$ have the same distribution.

 \Box

2.4 Exercise 2.28 (Local maxima of Brownian paths)

Show that, a.s., the local maxima of Brownian motion are distinct: a.s., for any choice of the rational numbers $0 \leq p < q < r < s$, we have

$$
\sup_{p \le t \le q} B_t \neq \sup_{r \le t \le s} B_t.
$$

Proof.

Fixed any rational numbers $0 \leq p < q < r < s$. We show that

$$
\mathbf{P}(\sup_{p\leq t\leq q}B_t=\sup_{r\leq t\leq s}B_t)=0.
$$

Set

$$
X = \sup_{p \le t \le q} B_t - B_r
$$

and

$$
Y = \sup_{r \le t \le s} B_t - B_r.
$$

Since ${B_r - B_t|p \le t \le q}$ and ${B_t - B_r|r \le t \le s}$ are independent, we see that X and Y are independent

By using simple Markov property, we see that $(B_t - B_r)_{t\geq r}$ is a Brownian motion. Set $S_t = \sup_{t\geq r} B_t - B_r$. By using reflection principle, we have

$$
P(S_t \ge a) = P(\sup_{t \ge r} B_t - B_r \ge a)
$$

=
$$
P(\sup_{t \ge r} B_{t-r} \ge a)
$$

=
$$
P(|B_{t-r}| \ge a)
$$

and, hence, S_t is a continuous random variable for each $t\geq r.$ Therefore,

$$
P(\sup_{p \le t \le q} B_t = \sup_{r \le t \le s} B_t) = P(\sup_{p \le t \le q} B_t - B_r = \sup_{r \le t \le s} B_t - B_r)
$$

=
$$
P(X - Y = 0)
$$

=
$$
\int_{\mathbb{R}^2} 1_{\{0\}}(x + y) P_{(X, -Y)}(dx \times dy)
$$

=
$$
\int_{\mathbb{R}^2} 1_{\{0\}}(x + y) P_{(X, -Y)}(dx \times dy)
$$

=
$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{\{0\}}(x + y) P_{-Y}(dy) P_X(dx)
$$

=
$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{\{-x\}}(y) P_{-Y}(dy) P_X(dx)
$$

=
$$
\int_{\mathbb{R}} P(-Y = -x) P_X(dx) = 0
$$

Thus, we have

$$
\boldsymbol{P}(\bigcup_{0 \le p < q < r < s \text{ are rational}} \sup_{p \le t \le q} B_t = \sup_{r \le t \le s} B_t) = 0
$$

2.5 Exercise 2.29 (Non-differentiability)

Show that, a.s.,

$$
\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = \infty \text{ and } \liminf_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty,
$$

and infer that, for each $s \geq 0$, the function $t \mapsto B_t$ has a.s. no right derivative at s. Proof.

1. First, we show that a.s.,

$$
\limsup_{t\downarrow 0} \frac{B_t}{\sqrt{t}} = \infty \text{ and } \liminf_{t\downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty.
$$

Given
$$
M > 0
$$
. Since

$$
\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = \lim_{c \downarrow 0} \sup_{0 \le t \le c} \frac{B_t}{\sqrt{t}} \in \mathscr{F}_{0+}
$$

and therefore

$$
\{\limsup_{t\downarrow 0}\frac{B_t}{\sqrt{t}}\geq M\}\in \mathscr{F}_{0+}.
$$

Now, by Fatou's lemma, we have

$$
P(\limsup_{t\downarrow 0} \frac{B_t}{\sqrt{t}} \ge M)
$$

\n
$$
\ge P(\limsup_{n\to\infty} \frac{B_{n-1}}{\sqrt{n-1}} \ge M)
$$

\n
$$
= P(\frac{B_{n-1}}{\sqrt{n-1}} \ge M \text{ i.o})
$$

\n
$$
= P(\limsup_{n\to\infty} {\frac{B_{n-1}}{\sqrt{n-1}}} \ge M)
$$

\n
$$
\ge \limsup_{n\to\infty} P(\frac{B_{n-1}}{\sqrt{n-1}} \ge M)
$$

\n
$$
= \int_M^\infty \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) dx > 0
$$

Therefore, by zero-one law, we have a.s.

$$
\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} \ge M.
$$

Since M is arbitrary, we get

$$
\boldsymbol{P}(\limsup_{t\downarrow 0}\frac{B_t}{\sqrt{t}}=\infty)=\lim_{n\to\infty}\boldsymbol{P}(\limsup_{t\downarrow 0}\frac{B_t}{\sqrt{t}}\geq n)=1.
$$

Because $(-B_t)_{t\geq 0}$ is a Brownian motion, we see that

$$
\boldsymbol{P}(\liminf_{t\downarrow 0}\frac{B_t}{\sqrt{t}}=-\infty)=\boldsymbol{P}(\limsup_{t\downarrow 0}\frac{-B_t}{\sqrt{t}}=\infty)=1.
$$

2. We show that, for each $s \geq 0$, the function $t \mapsto B_t$ has a.s. no right derivative at s. Given $s \geq 0$. Observe that

$$
P(\limsup_{t \downarrow s} \frac{B_t - B_s}{t - s} = \infty)
$$

=
$$
P(\limsup_{t \downarrow s} \frac{B_t - B_s}{\sqrt{t - s}} \times \frac{1}{\sqrt{t - s}} = \infty)
$$

=
$$
P(\limsup_{t \downarrow s} \frac{B_{t - s}}{\sqrt{t - s}} = \infty) = 1
$$

and

$$
P(\liminf_{t \downarrow s} \frac{B_t - B_s}{t - s} = -\infty)
$$

=
$$
P(\liminf_{t \downarrow s} \frac{B_t - B_s}{\sqrt{t - s}} \times \frac{1}{\sqrt{t - s}} = -\infty)
$$

=
$$
P(\liminf_{t \downarrow s} \frac{B_{t - s}}{\sqrt{t - s}} = -\infty) = 1
$$

Then the function $t \mapsto B_t$ has a.s. no right derivative at s.

 \Box

2.6 Exercise 2.30 (Zero set of Brownian motion)

Let $H = \{t \in [0,1] | B_t = 0\}$. Show that H is a.s. a compact subset of [0, 1] with no isolated point and zero Lebesgue measure.

Proof.

Since $(B_t)_{t\in[0,1]}$ is continuous, we see that H is closed and so H is compact. Observe that

$$
\boldsymbol{E}[\lambda_{\mathbb{R}}(H)] = \int_{\Omega} \int_{0}^{1} 1_{\{s \in [0,1]: B_s = 0\}}(t) dt \boldsymbol{P}(dw) = \int_{0}^{1} \int_{\Omega} 1_{\{s \in [0,1]: B_s = 0\}}(t) \boldsymbol{P}(dw) dt = \int_{0}^{1} \boldsymbol{P}(B_t = 0) dt = 0
$$

and so $\lambda_{\mathbb{R}}(H) = 0$ (a.s.).

Now, we show that H has no isolated points (a.s.). Define

$$
T_q := \inf\{t \ge q : B_t = 0\} \quad \forall q \in [0, 1) \bigcap \mathbb{Q}.
$$

Observe that

$$
\mathbf{P}(\sup_{0\leq s\leq\epsilon}B_{T_q+s}>0\text{ and }\inf_{0\leq s\leq\epsilon}B_{T_q+s}<0\quad\forall\epsilon\in(0,1-q)\bigcap\mathbb{Q},\quad\forall q\in[0,1)\bigcap\mathbb{Q}\}=1.
$$

Indeed, by proposition 2.14 and the strong Markov property, we get

$$
\begin{split} & \mathbf{P}(\sup_{0 \le s \le \epsilon} B_{T_q+s} > 0 \text{ and } \inf_{0 \le s \le \epsilon} B_{T_q+s} < 0 \quad \forall \epsilon \in (0, 1-q) \bigcap \mathbb{Q} \text{)} \\ & = \mathbf{P}(\sup_{0 \le s \le \epsilon} B_s > 0 \text{ and } \inf_{0 \le s \le \epsilon} B_s < 0 \quad \forall \epsilon \in (0, 1-q) \bigcap \mathbb{Q} \text{)} = 1 \quad \forall q \in [0, 1) \bigcap \mathbb{Q}. \end{split}
$$

Set

$$
E := \bigcap_{q \in [0,1) \cap \mathbb{Q}} \bigcap_{\epsilon \in (0,1-q) \cap \mathbb{Q}} \{ \exists p \in (0,1) \bigcap \mathbb{Q} \quad T_q < T_p < T_q + \epsilon \}.
$$

Then $P(E) = 1$ and so T_q is not an isolated point for every $q \in [0, 1) \cap \mathbb{Q}$ (a.s.). Fix $w \in E$. Let $t \in H \setminus \{T_q : q \in E\}$ $[0,1)\bigcap \mathbb{Q}$. Choose $q_n \in [0,1)\bigcap \mathbb{Q}$ such that $q_n \uparrow t$. Since $q_n < t$ and $B_t = 0$, we have

$$
q_n \le T_{q_n} \le t \quad \forall n \ge 1
$$

and so $T_{q_n} \uparrow t$. Thus, t is not an isolated. Therefore, H has no isolated points (a.s.).

2.7 Exercise 2.31 (Time reversal)

We set $B_t' = B_1 - B_{1-t}$ for every $t \in [0,1]$. Show that the two processes $(B_t)_{t \in [0,1]}$ and $(B_t')_{t \in [0,1]}$ have the same law (as in the definition of Wiener measure, this law is a probability measure on the space of all continuous functions from $[0,1]$ into \mathbb{R}).

Proof.

Let $0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = 1$ and $F(x_1, \ldots, x_m)$ be nonnegative measurable function on \mathbb{R}^m . Set

 \Box

$$
s_{i} = 1 - t_{m+1-i}
$$
 for every $0 \leq i \leq m+1$ and $p_{t}(x) = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{x^{2}}{2t})$. Then
\n
$$
\mathbf{E}[F(B'_{t_{1}},...,B'_{t_{m}})] = \mathbf{E}[F(B_{1} - B_{s_{m}},...,B_{1} - B_{s_{1}})]
$$
\n
$$
= \int_{\mathbb{R}^{m+1}} F(x_{m+1} - x_{m}, x_{m+1} - x_{m-1}, ..., x_{m+1} - x_{1}) \prod_{i=1}^{m+1} p_{s_{i}-s_{i-1}}(x_{i} - x_{i-1}) dx_{1}...dx_{m+1}(x_{0} = 0)
$$
\n
$$
= \int_{\mathbb{R}^{m+1}} F(y_{1}, y_{2}, ..., y_{m}) \prod_{i=1}^{m+1} p_{t_{m+1-(i-1)} - t_{m+1-i}}(y_{m+1-(i-1)} - y_{m+1-i}) dy_{1}...dy_{m+1} \quad (y_{i} = x_{m+1} - x_{m+1-i} \quad \forall 0 \leq i \leq m+1)
$$
\n
$$
= \int_{\mathbb{R}^{m+1}} F(y_{1}, y_{2}, ..., y_{m}) \prod_{i=1}^{m+1} p_{t_{i}-t_{i-1}}(y_{i} - y_{i-1}) dy_{1}...dy_{m+1}
$$
\n
$$
= \int_{\mathbb{R}^{m}} F(y_{1}, y_{2}, ..., y_{m}) \prod_{i=1}^{m} p_{t_{i}-t_{i-1}}(y_{i} - y_{i-1}) \times (\int_{\mathbb{R}} p_{t_{m+1}-t_{m}}(y_{m+1} - y_{m}) dy_{m+1}) dy_{1}...dy_{m}
$$
\n
$$
= \int_{\mathbb{R}^{m}} F(y_{1}, y_{2}, ..., y_{m}) \prod_{i=1}^{m} p_{t_{i}-t_{i-1}}(y_{i} - y_{i-1}) \times 1 dy_{1}...dy_{m} = \mathbf{E}[F(B_{t_{1}}, ..., B_{t_{m}})]
$$

 \Box

and so $(B_t)_{t \in [0,1]}$ and $(B_t')_{t \in [0,1]}$ have the same distribution.

2.8 Exercise 2.32 (Arcsine law)

Set $T := \inf\{t \ge 0 : B_t = S_1\}.$

- 1. Show that $T < 1$ a.s. (one may use the result of the previous exercise) and then that T is not a stopping time.
- 2. Verify that the three variables S_t , $S_t B_t$ and $|B_t|$ have the same law.
- 3. Show that T is distributed according to the so-called arcsine law, whose density is

$$
g(t) = \frac{1}{\pi \sqrt{t(1-t)}} 1_{(0,1)}(t).
$$

4. Show that the results of questions 1. and 3. remain valid if T is replaced by

$$
L := \sup\{t \le 1 : B_t = 0\}.
$$

Proof.

1. It's clear that $P(T \le 1) = 1$. Suppose that $P(T = 1) > 0$. By exercise 2.31 and proposition 2.14, we get

$$
\boldsymbol{P}(\inf_{0\leq s\leq \epsilon}B'_s<0 \quad \forall \epsilon\in (0,1))=\boldsymbol{P}(\inf_{0\leq s\leq \epsilon}B_s<0 \quad \forall \epsilon\in (0,1))=1,
$$

where $B'_t = B_1 - B_{1-t}$ for every $t \in [0,1]$. On the other hand,

$$
0 < \mathbf{P}(T=1) \le \mathbf{P}(B_s' \ge 0 \quad \forall s \in [0,1])
$$

which is a contradiction. Thus, we have $P(T < 1) = 1$.

Now, we show that T is not a stopping time by contradiction. Assume that T is a stopping time. By theorem 2.20 (strong Markov property), we see that $B_t^T = B_{T+t} - B_T$ is a Brownian motion. Since $P(T < 1) = 1$, we get

$$
\mathbf{P}(\sup_{0\leq s\leq\epsilon}B_s^T\leq 0 \text{ for some } \epsilon>0)=1,
$$

which contradiction to (proposition 2.14)

$$
\mathbf{P}(\sup_{0\leq s\leq \epsilon} B_s^T > 0 \quad \forall \epsilon > 0) = 1.
$$

Thus, we see that T is not a topping time.

2. Fix $t > 0$. By theorem 2.21, we have $S_t \stackrel{d}{=} |B_t|$. Now, we show that $S_t \stackrel{d}{=} S_t - B_t$. By similar argument as the proof of exercise 2.31, we get $(B'_s)_{s\in[0,t]} \stackrel{d}{=} (B_s)_{s\in[0,t]}$, where $B'_s = B_t - B_{t-s}$ for every $s \in [0,t]$. It's clear that $(B'_s)_{s \in [0,t]} \stackrel{d}{=} (-B'_s)_{s \in [0,t]}$. Thus, we have

$$
S_t = \sup_{0 \le s \le t} B_s \stackrel{d}{=} \sup_{0 \le s \le t} -B'_s = \sup_{0 \le s \le t} B_{t-s} - B_t = \sup_{0 \le s \le t} B_s - B_t = S_t - B_t.
$$

3. Since

 $P($ sup $\sup_{p_1 \leq s \leq q_1} B_s \neq \sup_{p_2 \leq s \leq q_2} B_s$ for all rational numbers $p_1 < q_1 < p_2 < q_2$) = 1,

we see that the global maximum of $(B_t)_{t\in[0,1]}$ is attained at a unique time (a.s.). That is,

$$
P(\exists! t \in [0,1] \quad B_t = S_1) = 1.
$$

Let $r \in (0,1)$ and $Z_1, Z_2 \stackrel{i.i.d}{\sim} \mathcal{N}(0,1)$. Then

$$
\boldsymbol{P}(T < r) = \boldsymbol{P}(\max_{0 \le t \le r} B_t > \max_{r \le s \le 1} B_s) = \boldsymbol{P}(\max_{0 \le t \le r} B_t - B_r > \max_{r \le s \le 1} B_s - B_r).
$$

Since

$$
\max_{0 \le t \le r} B_t - B_r \perp \max_{r \le s \le 1} B_s - B_r,
$$

$$
\max_{0 \le t \le r} B_t - B_r = \max_{0 \le t \le r} (B_{r-t} - B_r) \stackrel{d}{=} \max_{0 \le t \le r} B_t = S_r \stackrel{d}{=} |\sqrt{r}Z_1|,
$$

and

$$
\max_{r \le s \le 1} B_s - B_r = \max_{r \le s \le 1} (B_s - B_r) \stackrel{d}{=} \max_{0 \le s \le 1-r} B_s = S_{1-r} \stackrel{d}{=} \sqrt{1-r} |Z_2|,
$$

we get

$$
\boldsymbol{P}(T < r) = \boldsymbol{P}(\sqrt{r}|Z_1| > \sqrt{1-r}|Z_2|) = \boldsymbol{P}(\frac{|Z_2|^2}{|Z_1|^2 + |Z_2|^2} < r)
$$

and so $T \stackrel{d}{=} \frac{|Z_2|^2}{|Z_1|^2 + |Z_2|^2}$ $\frac{|Z_2|^2}{|Z_1|^2+|Z_2|^2}$. Since

$$
\begin{split} \boldsymbol{E}[f(\frac{|Z_{2}|^{2}}{|Z_{1}|^{2}+|Z_{2}|^{2}})] &= \int_{\mathbb{R}^{2}} f(\frac{y^{2}}{x^{2}+y^{2}}) \frac{1}{2\pi} \exp(-\frac{x^{2}+y^{2}}{2}) dx dy \\ &= 4 \int_{0}^{\infty} \int_{0}^{\infty} f(\frac{y^{2}}{x^{2}+y^{2}}) \frac{1}{2\pi} \exp(-\frac{x^{2}+y^{2}}{2}) dx dy \\ &= 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} f(\sin(\theta)^{2}) \frac{1}{2\pi} \exp(-\frac{x^{2}+y^{2}}{2}) r dr d\theta \\ &= \frac{2}{\pi} \int_{0}^{1} f(t) \frac{1}{2\sqrt{1-t}\sqrt{t}} dt \\ &= \int_{\mathbb{R}} \frac{1}{\pi} \frac{1}{\sqrt{t(1-t)}} 1_{(0,1)}(t) dt, \end{split}
$$

we see that

$$
g(t) = \frac{1}{\pi\sqrt{t(1-t)}}1_{(0,1)}(t)
$$

is the density function of T.

4. We redefine $L(f)$ as the latest time of $f \in C([0,1])$ such that $f(t) = f(0)$. That is,

$$
L(f) = \sup\{t \le 1 : f(t) = f(0)\}.
$$

Then $L = L((|B_t|)_{t\in[0,1]})$. Since the global maximum of $(B_t)_{t\in[0,1]}$ is attained at a unique time (a.s.), we see that $T = L((S_t - B_t)_{t \in [0,1]})$ (a.s.). Since $S_t - B_t \stackrel{d}{=} |B_t|$ for every $t \ge 0$ and they have continuous sample path, we see that $(S_t - B_t)_{t \geq 0} \stackrel{d}{=} (|B_t|)_{t \geq 0}$ and so $L \stackrel{d}{=} T$. Thus, $g(t)$ is the density function of L, $L < 1$ (a.s.), and L is not a stopping time. Indeed, if L is a stopping time,

$$
B'_t := B_{L+t} - B_L \stackrel{(a.s.)}{=} B_{L+t} \quad \forall t \ge 0
$$

is a Brownian motion with 0 is an isolated point of $\{t \in [0,1] : B'_t = 0\}$ (a.s.) which contradict to Exercise 2.30.

 \Box

2.9 Exercise 2.33 (Law of the iterated logarithm)

The goal of the exercise is to prove that

$$
\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} = 1 \ a.s.
$$

We set $h(t) = \sqrt{2t \log \log t}$.

1. Show that, for every $t > 0$,

$$
\boldsymbol{P}(S_t > u\sqrt{t}) \sim \frac{2}{u\sqrt{2\pi}}\exp(-\frac{u^2}{2}),
$$

when $u \to \infty$.

2. Let r and c be two real numbers such that $1 < r < c^2$ and set $S_t = \sup_{s \le t} B_s$. From the behavior of the probabilities $P(S_{r^n} > ch(r^{n-1}))$ when $n \to \infty$, infer that, a.s.,

$$
\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log 2t}} \le 1.
$$

3. Show that a.s. there are infinitely many values of n such that

$$
B_{r^n} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^n).
$$

Conclude that the statement given at the beginning of the exercise holds.

4. What is the value of

$$
\liminf_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}}?
$$

Proof.

1. Given $t > 0$. By using the reflection principle, we have

$$
P(S_t > u\sqrt{t})
$$

= $P(S_t > u\sqrt{t}, B_t > u\sqrt{t}) + P(S_t > u\sqrt{t}, B_t \le u\sqrt{t})$
= $P(B_t > u\sqrt{t}) + P(B_t \ge u\sqrt{t})$
= $2P(B_t \ge u\sqrt{t})$
= $2\int_{u\sqrt{t}}^{\infty} \frac{1}{\sqrt{2\pi t}} \exp(-\frac{x^2}{2t}) dx$
= $\frac{2}{\sqrt{2\pi}} \int_{u}^{\infty} \exp(-\frac{y^2}{2}) dy$

Note that, for $x > 0$,

$$
\left(\frac{1}{x} - \frac{1}{x^3}\right) \exp\left(-\frac{x^2}{2}\right) \le \int_x^{\infty} \exp\left(-\frac{y^2}{2}\right) dy \le \frac{1}{x} \exp\left(-\frac{x^2}{2}\right).
$$

Indeed, since $\exp(-\frac{z^2}{2})$ $\frac{z^2}{2}) \leq 1$ and

$$
\int_{x}^{\infty} (1 - \frac{3}{y^4}) \exp(-\frac{y^2}{2}) dy = (\frac{1}{x} - \frac{1}{x^3}) \exp(-\frac{x^2}{2}),
$$

we have

$$
\int_{x}^{\infty} \exp(-\frac{y^2}{2}) dy = \int_{0}^{\infty} \exp(-\frac{(z+x)^2}{2}) dz \le \exp(-\frac{x^2}{2}) \int_{0}^{\infty} \exp(-xz) dz = \frac{1}{x} \exp(-\frac{x^2}{2})
$$

and

$$
\left(\frac{1}{x} - \frac{1}{x^3}\right) \exp\left(-\frac{x^2}{2}\right) \le \int_x^{\infty} \exp\left(-\frac{y^2}{2}\right) dy.
$$

Thus,

$$
\frac{2}{\sqrt{2\pi}}\left(\frac{1}{u} - \frac{1}{u^3}\right) \exp\left(-\frac{u^2}{2}\right) \le \mathbf{P}(S_t > u\sqrt{t}) \le \frac{2}{\sqrt{2\pi}} \frac{1}{u} \exp\left(-\frac{u^2}{2}\right)
$$

and therefore

$$
\boldsymbol{P}(S_t > u\sqrt{t}) \sim \frac{2}{u\sqrt{2\pi}}\exp(-\frac{u^2}{2}),
$$

when $u \to \infty$.

2. Given $1 < r < c^2$. By using similar argument, we have

$$
\mathbf{P}(S_{r^n} > ch(r^{n-1})) = 2 \int_{ch(r^{n-1})}^{\infty} \frac{1}{\sqrt{2\pi r^n}} \exp(-\frac{x^2}{2r^n}) dx = \frac{2}{\sqrt{2\pi}} \int_{\frac{ch(r^{n-1})}{\sqrt{r^n}}} \exp(-\frac{y^2}{2}) dy.
$$

Because

$$
\frac{h(r^{n-1})}{\sqrt{r^n}} \to \infty \text{ as } n \to \infty
$$

and

$$
\int_x^{\infty} \exp\left(-\frac{y^2}{2}\right) dy \le \frac{1}{x} \exp\left(-\frac{x^2}{2}\right),
$$

we get

$$
\lim_{n \to \infty} \mathbf{P}(S_{r^n} > ch(r^{n-1})) \le \lim_{n \to \infty} \frac{2}{\sqrt{2\pi}} \frac{\sqrt{r^n}}{ch(r^{n-1})} \exp\left(-\frac{1}{2} \frac{c^2 h(r^{n-1})^2}{r^n}\right) = 0.
$$

Choose $\{n_k\}$ such that

$$
\sum_{k=1}^{\infty} P(S_{r^{n_k}} > ch(r^{n_k-1})) < \infty.
$$

By using Borel-Cantelli lemma, we get

$$
\mathbf{P}(\frac{S_{r^{n_k}}}{h(r^{n_k})} > c \frac{h(r^{n_k-1})}{h(r^{n_k})}
$$
 i.o. $) = \mathbf{P}(S_{r^{n_k}} > ch(r^{n_k-1})$ i.o. $) = 0.$

Observe that

$$
\lim_{k \to \infty} \frac{h(r^{n_k - 1})}{h(r^{n_k})} = \frac{1}{\sqrt{r}}.
$$

 S_t

 $\frac{S_t}{h(t)} \geq \frac{c}{\sqrt{r}}$) = 0

Then

$$
\overline{25}
$$

 $P(\limsup_{t\to\infty}$

and, hence,

$$
\boldsymbol{P}(\limsup_{t\to\infty}\frac{B_t}{h(t)}\leq \frac{c}{\sqrt{r}})\geq \boldsymbol{P}(\limsup_{t\to\infty}\frac{S_t}{h(t)}\leq \frac{c}{\sqrt{r}})=1.
$$

Fixed $r > 1$. Choose $\{c_n\}$ such that $1 < r < c_n^2$ and $c_n^2 \downarrow r$. Then

$$
\boldsymbol{P}(\limsup_{t \to \infty} \frac{B_t}{h(t)} \le \frac{c_n}{\sqrt{r}}) = 1
$$

for each $n \geq 1$. By letting $n \to \infty$, we have

$$
\boldsymbol{P}(\limsup_{t\to\infty}\frac{B_t}{h(t)}\leq 1)=1
$$

3. Given $r > 1$. Set d to be the positive number such that $d = \log(r)$. By using the fact that the increments of Brownian motion are Gaussian random variables, we have

$$
P(B_{r^{n}} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^{n}))
$$

= $P(\frac{B_{r^{n}} - B_{r^{n-1}}}{\sqrt{r^{n} - r^{n-1}}} \ge \sqrt{2 \log \log r^{n}})$
= $P(\frac{B_{r^{n}} - B_{r^{n-1}}}{\sqrt{r^{n} - r^{n-1}}} \ge \sqrt{2 \log dn})$
= $\int_{\sqrt{2 \log dn}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2}) dx$
 $\ge \frac{1}{\sqrt{2\pi}} (\frac{1}{\sqrt{2 \log dn}} - \frac{1}{(2 \log dn)^{\frac{3}{2}}}) \frac{1}{dn}$

Because $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\log n}} = \infty$ and $\sum_{n=2}^{\infty} \frac{1}{n(\log n)}$ $\frac{1}{n(\log n)^{\frac{3}{2}}} < \infty$, we see that

$$
\sum_{n=1}^{\infty} P(B_{r^n} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^n)) = \infty.
$$

Note that ${B_{r^n} - B_{r^{n-1}}}_{n \ge 1}$ are independent. By using Borel-Cantelli lemma, we have

$$
P(B_{r^n} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^n) \text{ i.o. }) = 1.
$$

Now, we show that

$$
\boldsymbol{P}(\limsup_{t \to \infty} \frac{B_t}{h(t)} = 1) = 1.
$$

It remain to show that

$$
\boldsymbol{P}(\limsup_{t\to\infty}\frac{B_t}{h(t)}\geq 1)=1.
$$

Given $r > 1$. Since

$$
\mathbf{P}(B_{r^n} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^n) \text{ i.o. }) = 1,
$$

we have

$$
\mathbf{P}(\frac{B_{r^n}}{h(r^n)} \ge \sqrt{\frac{r-1}{r}} + \sqrt{\frac{\log \log r^{n-1}}{\log \log r^n}} \sqrt{\frac{1}{r}} \frac{B_{r^{n-1}}}{h(r^{n-1})} \text{ i.o. }) = 1,
$$

and, hence, we have a.s.

$$
\limsup_{t \to \infty} \frac{B_t}{h(t)} \ge \frac{r-1}{r} + \sqrt{\frac{1}{r}} \limsup_{t \to \infty} \frac{B_t}{h(t)}.
$$

Thus,

$$
\mathbf{P}((\limsup_{t \to \infty} \frac{B_t}{h(t)})^2 \ge \frac{r-1}{r - 2\sqrt{r} + 1}) = 1 \text{ for each } r > 1.
$$

Choose $\{r_n|r_n>1\}$ such that $r_n\downarrow 1$. Since $\frac{r-1}{r-2\sqrt{r+1}}\to 1$ as $r\downarrow 1$, we see that

$$
\mathbf{P}((\limsup_{t \to \infty} \frac{B_t}{h(t)})^2 \ge 1) = \lim_{n \to \infty} \mathbf{P}((\limsup_{t \to \infty} \frac{B_t}{h(t)})^2 \ge \frac{r_n - 1}{r_n - 2\sqrt{r_n} + 1}) = 1
$$

and, hence,

$$
\boldsymbol{P}(\limsup_{t\to\infty}\frac{B_t}{h(t)}\geq 1)=1.
$$

4. Since $(-B_t)_{t\geq 0}$ is a Brownian motion, we see that

$$
\boldsymbol{P}(\liminf_{t \to \infty} \frac{B_t}{h(t)} = -1) = \boldsymbol{P}(\limsup_{t \to \infty} \frac{-B_t}{h(t)} = 1) = 1
$$

and, hence, we have a.s.

$$
\liminf_{t \to \infty} \frac{B_t}{h(t)} = -1.
$$

Chapter 3

Filtrations and Martingales

3.1 Exercise 3.26

1. Let M be a martingale with continuous sample paths such that $M_0 = x \in \mathbb{R}_+$. We assume that $M_t \geq 0$ for each $t\geq 0$, and that $M_t\to 0$ as when $t\to \infty$, a.s. Show that, for each $y>x$,

$$
\mathbf{P}(\sup_{t\geq 0} M_t \geq y) = \frac{x}{y}.
$$

2. Give the law of

$$
\sup_{t\leq T_0} B_t
$$

when B is a Brownian motion started from $x > 0$ and $T_0 = \inf\{t \geq 0 | B_t = 0\}.$

3. Assume now that B is a Brownian motion started from 0, and let $\mu > o$. Using an appropriate exponential martingale, show that

$$
\sup_{t\geq 0}(B_t - \mu t)
$$

is exponentially distributed with parameter 2μ .

Proof.

1. Given $y > x > 0$. First, we suppose $(M_t)_{t\geq 0}$ is uniformly integrable. Then $(M_t)_{t\geq 0}$ is bounded in L^1 and, hence,

$$
M_{\infty} = \lim_{t \to \infty} M_t = 0
$$
 a.s.

Set $T = \inf\{t \geq 0 | M_t = y\}$. Then T is a stopping time. By optional stopping times, we have

$$
\boldsymbol{E}[M_T] = \boldsymbol{E}[M_0] = x.
$$

Observe that

$$
\boldsymbol{E}[M_T] = y\boldsymbol{P}(T < \infty) + \boldsymbol{P}(T = \infty) \times 0 = y\boldsymbol{P}(T < \infty)
$$

and

$$
\boldsymbol{P}(T < \infty) = \boldsymbol{P}(\sup_{t \geq 0} M_t \geq y).
$$

Thus, we have

$$
\mathbf{P}(\sup_{t\geq 0} M_t \geq y) = \frac{x}{y}.
$$

Next, we consider a general martingale $(M_t)_{t\geq 0}$. For each $n \geq 1$, we set

$$
N_t^{(n)} = M_{t \wedge n}.
$$

Then $(N_t^{(n)})_{t\geq 0}$ is an uniformly integrable martingale for each $n\geq 1$ and therefore

$$
\mathbf{P}(\sup_{0 \le t \le n} M_t \ge y) = \mathbf{P}(\sup_{t \ge 0} N_t^{(n)} \ge y) = \frac{x}{y}.
$$

Letting $n \to \infty$, gives

$$
\mathbf{P}(\sup_{t\geq 0} M_t \geq y) = \frac{x}{y}.
$$

2. If $y \leq x$, it's clear that

$$
\mathbf{P}(\sup_{t\leq T_0} B_t \geq y) = 1.
$$

Now we consider $y > x$. Set

$$
N_t = B_{t \wedge T_0}
$$

for each $t \geq 0$. Then $(N_t)_{t\geq 0}$ is a martingale. Since $T_0 < \infty$ a.s., we get $N_t \to 0$ when $t \to \infty$. Thus,

$$
\boldsymbol{P}(\sup_{t\leq T_0} B_t \geq y) = \boldsymbol{P}(\sup_{t\geq 0} N_t \geq y) = \frac{x}{y}.
$$

3. Given $\mu > 0$. If $y \leq 0$, it's clear that

$$
\mathbf{P}(\sup_{t\geq 0}(B_t - \mu t) \geq y) = 1.
$$

Now, we suppose $y > 0$. Observe that

$$
P(\sup_{t\geq 0} (B_t - \mu t) \geq y)
$$

= $P(\sup_{t\geq 0} (B_{(\frac{1}{2\mu})^2 t} - \mu((\frac{1}{2\mu})^2 t)) \geq y)$
= $P(\sup_{t\geq 0} (2\mu B_{(\frac{1}{2\mu})^2 t} - \frac{1}{2}t) \geq 2\mu y)$
= $P(\sup_{t\geq 0} (B_t - \frac{1}{2}t) \geq 2\mu y)$
= $P(\sup_{t\geq 0} e^{B_t - \frac{1}{2}t} \geq e^{2\mu y})$

Set $M_t = e^{B_t - \frac{1}{2}t}$ for each $t \geq 0$. Then $(M_t)_{t \geq 0}$ is a nonnegative martingale with continuous simple path. Since $\lim_{t\to\infty}\frac{B_t}{t}=0$ a.s., we get

$$
\lim_{t \to \infty} (B_t - \frac{1}{2}t) = \lim_{t \to \infty} t(\frac{B_t}{t} - \frac{1}{2}) = -\infty \text{ a.s.}
$$

and, hence, $\lim_{t\to\infty} M_t = 0$ a.s. Because $e^{2\mu y} > 1 = M_0$, we get

$$
\mathbf{P}(\sup_{t\geq 0}(B_t - \mu t) \geq y) = \mathbf{P}(\sup_{t\geq 0} M_t \geq e^{2\mu y}) = e^{-2\mu y}.
$$

Therefore, we have

$$
\boldsymbol{P}(\sup_{t\geq 0}(B_t - \mu t) \leq y) = \begin{cases} 1 - e^{-2\mu y}, & \text{if } y \geq 0, \\ 0, & \text{otherwise.} \end{cases}
$$

and, hence, $\sup_{t\geq 0} (B_t - \mu t)$ has exponentially distributed with parameter 2μ .

 \Box

3.2 Exercise 3.27

Let B be an \mathscr{F}_t -Brownian motion started from 0. Recall the notation $T_x = \inf\{t \geq 0 | B_t = x\}$, for each $x \in \mathbb{R}$. We fix two real numbers a and b with $a < 0 < b$, and we set

$$
T = T_a \wedge T_b.
$$

1. Show that, for every $\lambda > 0$,

$$
\boldsymbol{E}[e^{-\lambda T}] = \frac{\cosh(\frac{b+a}{2}\sqrt{2\lambda})}{\cosh(\frac{b-a}{2}\sqrt{2\lambda})}.
$$

2. Show similarly that, for every $\lambda > 0$,

$$
\boldsymbol{E}[e^{-\lambda T}\mathbb{1}_{\{T=T_a\}}] = \frac{\sinh(b\sqrt{2\lambda})}{\sinh((b-a)\sqrt{2\lambda})}.
$$

3. Show that

$$
\boldsymbol{P}(T_a < T_b) = \frac{b}{b-a}.
$$

Proof.

1. Set $\alpha = \frac{b+a}{2}$ and

$$
M_t = e^{\sqrt{2\lambda}(B_t - \alpha) - \lambda t} + e^{-\sqrt{2\lambda}(B_t - \alpha) - \lambda t}
$$

for each $t\geq 0.$

Since

and

$$
(U_t)_{t\geq 0} \equiv (e^{\sqrt{2\lambda}B_t - \frac{(\sqrt{2\lambda})^2}{2}t})_{t\geq 0}
$$

$$
(V_t)_{t\geq 0}\equiv (e^{-\sqrt{2\lambda}B_t-\frac{(\sqrt{2\lambda})^2}{2}t})_{t\geq 0}
$$

are martingales, we see that

$$
M_t = e^{-\sqrt{2\lambda}\alpha} U_t + e^{\sqrt{2\lambda}\alpha} V_t
$$

is a martingale. Because

and

$$
0 \le V_{t \wedge T} \le e^{\sqrt{2\lambda}(-a)}
$$

 $0 \leq U_{t \wedge T} \leq e^{\sqrt{2\lambda}b}$

for each $t \geq 0$, we see that $((U_{t \wedge T})_{t \geq 0}$ and $((V_{t \wedge T})_{t \geq 0}$ are uniformly integrable martingales and, hence, $(M_{t\wedge T})_{t\geq 0}$ is a uniformly integrable martingale. Thus, by optional stopping theorem, we get

$$
\boldsymbol{E}[M_T] = \boldsymbol{E}[M_0] = 2\cosh(\sqrt{2\lambda}\frac{b+a}{2}).
$$

Observe that

$$
\begin{split} \boldsymbol{E}[M_{T}] &= e^{-\sqrt{2\lambda} \frac{b-a}{2}} \boldsymbol{E}[e^{-\lambda T} \mathbf{1}_{T_a \le T_b}] + e^{\sqrt{2\lambda} \frac{b-a}{2}} \boldsymbol{E}[e^{-\lambda T} \mathbf{1}_{T_a \le T_b}] \\ &+ e^{\sqrt{2\lambda} \frac{b-a}{2}} \boldsymbol{E}[e^{-\lambda T} \mathbf{1}_{T_a > T_b}] + e^{-\sqrt{2\lambda} \frac{b-a}{2}} \boldsymbol{E}[e^{-\lambda T} \mathbf{1}_{T_a > T_b}] \\ &= \boldsymbol{E}[e^{-\lambda T}] (e^{\sqrt{2\lambda} \frac{b-a}{2}} + e^{-\sqrt{2\lambda} \frac{b-a}{2}}) \\ &= \boldsymbol{E}[e^{-\lambda T}] 2 \cosh(\sqrt{2\lambda} \frac{b-a}{2}) \end{split}
$$

and therefore

$$
\boldsymbol{E}[e^{-\lambda T}] = \frac{\cosh(\frac{b+a}{2}\sqrt{2\lambda})}{\cosh(\frac{b-a}{2}\sqrt{2\lambda})}.
$$

2. Set $\alpha = \frac{b+a}{2}$ and

$$
N_t = e^{\sqrt{2\lambda}(B_t - \alpha) - \lambda t} - e^{-\sqrt{2\lambda}(B_t - \alpha) - \lambda t}
$$

for each $t \geq 0$. By using similar arguments as above, we get

$$
\boldsymbol{E}[N_T] = \boldsymbol{E}[N_0] = -2\sinh(\sqrt{2\lambda}\frac{a+b}{2})
$$

and

$$
\mathbf{E}[N_T] = e^{-\sqrt{2\lambda}\frac{b-a}{2}} \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a \le T_b}] - e^{\sqrt{2\lambda}\frac{b-a}{2}} \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a \le T_b}] \n+ e^{\sqrt{2\lambda}\frac{b-a}{2}} \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a > T_b}] - e^{-\sqrt{2\lambda}\frac{b-a}{2}} \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a > T_b}] \n= -2\sinh(\sqrt{2\lambda}\frac{b-a}{2}) \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a \le T_b}] + 2\sinh(\sqrt{2\lambda}\frac{b-a}{2}) \mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a > T_b}]
$$

Observe that

$$
2\cosh(\sqrt{2\lambda}\frac{b+a}{2}) = \mathbf{E}[M_T]
$$

= $2\cosh(\sqrt{2\lambda}\frac{b-a}{2})\mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a \le T_b}] + 2\cosh(\sqrt{2\lambda}\frac{b-a}{2})\mathbf{E}[e^{-\lambda T}\mathbf{1}_{T_a > T_b}]$

Thus, we have

$$
\begin{cases} \cosh(\sqrt{2\lambda}\frac{b+a}{2})=\cosh(\sqrt{2\lambda}\frac{b-a}{2})\boldsymbol{E}[e^{-\lambda T}\boldsymbol{1}_{T=T_a}]+\cosh(\sqrt{2\lambda}\frac{b-a}{2})\boldsymbol{E}[e^{-\lambda T}\boldsymbol{1}_{T=T_b}] \\ -\sinh(\sqrt{2\lambda}\frac{a+b}{2})=-\sinh(\sqrt{2\lambda}\frac{b-a}{2})\boldsymbol{E}[e^{-\lambda T}\boldsymbol{1}_{T=T_a}]+\sinh(\sqrt{2\lambda}\frac{b-a}{2})\boldsymbol{E}[e^{-\lambda T}\boldsymbol{1}_{T=T_b}] \end{cases}
$$

By using the formula

$$
sinh(x + y) = sinh(x) cosh(y) + sinh(y) cosh(x),
$$

we get

$$
\boldsymbol{E}[e^{-\lambda T}\mathbb{1}_{\{T=T_a\}}] = \frac{\sinh(b\sqrt{2\lambda})}{\sinh((b-a)\sqrt{2\lambda})}.
$$

3. By using dominated convergence theorem and the result in problem 2, we have

$$
P(T_a < T_b) = E[1_{T=T_a}]
$$
\n
$$
= \lim_{\lambda \to 0^+} E[e^{-\lambda T} 1_{T=T_a}]
$$
\n
$$
= \lim_{\lambda \to 0^+} \frac{\sinh(b\sqrt{2\lambda})}{\sinh((b-a)\sqrt{2\lambda})}
$$
\n
$$
= \frac{b}{b-a}
$$

3.3 Exercise 3.28

Let B be an (\mathscr{F}_t) -Brownian motion started from 0. Let $a > 0$ and

$$
\sigma_a = \inf\{t \ge 0 \mid B_t \le t - a\}.
$$

- 1. Show that σ_a is a stopping time and that $\sigma_a<\infty$ a.s.
- 2. Using an appropriate exponential martingale, show that, for every $\lambda \geq 0$,

$$
\mathbf{E}[e^{-\lambda \sigma_a}] = e^{-a(\sqrt{1+2\lambda}-1)}.
$$

The fact that this formula remains valid for $\lambda \in [-\frac{1}{2}, 0]$ can be obtained via an argument of analytic continuation.

 \Box

3. Let $\mu \in \mathbb{R}$ and $M_t = e^{\mu B_t - \frac{\mu^2}{2}t}$. Show that the stopped martingale $M_{\sigma_a \wedge t}$ is closed if and only if $\mu \leq 1$. Proof.

- 1. Since $\liminf_{t\to\infty} B_t = -\infty$ a.s., we see that $\liminf_{t\to\infty} (B_t t) = -\infty$ a.s. and $\sigma_a < \infty$ a.s.
- 2. Given $\lambda \geq 0$. Set $\mu = 1$ √ $\frac{1+2\lambda}{1+2\lambda}$. Then $-\frac{\mu^2}{2}+\mu=-\lambda$ and $(M_t)_{t\geq 0}\equiv (e^{\mu B_t^{\sigma_a}-\frac{\mu^2}{2}\sigma_a\wedge t})_{t\geq 0}$ is a local martingale. Moreover, since

$$
-a\leq B^{\sigma_a}_t-(\sigma_a\wedge t)<\infty
$$

and

$$
0 \le e^{\mu(B_t^{\sigma_a} - (\sigma_a \wedge t))} \le e^{-\mu a}
$$

for all $t \geq 0$, we see that

$$
|M_t| \equiv |e^{\mu B_t^{\sigma_a} - \frac{\mu^2}{2}\sigma_a \wedge t}| = |e^{\mu B_t^{\sigma_a} - \mu(\sigma_a \wedge t)} e^{\mu(\sigma_a \wedge t) - \frac{\mu^2}{2}\sigma_a \wedge t}| \le e^{-\mu a}
$$

for all $t \geq 0$ and therefore M is an uniformly integrable martingale. By optional stopping theorem, we have

$$
\boldsymbol{E}[e^{\mu \sigma_a - \mu a - \frac{\mu^2}{2}\sigma_a}] = \boldsymbol{E}[e^{\mu B_\sigma - \frac{\mu^2}{2}\sigma_a}] = 1.
$$

Since

$$
\mu = 1 - \sqrt{1 + 2\lambda}
$$

and

$$
-\frac{\mu^2}{2} + \mu = -\lambda,
$$

we get

$$
\mathbf{E}[e^{-\lambda \sigma_a}] = e^{\mu a} = e^{-a(\sqrt{1+2\lambda}-1)}.
$$

Next, we show that the statement is true when $\lambda \in [-\frac{1}{2}, 0]$. Set $\Omega = \{z \in \mathbb{C} \mid Re(z) > -\frac{1}{2}\}$. Define $f : \Omega \mapsto \mathbb{Z}$ by

$$
f(z) = \mathbf{E}[e^{-z\sigma_a}].
$$

Note that

$$
\int_0^\infty \frac{1}{s^{\frac{3}{2}}} e^{-A^2 s - \frac{B^2}{s}} ds = \frac{\sqrt{\pi} e^{-2AB}}{B}
$$

for $A, B \geq 0$ and

$$
\boldsymbol{P}(\sigma_a \leq t) = \int_0^t \frac{a}{\sqrt{2\pi s^3}} e^{-\frac{(a-s)^2}{2s}} ds.
$$

For $z = c + id \in \Omega$, we have

$$
|\mathbf{E}[e^{-z\sigma_a}]| = |\int_0^\infty e^{-zs} \frac{a}{\sqrt{2\pi s^3}} e^{-\frac{(a-s)^2}{2s}} ds|
$$

\n
$$
\leq \int_0^\infty e^{-cs} \frac{a}{\sqrt{2\pi s^3}} e^{-\frac{(a-s)^2}{2s}} ds
$$

\n
$$
= \frac{ae^a}{\sqrt{2\pi}} \int_0^\infty \frac{1}{s^{\frac{3}{2}}} e^{-\frac{a^2}{2} \frac{1}{s} - (\frac{1}{2} + c)s} ds
$$

\n
$$
= \frac{ae^a}{\sqrt{2\pi}} \frac{\sqrt{\pi}e^{-2\frac{a}{\sqrt{2}}\sqrt{\frac{1}{2}} + c}}{\frac{a}{\sqrt{2}}} < \infty
$$

and, hence, $f(z)$ is well-defined. Let Γ be a triangle in Ω . By using Fubini's theorem, we have

$$
\int_{\Gamma} f(z)dz = \int_{\Omega} \int_{\Gamma} e^{-z\sigma_a} dz \boldsymbol{P}(dw) = 0.
$$

Thus, $f(z)$ is holomorphic in Ω . Set $g(z) = e^{-a(\sqrt{2z+1}-1)}$. Then $g(z)$ is holomorphic in Ω . Since $f(z) = g(z)$ on the positive real line, we get $g = f$ in Ω and, hence,

$$
\mathbf{E}[e^{-\lambda \sigma_a}] = e^{\mu a} = e^{-a(\sqrt{1+2\lambda}-1)}
$$

for $\lambda \in \left(-\frac{1}{2}, 0\right]$. By monotone convergence theorem, we have

$$
\boldsymbol{E}[e^{\frac{1}{2}\sigma_a}] = \lim_{\lambda \downarrow -\frac{1}{2}} \boldsymbol{E}[e^{-\lambda \sigma_a}] = \lim_{\lambda \downarrow -\frac{1}{2}} e^{-a(\sqrt{1+2\lambda}-1)} = e^a
$$

and, hence,

$$
\boldsymbol{E}[e^{-\lambda \sigma_a}] = e^{\mu a} = e^{-a(\sqrt{1+2\lambda}-1)}
$$

for $\lambda \in \left[-\frac{1}{2}, 0\right]$.

3. Note that

$$
1 = \mathbf{E}[M_{\sigma_a}] = \mathbf{E}[e^{\mu(\sigma_a - a) - \frac{\mu^2}{2}\sigma_a}] = \mathbf{E}[e^{-(\frac{\mu^2}{2} - \mu)\sigma_a - \mu a}]
$$

if and only if

$$
\boldsymbol{E}[e^{-(\frac{\mu^2}{2}-\mu)\sigma_a}] = e^{\mu a}
$$

Since $\frac{\mu^2}{2} - \mu \ge -\frac{1}{2}$ for $\mu \in \mathbb{R}$, we get, by the result in problem 2,

$$
\pmb{E}[e^{-(\frac{\mu^2}{2}-\mu)\sigma_a}] = e^{-a(\sqrt{(\mu-1)^2}-1)} = \begin{cases} e^{-a(\mu-2)}, & \text{if } \mu > 1\\ e^{a\mu}, & \text{if } \mu \le 1 \end{cases}
$$

and, hence,

$$
1 = E[M_{\sigma_a}]
$$
 if and only if $\mu \leq 1$.

Now, we show that

 $M_{\sigma_a \wedge t}$ is closed if and only if $\mu \leq 1$.

It's clear that

$$
1 = \boldsymbol{E}[M_{0 \wedge \sigma_a}] = \boldsymbol{E}[M_{\infty \wedge \sigma_a}] = \boldsymbol{E}[M_{\sigma_a}]
$$

whenever $M_{\sigma_a \wedge t}$ is closed. It remains to show that $M_{\sigma_a \wedge t}$ is closed when $1 = E[M_{\sigma_a}]$. Let $t \geq 0$. By using optional stopping theorem for supermartinale(Theorem 3.25), we have

$$
M_{t \wedge \sigma_a} \geq \mathbf{E}[M_{\sigma_a}|\mathscr{F}_{t \wedge \sigma_a}],
$$
 a.s..

If

$$
\boldsymbol{P}(M_{t\wedge \sigma_a} > \boldsymbol{E}[M_{\sigma_a}|\mathscr{F}_{t\wedge \sigma_a}]) > 0,
$$

then we have

$$
1 = \boldsymbol{E}[M_{0 \wedge \sigma_a}] = \boldsymbol{E}[M_{t \wedge \sigma_a}] > \boldsymbol{E}[\boldsymbol{E}[M_{\sigma_a}|\mathscr{F}_{t \wedge \sigma_a}]] = \boldsymbol{E}[M_{\sigma_a}] = 1
$$

which is a contradiction. Thus, we have

$$
M_{t \wedge \sigma_a} = \mathbf{E}[M_{\sigma_a} | \mathscr{F}_{t \wedge \sigma_a}], \text{ a.s.}
$$

This shows that $M_{t \wedge \sigma_a}$ is closed.

3.4 Exercise 3.29

Let $(Y_t)_{t\geq 0}$ be a uniformly integrable martingale with continuous sample paths, such that $Y_0 = 0$. We set $Y_\infty =$ $\lim_{t\to\infty} Y_t$. Let $p\geq 1$ be a fixed real number. We say that Property (P) holds for the martingale Y if there exists a constant C such that, for every stopping time T, we have

$$
\boldsymbol{E}[|Y_{\infty}-Y_T|^p|\mathscr{F}_T] \leq C
$$

- 1. Show that Property (P) holds for Y if Y_{∞} is bounded
- 2. Let B be an $\{\mathscr{F}_t\}$ -Brownian motion started from 0. Show that Property (P) holds for the martingale $Y_t = B_{t \wedge 1}$.
- 3. Show that Property (P) holds for Y, with the constant C, if and only if, for any stopping time T,

$$
\boldsymbol{E}[|Y_T - Y_{\infty}|^p] \le C \boldsymbol{P}(T < \infty).
$$

- 4. We assume that Property (P) holds for Y with the constant C. Let S be a stopping time and let Y^S be the stopped martingale defined by $Y_t^S = Y_{S \wedge t}$. Show that Property (P) holds for Y^S with the same constant C.
- 5. We assume in this question and the next one that Property (P) holds for Y with the constant $C = 1$. Let $a > 0$, and let $(R_n)_{n\geq 0}$ be the sequence of stopping times defined by induction by

$$
R_0 = 0
$$
 and $R_{n+1} = \inf\{t \ge R_n | |Y_t - Y_{R_n}| \ge a\}$ (inf $\emptyset = \infty$).

Show that, for every integer $n \geq 0$,

$$
a^p P(R_{n+1} < \infty) \le P(R_n < \infty).
$$

6. Infer that, for every $x > 0$,

$$
\mathbf{P}(\sup_{t\geq 0} Y_t > x) \leq 2^p 2^{-\frac{px}{2}}.
$$

Proof.

1. Since $(Y_t)_{t\geq 0}$ is an uniformly integrable martingale,

$$
Y_t = \boldsymbol{E}[y_\infty | \mathscr{F}_t]
$$

for each $0 \le t \le \infty$. Because Y_{∞} is bounded, there exists $C > 0$ such that a.s. $|Y_t| \le C$. Since the sample path is continuous, we have a.s. $\sup_{t\geq 0} |Y_t| \leq C$ and therefore a.s. $|Y_T| \leq C$. Thus, if $p \geq 1$, then

$$
\mathbf{E}[|Y_{\infty} - Y_T|^p | \mathscr{F}_T] \le \mathbf{E}[(|Y_{\infty}| + |Y_T|)^p | \mathscr{F}_T] \le (2C)^p
$$

and therefore Property (P) holds for Y.

- 2. First, note that Y_t is a uniformly integrable martingale, since $Y_t = \mathbf{E}[Y_1|\mathscr{F}_t]$ for $t \geq 1$.
	- Now, we show that Property (P) holds for the martingale $Y_t = B_{t \wedge 1}$. First, we consider the case $p = 1$. Let $F \in \mathscr{F}_T$. Then

$$
\boldsymbol{E}[\boldsymbol{E}[|Y_T-Y_\infty|]\mathscr{F}_T]\boldsymbol{1}_F] = \boldsymbol{E}[|Y_T-Y_\infty|\boldsymbol{1}_F] \leq \boldsymbol{E}[|Y_\infty|\boldsymbol{1}_F] + \boldsymbol{E}[|Y_T|\boldsymbol{1}_F].
$$

Since Y_t is a uniformly integrable martingale, $Y_T = \boldsymbol{E}[Y_\infty | \mathscr{F}_T]$ and, hence,

$$
\boldsymbol{E}[|Y_T|1_F]=\boldsymbol{E}[|\boldsymbol{E}[Y_\infty|\mathscr{F}_T]|1_F]\leq \boldsymbol{E}[\boldsymbol{E}[|Y_\infty||\mathscr{F}_T]1_F]=\boldsymbol{E}[|Y_\infty|].
$$

Thus,

$$
\boldsymbol{E}[\boldsymbol{E}[|Y_T - Y_\infty| | \mathscr{F}_T] \mathbb{1}_F] \leq 2 \boldsymbol{E}[|Y_\infty|]
$$

for each $F \in \mathscr{F}_T$. Since $\mathbf{E}[|Y_T - Y_\infty| | \mathscr{F}_T]$ is \mathscr{F}_T -measurable, we get

$$
\boldsymbol{E}[|Y_T-Y_\infty||\mathscr{F}_T] \leq 2\boldsymbol{E}[|Y_\infty|]
$$

and therefore property (P) holds for the martingale $Y_t = B_{t \wedge 1}$ when $p = 1$. Next, we suppose $p > 1$. By Doob's inequality in L^p , we get

$$
E[\sup_{t\geq 0}|Y_t|^p] \leq E[\sup_{0\leq t\leq 1}|B_t|^p] \leq (\frac{p}{p-1})^p E[|B_1|^p]
$$

and therefore $\sup_{t\geq 0} |Y_t|^p$ is in L^p . Then, for each $F \in \mathscr{F}_T$,

$$
\begin{aligned} \boldsymbol{E}[\boldsymbol{E}[|Y_{\infty} - Y_{T}|^{p}|\mathscr{F}_{T}]1_{F}] &= \boldsymbol{E}[|Y_{\infty} - Y_{T}|^{p}1_{F}] \\ &\leq \boldsymbol{E}([|Y_{\infty}| + |Y_{T}|)^{p}1_{F}] \\ &= \boldsymbol{E}[(2\sup_{t \geq 0}|Y_{t}|)^{p}1_{F}] \\ &= 2^{p}\boldsymbol{E}[\sup_{t \geq 0}|Y_{t}|^{p}1_{F}] \\ &\leq 2^{p}\boldsymbol{E}[\sup_{t \geq 0}|Y_{t}|^{p}] \\ &\leq 2^{p}(\frac{p}{p-1})^{p}\boldsymbol{E}[|B_{1}|^{p}] < \infty \end{aligned}
$$

Since $\mathbf{E}[|Y_{\infty} - Y_T|^p | \mathscr{F}_T]$ is \mathscr{F}_T -measurable, we get

$$
\boldsymbol{E}[|Y_{\infty}-Y_T|^p|\mathscr{F}_T] \leq 2^p(\frac{p}{p-1})^p\boldsymbol{E}[|B_1|^p]
$$

and therefore property (P) holds for the martingale $Y_t = B_{t \wedge 1}$ when $p > 1$.

3. Suppose property (P) holds for the uniformly integrable martingale $(Y_t)_{t\geq 0}$. Since $\{T < \infty\} \in \mathscr{F}_T$, we get

$$
\boldsymbol{E}[|Y_{\infty}-Y_T|^p]=\boldsymbol{E}[|Y_{\infty}-Y_T|^p\mathbb{1}_{T<\infty}]=\boldsymbol{E}[\boldsymbol{E}[|Y_{\infty}-Y_T|^p|\mathscr{F}_T]\mathbb{1}_{T<\infty}]\leq C\boldsymbol{P}(T<\infty).
$$

Conversely, suppose that

$$
\boldsymbol{E}[|Y_{\infty}-Y_T|^p] \leq C \boldsymbol{P}(T < \infty)
$$

for each stopping time T. Let T be any stopping time and $F \in \mathscr{F}_T$. Then

$$
\boldsymbol{E}[\boldsymbol{E}[|Y_{\infty}-Y_{T}|^{p}|\mathscr{F}_{T}]1_{F}] = \boldsymbol{E}[|Y_{\infty}-Y_{T}|^{p}1_{F}] \leq C.
$$

Since $\mathbf{E}[|Y_{\infty} - Y_T|^p | \mathscr{F}_T]$ is \mathscr{F}_T -measurable, we get

$$
\boldsymbol{E}[|Y_{\infty}-Y_{T}|^{p}|\mathscr{F}_{T}]\leq C
$$

and therefore property (P) holds for the martingale $(Y_t)_{t>0}$

4. Let S and T be stopping times. Since $(Y_t)_{t\geq 0}$ is an uniformly integrable martingale, $(Y_t^S)_{t\geq 0}$ and $(Y_t^T)_{t\geq 0}$ are also uniformly integrable martingales. Thus, we have

$$
Y_S^T = \boldsymbol{E}[Y_\infty^T | \mathscr{F}_S] = \boldsymbol{E}[Y_T | \mathscr{F}_S]
$$

and therefore

$$
Y_T^S = Y_{S \wedge T} = Y_S^T = \mathbf{E}[Y_T | \mathcal{F}_S].
$$

Hence we get

$$
\begin{aligned} \boldsymbol{E}[|Y_T^S - Y_\infty^S|^p] &= \boldsymbol{E}[|\boldsymbol{E}[Y_T|\mathscr{F}_S] - Y_S|^p] \\ &= \boldsymbol{E}[|\boldsymbol{E}[Y_T|\mathscr{F}_S] - \boldsymbol{E}[Y_\infty|\mathscr{F}_S]|^p] \\ &\le \boldsymbol{E}[|Y_T - Y_\infty|^p] \\ &\le \boldsymbol{CP}(T < \infty). \end{aligned}
$$

and therefore property (P) holds for $(Y_t^S)_{t\geq 0}$ with the same constant C.

5. Given $a > 0$. By the definition of $\{R_n\}_{n\geq 0}$, we have $R_{n+1} \geq R_n$ for all $n \geq 0$. By considering uniformly integrable martingale $(Y_t^{R_{n+1}})_{t\geq 0}$ and using the result in problem 4, we get

$$
\boldsymbol{E}[|Y_{R_{n+1}} - Y_{R_n}|^p] = \boldsymbol{E}[|Y_{R_n}^{R_{n+1}} - Y_{\infty}^{R_{n+1}}|^p] \leq \boldsymbol{P}(R_n < \infty).
$$

Since $|Y_{R_{n+1}} - Y_{R_n}| \ge a$ on $\{R_{n+1} < \infty\}$, we have

$$
\mathbf{E}[|Y_{R_{n+1}} - Y_{R_n}|^p] \ge a^p \mathbf{P}(R_{n+1} < \infty)
$$

and, hence,

$$
a^p P(R_{n+1} < \infty) \le P(R_n < \infty).
$$

6. Observe that if $0 < x \leq 2$, then $2^{1-\frac{x}{2}} \geq 1$ and, hence, the inequality is true. Now, we suppose $x > 2$. Set

$$
R_0 = 0
$$
 and $R_{n+1} = \inf\{t \ge R_n | |Y_t - Y_{R_n}| \ge 2\}$

for each $n \geq 0$. According the conclusion in problem 5, we get

$$
\mathbf{P}(R_n < \infty) \le 2^{-np}
$$

for all $n \geq 1$. Let m be the smallest integer such that $2m \geq x$. Then

$$
\mathbf{P}(\sup_{t\geq 0} Y_t > x) \leq \mathbf{P}(R_{m-1} < \infty) \leq 2^{-(m-1)p} \leq 2^{(-\frac{x}{2}+1)p} = 2^p 2^{-\frac{xp}{2}}.
$$

 \Box
Chapter 4

Continuous Semimartingales

4.1 Exercise 4.22

Let Z be a \mathscr{F}_0 -measurable real random variable, and let M be a continuous local martingale. Show that the process $N_t = ZM_t$ is a continuous local martingale.

Proof.

Without loss of generality, we may assume $M_0 = 0$. Set

$$
T_n = \inf\{t \ge 0 | |N_t| \ge n\}
$$

for each $n \geq 1$. Then T_n is a stopping time for each $n \geq 1$. Clearly, $T_n \uparrow \infty$, (T_n) reduce M, and $|ZM^{T_n}| \leq n$ for all $n \geq 1$. Thus, ZM^{T_n} is bounded in L^1 for each $n \geq 1$. Now, we show that ZM^{T_n} is a martingale for each $n \geq 1$. Fix $n \geq 1$. Choose a sequence of bounded simple function $\{Z_k\}$ such that $Z_k \to Z$ and $|Z_k| \leq |Z|$ for each $k \geq 1$ and for all $w \in \Omega$. Note that,

$$
|Z_k M_t^{T_n}| \le |Z M_t^{T_n}| \le n.
$$

Fix $0 \leq s \leq t$. Let $\Gamma \in \mathscr{F}_s$. By Lebesgue's dominated convergence theorem, we get

$$
\boldsymbol{E}[ZM_t^{T_n}1_\Gamma]=\lim_{k\to\infty}\boldsymbol{E}[Z_kM_t^{T_n}1_\Gamma]=\lim_{k\to\infty}\boldsymbol{E}[Z_kM_s^{T_n}1_\Gamma]=\boldsymbol{E}[ZM_s^{T_n}1_\Gamma].
$$

Thus,

$$
ZM^{T_n}_s = \pmb{E}[ZM^{T_n}_t|\mathscr{F}_s]
$$

for all $0 \leq s < t$ and, hence, ZM^{T_n} is a martingale. Therefore ZM is a continuous local martingale.

 \Box

4.2 Exercise 4.23

- 1. Let M be a martingale with continuous sample paths, such that $M_0 = 0$. We assume that $(M_t)_{t>0}$ is also a Gaussian process. Show that, for every $t > 0$ and every $s > 0$, the random variable $M_{t+s} - M_t$ is independent of $\sigma(M_r, 0 \leq r \leq t)$.
- 2. Under the assumptions of question 1., show that there exists a continuous monotone nondecreasing function $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that $\langle M, M \rangle_t = f(t)$ for all $t \geq 0$.

Proof.

1. Observe that

$$
\boldsymbol{E}[M_{s+t}M_t]=\boldsymbol{E}[M_t^2]
$$

for all $s > 0$ and $t > 0$. Since

$$
\boldsymbol{E}[(M_{t+s}-M_t)M_r] = \boldsymbol{E}[M_r^2] - \boldsymbol{E}[M_r^2] = 0
$$

for all $0 \le r \le t$, we get $span\{M_{t+s}-M_t\}$ and $span\{M_r|0 \le r \le t\}$ are orthogonal. It followings form Theorem 1.9 that $M_{t+s} - M_t$ is independent of $\sigma(M_r, 0 \le r \le t)$.

2. Observe that if B is Brownian motion, B is both continuous martingale and a Gaussian process. Moreover, we have

$$
\langle B, B \rangle_t = t = \mathbf{E}[B_t^2].
$$

Therefore we consider the function

$$
f(t) = \mathbf{E}[M_t^2].
$$

Now, we set $\mathscr{F}_t = \sigma(M_r | 0 \le r \le t)$ for all $t \ge 0$. First, we show that $f(t)$ is a continuous monotone nondecreasing function. Let $0 \leq s < t$. Since

$$
M_s^2 = \mathbf{E}[M_t|\mathscr{F}_s]^2 \leq \mathbf{E}[M_t^2|\mathscr{F}_s],
$$

we have

$$
f(s) = \mathbf{E}[M_s^2] \le \mathbf{E}[M_t^2] = f(t)
$$

and, hence, $f(t)$ is monotone nondecreasing function. Let $T > 0$ and $\{t_n\} \cup \{t\} \subseteq [0, T]$ such that $t_n \to t$. By using Doob's maximal ieuqiality in L^2 , we have

$$
\boldsymbol{E}[\sup_{0\leq s\leq T}|M_s|^2]\leq 4\boldsymbol{E}[|M_T|^2]<\infty.
$$

By using dominated convergence theorem, we get

$$
\lim_{n \to \infty} f(t_n) = \lim_{n \to \infty} \mathbf{E}[M_{t_n}^2] = \mathbf{E}[M_t^2] = f(t)
$$

and, hence, $f(t)$ is continuous.

Next, we show that $\langle M, M \rangle_t = f(t)$ for all $t \geq 0$. Set N to be the class of all $(\sigma(M_t|t \geq 0), P)$ -negligible sets. That is,

$$
\mathcal{N} := \{ A : \exists A' \in \sigma(M_t | t \ge 0) \mid A \subseteq A' \text{ and } P(A') = 0 \}.
$$

Define

$$
\mathcal{G}_t := \sigma(M_s | s \le t) \vee \sigma(\mathcal{N}) \quad t \ge 0
$$

and

$$
\mathscr{G}_{\infty} := \sigma(M_t | t \ge 0) \vee \sigma(\mathscr{N}) \quad t \ge 0.
$$

Then $(\mathscr{G}_t)_{t\in[0,\infty]}$ is a complete filtration, $\mathscr{G}_t\subseteq\mathscr{F}_t$ for every $0\leq t\leq\infty$, $M_{t+s}-M_t\perp\!\!\!\perp \mathscr{G}_t$ for every $t,s>0$, and $(M_t)_{t\geq 0}$ is a $(\mathscr{G}_t)_{t\in[0,\infty]}$ -martingale.

To show that $\langle M, M \rangle_t = f(t)$ for every $t \geq 0$, it suffices to show that $M_t^2 - f(t)$ is a $(\mathscr{G}_t)_{t \in [0,\infty]}$ - continuous local martingale. Indeed, since

$$
\sum_{i=1}^{p_n}(M_{t_i^n}-M_{t_{i-1}^n})^2\overset{P}{\to}\langle M,M\rangle_t,
$$

we see that finite variation process $(\langle M, M \rangle_t)_{t\geq 0}$ does not depend on the filtration of $(M_t)_{t\geq 0}$. Now, we show that $M_t^2 - f(t)$ is a $(\mathscr{G}_t)_{t \in [0,\infty]}$ -martingale. Let $0 \le s < t$. Observe that

$$
\boldsymbol{E}[(M_t-M_s)^2|\mathscr{G}_s] = \boldsymbol{E}[M_t^2-M_s^2|\mathscr{G}_s]
$$

Since $M_t - M_s$ is independent of \mathscr{G}_s , we have

$$
\boldsymbol{E}[(M_t - M_s)^2 | \mathscr{G}_s] = \boldsymbol{E}[(M_t - M_s)^2] = \boldsymbol{E}[M_t^2 - M_s^2].
$$

Thus, if $0 \leq s < t$, we get

$$
\boldsymbol{E}[M_t^2|\mathscr{G}_s] - \boldsymbol{E}[M_t^2] = \boldsymbol{E}[M_t^2 - M_s^2|\mathscr{F}_s] + M_s^2 - \boldsymbol{E}[M_t^2] = \boldsymbol{E}[M_t^2 - M_s^2] + M_s^2 - \boldsymbol{E}[M_t^2] = M_s^2 - \boldsymbol{E}[M_s^2]
$$

and therefore $M_t^2 - f(t)$ is a $(\mathscr{G}_t)_{t \in [0,\infty]}$ -martingale.

 \Box

4.3 Exercise 4.24

Let M be a continuous local martingale with $M_0 = 0$.

1. For every integer $n \geq 1$, we set $T_n = \inf\{t \geq 0 | |M_t| = n\}$. Show that, a.s.

$$
\{\lim_{t \to \infty} M_t \text{ exists and finite } \} = \bigcup_{n \ge 1} \{T_n = \infty\} \subseteq \{\langle M, M \rangle_{\infty} < \infty\}.
$$

2. We set

$$
S_n = \inf\{t \ge 0 | \langle M, M \rangle_t = n\}
$$

for each $n \geq 1$. Show that, a.s.,

$$
\{\langle M, M \rangle_{\infty} < \infty\} = \bigcup_{n \ge 1} \{S_n = \infty\} \subseteq \{\lim_{t \to \infty} M_t \text{ exists and finite }\}
$$

and conclude that

$$
\{\lim_{t\to\infty}M_t
$$
 exists and is finite $\}=\{\langle M,M\rangle_\infty<\infty\}$, a.s.

Proof.

1. Since M has continuous sample paths, we see that

$$
T_n = \inf\{t \ge 0 | |M_t| \ge n\}
$$

and $(T_n)_{n\geq 1}$ reduces M and, hence, M^{T_n} is a uniformly integrable martingale for each $n \geq 1$. Thus, for each $n \geq 1$, $M_{\infty}^{T_n}$ exists a.s.

Since
$$
|M^{T_n}| \le n
$$
 for each $n \ge 1$, M^{T_n} is bounded in L^2 and, hence, $\mathbf{E}[\langle M^{T_n}, M^{T_n} \rangle_{\infty}] < \infty$. Thus, for each $n \ge 1$,

$$
\langle M, M \rangle_{T_n} < \infty \text{ a.s.}
$$

Set

$$
E = \bigcup_{n \ge 1} \{ M_{\infty}^{T_n} \text{ exists and } \langle M, M \rangle_{T_n} < \infty \}.
$$

Then $P(E) = 1$. To complete the proof, it suffices to show that the statement is true for each $w \in E$. Let

$$
w \in \{\lim_{t \to \infty} M_t \text{ exists and finite }\} \bigcap E.
$$

Since $M(w)$ has continuous sample path and $M_{\infty}(w) < \infty$, there exists $K > 0$ such that $|M_t(w)| \leq K$ for all $t \geq 0$ and, hence, $T_m(w) = \infty$ for each $m > K$. Thus, $w \in E \cap (\bigcup_{n \geq 1} \{T_n = \infty\})$. Conversely, let $w \in E$ and $T_m(w) = \infty$ for some $m \geq 1$. Then

$$
M_{\infty}(w) = M_{\infty}^{T_m}(w) \text{ exists}
$$

and

$$
|M_t(w)| = |M_t^{T_m}(w)| < m \text{ for all } 0 \le t \le \infty.
$$

Thus, $w \in \{M_{\infty} \text{ exists and } M_{\infty} < \infty\} \cap E$. Moreover, since $w \in E$, we have

$$
\langle M, M \rangle_{\infty}(w) = \langle M, M \rangle_{T_m}(w) < \infty
$$

Thus, we get

$$
E\bigcap \{\lim_{t\to\infty} M_t \text{ exists and finite }\} = E\bigcap \bigcup_{n\geq 1} \{T_n = \infty\}\big) \subseteq E\bigcap \{\langle M, M\rangle_{\infty} < \infty\}
$$

and therefore a.s.

$$
\{\lim_{t \to \infty} M_t \text{ exists and finite } \} = \bigcup_{n \ge 1} \{T_n = \infty\} \subseteq \{\langle M, M \rangle_{\infty} < \infty\}.
$$

2. Since $\langle M, M \rangle$ is an increasing process, it's clear that

$$
\{\langle M, M \rangle_{\infty} < \infty\} = \bigcup_{n \ge 1} \{S_n = \infty\}.
$$

Let $n \geq 1$. Then

$$
\langle M^{S_n}, M^{S_n} \rangle_t = \langle M, M \rangle_{S_n \wedge t} \le n
$$

for all $t \geq 0$ and, hence, $\mathbf{E}[\langle M^{S_n}, M^{S_n} \rangle_{\infty}] \leq n$. Thus, we see that M^{S_n} is a L^2 bounded martingale and, hence, $\lim_{t\to\infty} M_t^{S_n}$ exists and finite (a.s.). Set

$$
F = \bigcup_{n \geq 1} \{ \lim_{t \to \infty} M_t^{S_n} \text{ exists and is finite } \}.
$$

Then $P(F) = 1$. Fix $w \in F \cap (\bigcup_{n \geq 1} \{S_n = \infty\})$. Then $S_m(w) = \infty$ for some $m \geq 1$ and, hence,

$$
\lim_{t \to \infty} M_t(w) = \lim_{t \to \infty} M_t^{S_m}(w)
$$

exists and is finite. Thus, a.s.,

$$
\{\langle M, M \rangle_{\infty} < \infty\} = \bigcup_{n \ge 1} \{S_n = \infty\} \subseteq \{\lim_{t \to \infty} M_t \text{ exists and is finite }\}.
$$

Combining the result with the above, we get

$$
\{\lim_{t\to\infty}M_t
$$
 exists and finite $\}=\{\langle M,M\rangle_\infty<\infty\}$, a.s.

4.4 Exercise 4.25

For every integer $n \geq 1$, let $M^n = (M_t^n)_{t \geq 0}$ of be a continuous local martingale with $M_0^n = 0$. We assume that

 $\lim_{n\to\infty} \langle M^n, M^n \rangle_\infty = 0$ in probability.

1. Let $\epsilon > 0$, and, for every $n \geq 1$, let

$$
T_{\epsilon}^{n} = \inf\{t \ge 0 | \langle M^{n}, M^{n} \rangle_{t} \ge \epsilon\}.
$$

Justify the fact that T_{ϵ}^{n} is a stopping time, then prove that the stopped continuous local martingale

$$
M^{n,\epsilon}_t=M^n_{t\wedge T^n_\epsilon},\ \forall t\geq 0
$$

is a true martingale bounded in L^2 .

2. Show that

$$
\mathbf{E}[\sup_{0\leq t}|M^{n,\epsilon}_t|^2] \leq 4\epsilon.
$$

3. Writing, for every $a > 0$,

$$
\mathbf{P}(\sup_{t\geq 0}|M_t^n|\geq a) \leq \mathbf{P}(\sup_{t\geq 0}|M_t^{n\epsilon}|\geq a) + \mathbf{P}(T_{\epsilon}^n<\infty),
$$

show that

$$
\lim_{n\to\infty}(\sup_{t\geq 0}|M^n_t|)=0
$$

in probability.

 \Box

Proof.

1. Since $\langle M^n, M^n \rangle$ has continuous sample paths, it follows form proposition 3.9 (iii) that

$$
T_{\epsilon}^n=\inf\{t\geq 0| |\langle M^n, M^n\rangle_t|\in [\epsilon,\infty)\}
$$

is a stopping time. Hence $M^{n,\epsilon} = (M^n)^{T^n_{\epsilon}}$ is a continuous local martingale with

$$
\langle M^{n,\epsilon}, M^{n,\epsilon} \rangle_{\infty} \leq \epsilon.
$$

Thus, $M^{n,\epsilon}$ is a L^2 bounded martingale.

2. Since $(M_t^{n,\epsilon})_{t\geq 0}$ is a martingale bounded in L^2 , we see that

$$
\boldsymbol{E}[(M^{n,\epsilon}_{\infty})^2] = \boldsymbol{E}[\langle M^{n,\epsilon}, M^{n,\epsilon}\rangle_{\infty}] \leq \epsilon.
$$

By Doob's maximal inequality, we get

$$
\mathbf{E}[\sup_{0\leq s\leq t}|M^{n,\epsilon}_s|^2]\leq 4\mathbf{E}[|M^{n,\epsilon}_t|^2]
$$

for each $t > 0$. Since $M^{n,\epsilon}$ is a martingale, we see that

$$
\boldsymbol{E}[(M^{n,\epsilon}_s)^2] \leq \boldsymbol{E}[(M^{n,\epsilon}_t)^2]
$$

for each $s \leq t$. Thus,

$$
\boldsymbol{E}[\sup_{0\leq s\leq t}|M^{n,\epsilon}_s|^2]\leq 4\boldsymbol{E}[|M^{n,\epsilon}_t|^2]\leq 4\boldsymbol{E}[|M^{n,\epsilon}_\infty|^2]\leq 4\epsilon.
$$

By the Monotone convergence theorem, we have

$$
\mathbf{E}[\sup_{s\geq 0}|M^{n,\epsilon}_s|^2]\leq 4\epsilon.
$$

3. Given $a > 0$ and $\epsilon > 0$. It's clear that

$$
\begin{aligned} \mathbf{P}(\sup_{t\geq 0} |M_t^n| \geq a) &\leq \mathbf{P}(\sup_{t\geq 0} |M_t^n| \geq a, T_\epsilon^n = \infty) + \mathbf{P}(T_\epsilon^n < \infty) \\ &= \mathbf{P}(\sup_{t\geq 0} |M_t^{n,\epsilon}| \geq a, T_\epsilon^n = \infty) + \mathbf{P}(T_\epsilon^n < \infty) \\ &\leq \mathbf{P}(\sup_{t\geq 0} |M_t^{n,\epsilon}| \geq a) + \mathbf{P}(T_\epsilon^n < \infty). \end{aligned}
$$

Note that

$$
\mathbf{P}(\sup_{t\geq 0}|M_t^{n,\epsilon}| \geq a) \leq \frac{1}{a^2} \mathbf{E}[\sup_{0\leq t}|M_t^{n,\epsilon}|^2] \leq \frac{4\epsilon}{a^2}
$$

and

$$
\pmb{P}(T_{\epsilon}^n<\infty)=\pmb{P}(\langle M^n,M^n\rangle_{\infty}\geq \epsilon).
$$

Thus,

$$
\mathbf{P}(\sup_{t\geq 0}|M_t^n|\geq a) \leq \frac{4\epsilon}{a^2} + \mathbf{P}(\langle M^n, M^n \rangle_{\infty} \geq \epsilon).
$$

By letting $n \to \infty$ and then $\epsilon \downarrow 0$, we get

$$
\lim_{n \to \infty} \mathbf{P}(\sup_{t \ge 0} |M_t^n| \ge a) = 0.
$$

Since a is arbitrary, we have

$$
\lim_{n\to\infty}\sup_{t\geq 0}|M^n_t=0\hbox{ in probability.}
$$

 \Box

4.5 Exercise 4.26

1. Let A be an increasing process (adapted, with continuous sample paths and such that $A_0 = 0$) such that $A_{\infty} < \infty$ a.s., and let Z be an integrable random variable. We assume that, for every stopping time T,

$$
\boldsymbol{E}[A_{\infty}-A_T] \leq \boldsymbol{E}[Z1_{\{T<\infty\}}].
$$

Show, by introducing an appropriate stopping time, that, for every $\lambda > 0$,

$$
\mathbf{E}[(A_{\infty}-\lambda)1_{\{A_{\infty}>\lambda\}}]\leq \mathbf{E}[Z1_{\{A_{\infty}>\lambda\}}].
$$

2. Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a continuously differentiable monotone increasing function such that $f(0) = 0$ and set $F(x) = \int_0^x f(t)dt$ for each $x \ge 0$. Show that, under the assumptions of question 1., one has

$$
\mathbf{E}[F(A_{\infty})] \leq \mathbf{E}[Zf(A_{\infty})].
$$

3. Let M be a (true) martingale with continuous sample paths and bounded in L^2 such that $M_0 = 0$, and let M_{∞} be the almost sure limit of M_t as $t \to \infty$. Show that the assumptions of question 1 hold when $A_t = \langle M, M \rangle_t$ and $Z = M_{\infty}^2$. Infer that, for every real $q \ge 1$,

$$
\mathbf{E}[(\langle M,M\rangle_{\infty})^{q+1}] \leq (q+1)\mathbf{E}[(\langle M,M\rangle_{\infty})^q M_{\infty}^2].
$$

4. Let $p \ge 2$ be a real number such that $\mathbf{E}[(\langle M, M \rangle_{\infty})^p] < \infty$. Show that

$$
\mathbf{E}[(\langle M, M \rangle_{\infty})^p] \le p^p \mathbf{E}[|M_{\infty}|^{2p}].
$$

5. Let N be a continuous local martingale such that $N_0 = 0$, and let T be a stopping time such that the stopped martingale N^T is uniformly integrable. Show that, for every real $p \geq 2$,

$$
\mathbf{E}[(\langle N, N \rangle_T)^p] \le p^p \mathbf{E}[|N_T|^{2p}].
$$

6. Give an example showing that this result may fail if N^T is not uniformly integrable.

Proof.

1. Set $T = \inf\{t \geq 0 | A_t > \lambda\}$. Then $\{T < \infty\} = \{A_\infty > \lambda\}$ and therefore

$$
\begin{aligned} \boldsymbol{E}[Z1_{\{A_{\infty}>\lambda\}}] &= \boldsymbol{E}[Z1_{\{T<\infty\}}] \ge \boldsymbol{E}[A_{\infty}-A_T] \\ &= \boldsymbol{E}[(A_{\infty}-A_T)1_{\{T<\infty\}}] \\ &= \boldsymbol{E}[(A_{\infty}-\lambda)1_{\{T<\infty\}}] \\ &= \boldsymbol{E}[(A_{\infty}-\lambda)1_{\{A_{\infty}>\lambda\}}]. \end{aligned}
$$

2. Note that

$$
F(x) = xf(x) - \int_0^x \lambda f'(\lambda) d\lambda
$$

and $f'(\lambda) \geq 0$ for all $x, \lambda \geq 0$. Since

$$
\{1_{\{A_{\infty}>\lambda\}}=1\}=\{(w,\lambda)\in\Omega\times\mathbb{R}_+|A_{\infty}>\lambda\}=\bigcup_{q\in\mathbb{Q}_+}(\{A_{\infty}>q\}\bigcap[0,q])\in\mathscr{F}\otimes\mathcal{B}_{\mathbb{R}_+}
$$

for all $\lambda \in \mathbb{R}_+$, we see that $1_{\{A_\infty > \lambda\}}(w, \lambda) f'(\lambda)$ is $\mathscr{F} \otimes \mathcal{B}_{\mathbb{R}_+}$ -measurable and, hence,

$$
\boldsymbol{E}[\int_0^\infty 1_{\{A_\infty > \lambda\}} f'(\lambda) d\lambda] = \boldsymbol{E}[\int_0^{A_\infty} f'(\lambda) d\lambda]
$$

is well-defined. Then

$$
\begin{split} &\boldsymbol{E}[F(A_{\infty})] \\ &= \boldsymbol{E}[A_{\infty}f(A_{\infty})] - \boldsymbol{E}[\int_{0}^{A_{\infty}}\lambda f'(\lambda)d\lambda] \\ &= \boldsymbol{E}[A_{\infty}\int_{0}^{\infty}\boldsymbol{1}_{\{A_{\infty}>\lambda\}}f'(\lambda)d\lambda] - \boldsymbol{E}[\int_{0}^{\infty}\boldsymbol{1}_{\{A_{\infty}>\lambda\}}\lambda f'(\lambda)d\lambda] \\ &= \int_{0}^{\infty}\boldsymbol{E}[A_{\infty}\boldsymbol{1}_{\{A_{\infty}>\lambda\}}]f'(\lambda)d\lambda - \int_{0}^{\infty}\boldsymbol{E}[\lambda\boldsymbol{1}_{\{A_{\infty}>\lambda\}}]f'(\lambda)d\lambda \\ &\leq \int_{0}^{\infty}\boldsymbol{E}[Z\boldsymbol{1}_{\{A_{\infty}>\lambda\}}]f'(\lambda)d\lambda \end{split}
$$

By using Fubini's theorem, we get

$$
\int_0^\infty \mathbf{E}[Z1_{\{A_\infty>\lambda\}}]f'(\lambda)d\lambda = \mathbf{E}[Z\int_0^\infty 1_{\{A_\infty>\lambda\}}f'(\lambda)d\lambda] = \mathbf{E}[Zf(A_\infty)]
$$

and, hence,

$$
\boldsymbol{E}[F(A_{\infty})] \leq \boldsymbol{E}[Zf(A_{\infty})].
$$

3. First, we show that the assumptions of question 1. hold when $A_t = \langle M, M \rangle_t$ and $Z = M_{\infty}^2$. Let T be any stopping time. Since M is L^2 - bounded martingale, we see that $M^2 - \langle M, M \rangle$ is an uniformly integrable martingale and, hence,

$$
\boldsymbol{E}[M_T^2 - \langle M, M \rangle_T] = \boldsymbol{E}[M_\infty^2 - \langle M, M \rangle_\infty].
$$

Thus,

$$
\begin{aligned} \boldsymbol{E}[\langle M, M \rangle_{\infty} - \langle M, M \rangle_{T}] &= \boldsymbol{E}[M_{\infty}^{2} - M_{T}^{2}] \\ &= \boldsymbol{E}[(M_{\infty}^{2} - M_{T}^{2})1_{\{T < \infty\}}] \\ &\leq \boldsymbol{E}[M_{\infty}^{2}1_{\{T < \infty\}}] \end{aligned}
$$

and therefore

$$
\boldsymbol{E}[A_{\infty}-A_T] \leq \boldsymbol{E}[Z1_{\{T<\infty\}}].
$$

Next, by taking $F(x) = x^{q+1}$ in problem 2, we have

$$
\mathbf{E}[(\langle M,M\rangle_{\infty})^{q+1}] \leq (q+1)\mathbf{E}[(\langle M,M\rangle_{\infty})^q M_{\infty}^2].
$$

4. Given $p \geq 2$. Set $q = \frac{p}{p-1}$. Then $\frac{1}{p} + \frac{1}{q} = 1$. By Holder's inequality, we get

$$
\begin{aligned} \boldsymbol{E}[(\langle M,M\rangle_\infty)^p] &\leq p \boldsymbol{E}[(\langle M,M\rangle_\infty)^{p-1} M_\infty^2] \\ &\leq p \boldsymbol{E}[(\langle M,M\rangle_\infty)^{q(p-1)}]^{\frac{1}{q}} \boldsymbol{E}[|M_\infty|^{2p}]^{\frac{1}{p}} \\ &= p \boldsymbol{E}[(\langle M,M\rangle_\infty)^p]^{\frac{1}{q}} \boldsymbol{E}[|M_\infty|^{2p}]^{\frac{1}{p}}. \end{aligned}
$$

By assumption, we have $\mathbf{E}[(\langle M,M,\rangle_{\infty})^p] < \infty$ and, hence,

$$
\boldsymbol{E}[(\langle M,M,\rangle_\infty)^p]^{q-1}\leq p^q\boldsymbol{E}[|M_\infty|^{2p}]^{\frac{q}{p}}.
$$

That is,

$$
\boldsymbol{E}[(\langle M,M,\rangle_{\infty})^p] \leq p^{\frac{q}{q-1}} \boldsymbol{E}[|M_{\infty}|^{2p}]^{\frac{q}{(q-1)p}} = p^p \boldsymbol{E}[|M_{\infty}|^{2p}].
$$

5. Given $p \ge 2$. If $\mathbf{E}[|N_T|^{2p}] = \infty$, then there is nothing to prove. Now, we suppose $\mathbf{E}[|N_T|^{2p}] < \infty$. Observe that N^T is a L^{2p} -bounded martingale. Indeed, since N^T is uniformly integrable martingale, one has

$$
N_{T \wedge t} = \boldsymbol{E}[N_T | \mathscr{F}_t]
$$

for all $t \geq 0$ and, hence,

$$
\boldsymbol{E}[|N_{T\wedge t}|^{2p}]\leq \boldsymbol{E}[|N_T|^{2p}]<\infty
$$

for all $t \geq 0$. Thus we see that N^T is a L^{2p} - bounded martingale, which implies that N^T is a L^2 - bounded martingale. Set

$$
\tau_n = \{ t \ge 0 | \langle N^T, N^T \rangle_t \ge n \}
$$

for each $n \geq 1$. Since N^T is uniformly integrable martingale, we have

$$
N_{T\wedge\tau_n} = \mathbf{E}[N_T|\mathscr{F}_{T\wedge\tau_n}]
$$

for each $n \geq 1$ and, hence,

$$
\boldsymbol{E}[|N_{T\wedge\tau_n}|^{2p}]\leq \boldsymbol{E}[|N_T|^{2p}]
$$

for each $n \geq 1$. Note that $N^{T \wedge \tau_n} = (N^T)^{\tau_n}$ is a L^2 -martingale with continuous sample paths and

$$
\boldsymbol{E}[\langle N^{T\wedge\tau_n}, N^{T\wedge\tau_n}\rangle^p_\infty] \leq n^p.
$$

By using the result in problem 4, we get

$$
\boldsymbol{E}[(\langle N, N \rangle_{T \wedge \tau_n})^p] = \boldsymbol{E}[(\langle N^{T \wedge \tau_n}, N^{T \wedge \tau_n} \rangle_{\infty})^p] \leq p^p \boldsymbol{E}[|N_{T \wedge \tau_n}|^{2p}]
$$

for each $n \geq 1$. By using monotone convergence theorem, we have

$$
\boldsymbol{E}[(\langle N, N \rangle_T)^p] = \lim_{n \to \infty} \boldsymbol{E}[(\langle N, N \rangle_{T \wedge \tau_n})^p] \leq \limsup_{n \to \infty} p^p \boldsymbol{E}[|N_{T \wedge \tau_n}|^{2p}] \leq p^p \boldsymbol{E}[|N_T|^{2p}].
$$

6. Let $a \neq 0$, $p \geq 1$, and B is a Brownian motion starting from 0. Then B is a marintgale and $\langle B, B \rangle_t = t$. Set $T = \inf\{t \geq 0 | B_t = a\}.$ Note that $T < \infty$ (a.s.) and

$$
\boldsymbol{E}[|B_T|^{2p}] = |a|^{2p} < \infty.
$$

By using the result in Chapter 2(Corollary 2.22), we see that $E[T] = \infty$ and, hence, $E[T^p] = \infty$. Thus,

$$
\infty = \mathbf{E}[T^p] = \mathbf{E}[(\langle B, B \rangle_T)^p] > p^p |a|^{2p} = p^p \mathbf{E}[B_T|^{2p}]
$$

and, hence, the inequality fails.

Finally, B^T isn't uniformly integrable. Indeed, if B^T is uniformly integrable, then

$$
0 = \boldsymbol{E}[B_0^T] = \boldsymbol{E}[B_\infty^T] = \boldsymbol{E}[B_T] = a \neq 0
$$

which is a contradiction.

 \Box

4.6 Exercise 4.27

Let $(X_t)_{t\geq0}$ be an adapted process with continuous sample paths and taking nonnegative values. Let $(A_t)_{t\geq0}$ be an increasing process (adapted, with continuous sample paths and such that $A_0 = 0$). We consider the following condition:

(D) For every bounded stopping time T, we have $E[X_T] \leq E[A_T]$.

1. Show that, if M is a square integrable martingale with continuous sample paths and $M_0 = 0$, the condition (D) holds for $X_t = M_t^2$ and $A_t = \langle M, M \rangle_t$.

- 2. Show that the conclusion of the previous question still holds if one only assumes that M is a continuous local martingale with $M_0 = 0$.
- 3. We set $X_t^* = \sup_{s \leq t} X_s$. Show that, under the condition (D), we have, for every bounded stopping time S and every $c > 0$,

$$
\boldsymbol{P}(X_S^* \ge c) \le \frac{1}{c} \boldsymbol{E}[A_S].
$$

4. Infer that, still under the condition (D), one has, for every (finite or not) stopping time S,

$$
\boldsymbol{P}(X_S^* > c) \leq \frac{1}{c} \boldsymbol{E}[A_S].
$$

(when S takes the value ∞ , we of course define $X^*_{\infty} = \sup_{s \geq 0} X_s$)

5. Let $c > 0$ and $d > 0$, and $S = \inf\{t \geq 0 | A_t \geq d\}$. Let T be a stopping time. Noting that

$$
\{X_T^* > c\} \subseteq \{X_{T \wedge S}^* > c\} \bigcup \{A_T \geq d\}.
$$

Show that, under the condition (D), one has

$$
\boldsymbol{P}(X_T^* > c) \leq \frac{1}{c} \boldsymbol{E}[A_T \wedge d] + \boldsymbol{P}(A_T \geq d).
$$

6. Use questions (2) and (5) to verify that, if $M^{(n)}$ is a sequence of continuous local martingales and T is a stopping time such that $\langle M^{(n)}, M^{(n)} \rangle_T$ converges in probability to 0 as $n \to \infty$, then,

$$
\lim_{n \to \infty} (\sup_{s \le T} |M_s^{(n)}|) = 0
$$
, in probability.

Proof.

1. Let T be a bounded stopping time. Since M is a L^2 -bounded martingale, we see that $M^2 - \langle M, M \rangle$ is uniformly integrable and, hence,

$$
\mathbf{E}[M_T^2 - \langle M, M \rangle_T] = \mathbf{E}[M_0^2 - \langle M, M \rangle_0] = 0.
$$

Thus,

$$
\boldsymbol{E}[X_T] = \boldsymbol{E}[M_T^2] = \boldsymbol{E}[\langle M, M \rangle_T] = \boldsymbol{E}[A_T].
$$

2. Let T be a bounded stopping time. Set

$$
\tau_n = \inf\{t \ge 0 | |M_t| \ge n\}
$$

for each $n \ge 1$. Then $\tau_n \to \infty$ as $n \to \infty$, (τ_n) reduce M, and M^{τ_n} is a bounded martingale for each $n \ge 1$. By (1) , we have

$$
\boldsymbol{E}[M_{T\wedge\tau_n}^2]\leq \boldsymbol{E}[\langle M,M\rangle_{\tau\wedge T}]
$$

for each $n \geq 1$. By Fatou's lemma and monotone convergence theorem, we get

$$
\boldsymbol{E}[(M_T)^2] \leq \liminf_{n \to \infty} \boldsymbol{E}[(M_{\tau_n \wedge T})^2] = \lim_{n \to \infty} \boldsymbol{E}[\langle M, M \rangle_{\tau_n \wedge T}] = \boldsymbol{E}[\langle M, M \rangle_T].
$$

3. Given a bounded stopping time S and $c > 0$. Set $R = \inf\{t \geq 0 | X_t \geq c\}$ and $T = S \wedge R$. According to the assumption, we have

$$
\boldsymbol{E}[X_T] \leq \boldsymbol{E}[A_T] \leq \boldsymbol{E}[A_S].
$$

Note that

$$
\{T = R\} = \{R \le S\} = \{X_S^* \ge c\}.
$$

Since X is continuous and S is bounded, we see that

$$
X_R = c
$$
 on $\{T = R\}$

and, hence,

$$
\boldsymbol{E}[X_T \mathbb{1}_{\{T=R\}}] = c \boldsymbol{P}(T=R) = c \boldsymbol{P}(X_S^* \ge c).
$$

Therefore

$$
\boldsymbol{P}(X_S^* \ge c) = \frac{1}{c} \boldsymbol{E}[X_T \mathbb{1}_{\{T=R\}}] \le \frac{1}{c} \boldsymbol{E}[X_T] \le \frac{1}{c} \boldsymbol{E}[A_S].
$$

4. Given a stopping time S (finite or not) and $c > 0$. Set $S_n = S \wedge n$. Then $S_n \uparrow S$ and S_n is a bounded stopping time for each $n \geq 1$. By using the result in problem 3, we get

$$
\boldsymbol{P}(X_{S_n}^* > c) \leq \frac{1}{c} \boldsymbol{E}[A_{S_n}].
$$

By using monotone convergence theorem, we get

$$
\boldsymbol{E}[A_S] = \lim_{n \to \infty} \boldsymbol{E}[A_{S_n}].
$$

Note that

$$
\{X_{S_n}^* > c\} \subseteq \{X_{S_{n+1}}^* > c\}
$$

for each $n \geq 1$ and

$$
\bigcup_{n\geq 1} \{X_{S_n}^* > c\} = \{X_S^* > c\}.
$$

Thus

$$
\mathbf{P}(X_S^* > c) = \lim_{n \to \infty} \mathbf{P}(X_{S_n}^* > c) \le \frac{1}{c} \lim_{n \to \infty} \mathbf{E}[A_{S_n}] = \frac{1}{c} \mathbf{E}[A_S].
$$

5. Note that

$$
\{X_T^* > c\} \subseteq \{A_T < d, X_T^* > c\} \bigcup \{A_T \ge d\}
$$

\n
$$
\subseteq \{T \le S, X_{T \wedge S}^* > c\} \bigcup \{A_T \ge d\}
$$

\n
$$
\subseteq \{X_{T \wedge S}^* > c\} \bigcup \{A_T \ge d\}.
$$

and, hence,

$$
\boldsymbol{P}(X_T^* > c) \leq \boldsymbol{P}(X_{S \wedge T}^* > c) + \boldsymbol{P}(A_T \geq d).
$$

Since $A_{S \wedge T} = A_T \wedge d$, by using the result in problem 4, we get

$$
\boldsymbol{P}(X_{S\wedge T}^* > c) \leq \frac{1}{c} \boldsymbol{E}[A_{T\wedge S}] = \frac{1}{c} \boldsymbol{E}[A_T \wedge d].
$$

and, so,

$$
\boldsymbol{P}(X_T^* > c) \leq \frac{1}{c} \boldsymbol{E}[A_T \wedge d] + \boldsymbol{P}(A_T \geq d).
$$

6. Given $\epsilon > 0$. Let $d > 0$. Set $X^{(n)} = (M^{(n)})^2$ and $A^{(n)} = \langle M^{(n)}, M^{(n)} \rangle$. Then $A_T^{(n)} \to 0$ in probability. By using the result in problem 5, we get

$$
\mathbf{P}(\sup_{0\leq s\leq T}|M_s^{(n)}|^2>\epsilon)\leq \frac{1}{\epsilon}\mathbf{E}[A_T^{(n)}\wedge d]+\mathbf{P}(A_T^{(n)}\geq d)\leq \frac{d}{\epsilon}+\mathbf{P}(A_T^{(n)}\geq d).
$$

By letting $n \to \infty$ and $d \downarrow 0$, we have

$$
\lim_{n \to \infty} \mathbf{P}(\sup_{0 \le s \le T} |M_s^{(n)}| > \sqrt{\epsilon}) = \lim_{n \to \infty} \mathbf{P}(\sup_{0 \le s \le T} |M_s^{(n)}|^2 > \epsilon) = 0
$$

and therefore

$$
\lim_{n \to \infty} (\sup_{s \le T} |M_s^{(n)}|) = 0
$$
, in probability.

 \Box

Chapter 5

Stochastic Integration

5.1 Exercise 5.25

Let B be an (\mathscr{F}_t) -Brownian motion with $B_0 = 0$, and let H be an adapted process with continuous sample paths. Show that $\frac{1}{B_t} \int_0^t H_s dB_s$ converges in probability when $t \to 0$ and determine the limit.

Proof.

To determine the limit of $\frac{1}{B_t} \int_0^t H_s dB_s$, consider the special case

$$
H_s(w) = \sum_{i=0}^{p-1} H_{(i)}(w) 1_{(t_i, t_{i+1}]}(s),
$$

where $H_{(i)}$ be \mathscr{F}_{t_i} -measurable and $0 < t < t_1$. We see that

$$
\frac{1}{B_t} \int_0^t H_s dB_s = \frac{1}{B_t} \left(\sum_{i=0}^{p-1} H_{(i)}(B_{t_{i+1} \wedge t} - B_{t_i \wedge t}) \right) = \frac{1}{B_t} H_{(0)} B_t = H_{(0)}.
$$

From the above observation, we will show that

$$
\frac{1}{B_t} \int_0^t H_s dB_s \xrightarrow{p} H_0
$$

and we may suppose that $H_0 = 0$.

First, we consider the case that H is bounded. By Cauchy–Schwarz's inequality and Jensen's inequality, we get

$$
E[|\frac{1}{B_t} \int_0^t H_s dB_s|^{\frac{1}{4}}] \leq E[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} E[(|\int_0^t H_s dB_s|^2)^{\frac{1}{4}}]^{\frac{1}{2}}\leq E[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} E[|\int_0^t H_s dB_s|^2]^{\frac{1}{8}}= E[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} E[\int_0^t H_s^2 ds]^{\frac{1}{8}}\leq E[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} E[\sup_{0 \leq s \leq t} H_s^2 \times t]^{\frac{1}{8}}\leq E[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} E[\sup_{0 \leq s \leq t} H_s^2]^{\frac{1}{8}} t^{\frac{1}{8}}.
$$

Note that

$$
\begin{aligned} \boldsymbol{E}[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} &= (2\int_0^\infty \frac{1}{\sqrt{x}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx)^{\frac{1}{2}} \\ &= (2\int_0^\infty \frac{1}{\sqrt{y}} \frac{1}{(2t)^{\frac{1}{4}}} \frac{1}{\sqrt{\pi}} e^{-y^2} dy)^{\frac{1}{2}} \\ &= c \times t^{-\frac{1}{8}}, \end{aligned}
$$

where $0 < c = \left(\frac{2}{2^{\frac{1}{4}}\sqrt{\pi}} \int_0^\infty \frac{1}{\sqrt{y}} e^{-y^2} dy\right)^{\frac{1}{2}} < \infty$. By Lebesgue dominated convergence theorem, we shows that

$$
E[\sup_{0 \le s \le t} H_s^2]^{\frac{1}{8}} \to 0 \text{ as } t \to 0^+
$$

and therefore

$$
\begin{split} \boldsymbol{P}(|\frac{1}{B_t} \int_0^t H_s dB_s| \geq \epsilon) &\leq \frac{1}{\epsilon^{\frac{1}{4}}} \boldsymbol{E}[|\frac{1}{B_t} \int_0^t H_s dB_s|^{\frac{1}{4}}] \\ &\leq \frac{1}{\epsilon^{\frac{1}{4}}} \boldsymbol{E}[|B_t|^{-\frac{1}{2}}]^{\frac{1}{2}} \boldsymbol{E}[|\sup_{0 \leq s \leq t} H_s^2]^{\frac{1}{8}} t^{\frac{1}{8}} \\ &\leq \frac{1}{\epsilon^{\frac{1}{4}}} c \times t^{-\frac{1}{8}} \boldsymbol{E}[|\sup_{0 \leq s \leq t} H_s^2]^{\frac{1}{8}} t^{\frac{1}{8}} \\ &= \frac{1}{\epsilon^{\frac{1}{4}}} c \boldsymbol{E}[|\sup_{0 \leq s \leq t} H_s^2]^{\frac{1}{8}} \to 0 \text{ as } t \to 0^+. \end{split}
$$

Next, we prove the statement for unbounded case. Set

$$
H_s^{(R)}(w) = \begin{cases} H_s(w) & \text{if } |H_s(w)| < R\\ R, & \text{if } H_s(w) \ge R\\ -R, & \text{if } H_s(w) \le -R. \end{cases}
$$

Then $H_s^{(R)}(w)$ is an adapted process with continuous sample paths. Now, we show that, for $0 < a < 1$, a.s.

$$
\int_0^a H_s dB_s = \int_0^a H_s^{(R)} dB_s \text{ in } \{ \sup_{0 \le s \le 1} |H_s| < R \}.
$$

That is,

$$
\boldsymbol{P}(\int_0^a H_s dB_s = \int_0^a H_s^{(R)} dB_s, \sup_{0 \le s \le 1} |H_s| < R) = 1.
$$

Given $0 < a < 1$. Note that, if $0 = t_0 < \ldots < t_p$ and $w \in {\text{sup}}_{0 \le s \le 1} |H_s| < R$, then

$$
\sum_{i=0}^{p-1} H_{(i)}(w)(B_{t_{i+1}\wedge a}(w) - B_{t_i\wedge a}(w)) = \sum_{i=0}^{p-1} H_{(i)}^{(R)}(w)(B_{t_{i+1}\wedge a}(w) - B_{t_{i-1}\wedge a}(w)).
$$

Choose $0 = t_0^n < ... < t_{p_n}^n = a$ of subdivisions of $[0, a]$ whose mesh tends to 0. By using Proposition 5.9, we have

$$
A_n \equiv \sum_{i=0}^{p_n - 1} H_{t_i^n} (B_{t_{i+1}^n \wedge a} - B_{t_i^n \wedge a}) \to \int_0^a H_s dB_s
$$
 in probability

and

$$
B_n \equiv \sum_{i=0}^{p_n - 1} H_{t_i^n}^{(R)}(B_{t_{i+1}^n \wedge a} - B_{t_i^n \wedge a}) \to \int_0^a H_s^{(R)}dB_s \text{ in probability.}
$$

Choose some subsequences A_{n_k} and B_{n_k} such that a.s.

$$
A_{n_k} \to \int_0^a H_s dB_s
$$

and

$$
B_{n_k} \to \int_0^a H_s^{(R)} d B_s.
$$

Since $A_{n_k} = B_{n_k}$ in $\{\sup_{0 \le s \le 1} |H_s| < R\}$, we see that a.s.

$$
\int_0^a H_s dB_s = \int_0^a H_s^{(R)} dB_s \text{ in } \{ \sup_{0 \le s \le 1} |H_s| < R \}.
$$

Given $\epsilon > 0$. Let $R > 0$ and $0 < t < 1$. Then

$$
\begin{split} \mathbf{P}(|\frac{1}{B_t} \int_0^t H_s dB_s| \geq \epsilon) &\leq \mathbf{P}(\sup_{0 \leq s \leq 1} |H_s| < R, |\frac{1}{B_t} \int_0^t H_s dB_s| \geq \epsilon) + \mathbf{P}(\sup_{0 \leq s \leq 1} |H_s| \geq R) \\ &= \mathbf{P}(\sup_{0 \leq s \leq 1} |H_s| < R, |\frac{1}{B_t} \int_0^t H_s^{(R)} dB_s| \geq \epsilon) + \mathbf{P}(\sup_{0 \leq s \leq 1} |H_s| \geq R) \\ &\leq \mathbf{P}(|\frac{1}{B_t} \int_0^t H_s^{(R)} dB_s| \geq \epsilon) + \mathbf{P}(\sup_{0 \leq s \leq 1} |H_s| \geq R). \end{split}
$$

By using the result in first case, we get

$$
\lim_{t\to 0^+} P(|\frac{1}{B_t} \int_0^t H_s^{(R)} dB_s| \geq \epsilon) = 0.
$$

Because H is continuous and $H_0 = 0$, we see that

$$
\mathbf{P}(\sup_{0\leq s\leq 1}|H_s|\geq R)\to 0 \text{ as } R\to\infty.
$$

By letting $t \to 0^+$ and then $R \to \infty$, we get

$$
\mathbf{P}(|\frac{1}{B_t}\int_0^t H_s dB_s| \geq \epsilon) \to 0 \text{ as } t \to 0^+.
$$

5.2 Exercise 5.26

1. Let B be a one-dimensional (\mathscr{F}_t) -Brownian motion with $B_0 = 0$. Let f be a twice continuously differentiable function on \mathbb{R} , and let g be a continuous function on \mathbb{R} . Verify that the process

$$
X_t = f(B_t)e^{-\int_0^t g(B_s)ds}
$$

is a semimartingale, and give its decomposition as the sum of a continuous local martingale and a finite variation process.

2. Prove that X is a continuous local martingale if and only if the function f satisfies the differential equation

$$
f^{\prime\prime}=2gf.
$$

3. From now on, we suppose in addition that g is nonnegative and vanishes outside a compact subinterval of $(0, \infty)$. Justify the existence and uniqueness of a solution f_1 of the equation $f'' = 2fg$ such that $f_1(0) = 1$ and $f'_{1}(0) = 0$. Let $a > 0$ and $T_a = \inf\{t \ge 0 \mid B_t = a\}$. Prove that

$$
E[e^{-\int_0^{T_a} g(B_s)ds}] = \frac{1}{f_1(a)}.
$$

Proof.

1. Set $F(x,y) = f(x)e^{-y}$. Then $F \in C^2(\mathbb{R}^2)$. Note that $\left(\int_0^t g(B_s)ds\right)_{t\geq 0}$ is a finite variation process. By using Itô's formula, we get

$$
X_t = F(B_t, \int_0^t g(B_s)ds)
$$

= $f(0) + \int_0^t f'(B_s)e^{-\int_0^s g(B_r)dr}dB_s + \int_0^t -f(B_s)e^{-\int_0^s g(B_r)dr}g(B_s)ds + \frac{1}{2}\int_0^t f''(B_s)e^{-\int_0^s g(B_r)dr}ds.$

Since

$$
f(0) + \int_0^t f'(B_s) e^{-\int_0^s g(B_r) dr} dB_s
$$

is a continuous local martingale and

$$
\int_0^t -f(B_s)e^{-\int_0^s g(B_r)dr}g(B_s)ds + \frac{1}{2}\int_0^t f''(B_s)e^{-\int_0^s g(B_r)dr}ds
$$

is a finite variation process, we see that

$$
X_t = f(B_t)e^{-\int_0^t g(B_s)ds}
$$

is a simimartingale.

2. Note that X is a continuous local martingale if and only if

$$
\int_0^t e^{-\int_0^s g(B_r)dr} (f''(B_s) - 2f(B_s)g(B_s))ds = 0, \forall t \ge 0 \text{ a.s.}
$$

It's clear that X is a continuous local martingale whenever $f'' = 2fg$. Now, we show that $f'' = 2fg$ when

$$
\int_0^t e^{-\int_0^s g(B_r)dr} (f''(B_s) - 2f(B_s)g(B_s))ds = 0, \forall t \ge 0 \text{ a.s.}
$$

We prove it by contradiction. Without loss of generality, we assume that there exists $a \in \mathbb{R}$ and $\delta > 0$ such that

$$
f''(x) - 2f(x)g(x) > 0
$$
 on $B(a, \delta)$.

Choose $t_a > a + \delta$. Set $T = \inf\{t \geq 0 \mid B_t = a\}$. Then

$$
\mathbf{P}(\int_0^t e^{-\int_0^s g(B_r)dr}(f''(B_s) - 2f(B_s)g(B_s))ds \neq 0 \text{ for some } t \in (0, t_a)) \geq \mathbf{P}(T < t_a) > 0
$$

which is a contradiction.

3. We show that existence and uniqueness of the problem:

$$
\begin{cases}\nf''(x) = 2g(x)f(x), & \forall x \in \mathbb{R} \\
f \in C^2(\mathbb{R}) \\
f(0) = 1 \text{ and } f'(0) = 0.\n\end{cases}
$$

(a) Choose $[\alpha, \beta] \subseteq (0, \infty)$ such that $g(x) = 0$ for every $x \notin [\alpha, \beta]$. Observe that if f is a solution of the problem, then $f''(x) = 0$ for every $x \leq \alpha$ and so

$$
f(x) = 1 \quad \forall x \le \alpha.
$$

(b)Let $f(x)$ be a solution of the problem. By continuity, we see that $f(\alpha) = 1$ and $f'(\alpha) = 0$. By [[\[2\]](#page-136-0), Theorem 4.1.1, there exists a unique solution $F \in C^2((\alpha, \beta])$ such that

$$
\begin{cases} F''(x) = 2g(x)F(x), & \forall x \in [\alpha, \beta] \\ F(\alpha) = 1 \text{ and } F'(\alpha) = 0. \end{cases}
$$

(c) Since $g(x) = 0$ for every $x \ge \beta$, we see that $f''(x) = 0$ for every $x \ge \beta$ and so

$$
f(x) = F'(\beta)x + F(\beta) - F'(\beta)\beta \quad \forall x \ge \beta.
$$

Thus, we define

$$
f_1(x) = \begin{cases} 1, & \text{if } -\infty < x \le \alpha \\ F(x), & \text{if } \alpha \le x \le \beta \\ F'(\beta)x + F(\beta) - F'(\beta)\beta, & \text{if } \beta \le x < \infty. \end{cases}
$$

and so f_1 is a solution of the problem. Moreover, by the construction as mentioned above, f_1 is the unique solution of the problem.

4. Now, we show that

$$
\boldsymbol{E}[\exp(-\int_0^{T_a} g(B_s)ds)] = \frac{1}{f_1(a)}.
$$

Fix $a > 0$. Define $T_a := \inf\{t \geq 0 : B_t = a\}$. Let $c > 0$. Then

$$
M^c_t:=X_{t\wedge T_a\wedge c} \quad \forall t\geq 0
$$

is a continuous local martingale. It's clear that $\sup_{x\leq a}|f'_{1}(x)|\leq M<\infty$ for some $M>0$. Thus,

$$
\boldsymbol{E}[\langle M^c, M^c \rangle_{\infty}] = \boldsymbol{E}[\int_0^{c \wedge T_a} f_1'(B_s)^2 \exp(-2 \int_0^s g(B_u) du) ds] \le M^2 c < \infty
$$

and so M^c is a L^2 -bounded martingale. Therefore, we have

$$
\boldsymbol{E}[f_1(B_{c \wedge T_a}) \exp(-\int_0^{c \wedge T_a} g(B_s) ds)] = \boldsymbol{E}[M_{\infty}^c] = \boldsymbol{E}[M_0^c] = f_1(0) = 1.
$$

Note that $\sup_{x\leq a}|f(x)|<\infty$ and $P(T_a<\infty)=1$. By dominated convergence theorem, we get

$$
\boldsymbol{E}[f_1(a)\exp(-\int_0^{T_a}g(B_s)ds)] = \lim_{c\to\infty}\boldsymbol{E}[f_1(B_{c\wedge T_a})\exp(-\int_0^{c\wedge T_a}g(B_s)ds)] = 1
$$

and so

$$
\boldsymbol{E}[\exp(-\int_0^{T_a} g(B_s)ds)] = \frac{1}{f_1(a)}
$$

.

5.3 Exercise 5.27 (Stochastic calculus with the supremum)

1. Let $m : \mathbb{R}_+ \mapsto \mathbb{R}$ be a continuous function such that $m(0) = 0$, and let $s : \mathbb{R}_+ \mapsto \mathbb{R}$ be the monotone increasing function defined by

$$
s(t) = \sup_{0 \le r \le t} m(r).
$$

Show that, for every bounded Borel function h on $\mathbb R$ and every $t > 0$,

$$
\int_0^t (s(r) - m(r))h(r)ds(r) = 0.
$$

2. Let M be a continuous local martingale such that $M_0 = 0$, and for every $t \ge 0$, let

$$
S_t = \sup_{0 \le r \le t} M_t.
$$

Let $\varphi : \mathbb{R}_+ \mapsto \mathbb{R}$ be a twice continuously differentiable function. Justify the equality

$$
\varphi(S_t) = \varphi(0) + \int_0^t \varphi'(S_s) dS_s.
$$

3. Show that

$$
(S_t - M_t)\varphi(S_t) = \Phi(S_t) - \int_0^t \varphi(S_s) dM_s
$$

where $\Phi(x) = \int_0^x \varphi(y) dy$ for each $x \in \mathbb{R}$.

4. Infer that, for every $\lambda > 0$,

$$
e^{-\lambda S_t} + \lambda (S_t - M_t)e^{-\lambda S_t}
$$

is a continuous local martingale.

5. Let $a > 0$ and $T = \inf\{t \ge 0 \mid S_t - M_t = a\}$. We assume that a.s. $\langle M, M \rangle_{\infty} = \infty$. Show that $T < \infty$ a.s. and S_T is exponentially distributed with parameter $\frac{1}{a}$.

Proof.

1. Given $t > 0$ and a bounded Borel function h on R. Observe that $s(r)$ is a nonnegative continuous function. Then

$$
E \equiv \{ r \in [0, t] \mid s(r) - m(r) > 0 \}
$$

is an open subset in [0, t] and, hence, there exists a sequence of disjoint intervals $\{I_n\}_{n\geq 1}$ in [0, t] (these intervals may be open or half open) such that

$$
E = \bigcup_{n \ge 1} I_n.
$$

Moreover, s is a constant in I_n for each $n \geq 1$. Indeed, if $r_0 \in I_n = (a_n, b_n)$ $(I_n$ may be half open interval, but the argument remain the same) for some $n \geq 1$, there exists $\delta > 0$ such that

$$
m(r) < s(r_0) \text{ in } B(r_0, \delta)
$$

and, hence, s is a constant in $B(r_0, \delta)$. By using the connectedness of I_n , we see that s is a constant in I_n . Thus

$$
\int_{I_n} (s(r) - m(r))h(r)ds(r) = 0
$$

for each $n \geq 1$ and, hence,

$$
\int_0^t (s(r) - m(r))h(r)ds(r) = \int_E (s(r) - m(r))h(r)ds(r) + \int_{[0,t]\setminus E} (s(r) - m(r))h(r)ds(r)
$$

$$
= \sum_{n=1}^\infty \int_{I_n} (s(r) - m(r))h(r)ds(r) + 0 = 0
$$

2. Since S is an increasing process, we see that S is a finite variation process and, hence, $\langle S, S \rangle = 0$. By Itô's formula, we get

$$
\varphi(S_t) = \varphi(0) + \int_0^t \varphi'(S_s) dS_s + \frac{1}{2} \int_0^t \varphi''(S_s) d\langle S, S \rangle_s = \varphi(0) + \int_0^t \varphi'(S_s) dS_s.
$$

3. Set

$$
F(x, y) = (y - x)\varphi(y) - \Phi(y).
$$

Then $F \in C^2(\mathbb{R}^2)$, $\frac{\partial F}{\partial y}(x, y) = (y - x)\varphi'(y)$, and $\frac{\partial^2 F}{\partial x^2}(x, y) = 0$. By Itô's formula, we get

$$
(S_t - M_t)\varphi(S_t) - \Phi(S_t) = F(M_t, S_t)
$$

= $F(0, 0) + \int_0^t \frac{\partial F}{\partial x}(M_s, S_s) dM_s + \int_0^t \frac{\partial F}{\partial y}(M_s, S_s) dS_s + \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial x^2}(M_s, S_s) d\langle M, M \rangle_s$
= $-\int_0^t \varphi(S_s) dM_s + \int_0^t (S_s - M_s)\varphi'(S_s) dS_s.$

Fix $w \in \Omega$. Note that $s \in [0, t] \mapsto \varphi'(S_s(w))$ is continuous and, hence $\varphi'(S_s(w))$ is bounded in [0, t]. It followings for, problem 1 that

$$
(\int_0^t (S_s - M_s)\varphi'(S_s)dS_s)(w) = 0
$$

and therefore

$$
(S_t - M_t)\varphi(S_t) = \Phi(S_t) - \int_0^t \varphi(S_s) dM_s.
$$

4. Given $\lambda > 0$. Set $\varphi(x) = \lambda e^{-\lambda x}$. Then $\Phi(x) = 1 - e^{-\lambda x}$. Fix $t \ge 0$. By using the result in problem 4, we get

$$
e^{-\lambda S_t} + \lambda (S_t - M_t)e^{-\lambda S_t} = 1 - \int_0^t \lambda e^{-\lambda S_s} dM_s.
$$

Because $\int_0^t \lambda e^{-\lambda S_s} dM_s$ is a continuous local martingale, so is

$$
e^{-\lambda S_t} + \lambda (S_t - M_t) e^{-\lambda S_t}.
$$

5. Fix $a > 0$. By Theorem 5.13, we see that there exists a Brownian motion $(\beta_s)_{s \geq 0}$ such that

$$
M_t = \beta_{\langle M, M \rangle_t}, \forall t \ge 0, \text{ a.s.}
$$

By Proposition 2.14, we have a.s. $\liminf_{t\to\infty} \beta_t = -\infty$. Because $\langle M, M \rangle_{\infty} = \infty$ a.s., we have a.s.

$$
\liminf_{t \to \infty} M_t = -\infty.
$$

Since S is nonnegative, we have a.s. $T = \inf\{t \ge 0 \mid S_t - M_t = a\} < \infty$. Now, we show that S_T is exponentially distributed with parameter $\frac{1}{a}$. For this, it suffices to show that

$$
\boldsymbol{E}[e^{-\lambda S_T}] = \frac{1}{1 + \lambda \times a}
$$

for each $\lambda \geq 0$. Let $\lambda > 0$. By using the result in problem 4, we see that

$$
e^{-\lambda S_t} + \lambda (S_t - M_t) e^{-\lambda S_t}
$$

is a continuous local martingale and, hence, there exists a sequence of stopping times $\{\sigma_n\}_{n\geq 1}$ such that $\sigma_n \uparrow \infty$ and

$$
e^{-\lambda S_{t \wedge T_n}} + \lambda (S_{t \wedge T_n} - M_{t \wedge T_n}) e^{-\lambda S_{t \wedge T_n}}
$$

is an uniformly integrable martingale where $T_n \equiv \sigma_n \wedge T$ and $n \geq 1$. Then $T_n \uparrow T$ and

$$
\boldsymbol{E}[e^{-\lambda S_{T_n}}] + \lambda \boldsymbol{E}[(S_{T_n} - M_{T_n})e^{-\lambda S_{T_n}}] = \boldsymbol{E}[e^{-\lambda S_{0 \wedge T_n}}] + \lambda \boldsymbol{E}[(S_{0 \wedge T_n} - M_{0 \wedge T_n})e^{-\lambda S_{0 \wedge T_n}}] = 1
$$

for each $n \geq 1$. Note that

$$
0 \le S_{T_n} - M_{T_n} \le a
$$

for all $n \geq 1$. By using Lebesgue dominated convergence theorem, we see that

$$
1 = \lim_{n \to \infty} \mathbf{E}[e^{-\lambda S_{T_n}}] + \lim_{n \to \infty} \lambda \mathbf{E}[(S_{T_n} - M_{T_n})e^{-\lambda S_{T_n}}]
$$

= $\mathbf{E}[e^{-\lambda S_T}] + \lambda \mathbf{E}[(S_T - M_T)e^{-\lambda S_T}]$
= $\mathbf{E}[e^{-\lambda S_T}](1 + \lambda \times a).$

and, hence,

$$
\boldsymbol{E}[e^{-\lambda S_T}] = \frac{1}{1 + \lambda \times a}.
$$

 \Box

5.4 Exercise 5.28

Let B be an (\mathscr{F}_t) -Brownian motion started from 1. We fix $\epsilon \in (0,1)$ and set $T_{\epsilon} = \{t \geq 0 \mid B_t = \epsilon\}$. We also let $\lambda > 0$ and $\alpha \in \mathbb{R} \setminus \{0\}.$

- 1. Show that $Z_t = (B_{t \wedge T_{\epsilon}})^{\alpha}$ is a semimartingale and give its canonical decomposition as the sum of a continuous local martingale and a finite variation process.
- 2. Show that the process

$$
Z_t = (B_{t \wedge T_{\epsilon}})^{\alpha} e^{-\lambda \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s^2} ds}
$$

is a continuous local martingale if α and λ satisfy a polynomial equation to be determined.

3. Compute

$$
\boldsymbol{E}[e^{-\lambda \int_0^{T_\epsilon} \frac{1}{B_s^2} ds}].
$$

Proof.

1. Observe that

$$
T_{\epsilon} < \infty
$$
 a.s.

and

$$
B_{t \wedge T_{\epsilon}} \geq \epsilon \ \forall t \geq 0 \text{ a.s.}
$$

Define $F : \mathbb{R}^+ \mapsto \mathbb{R}$ by $F(x) = x^{\alpha}$. By Itô's formula, we have

$$
(B_{t\wedge T_{\epsilon}})^{\alpha} = 1 + \alpha \int_0^t (B_{s\wedge T_{\epsilon}})^{\alpha-1} dB_s + \frac{\alpha(\alpha-1)}{2} \int_0^t (B_{s\wedge T_{\epsilon}})^{\alpha-2} ds \text{ a.s.}
$$

for all $t \geq 0$.

2. Define $F : \mathbb{R}^+ \mapsto \mathbb{R}$ by $F(x) = \ln(x)$. By Itô's formula, we have

$$
\ln(B_{t\wedge T_{\epsilon}})^{\alpha} = \alpha \ln(B_{t\wedge T_{\epsilon}}) = \alpha \int_0^{t\wedge T_{\epsilon}} \frac{1}{B_s} dB_s - \frac{\alpha}{2} \int_0^{t\wedge T_{\epsilon}} \frac{1}{B_s^2} ds.
$$

and, hence,

$$
Z_t = (B_{t \wedge T_{\epsilon}})^{\alpha} e^{-\lambda \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s^2} ds} = e^{\ln(B_{t \wedge T_{\epsilon}})^{\alpha}} e^{-\lambda \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s^2} ds}
$$

$$
= e^{\alpha \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s} dB_s - \frac{\alpha}{2} \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s^2} ds - \lambda \int_0^{t \wedge T_{\epsilon}} \frac{1}{B_s^2} ds}
$$

is a continuous loacl martingal whenever $\frac{\alpha^2}{2} = \frac{\alpha}{2} + \lambda$ (i.e. $\alpha = \frac{1 \pm \sqrt{1+8\lambda}}{2}$).

3. Let $\lambda > 0$. Set $\alpha = \frac{1-\sqrt{1+8\lambda}}{2}$ be a negative real number. Choose stopping times $(T_n)_{n\geq 1}$ such that $T_n \to \infty$ and Z^{T_n} is an uniformly integrable martingale for $n \geq 1$. Then

$$
1 = \mathbf{E}[Z_0^{T_n}] = \mathbf{E}[Z_{T_{\epsilon}}^{T_n}] = \mathbf{E}[(B_{T_n \wedge T_{\epsilon}})^{\alpha} e^{-\lambda \int_0^{T_n \wedge T_{\epsilon}} \frac{1}{B_s^2} ds}]
$$

for all $n \geq 1$. Observe that

$$
0 \le (B_{T_n \wedge T_{\epsilon}})^{\alpha} e^{-\lambda \int_0^{T_n \wedge T_{\epsilon}} \frac{1}{B_s^2} ds} \le (B_{T_n \wedge T_{\epsilon}})^{\alpha} \le \epsilon^{\alpha} \text{ a.s.}
$$

for all $n \geq 1$. By using the Lebesgue dominated convergence theorem, we have

$$
1 = \lim_{n \to \infty} \mathbf{E}[(B_{T_n \wedge T_{\epsilon}})^{\alpha} e^{-\lambda \int_0^{T_n \wedge T_{\epsilon}} \frac{1}{B_s^2} ds}] = \mathbf{E}[\epsilon^{\alpha} e^{-\lambda \int_0^{T_{\epsilon}} \frac{1}{B_s^2} ds}]
$$

and therefore

$$
\boldsymbol{E}[e^{-\lambda \int_0^{T_{\epsilon}} \frac{1}{B_s^2} ds}] = \frac{1}{\epsilon^{\alpha}}.
$$

 \Box

5.5 Exercise 5.29

Let $(X_t)_{t\geq 0}$ be a semimartingale. We assume that there exists an (\mathscr{F}_t) -Brownian motion $(B_t)_{t\geq 0}$ started from 0 and a continuous function $b : \mathbb{R} \to \mathbb{R}$, such that

$$
X_t = B_t + \int_0^t b(X_s)ds.
$$
\n⁽⁷⁾

- 1. Let $F : \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function on R. Show that, for $F(X_t)$ to be a continuous local martingale, it suffices that F satisfies a second-order differential equation to be determined.
- 2. Give the solution of this differential equation which is such that $F(0) = 0$ and $F'(0) = 1$. In what follows, F stands for this particular solution, which can be written in the form

$$
F(x) = \int_0^x e^{-2\beta(y)} dy,
$$

with a function β that will be determined in terms of b.

- 3. In this question only, we assume that b is integrable, i.e $\int_{\mathbb{R}} |b(x)| dx < \infty$.
	- (a) Show that the continuous local martingale $M_t = F(X_t)$ is a martingale.
	- (b) Show that $\langle M, M \rangle_{\infty} = \infty$ a.s.
	- (c) Infer that

$$
\limsup_{t \to \infty} X_t = +\infty, \liminf_{t \to \infty} X_t = -\infty, \text{ a.s.}
$$

4. We come back to the general case. Let $c < 0$ and $d > 0$, and

$$
T_c = \inf\{t \ge 0 \mid X_t \le c\}, T_d = \inf\{t \ge 0 \mid X_t \ge d\}.
$$

Show that, on the event $\{T_c \wedge T_d\}$, the random variables $|B_{n+1} - B_n|$ for $n \geq 0$, are bounded above by a (deterministic) constant which does not depend on n. Infer that

$$
\boldsymbol{P}(T_c \wedge T_d = \infty) = 0.
$$

- 5. Compute $P(T_c < T_d)$ in terms of $F(c)$ and $F(d)$.
- 6. We assume that b vanishes on $(-\infty, 0]$ and that there exists a constant $\alpha > \frac{1}{2}$ such that $b(x) \geq \frac{\alpha}{x}$ for all $x \geq 1$. Show that, for every $\epsilon > 0$, one can choose $c < 0$ such that

$$
\mathbf{P}(T_n < T_c, \, \forall n \ge 1) \ge 1 - \epsilon.
$$

Infer that $X_t \to \infty$ as $t \to \infty$ a.s.

7. Suppose now $b(x) = \frac{1}{2x}$ for all $x \ge 1$. Show that

$$
\liminf_{t \to \infty} X_t = -\infty
$$
, a.s.

Proof.

1. By Itô's formula, we get

$$
F(X_t) = \int_0^t F'(X_s) dB_s + \int_0^t F'(X_s) b(X_s) ds + \frac{1}{2} \int_0^t F''(X_s) ds.
$$

Thus,

$$
F(X_t) = \int_0^t F'(X_s) dB_s \,\,\forall t \ge 0 \text{ a.s.}
$$
\n⁽⁸⁾

is a continuous local martingale whenever

$$
\frac{1}{2}F''(x) + F'(x)b(x) = 0
$$
 for all $x \in \mathbb{R}$.

2. By integrating both sides of the equation, we get

$$
F'(x) = e^{\int_0^x -2b(t)dt}
$$
\n(9)

and, hence,

$$
F(x) = \int_0^x e^{\int_0^y -2b(t)dt} dy
$$
 (10)

3. (a) Since $b \in L^1(\mathbb{R})$, there exists $0 < l < L < \infty$ such that

$$
l \le e^{\int_0^x -2b(t)dt} \le L \tag{11}
$$

for all $x \in \mathbb{R}$. By the formula (1), we get

$$
l \le F'(X_s)(w) \le L \tag{12}
$$

for all $s \geq 0$ and $w \in \Omega$ and, hence, $(F'(X_t))_{t \geq 0} \in L^2(B^a)$ for all $a > 0$. Thus $(\int_0^{t \wedge a} F'(X_s) dB_s)_{t \geq 0}$ is a L²-bounded martingale for $a > 0$ and therefore $(\int_0^t F'(X_s) dB_s)_{t \geq 0}$ is a martingale. By [\(32\)](#page-89-0), we see that $M_t = F(X_t)$ is a martingale.

(b) By [\(32\)](#page-89-0) and [\(12\)](#page-55-0)

$$
\langle M, M \rangle_t = \int_0^t F'(X_s)^2 ds \ge l^2 \times t \,\,\forall t \ge 0 \,\,\text{a.s.}
$$

and, hence, $\langle M, M \rangle_{\infty} = \infty$ a.s.

(c) Since

$$
M_t = \beta_{\langle M, M \rangle_t} \ \forall t \geq 0 \text{ a.s.}
$$

for some Brownian motion β and $\langle M, M \rangle_{\infty} = \infty$ a.s., we see that

$$
\limsup_{t\to\infty}M_t=+\infty, \liminf_{t\to\infty}M_t=-\infty, \text{ a.s.}
$$

By (9) , (10) , and (11) , we see that F is nondecreasing and

$$
F(\pm \infty) \equiv \lim_{x \to \pm \infty} F(x) = \pm \infty.
$$

Since $M_t = F(X_t)$, we have

$$
\limsup_{t \to \infty} X_t = +\infty, \liminf_{t \to \infty} X_t = -\infty, \text{ a.s.}
$$

4. Given $c < 0$ and $d > 0$. Let $w \in \{T_c \wedge T_d = \infty\}$. Then $c < X_t(w) < d$ for all $t \geq 0$. By (7), we get

$$
|B_n - B_{n-1}| = |X_n - X_{n-1} - \int_{n-1}^n b(X_s)ds| \le |X_n| + |X_{n-1}| + \int_{n-1}^n |b(X_s)|ds
$$

\n
$$
\le 2 \times (d \vee (-c)) + \sup_{t \in [c,d]} |b(t)| \equiv R < \infty.
$$

for all $n \geq 1$. Thus, we see that

$$
\{T_c \wedge T_d = \infty\} \subseteq \{|B_n - B_{n-1}| \le R, \forall n \ge 1\}.
$$

Because ${B_n - B_{n-1} \mid n \ge 1}$ are independent and

$$
0 < \mathbf{P}(|B_n - B_{n-1}| \le R) \equiv c < 1
$$

for all $n \geq 1$, we see that

$$
\mathbf{P}(|B_n - B_{n-1}| \le R, \forall n \ge 1) = \lim_{m \to \infty} \mathbf{P}(|B_n - B_{n-1}| \le R, \forall 1 \le n \le m) = \lim_{m \to \infty} c^m = 0
$$

and, hence,

$$
\mathbf{P}(T_c \wedge T_d = \infty) = 0. \tag{13}
$$

5. Set $T = T_c \wedge T_d$. Because $P(T < \infty) = 1$ and M is a continuous local martingale, we get

$$
|M_t^T| = |F(X_t^T)| \le \sup_{x \in [c,d]} |F(x)| < \infty, \,\forall t \ge 0, \, a.s.
$$

and, hence, M^T is an uniformly integrable martingale. Thus,

$$
0 = \boldsymbol{E}[M_0^T] = \boldsymbol{E}[M_{\infty}^T] = \boldsymbol{E}[M_T] = \boldsymbol{E}[1_{T_c < T_d} M_{T_c}] + \boldsymbol{E}[1_{T_d \le T_c} M_{T_d}] = F(c)\boldsymbol{P}(T_c < T_d) + F(d)\boldsymbol{P}(T_d \le T_c)
$$

and, hence,

$$
\boldsymbol{P}(T_c < T_d) = \frac{F(d)}{F(d) - F(c)}, \, \boldsymbol{P}(T_d \le T_c) = \frac{-F(c)}{F(d) - F(c)}.\tag{14}
$$

6. Observe that, for each $x \ge 1$ and $z < 0$,

$$
F(x) = \int_0^x e^{-2 \int_0^y b(t)dt} dy
$$

=
$$
\int_0^1 e^{-2 \int_0^y b(t)dt} dy + e^{-2 \int_0^1 b(t)dt} \int_1^x e^{-2 \int_1^y b(t)dt} dy
$$

$$
\leq \int_0^1 e^{-2 \int_0^y b(t)dt} dy + e^{-2 \int_0^1 b(t)dt} \int_1^x e^{-2 \int_1^y \frac{a}{t} dt} dy
$$

=
$$
\int_0^1 e^{-2 \int_0^y b(t)dt} dy + e^{-2 \int_0^1 b(t)dt} \int_1^x \frac{1}{y^{2\alpha}} dy
$$

and

$$
F(z) = -\int_{z}^{0} e^{\int_{y}^{0} 2b(t)dt} dy = -\int_{z}^{0} 1 dy = z.
$$

This implies that

$$
0 < F(\infty) < \infty \text{ and } F(-\infty) = -\infty. \tag{15}
$$

Given $\epsilon > 0$. By [\(15\)](#page-56-0), there exists $c < 0$ such that $\frac{F(\infty)}{F(\infty) - F(c)} < \epsilon$. Since $T_n \geq T_{n-1}$, we see that

$$
\boldsymbol{P}(T_n < T_c, \forall n \ge 1) = \lim_{n \to \infty} \boldsymbol{P}(T_n < T_c) = 1 - \frac{F(\infty)}{F(\infty) - F(c)} \ge 1 - \epsilon.
$$

For $k \geq 1$, there exists $c_k < 0$ such that

$$
\mathbf{P}(T_n \geq T_{c_k} \text{ for some } n \geq 1) \leq 2^{-k}.
$$

By Borel Cantelli's lemma, we see that $P(E^c) = 0$, where

$$
E^c = \{ \{ T_n \ge T_{c_k} \text{ for some } n \ge 1 \} \text{ i.o k} \}.
$$

For $k \geq 1$, since $F(c_k) \leq M_{t \wedge T_{c_k}} = F(X_{t \wedge T_{c_k}}) \leq F(\infty) < \infty$, we see that $M^{T_{c_k}}$ is an uniformly integrable martingale and, hence, $\lim_{t\to\infty} M_t^{T_{c_k}}$ exists (a.s.). Set

$$
G = \bigcap_{k \ge 1} \{ \lim_{t \to \infty} M_t^{T_{c_k}} \text{ exists } \}.
$$

Then $P(G \cap E) = 1$. Let $w \in E \cap G$. Then $T_n(w) < T_{c_k}(w)$ for some $k \ge 1$ and all $n \ge 1$. Since $T_n(w) \uparrow \infty$, we see that $T_{c_k}(w) = \infty$, and, hence, $\lim_{t\to\infty} M_t(w) = \lim_{t\to\infty} M_t^{T_{c_k}}(w)$ exist. Because

$$
\lim_{t \to \infty} M_t(w) = \lim_{n \to \infty} M_{T_n}(w) = \lim_{n \to \infty} F(n) = F(\infty),
$$

we get $\lim_{t\to\infty} X_t(w) = \infty$. Therefore $\lim_{t\to\infty} X_t = \infty$ (a.s.).

7. Let $x > 1$. We see that

$$
F(x) = \int_0^1 e^{-2 \int_0^y b(t)dt} dy + e^{-2 \int_0^1 b(t)dt} \int_1^x \frac{1}{y} dy
$$

and, hence, $F(\infty) = \infty$. Choose $\{c_k\} \subseteq \mathbb{R}_+$ such that $c_k \to -\infty$. For $k \ge 1$, by [\(14\)](#page-56-1), there exists $d_k > 0$ such that

$$
\boldsymbol{P}(T_{c_k} \geq T_{d_k}) \leq 2^{-k}
$$

.

By Borel Cantelli's lemma, we see that $P(\Gamma^c) = 0$, where

$$
\Gamma^c = \{ \{ T_{c_k} \ge T_{d_k} \} \text{ i.o. } k \}.
$$

Let $w \in \Gamma$. There exists $K \geq 1$ such that $T_{c_k}(w) < T_{d_k}(w)$ for all $k \geq K$ and, hence, $T_{c_k}(w) < \infty$ for all $k \geq K$. Thus,

$$
\lim_{k \to \infty} X_{T_{c_k}}(w) = \lim_{k \to \infty} c_k = -\infty.
$$

Therefore $\liminf_{t\to\infty} X_t = -\infty$ (a.s.).

5.6 Exercise 5.30 (Lévy Area)

Let $(X_t, Y_y)_{t\geq0}$ be a two-dimensional (\mathscr{F}_t) -Brownian motion started from 0. We set, for every $t\geq0$:

$$
\mathscr{A}_t = \int_0^t X_s dY_s - \int_0^t Y_s dX_s
$$
 (Lévy area)

- 1. Compute $\langle \mathscr{A}, \mathscr{A} \rangle_t$ and infer that $(\mathscr{A}_t)_{t\geq 0}$ is a square-integrable (true) martingale.
- 2. Let $\lambda > 0$. Justify the equality

$$
\boldsymbol{E}[e^{i\lambda \mathscr{A}_t}] = \boldsymbol{E}[\cos(\lambda \mathscr{A}_t)].
$$

3. Let $f \in C^3(\mathbb{R}_+)$. Give the canonical decomposition of the semimartingales

$$
Z_t = \cos(\lambda \mathscr{A}_t), W_t = -\frac{f'(t)}{2}(X_t^2 + Y_t^2) + f(t).
$$

Verify that $\langle Z, W \rangle_t = 0$.

4. Show that, for the process $Z_t e^{W_t}$ to be a continuous local martingale, it suffices that f solves the differential equation

$$
f''(t) = f'(t)^2 - \lambda^2.
$$

5. Let $r > 0$. Verify that the function

$$
f(t) = -\ln(\cosh(\lambda(r - t)))
$$

solves the differential equation of question 4. and derive the formula

$$
\boldsymbol{E}[e^{i\lambda\mathscr{A}_r}] = \frac{1}{\cosh(\lambda r)}.
$$

Proof.

1. By Fubini's theorem, we get

$$
\begin{aligned} \boldsymbol{E}[\langle \mathscr{A}, \mathscr{A} \rangle_t] &= \boldsymbol{E}[\int_0^t X_s^2 ds] + \boldsymbol{E}[\int_0^t Y_s^2 ds] \\ &= \int_0^t \boldsymbol{E}[X_s^2] ds + \int_0^t \boldsymbol{E}[Y_s^2] ds \\ &= \int_0^t s ds + \int_0^t s ds = t^2 \end{aligned}
$$

for all $t \geq 0$. By Theorem 4.13, we see that $\mathscr A$ is a true martingale and $\mathscr A_t \in L^2$ for all $t \geq 0$.

2. Fix $\lambda > 0$ and $t > 0$. Let $0 = t_0^n < t_1^n < \ldots < t_{p_n}^n = t$ be a sequence of subdivisions of $[0, t]$ whose mesh tends to 0. By Proposition 5.9, we have

$$
\sum_{i=0}^{p_n-1} X_{t_i^n} (Y_{t_{i+1}^n} - Y_{t_{i-1}^n}) - \sum_{i=0}^{p_n-1} Y_{t_i^n} (X_{t_{i+1}^n} - X_{t_{i-1}^n}) \xrightarrow{p} \int_0^t X_s dY_s - \int_0^t Y_s dX_s = \mathcal{A}_t
$$

and

$$
\sum_{i=0}^{p_n-1} Y_{t_i^n}(X_{t_{i+1}^n} - X_{t_{i-1}^n}) - \sum_{i=0}^{p_n-1} X_{t_i^n}(Y_{t_{i+1}^n} - Y_{t_{i-1}^n}) \xrightarrow{p} \int_0^t Y_s dX_s - \int_0^t X_s dY_s = -\mathcal{A}_t.
$$

Let

$$
p(x) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{t_1(t_2 - t_1)...(t_p - t_{p-1})}}e^{-\sum_{k=0}^{p_{n-1}}\frac{(x_{i+1} - x_i)^2}{2(t_{i+1} - t_i)}}.
$$

Since $(X_t, Y_y)_{t\geq 0}$ is two-dimensional Brownian motion, we get

$$
\begin{split} &E[e^{i\xi(\sum_{i=0}^{p_n-1}X_{t_i^n}(Y_{t_{i+1}}-Y_{t_{i-1}})-\sum_{i=0}^{p_n-1}Y_{t_i^n}(X_{t_{i+1}^n}-X_{t_{i-1}^n}))}])\\ &=\int_{\mathbb{R}^p}\int_{\mathbb{R}^p}e^{i\xi(\sum_{k=0}^{p_n-1}x_i(y_{i+1}-y_i)-\sum_{k=0}^{p_n-1}y_i(x_{i+1}-x_i))}p(x)p(y)dxdy\\ &=\mathbf{E}[e^{i\xi(\sum_{i=0}^{p_n-1}Y_{t_i^n}(X_{t_{i+1}^n}-X_{t_{i-1}^n})-\sum_{i=0}^{p_n-1}X_{t_i^n}(Y_{t_{i+1}^n}-Y_{t_{i-1}^n}))}]\end{split}
$$

for all $n\geq 1$ and $\xi\in\mathbb{R}.$ By Lévy's continuity theorem, we see that

$$
\boldsymbol{E}[e^{i\xi \mathscr{A}_t}] = \boldsymbol{E}[e^{i\xi(-\mathscr{A}_t)}]
$$

for all $\xi \in \mathbb{R}$ and, hence $\mathscr{A}_t \stackrel{D}{=} -\mathscr{A}_t$ Therefore

$$
\boldsymbol{E}[\cos(\lambda \mathscr{A}_t)] + i \boldsymbol{E}[\sin(\lambda \mathscr{A}_t)] = \boldsymbol{E}[\cos(\lambda \mathscr{A}_t)] - i \boldsymbol{E}[\sin(\lambda \mathscr{A}_t)]
$$

and, hence $\mathbf{E}[\sin(\lambda \mathcal{A}_t)] = 0.$

3. By Itô's formula, we get

$$
Z_t = 1 - \lambda \int_0^t \sin(\lambda \mathscr{A}_s) d\mathscr{A}_s - \frac{1}{2} \lambda^2 \int_0^t \cos(\lambda \mathscr{A}_s) d\langle \mathscr{A}, \mathscr{A} \rangle_s
$$

= $1 - \lambda \int_0^t \sin(\lambda \mathscr{A}_s) d\mathscr{A}_s - \frac{1}{2} \lambda^2 \int_0^t \cos(\lambda \mathscr{A}_s) (X_s^2 + Y_s^2) ds$
= $1 - \lambda \int_0^t \sin(\lambda \mathscr{A}_s) d\mathscr{A}_s - \frac{1}{2} \lambda^2 \int_0^t Z_s (X_s^2 + Y_s^2) ds.$

Also we have

$$
f'(t)(X_t^2 + Y_t^2)
$$

= $\int_0^t f''(s)(X_s^2 + Y_s^2)ds + \int_0^t f'(s)2X_s dX_s + \int_0^t f'(s)2Y_s dY_s + \frac{1}{2} \int_0^t f'(s) \times 2ds + \frac{1}{2} \int_0^t f'(s) \times 2ds$
= $\int_0^t f''(s)(X_s^2 + Y_s^2)ds + \int_0^t f'(s)2X_s dX_s + \int_0^t f'(s)2Y_s dY_s + 2(f(t) - f(0))$

and, hence,

$$
W_t = \frac{-1}{2}f'(t)(X_t^2 + Y_t^2) + f(t) = f(0) - \int_0^t f'(s)X_s dX_s - \int_0^t f'(s)Y_s dY_s - \frac{1}{2} \int_0^t f''(s)(X_s^2 + Y_s^2)ds.
$$

Therefore

$$
\langle W, Z \rangle_t = X_t f'(t) \lambda \sin(\lambda \mathscr{A}_t) \langle X, \mathscr{A} \rangle_t + Y_t f'(t) \lambda \sin(\lambda \mathscr{A}_t) \langle Y, \mathscr{A} \rangle_t = X_t f'(t) \lambda \sin(\lambda \mathscr{A}_t) \times (-Y_t t) + Y_t f'(t) \lambda \sin(\lambda \mathscr{A}_t) \langle X_t t \rangle = 0
$$

4. By Itô's formula, we get

$$
Z_te^{W_t} = \int_0^t e^{W_s} dZ_s + \int_0^t Z_s e^{W_s} dW_s + \frac{1}{2} \int_0^t Z_s e^{W_s} d\langle W, W \rangle_s.
$$

Note that

$$
dZ_s = -\lambda \sin(\lambda \mathscr{A}_s) d\mathscr{A}_s - \frac{1}{2} \lambda^2 Z_s (X_s^2 + Y_s^2) ds,
$$

$$
dW_s = f'(s) X_s dX_s - f'(s) Y_s dY_s - \frac{1}{2} f''(s) (X_s^2 + Y_s^2) ds,
$$

and

$$
d\langle W, W \rangle_s = (X_s^2 f'(s)^2 + Y_s^2 f'(s)^2) ds.
$$

Thus, $Z_t e^{W_t}$ is a continuous local martingale when

$$
f''(t) = f'(t)^2 - \lambda^2.
$$

5. Fix $r > 0$ and $\lambda > 0$. It's clear that $f(t) = -\ln(\cosh(\lambda(r - t))) \in C^3(\mathbb{R}_+)$ and satisfy

$$
f''(t) = f'(t)^2 - \lambda^2.
$$

Thus $(Z_t e^{W_t})_{t\geq 0}$ is a continuous local martingale. Choose $(T_n)_{n\geq 1}$ such that $(Z_t^{T_n} e^{W_t^{T_n}})_{t\geq 0}$ is an uniformly integrable martingale for $n \geq 1$ and $T_n \uparrow \infty$. Then

$$
\boldsymbol{E}[\cos(\lambda \mathscr{A}_{T_n\wedge r})e^{-\frac{1}{2}f'(T_n\wedge r)(X_{T_n\wedge r}^2+Y_{T_n\wedge r}^2)+f(T_n\wedge r)}]=\boldsymbol{E}[Z_r^{T_n}e^{W_r^{T_n}}]=\boldsymbol{E}[Z_0^{T_n}e^{W_0^{T_n}}]=\frac{1}{\cosh(\lambda r)}.
$$

Because $r - T_n \wedge r \geq 0$ for all $n \geq 1$, we see that

$$
f'(T_n \wedge r) = \frac{\sinh(\lambda(r - T_n \wedge r))}{\cosh(\lambda(r - T_n \wedge r))}\lambda \ge 0
$$

and, hence,

$$
0 \le e^{-\frac{1}{2}f'(T_n \wedge r)(X_{T_n \wedge r}^2 + Y_{T_n \wedge r}^2)} \le 1
$$

for all $n \geq 1$. Since $\cosh(\lambda(r - T_n \wedge r)) \geq 1$ for all $n \geq 1$, we get

$$
f(T_n \wedge r) = -\ln(\cosh(\lambda(r - T_n \wedge r))) \le 0
$$

and, hence

$$
0 \le e^{f(T_n \wedge r)} \le 1.
$$

By Lebesgue dominated convergence theorem, we see that

$$
\frac{1}{\cosh(\lambda r)} = \lim_{n \to \infty} \mathbf{E} [\cos(\lambda \mathscr{A}_{T_n \wedge r}) e^{-\frac{1}{2} f'(T_n \wedge r)(X_{T_n \wedge r}^2 + Y_{T_n \wedge r}^2) + f(T_n \wedge r)}]
$$

$$
= \mathbf{E} [\cos(\lambda \mathscr{A}_r) e^{-\frac{1}{2} f'(r)(X_r^2 + Y_r^2) + f(r)}]
$$

Since $f'(r) = \frac{\sinh(\lambda(r-t))}{\cosh(\lambda(r-t))}|_{t=r} = 0 = f(r)$, we have

$$
\boldsymbol{E}[\cos(\lambda \mathscr{A}_r) e^{-\frac{1}{2}f'(r)(X_r^2 + Y_r^2) + f(r)}] = \boldsymbol{E}[\cos(\lambda \mathscr{A}_r)].
$$

By the result in problem 2,

$$
\boldsymbol{E}[e^{i\lambda \mathscr{A}_r}] = \boldsymbol{E}[\cos(\lambda \mathscr{A}_r)] = \frac{1}{\cosh(\lambda r)}
$$

.

 \Box

5.7 Exercise 5.31 (Squared Bessel processes)

Let B be an $(\mathscr{F}_t)_{t\geq0}$ -Brownian motion started from 0, and let X be a continuous semimartingale. We assume that X takes values in \mathbb{R}_+ , and is such that, for every $t \geq 0$,

$$
X_t = x + 2 \int_0^t \sqrt{X_s} dB_s + \alpha t
$$

where x and α are nonnegative real numbers.

1. Let $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$ be a continuous function, and let φ be a twice continuously differentiable function on \mathbb{R}_+ , taking strictly positive values, which solves the differential equation

$$
\varphi''=2f\varphi
$$

and satisfies $\varphi(0) = 1$ and $\varphi'(1) = 0$. Observe that the function φ must then be decreasing over the interval $[0, 1]$. We set

$$
u(t) = \frac{\varphi'(t)}{2\varphi(t)}
$$

for every $t \geq 0$. Verify that we have, for every $t \geq 0$,

$$
u'(t) + 2u(t)^2 = f(t),
$$

then show that, for every $t \geq 0$,

$$
u(t)X_t - \int_0^t f(s)X_s ds = u(0)x + \int_0^t u(s)dX_s - 2\int_0^t u(s)^2 X_s ds.
$$

We set

$$
Y_t = u(t)X_t - \int_0^t f(s)X_s ds.
$$

2. Show that, for every $t \geq 0$,

$$
\varphi(t)^{-\frac{\alpha}{2}}e^{Y_t} = \mathscr{E}(N)_t
$$

where $\mathscr{E}(N)_t = \exp(N_t - \frac{1}{2} \langle N, N \rangle_t)$ denotes the exponential martingale associated with the continuous local martingale

$$
N_t = u(0)x + 2 \int_0^t u(s) \sqrt{X_s} dB_s.
$$

3. Infer from the previous question that

$$
\boldsymbol{E}[\exp(-\int_0^1 f(s)X_s ds)] = \varphi(1)^{\frac{\alpha}{2}} \exp(\frac{x}{2}\varphi'(0)).
$$

4. Let $\lambda > 0$. Show that

$$
\boldsymbol{E}[\exp(-\lambda \int_0^1 X_s ds)] = (\cosh(\sqrt{2\lambda}))^{-\frac{\alpha}{2}} \exp(-\frac{x}{2}\sqrt{2\lambda} \tanh(\sqrt{2\lambda})).
$$

5. Show that, if $\beta = (\beta_t)_{t\geq 0}$ is a real Brownian motion started from y, one has, for every $\lambda > 0$,

$$
\boldsymbol{E}[\exp(-\lambda \int_0^1 \beta_s^2 ds)] = (\cosh(\sqrt{2\lambda}))^{-\frac{1}{2}} \exp(-\frac{y^2}{2}\sqrt{2\lambda} \tanh(\sqrt{2\lambda})).
$$

Proof.

1. Since $f \ge 0$ and $\varphi > 0$, we see that $\varphi'' = 2f\varphi \ge 0$. Because $\varphi'(1) = 0$ and φ' is nondecreasing, one has $\varphi' \le 0$ in $[0, 1]$ and, hence, φ is decreasing over the interval $[0, 1]$. Note that

$$
u'(t) + 2u(t)^2 = \frac{\varphi''(t)2\varphi(t) - 2\varphi(t)^2}{4\varphi(t)^2} + 2\frac{\varphi'(t)^2}{4\varphi(t)^2} = \frac{\varphi''(t)}{2\varphi(t)} = f(t).
$$

By Itô's formula, we get

$$
u(t)X_t = u(0)x + \int_0^t u'(s)X_s ds + \int_0^t u(s)dX_s
$$

= $u(0)x + \int_0^t f(s)X_s ds - 2 \int_0^t u(s)^2 X_s ds + \int_0^t u(s)dX_s.$

and, hence,

$$
u(t)X_t - \int_0^t f(s)X_s ds = u(0)x + \int_0^t u(s)dX_s - 2\int_0^t u(s)^2 X_s ds.
$$

2. Note that

$$
Y_t = u(0)x + \int_0^t u(s)dX_s - 2\int_0^t u(s)^2X_sds
$$

= $u(0)x + \int_0^t u(s)\sqrt{X_s}dB_s + \alpha \int_0^t u(s)ds - 2\int_0^t u(s)^2X_sds$
= $u(0)x + \int_0^t u(s)\sqrt{X_s}dB_s - 2\int_0^t u(s)^2X_sds + \alpha \int_0^t \frac{\varphi'(s)}{2\varphi(s)}ds$
= $u(0)x + \int_0^t u(s)\sqrt{X_s}dB_s - 2\int_0^t u(s)^2X_sds + \frac{\alpha}{2}\ln(\varphi(t)).$

Then we have

$$
\mathcal{E}(N)_t = \exp(N_t - \langle N, N \rangle_t)
$$

= $\exp(u(0)x + 2 \int_0^t u(s) \sqrt{X_s} dB_s - 2 \int_0^t u(s)^2 X_s ds)$
= $\exp(u(0)x + 2 \int_0^t u(s) \sqrt{X_s} dB_s - 2 \int_0^t u(s)^2 X_s ds + \frac{\alpha}{2} \ln(\varphi(t)) \varphi(t)^{-\frac{\alpha}{2}}$
= $\exp(Y_t)\varphi(t)^{-\frac{\alpha}{2}}$.

3. Choose m such that $\ln(\varphi(t)) \ge m$ for all $t \in [0,1]$. Fix $t \in [0,1]$. Because $\varphi' \le 0$ in $[0,1]$ (problem 1), we see that $u \leq 0$ in [0, 1]. Because $f \geq 0$ in [0, 1] and $X_t, \alpha \geq 0$, we see that

$$
\mathscr{E}(N)_t = \exp(Y_t)\varphi(t)^{-\frac{\alpha}{2}} = \exp(u(t)X_t - \int_0^t f(s)X_s ds - \frac{\alpha}{2}\ln(\varphi(t))) \leq \exp(-\frac{\alpha}{2}m) < \infty.
$$

and, hence, $\mathcal{E}(N)_{t\wedge 1}$ is a uniformly integrable martingale. Because $u(1) = \varphi'(1) = 0$ and $\varphi(0) = 1$, we have

$$
\varphi(1)^{-\frac{\alpha}{2}} \mathbf{E}[\exp(-\int_0^1 f(s)X_s ds)] = \varphi(1)^{-\frac{\alpha}{2}} \mathbf{E}[\exp(u(1)X_1 - \int_0^1 f(s)X_s ds)] = \mathbf{E}[\varphi(1)^{-\frac{\alpha}{2}} \exp Y_1]
$$

= $\mathbf{E}[\mathscr{E}(N)_1] = \mathbf{E}[\mathscr{E}(N)_0] = \mathbf{E}[\exp(N_0)] = \exp(u(0)x)$
= $\exp(x\frac{\varphi'(0)}{2\varphi(0)}) = \exp(\frac{x\varphi'(0)}{2})$

and, so

$$
\boldsymbol{E}[\exp(-\int_0^1 f(s)X_s ds)] = \varphi(1)^{\frac{\alpha}{2}} \exp(\frac{x}{2}\varphi'(0)).
$$

4. Set $f = \lambda$. Then we have $\varphi''(t) - 2\lambda \varphi(t) = 0$ and, hence, $\varphi(t) = c_1 \exp(\sqrt{2\lambda}t) + c_2 \exp(-\lambda)$ √ $2\lambda t$). Combining with initial conditions, we get

$$
\varphi(t) = \frac{\exp(-\sqrt{2\lambda})}{\exp(\sqrt{2\lambda}) + \exp(-\sqrt{2\lambda})} \exp(\sqrt{2\lambda}t) + \frac{\exp(\sqrt{2\lambda})}{\exp(\sqrt{2\lambda}) + \exp(-\sqrt{2\lambda})} \exp(-\sqrt{2\lambda}t).
$$

Thus,

$$
\varphi(1) = \frac{2}{\exp(\sqrt{2\lambda}) + \exp(-\sqrt{2\lambda})} = \frac{1}{\cosh(\sqrt{2\lambda})}
$$

and

$$
\varphi'(0) = \sqrt{2\lambda} \frac{-\exp(\sqrt{2\lambda}) + \exp(-\sqrt{2\lambda})}{\exp(\sqrt{2\lambda}) + \exp(-\sqrt{2\lambda})} = -\sqrt{2\lambda} \tanh(\sqrt{2\lambda}).
$$

By problem 3, we get

$$
\boldsymbol{E}[\exp(-\lambda \int_0^1 X_s ds)] = (\cosh(\sqrt{2\lambda}))^{-\frac{\alpha}{2}} \exp(-\frac{x}{2}\sqrt{2\lambda} \tanh(\sqrt{2\lambda})).
$$

5. Suppose β is a $(\mathscr{F}_t)_{t\geq 0}$ -real Brownian motion. By Itô's formula, we get

$$
\beta_t^2 = y^2 + 2 \int_0^t \beta_s d\beta_s + t
$$

Set $B_t = \int_0^t sgn(\beta_s)d\beta_s$. Then $(B_t)_{t\geq 0}$ is a process $\langle B, B \rangle_t = t$, we see that B is a $(\mathscr{F}_t)_{t\geq 0}$ -real Brownian motion and $\beta_t^2 = y^2 + 2 \int^t$

$$
\beta_t^2 = y^2 + 2 \int_0^t |\beta_s| dB_s + t.
$$

Thus, by problem 4, we get

$$
\boldsymbol{E}[\exp(-\lambda \int_0^1 \beta_s^2 ds)] = (\cosh(\sqrt{2\lambda}))^{-\frac{1}{2}} \exp(-\frac{y^2}{2}\sqrt{2\lambda} \tanh(\sqrt{2\lambda})).
$$

5.8 Exercise 5.32 (Tanaka's formula and local time)

Let B be an $(\mathscr{F}_t)_{t\geq 0}$ -Brownian motion started from 0. For every $\epsilon > 0$, we define a function $g_{\epsilon} : \mathbb{R} \to \mathbb{R}$ by setting $g_{\epsilon}(x) = \sqrt{\epsilon^2 + x^2}$.

1. Show that

$$
g_{\epsilon}(B_t) = g_{\epsilon}(0) + M_t^{\epsilon} + A_t^{\epsilon}
$$

where M^{ϵ} is a square integrable continuous martingale that will be identified in the form of a stochastic integral, and A^{ϵ} is an increasing process.

2. We set $sgn(x) = 1_{\{x>0\}} - 1_{\{x<0\}}$ for all $x \in \mathbb{R}$. Show that, for every $t \geq 0$,

$$
M_t^{\epsilon} \to \int_0^t sgn(B_s)dB_s
$$
 in L^2 as $\epsilon \to 0$.

Infer that there exists an increasing process L such that, for every $t \geq 0$,

$$
|B_t| = \int_0^t sgn(B_s)dB_s + L_t.
$$

3. Observing that $A_t^{\epsilon} \to L_t$ as $\epsilon \to 0$ (It seems that the author want us to prove

$$
A_t^{\epsilon} \to L_t \text{ as } \epsilon \to 0 \,\,\forall t \ge 0 \,\,\text{(a.s.),}
$$

but this statement is to strong to prove. You can prove the following problems without this statement). Show that, for every $\delta > 0$, for every choice of $0 < u < v$, the condition $(|B_t| \ge \delta$ for every $t \in [u, v]$ a.s. implies that $L_u = L_v$. Infer that the function $t \mapsto L_t$ is a.s. constant on every connected component of the open set $\{t \geq 0 \mid B_t \neq 0\}.$

- 4. We set $\beta_t = \int_0^t sgn(B_s)dB_s$ for all $t \geq 0$. Show that $(\beta_t)_{t \geq 0}$ is a $(\mathscr{F}_t)_{t \geq 0}$ Brownian motion started from 0.
- 5. Show that $L_t = \sup_{s \le t} (-\beta_s)$ (a.s.). (In order to derive the bound $L_t \le \sup_{s \le t} (-\beta_s)$, one may consider the last zero of B before time t, and use question 3.) Give the law of L_t .
- 6. For every $\epsilon > 0$, we define two sequences of stopping times $(S_n^{\epsilon})_{n\geq 1}$ and $(T_n^{\epsilon})_{n\geq 1}$, by setting

$$
S_1^{\epsilon} = 0, T_1^{\epsilon} = \inf\{t \ge S_1^{\epsilon} \mid |B_t| = \epsilon\}
$$

and then, by induction,

$$
S_{n+1}^{\epsilon} = \inf \{ t \ge T_n^{\epsilon} \mid |B_t| = 0 \}, T_{n+1}^{\epsilon} = \inf \{ t \ge S_{n+1}^{\epsilon} \mid |B_t| = \epsilon \}.
$$

For every $t \geq 0$, we set

$$
N_t^{\epsilon} = \sup\{n \ge 1 \mid T_n^{\epsilon} \le t\},\
$$

where $\sup \emptyset = 0$. Show that

$$
\epsilon N_t^{\epsilon} \stackrel{L^2}{\rightarrow} L_t \text{ as } \epsilon \rightarrow 0.
$$

(One may observe that

$$
L_t + \int_0^t \sum_{n=1}^\infty 1_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s) sgn(B_s) dB_s = \epsilon N_t^{\epsilon} + r_t^{\epsilon}
$$
 (a.s.),

where the "remainder" r_t^{ϵ} satisfies $|r_t^{\epsilon}| \leq \epsilon$.)

7. Show that $\frac{N_t^1}{\sqrt{t}}$ converges in law as $t \to \infty$ to |U|, where U is $\mathcal{N}(0, 1)$ -distributed. Proof.

1. By Itô's formula, we get

$$
g_{\epsilon}(B_t) = g_{\epsilon}(0) + \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s + \frac{1}{2} \int_0^t \frac{\epsilon^2}{(\epsilon^2 + B_s^2)^{\frac{3}{2}}} ds.
$$

It's clear that

$$
A_t^{\epsilon} \equiv \frac{1}{2} \int_0^t \frac{\epsilon^2}{(\epsilon^2 + B_s^2)^{\frac{3}{2}}} ds \tag{16}
$$

is an increasing process. For $t \geq 0$,

$$
\mathbf{E}[\langle \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s, \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s \rangle_t] = \mathbf{E}[\int_0^t \frac{B_s^2}{\epsilon^2 + B_s^2} ds] \leq t.
$$

By theorem 4.13, we see that

$$
M_t^{\epsilon} \equiv \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s \tag{17}
$$

is a sequare integrable continuous martingale.

2. Fix $t > 0$. Then

$$
\frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} \to \frac{B_s}{|B_s|} = sgn(B_s) \text{ as } \epsilon \to 0 \text{ } \forall s \in [0, t] \text{ (a.s.),}
$$

where $\frac{B_s}{|B_s|} = 0$ when $B_s = 0$. By Proposition 5.8, we see that

$$
\int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s \stackrel{P}{\to} \int_0^t sgn(B_s) dB_s \text{ as } \epsilon \to 0.
$$

Recall that

Lieb's theorem [1, Theorem 6.2.3].

Let (E, \mathcal{B}, μ) be a measure space, $p \in [1, \infty)$, and $\{f_n\} \cup \{f\} \subseteq L^p(\mu; \mathbb{R})$. If $\sup_{n \geq 1} ||f_n||_{L^p(\mu; \mathbb{R})} < \infty$ and $f_n \to f$ in μ -measure, then

$$
||f_n - f||_{L^p(\mu;\mathbb{R})} \to 0 \text{ whenever } ||f_n||_{L^p(\mu;\mathbb{R})} \to ||f||_{L^p(\mu;\mathbb{R})}.
$$

Since

$$
\|\int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s\|_{L^2}^2 = \mathbf{E}[(\int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s)^2] = \mathbf{E}[\int_0^t \frac{B_s^2}{\epsilon^2 + B_s^2} ds] \le t
$$

for all $\epsilon > 0$ and

$$
\lim_{\epsilon \to 0} \|\int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s\|_{L^2}^2 = t = \mathbf{E}[(\int_0^t sgn(B_s) dB_s)^2] = \|\int_0^t sgn(B_s) dB_s\|_{L^2}^2,
$$

we get

$$
M_t^{\epsilon} = \int_0^t \frac{B_s}{\sqrt{\epsilon^2 + B_s^2}} dB_s \to \int_0^t sgn(B_s) dB_s \text{ in } L^2 \text{ as } \epsilon \to 0.
$$

Let us now construct the corresponding increasing process $(L_t)_{t\geq0}$. We just define

$$
L_t = |B_s| - \int_0^t sgn(B_s)dB_s.
$$
\n
$$
(18)
$$

It remains to show that $(L_t)_{t\geq 0}$ is an increasing process. Fix $t > 0$. By Lieb's theorem, we see that

$$
g_{\epsilon}(B_t) = \sqrt{\epsilon^2 + |B_s|^2} \stackrel{L^2}{\rightarrow} |B_t|
$$
 as $\epsilon \rightarrow 0$

and therefore

$$
A_t^{\epsilon} = g_{\epsilon}(B_t) - g_{\epsilon}(0) - M_t^{\epsilon} \stackrel{L^2}{\rightarrow} |B_t| - \int_0^t sgn(B_s) dB_s = L_t.
$$

Since $(A_t^{\epsilon})_{t\geq0}$ is an increasing process for all $\epsilon>0$, we see that $(L_t)_{t\geq0}$ is an increasing process.

3. First we show that the condition $(|B_t| \geq \delta$ for every $t \in [u, v]$ a.s. implies that $L_u = L_v$. Fix $\delta > 0$ and $0 < u < v$. Since A_i^{ϵ} $L^2 \to L_i$ for $i = u, v$, there exists $\{\epsilon_k\}$ such that $\epsilon_k \downarrow 0$ and $A_i^{\epsilon_k} \stackrel{a.s.}{\to} L_i$ for $i = u, v$. Let

$$
w \in \{\lim_{k \to \infty} A_u^{\epsilon_k} = L_u\} \bigcap \{\lim_{k \to \infty} A_v^{\epsilon_k} = L_v\} \bigcap \{|B_t| \ge \delta \text{ for all } t \in [u, v]\}.
$$

Then

$$
\frac{\epsilon_k^2}{(\epsilon_k^2 + B_s^2(w))^{\frac{3}{2}}} \le \frac{1}{\delta^3}
$$

for $s \in [u, v]$ and $k \geq 1$. By Lebesgue's dominated convergence theorem, we get

$$
L_v(w) - L_u(w) = \lim_{k \to \infty} \frac{1}{2} \int_u^v \frac{\epsilon_k^2}{(\epsilon_k^2 + B_s^2(w))^{\frac{3}{2}}} ds = 0.
$$

Thus, the condition $(|B_t| \geq \delta$ for every $t \in [u, v]$) a.s. implies that $L_u = L_v$. Next, we show that the function $t \mapsto L_t$ is a.s. constant on every connected component of the open set $\{t \geq 0 \mid B_t \neq 0\}$. Set

$$
Z_{\delta,u,v}^c = \{ (|B_t| \ge \delta \text{ for every } t \in [u,v]) \text{ implies that } L_u = L_v \}
$$

for all positive rational numbers δ and $u < v$. Then

$$
Z \equiv \bigcup_{\delta, u, v} Z_{\delta, u, v} \tag{19}
$$

is a zero set. Let $w \in Z^c$. Let (a, b) be a connected component of $\{t \geq 0 \mid B_t(w) \neq 0\}$. For any two rational numbers u and v such that $a < u < v < b$, there exists positive rational number δ such that $|B_t(w)| \geq \delta$ for all $t \in [u, v]$ and therefore $L_u(w) = L_v(w)$. Since $t \in (a, b) \mapsto L_t(w)$ is increasing, we see that $t \in (a, b) \mapsto L_t(w)$ is a constant. Hence $t \mapsto L_t$ is a.s. constant on every connected component of the open set $\{t \geq 0 \mid B_t \neq 0\}$.

- 4. It's clear that $(\beta_t)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq 0}$ -continuous local martingale with $\langle \beta, \beta \rangle_t = t$ for all $t \geq 0$. Thus, $(\beta_t)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq0}$ Brownian motion started from 0.
- 5. Fix $t_0 > 0$. Since $|B_t| = \beta_t + L_t \,\forall t \ge 0$ (a.s.), we have $\sup_{s \le t_0} (-\beta_s) \le \sup_{s \le t_0} L_s = L_{t_0}$ (a.s.). We show that

$$
\sup_{s\leq t_0}(-\beta_s)\geq L_{t_0}
$$
 (a.s.).

Let $w \in Z^c \cap \{|B_t| = \beta_t + L_t \,\forall t \geq 0\}$, where Z is defined in [\(19\)](#page-65-0). Set $r = \sup\{0 \leq s \leq t_0 \mid B_s(w) = 0\}$. Then $B_r(w) = 0$ and

$$
L_{t_0}(w) = -\beta_t(w) \le \sup_{s \le t_0} (-\beta_s)(w)
$$
 whenever $B_{t_0}(w) = 0$.

Since $t \in \mathbb{R}_+ \mapsto L_t(w) \in C(\mathbb{R}_+)$ is constant on every connected component of $\{t \geq 0 \mid B_t(w) \neq 0\}$, we have

$$
L_t(w) = L_r(w) = -\beta_r(w) \le \sup_{s \le t} (-\beta_s)(w)
$$
 whenever $B_t(w) \ne 0$.

Thus

$$
\sup_{s \le t_0} (-\beta_s) \ge L_{t_0} \text{ (a.s.)}
$$

and therefore

$$
\sup_{s \le t_0} (-\beta_s) = L_{t_0} \text{ (a.s.).}
$$
\n(20)

To find the law of L_t , we define stopping times

$$
\Gamma_a = \inf\{t \ge 0 \mid -\beta_t = a\} \tag{21}
$$

for $a \in \mathbb{R}$. By the result of problem 4 and Corollary 2.22, we get

$$
\boldsymbol{P}(L_t \leq a) = \boldsymbol{P}(\sup_{s \leq t}(-\beta_s) \leq a) = \boldsymbol{P}(\Gamma_a \geq t) = \int_t^\infty \frac{a}{\sqrt{2\pi s^3}} \exp(-\frac{a^2}{2s}) ds.
$$

6. Fix $t > 0$ and $\epsilon > 0$. Note that N_t^{ϵ} is the number of upcrossing from 0 to $\pm \epsilon$ by $(B_s)_{s \in [0,t]}$. First, we show that

$$
L_t + \int_0^t \sum_{n=1}^\infty 1_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s) sgn(B_s) dB_s = \epsilon N_t^{\epsilon} + r_t^{\epsilon}
$$
 (a.s.),

where $|r_t^{\epsilon}| \leq \epsilon$. By [\(18\)](#page-65-1) and Proposition 5.8, we get

$$
L_t + \int_0^t \sum_{n=1}^\infty 1_{[S_n^\epsilon, T_n^\epsilon]}(s) sgn(B_s) dB_s = |B_t| - \int_0^t \sum_{n=1}^\infty 1_{(T_n^\epsilon, S_{n+1}^\epsilon)}(s) sgn(B_s) dB_s
$$

$$
= |B_t| - \sum_{n=1}^\infty \int_0^t 1_{(T_n^\epsilon, S_{n+1}^\epsilon)}(s) sgn(B_s) dB_s
$$

outside a zero set N. Let $w \in N^c$. We consider the following cases:

(a) Suppose that $0 = S_1^{\epsilon}(w) < T_1^{\epsilon}(w) < S_2^{\epsilon}(w) ... < T_{m-1}^{\epsilon}(w) < S_m^{\epsilon}(w) < t < T_m^{\epsilon}(w)$ for some $m \geq 1$. Then $|B_t(w)| \le \epsilon$, $N_t^{\epsilon} = m-1$, and $sgn(B_s)(w) = sgn(B_{T_k^{\epsilon}})(w)$ for $s \in [T_k^{\epsilon}(w), S_{k+1}^{\epsilon}(w))$ for each $k = 1, ..., m-1$. If we set $r_t^{\epsilon}(w) = |B_t(w)|$, then we have

$$
\begin{aligned} &|B_t(w)|-(\sum_{k=1}^{\infty}\int_0^t1_{(T_k^\epsilon,S_{k+1}^\epsilon)}(s)sgn(B_s)dB_s)(w)\\ &=r_t^\epsilon(w)-(\sum_{k=1}^{m-1}sgn(B_{T_k^\epsilon})\int_0^t1_{(T_k^\epsilon,S_{k+1}^\epsilon)}(s)dB_s)(w)\\ &=r_t^\epsilon(w)-\sum_{k=1}^{m-1}sgn(B_{T_k^\epsilon})(w)(B_{S_{k+1}^\epsilon}(w)-B_{T_k^\epsilon}(w))\\ &=r_t^\epsilon(w)-\sum_{k=1}^{m-1}sgn(B_{T_k^\epsilon})(w)(0-sgn(B_{T_k^\epsilon})(w)\times\epsilon)\\ &=r_t^\epsilon(w)+(m-1)\epsilon\\ &=r_t^\epsilon(w)+N_t^\epsilon(w)\epsilon. \end{aligned}
$$

(b) Suppose that $0 = S_1^{\epsilon}(w) < T_1^{\epsilon}(w) < S_2^{\epsilon}(w) ... < T_{m-1}^{\epsilon}(w) < S_m^{\epsilon}(w) < T_m^{\epsilon}(w) \le t < S_{m+1}^{\epsilon}(w)$ for some $m \ge 1$. Similar, we get $N_t^{\epsilon} = m$, and $sgn(B_s)(w) = sgn(B_{T_k^{\epsilon}})(w)$ for $s \in [T_k^{\epsilon}(w), S_{k+1}^{\epsilon}(w))$ for each $k = 1, ..., m + 1$. If we set $r_t^{\epsilon}(w) = \epsilon$, then we have

$$
|B_t(w)| - (\sum_{k=1}^{\infty} \int_0^t 1_{(T_k^{\epsilon}, S_{k+1}^{\epsilon})}(s)sgn(B_s)dB_s)(w)
$$

\n
$$
= |B_t(w)| - (\sum_{k=1}^m sgn(B_{T_k^{\epsilon}}) \int_0^t 1_{(T_k^{\epsilon}, S_{k+1}^{\epsilon})}(s)dB_s)(w) - sgn(B_t) \int_0^t 1_{(T_m^{\epsilon}, t)}(s)dB_s)(w)
$$

\n
$$
= |B_t(w)| - \sum_{k=1}^m sgn(B_{T_k^{\epsilon}})(w)(B_{S_{k+1}^{\epsilon}}(w) - B_{T_k^{\epsilon}}(w)) - sgn(B_t)(w)(B_t(w) - B_{T_m^{\epsilon}}(w))
$$

\n
$$
= |B_t(w)| - \sum_{k=1}^m sgn(B_{T_k^{\epsilon}})(w)(0 - sgn(B_{T_k^{\epsilon}})(w) \times \epsilon) - sgn(B_t)(w)(B_t(w) - sgn(B_t)(w) \times \epsilon)
$$

\n
$$
= \epsilon + m\epsilon
$$

\n
$$
= r_t^{\epsilon}(w) + N_t^{\epsilon}(w)\epsilon.
$$

Thus we have, a.s.,

$$
L_t + \int_0^t \sum_{n=1}^\infty \mathbb{1}_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s) sgn(B_s) dB_s = \epsilon N_t^{\epsilon} + r_t^{\epsilon},
$$

where $|r_t^{\epsilon}| \leq \epsilon$. Next, we show that

$$
\epsilon N_t^{\epsilon} \stackrel{L^2}{\to} L_t \text{ as } \epsilon \to 0.
$$

Fix $t \geq 0$. Note that

$$
\sum_{k=1}^{\infty} 1_{[S_n^{\epsilon}(w), T_n^{\epsilon}(w)]}(s) \le 1_{\{|B_s| \le \epsilon\}}(w) \text{ for all } 0 \le s \le t \text{ and } w \in \Omega.
$$
 (22)

and so

$$
||\epsilon N_t^{\epsilon} - L_t||_{L^2} \le ||\int_0^t \sum_{n=1}^{\infty} 1_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s)sgn(B_s)dB_s||_{L^2} + ||r_t^{\epsilon}||_{L^2}
$$

\n
$$
= \mathbf{E}[\int_0^t \sum_{n=1}^{\infty} 1_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s)ds] + ||r_t^{\epsilon}||_{L^2}
$$

\n
$$
= \int_0^t \mathbf{E}[\sum_{n=1}^{\infty} 1_{[S_n^{\epsilon}, T_n^{\epsilon}]}(s)]ds + ||r_t^{\epsilon}||_{L^2}
$$

\n
$$
\le \int_0^t \mathbf{E}[1_{\{|B_s| \le \epsilon\}}(w)]ds + ||r_t^{\epsilon}||_{L^2}
$$

\n
$$
= \int_0^t \mathbf{P}(|B_s| \le \epsilon)ds + ||r_t^{\epsilon}||_{L^2} \stackrel{\epsilon \to 0}{\to} \int_0^t \mathbf{P}(|B_s| = 0)ds = 0.
$$

7. First we show that $\frac{L_t}{\sqrt{t}} \stackrel{d}{=} |U|$ for all $t > 0$. Define stopping times Γ_a as [\(33\)](#page-89-1). Fix $t_0 > 0$. By [\(20\)](#page-66-0) and Corollary 2.22, we get

$$
\boldsymbol{P}(\frac{L_{t_0}}{\sqrt{t_0}} \le a) = \boldsymbol{P}(\sup_{s \le t_0} (-\beta_s) \le a \times \sqrt{t_0}) = \boldsymbol{P}(\Gamma_{a\sqrt{t_0}} \ge t_0) = \int_{t_0}^{\infty} \frac{\sqrt{t_0}a}{\sqrt{2\pi t^3}} \exp(-\frac{t_0a^2}{2t}) dt.
$$

Set
$$
x = \frac{\sqrt{t_0}a}{\sqrt{t}}
$$
. Then $dx = \frac{1}{2} \frac{\sqrt{t_0}a}{t^{\frac{3}{2}}} dt$ and
\n
$$
\int_{t_0}^{\infty} \frac{\sqrt{t_0}a}{\sqrt{2\pi t^3}} \exp(-\frac{t_0 a^2}{2t}) dt = \int_0^a \frac{2}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) dx = P(|U| \le a).
$$

Recall that if $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} 0$, then $X_n + Y_n \stackrel{d}{\to} X$. To show that $\frac{N_t^1}{\sqrt{t}} \stackrel{d}{\to} |U|$, it suffices to show that, as $t\to\infty,$

$$
\frac{1}{\sqrt{t}}(N_t^1 - L_t) = \frac{1}{\sqrt{t}}\left(\int_0^t \sum_{n=1}^\infty \mathbf{1}_{[S_n^1, T_n^1]}(s)sgn(B_s)dB_s - r_t^1\right) \stackrel{L^2}{\to} 0.
$$

Note that

$$
||\frac{1}{\sqrt{t}}(\int_0^t \sum_{n=1}^\infty 1_{[S_n^1,T_n^1]}(s)sgn(B_s)dB_s - r_t^1)||_{L^2} \leq ||\frac{1}{\sqrt{t}}\int_0^t \sum_{n=1}^\infty 1_{[S_n^1,T_n^1]}(s)sgn(B_s)dB_s||_{L^2} + ||\frac{1}{\sqrt{t}}r_t^1||_{L^2}
$$

and

$$
||\frac{1}{\sqrt{t}}r_t^1||_{L^2}\leq \frac{1}{\sqrt{t}}.
$$

It suffices to show that

$$
\frac{1}{\sqrt{t}}\int_0^t\sum_{n=1}^\infty 1_{[S_n^1,T_n^1]}(s)sgn(B_s)dB_s \stackrel{L^2}{\to} 0 \text{ as } t \to \infty.
$$

By (32) , we get

$$
\|\frac{1}{\sqrt{t}} \int_{0}^{t} \sum_{n=1}^{\infty} 1_{[S_{n}^{1},T_{n}^{1}]}(s)sgn(B_{s})dB_{s}\|_{L^{2}}^{2}
$$
\n
$$
= \mathbf{E}[\frac{1}{t} \int_{0}^{t} \sum_{n=1}^{\infty} 1_{[S_{n}^{1},T_{n}^{1}]}(s)sgn(B_{s})ds] \leq \mathbf{E}[\frac{1}{t} \int_{0}^{t} 1_{\{|B_{s}| \leq 1\}} ds]
$$
\n
$$
= \frac{1}{t} \int_{0}^{t} \mathbf{P}(|B_{s}| \leq 1)ds = \frac{1}{t} \int_{0}^{t} \mathbf{P}(|B_{1}| \leq \frac{1}{\sqrt{s}})ds
$$
\n
$$
= \frac{2}{t} \int_{0}^{t} \int_{0}^{\frac{1}{\sqrt{s}}} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dxds
$$
\n
$$
= \frac{2}{t} (\int_{0}^{\frac{1}{\sqrt{t}}} \int_{0}^{t} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dsdx + \int_{\frac{1}{\sqrt{t}}}^{\infty} \int_{0}^{\frac{1}{x^{2}}} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dsdx)
$$
\n
$$
= \frac{2}{t} (\int_{0}^{\frac{1}{\sqrt{t}}} \frac{t}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dx + \int_{\frac{1}{\sqrt{t}}}^{\infty} \frac{1}{x^{2}} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dx)
$$
\n
$$
\leq \frac{2}{t} (\int_{0}^{\frac{1}{\sqrt{t}}} \frac{t}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dx + \int_{\frac{1}{\sqrt{t}}}^{\infty} \frac{1}{x^{2}} \frac{1}{\sqrt{2\pi}} dx)
$$
\n
$$
= \frac{2}{t} (\int_{0}^{\frac{1}{\sqrt{t}}} \frac{t}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2})dx + \frac{1}{\sqrt{2\pi}} \sqrt{t})
$$
\n

5.9 Exercise 5.33 (Study of multidimensional Brownian motion)

Let $B_t = (B_1^N, ..., B_t^N)$ be an N-dimensional (\mathscr{F}_t) -Brownian motion started from $x = (x_1, ..., x_N)$. We suppose that $N \geq 2$.

- 1. Verify that $|B_t|^2$ is a continuous semimartingale, and that the martingale part of $|B_t|^2$ is a true martingale.
- 2. We set

$$
\beta_t = \sum_i^N \int_0^t \frac{B_s^i}{|B_s|}dB_s^i
$$

with the convention that $\frac{B_s^i}{|B_s|} = 0$ if $|B_s| = 0$. Justify the definition of the stochastic integrals appearing in the definition of β_t , then show that the process $(\beta_t)_{t\geq 0}$ is an (\mathscr{F}_t) -Brownian motion started from 0.

3. Show that

$$
|B_t|^2 = |x|^2 + 2\int_0^t |B_s|d\beta_s + Nt.
$$

4. From now on, we assume that $x \neq 0$. Let $\epsilon \in (0, |x|)$ and $T_{\epsilon} = \inf\{t \geq 0 \mid |B_t| \leq \epsilon\}$. Define $f : (0, \infty) \to \mathbb{R}$ by

$$
f(a) = \begin{cases} \log(a), & \text{if } N = 2\\ a^{2-N}, & \text{if } N \ge 3 \end{cases}
$$

Verify that $f(|B_{t \wedge T_{\epsilon}}|)$ is a continuous local martingale.

5. Let $R > |x|$ and set $S_R = \inf\{t \geq 0 \mid |B_t| \geq R\}$. Show that

$$
\boldsymbol{P}(T_{\epsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\epsilon)}.
$$

Observing that $P(T_{\epsilon} < S_R) \rightarrow 0$ as $\epsilon \rightarrow 0$, show that $B_t \neq 0$ for all $t \geq 0$, a.s.

6. Show that, a.s., for every $t \geq 0$,

$$
|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}.
$$

- 7. We assume that $N \geq 3$. Show that $\lim_{t\to\infty} |B_t| = \infty$ (a.s.) (Hint: Observe that $|B_t|^{2-N}$ is a nonnegative supermartingale.)
- 8. We assume $N = 3$. Using the form of the Gaussian density, verify that the collection of random variables $(|B_t|^{-1})_{t\geq 0}$ is bounded in L^2 . Show that $(|B_t|^{-1})_{t\geq 0}$ is a continuous local martingale but is not a (true) martingale.

Proof.

1. By Itô's formula and Doob's inequality in L^2 , we get

$$
|B_t|^2 = |x|^2 + \sum_{i=1}^{N} \int_0^t 2B_s^i dB_s^i + Nt
$$

and

$$
\pmb{E}[\langle \int_0^t 2 B^i_s dB^i_s, \int_0^t 2 B^i_s dB^i_s \rangle] = 4 \pmb{E}[\int_0^t (B^i_s)^2 ds] \leq 4 t \pmb{E}[\sup_{0 \leq s \leq t} (B^i_s)^2] \leq 4 t 2^2 \pmb{E}[(B^i_t)^2] \leq 16 t (t+x_i^2)
$$

for $1 \leq i \leq N$. Thus, $(\int_0^t 2B_s^i B_s^i)_{t \geq 0}$ is a true (\mathscr{F}_t) -martingale for $1 \leq i \leq N$.

2. Since $(\frac{B^i}{|B|})^2 \leq 1$, we see that $\frac{B^i}{|B|} \in L^2_{loc}(B^i)$ and, hence, \int_0^t $\frac{B_s^i}{|B_s|}dB_s^i$ is well-defined continuous local martingale. Thus, $(\beta_t)_{t\geq 0}$ is a (\mathscr{F}_t) -continuous local martingale. Because

$$
\langle \beta, \beta \rangle_t = \sum_{i=1}^N \int_0^t \frac{(B_s^i)^2}{|B_s|^2} ds = t,
$$

we see that $(\beta_t)_{t\geq 0}$ is an (\mathscr{F}_t) -Brownian motion started from 0.

3. Note that

$$
B^i_t = \frac{B^i_t}{|B_t|} |B_t|,
$$

where $\frac{B_t^i}{|B_t|}$ is defined in problem 2, and

$$
d\beta_t = \sum_{i=1}^N \frac{B_t^i}{|B_t|} dB_t^i.
$$

Then

$$
|B_t|^2 = |x|^2 + \sum_{i=1}^N \int_0^t 2B_s^i dB_s^i + Nt = |x|^2 + 2\int_0^t |B_s|d\beta_s + Nt.
$$

4. Define $F : \mathbb{R}^N \setminus \{0\} \mapsto \mathbb{R}$ by $F(x) = f(|x|)$. Then we have

$$
\frac{\partial F}{\partial x_i}(x) = \begin{cases} \frac{(2-N)x_i}{|x|^N}, & \text{if } N \ge 3\\ \frac{x_i}{|x|^2}, & \text{if } N = 2 \end{cases}
$$

and

$$
\frac{\partial^2 F}{\partial x_i^2}(x) = \begin{cases} \frac{N-2}{|x|^N} (1 - \frac{Nx_i^2}{|x|^2}), & \text{if } N \ge 3\\ 1 - \frac{2x_i^2}{|x|^2}, & \text{if } N = 2. \end{cases}
$$

Note that $|B_{t \wedge T_{\epsilon}}(w)| \geq \epsilon$ for all $t \geq 0$ and $w \in \Omega$. By Itô's formula, we get

$$
f(|B_{t \wedge T_{\epsilon}}|) = F(B_{t \wedge T_{\epsilon}})
$$

\n
$$
= f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial F}{\partial x_{i}}(B_{s \wedge T_{\epsilon}}) dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{\partial^{2} F}{\partial x_{i}^{2}}(B_{s \wedge T_{\epsilon}}) ds
$$

\n
$$
= \begin{cases} f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2-N)B_{s \wedge T_{\epsilon}}^{i} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} \frac{N-2}{|B_{s \wedge T_{\epsilon}}|N} (1 - \frac{N(B_{s \wedge T_{\epsilon}}^{i})^{2}}{|B_{s \wedge T_{\epsilon}}|^{2})} ds, & \text{if } N \ge 3 \end{cases}
$$

\n
$$
= \begin{cases} f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{B_{s \wedge T_{\epsilon}}^{i} dB_{s}^{i} + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{t} (1 - \frac{2(B_{s \wedge T_{\epsilon}}^{i})^{2}}{|B_{s \wedge T_{\epsilon}}|^{2}}) ds, & \text{if } N = 2 \end{cases}
$$

\n
$$
= \begin{cases} f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{(2-N)B_{s \wedge T_{\epsilon}}^{i} dB_{s}^{i}}{|B_{s \wedge T_{\epsilon}}|^{N}} dB_{s}^{i}, & \text{if } N \ge 3 \end{cases}
$$

\n
$$
f(|x|) + \sum_{i=1}^{N} \int_{0}^{t} \frac{B_{s \wedge T_{\epsilon}}^{i} |B_{s \wedge T_{\epsilon}}^{i} dB_{s}^{i}, & \text{if } N = 2 \end{cases}
$$

and, hence, $f(|B_{t \wedge T_{\epsilon}}|)$ is a continuous local martingale.

5. Set $T = T_{\epsilon} \wedge S_R$. Then $|f(|B_{t}^{T}|)| \leq M$ for some $M > 0$ and all $t \geq 0$ (a.s.). Since $f(|B_{t \wedge T_{\epsilon}}|)$ is a continuous local martingale, we see that $f(|B_t^T|)$ is a bounded continuous local martingale and, hence, $f(|B_t^T|)$ is an uniformly bounded martingale. Then we have

$$
f(|x|) = \mathbf{E}[f(|B_0^T|)] = \mathbf{E}[f(|B_T|)] = f(\epsilon)\mathbf{P}(T_{\epsilon} < S_R) + f(R)\mathbf{P}(T_{\epsilon} \geq S_R).
$$

Since $P(T_{\epsilon} < S_R) + P(T_{\epsilon} \ge S_R) = 1$, we get

$$
\boldsymbol{P}(T_{\epsilon} < S_R) = \frac{f(R) - f(|x|)}{f(R) - f(\epsilon)}
$$

.

Because $f(\epsilon) \to \pm \infty$ (depending on N) as $\epsilon \to 0$, we see that $P(T_{\epsilon} < S_R) \to 0$ as $\epsilon \to 0$. Next we show that $B_t \neq 0$ for all $t \geq 0$ (a.s.). Choose a sequence of positive real number $\{\epsilon_n\}$ such that $\epsilon_n \downarrow 0$ and

$$
\sum_{n=1}^{\infty} P(T_{\epsilon_n} < S_n) < \infty.
$$

By Borel Cantelli's lemma, we get $P(Z) = 0$, where $Z = \limsup_{n\to\infty} \{T_{\epsilon_n} < S_n\}$. Then $B_t \neq 0$ for all $t \geq 0$ in Z^c . Indeed, if $w \in Z^c$ and $B_t(w) = 0$ for some $t > 0$, then $T_{\epsilon_n}(w) < t$ for all $n \geq 1$ and, hence, $S_n(w) < t$ for some $m \ge 1$ and all $n \ge m$. Since $\{S_n(w)\}\$ is nondecreasing, we see that $\lim_{n\to\infty} S_n(w)$ exists, $s \equiv \lim_{n\to\infty} S_n(w) \le t$ and, hence, $B_s(w) = \infty$ which is a contradiction. Thus, $B_t \ne 0$ for all $t \ge 0$, a.s.

6. Define $F: \mathbb{R}^N \setminus \{0\} \to \mathbb{R}_+$ by $F(x) = |x|$. Then $F \in C^\infty(\mathbb{R}^N \setminus \{0\})$, $\frac{\partial F}{\partial x_i}(x) = \frac{x_i}{|x|}$, and $\frac{\partial^2 F}{\partial x_i^2}(x) = \frac{|x|^2 - x_i^2}{|x|^3}$. Since $B_t \in \mathbb{R}^N \setminus \{0\}$ for all $t \geq 0$ (a.s.), we get

$$
|B_t| = F(B_t) = |x| + \sum_{i=1}^{N} \int_0^t \frac{B_s^i}{|B_s|} dB_s^i + \frac{1}{2} \sum_{i=1}^{N} \int_0^t \frac{|B_s|^2 - (B_s^i)^2}{|B_s|^3} ds = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|}
$$

7. Define $F: \mathbb{R}^N \setminus \{0\} \to \mathbb{R}_+$ by $F(x) = |x|^{2-N}$. Then $F \in C^\infty(\mathbb{R}^N \setminus \{0\})$. Since $B_t \in \mathbb{R}^N \setminus \{0\}$ for all $t \ge 0$ (a.s.), we get (see the proof of problem 4)

$$
|B_t|^{2-N}=|x|^{2-N}+\sum_{i=1}^N\int_0^t\frac{(2-N)B^i_s}{|B_s|^N}dB^i_s.
$$

Then $|B_t|^{2-N}$ is a non-negative continuous local martingale and, hence, $|B_t|^{2-N}$ is a non-negative supermartingale. Thus,

$$
\mathbf{E}[|B_t|^{2-N}] \le \mathbf{E}[|B_0|^{2-N}] = |x|^{2-N}
$$

for all $t \geq 0$. By Theorem 3.19, $|B_{\infty}|^{2-N}$ exists (a.s.) and, hence, $\lim_{t\to\infty} |B_t|$ exists (a.s.). Since $\limsup_{t\to\infty} B_t^1$ = ∞ (a.s.), we see that $\lim_{t\to\infty} |B_t| = \infty$ (a.s.).

8. First, we show that $(|B_t|^{-1})_{t\geq 0}$ is bounded in L^2 . Set $\delta = \frac{|x|}{2} > 0$. Then

$$
\boldsymbol{E}[|B_t|^{-2}] = \int_{\mathbb{R}^3} \frac{1}{|y|^2 (2\pi t)^{\frac{3}{2}}} \exp(\frac{-|y-x|^2}{2t}) dy = \int_{|y| < \delta} + \int_{|y| \ge \delta}.
$$

Since

$$
\int_{|y| \ge \delta} \frac{1}{|y|^2 (2\pi t)^{\frac{3}{2}}} \exp\left(\frac{-|y-x|^2}{2t}\right) dy \le \frac{1}{\delta^2} \int_{\mathbb{R}^3} \frac{1}{(2\pi t)^{\frac{3}{2}}} \exp\left(\frac{-|y-x|^2}{2t}\right) dy \le \frac{1}{\delta^2}
$$

for all $t > 0$, it suffices to show that

$$
\int_{|y| < \delta} \frac{1}{|y|^2 (2\pi t)^{\frac{3}{2}}} \exp\left(\frac{-|y-x|^2}{2t}\right) dy
$$

is bounded in $t > 0$. Note that, if $|y| < \delta = \frac{|x|}{2}$ $\frac{|x|}{2}$, then $|y-x| \ge |x| - |y| \ge \frac{|x|}{2}$. Then we see that

$$
\int_{|y|<\delta}\frac{1}{|y|^2(2\pi t)^{\frac{3}{2}}}\exp(\frac{-|y-x|^2}{2t})dy\leq \frac{1}{(2\pi t)^{\frac{3}{2}}}\exp(\frac{-|x|^2}{8t})\int_{|y|<\delta}\frac{1}{|y|^2}dy=\frac{1}{(2\pi t)^{\frac{3}{2}}}\exp(\frac{-|x|^2}{8t})w_3\delta,
$$

where w_3 is the area of unit sphere in \mathbb{R}^3 . Define $\varphi : (0, \infty) \to \mathbb{R}_+$ by

$$
\varphi(t) = \frac{1}{(2\pi t)^{\frac{3}{2}}} \exp(\frac{-|x|^2}{8t}).
$$
Then $\varphi \in C_0((0,\infty))$ and $\lim_{t\downarrow 0} \varphi(t) = 0$. There exists $M > 0$ such that $\sup_{t>0} |\varphi(t)| \leq M < \infty$. Thus,

$$
\sup_{t>0} \int_{|y| < \delta} \frac{1}{|y|^2 (2\pi t)^{\frac{3}{2}}} \exp(\frac{-|y-x|^2}{2t}) dy \le M w_3 \delta
$$

and therefore $(|B_t|^{-1})_{t\geq 0}$ is bounded in L^2 . Now we show that $(|B_t|^{-1})_{t\geq 0}$ is a continuous local martingale but is not a true martingale. Assume that $(|B_t|^{-1})_{t\geq 0}$ is a true martingale. Then $(|B_t|^{-1})_{t\geq 0}$ is a L^2 -bounded martingale. Recall that $\lim_{t\to\infty} |B_t| = \infty$ (a.s.). Together with Theorem 4.13, we get

$$
0 = \mathbf{E}[|B_{\infty}|^{-2}] = \mathbf{E}[|B_0|^{-2}] + \mathbf{E}[\langle |B|^{-1}, |B|^{-1} \rangle_{\infty}]
$$

which is a contradiction. Thus $(|B_t|^{-1})_{t\geq 0}$ is a continuous local martingale (see the proof of problem 7) but is not a true martingale.

 \Box

Chapter 6

General Theory of Markov Processes

6.1 Exercise 6.23 (Reflected Brownian motion)

We consider a probability space equipped with a filtration $(\mathscr{F}_t)_{t\in[0,\infty]}$. Let $a\geq 0$ and let $B=(B_t)_{t\geq 0}$ be an (\mathscr{F}_t) -Brownian motion such that $B_0 = a$. For every $t > 0$ and every $z \in \mathbb{R}$, we set

$$
p_t(z) = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{z^2}{2t}).
$$

1. We set $X_t = |B_t|$ for every $t \geq 0$. Verify that, for every $s \geq 0$ and $t \geq 0$, for every bounded measurable function $f : \mathbb{R}_+ \mapsto \mathbb{R},$

$$
\boldsymbol{E}[f(X_{s+t}) \mid \mathscr{F}_s] = Q_t f(X_s),
$$

where $Q_0 f = f$ and, for every $t > 0$, for every $x \ge 0$,

$$
Q_t f(x) = \int_0^\infty (p_t(y-x) + p_t(y+x)) f(y) dy.
$$

- 2. infer that $(Q_t)_{t\geq 0}$ is a transition semigroup, then that $(X_t)_{t\geq 0}$ is a Markov process with values in $E = \mathbb{R}_+$, with respect to the filtration $(\mathscr{F}_t)_{t\geq 0}$, with semigroup $(Q_t)_{t\geq 0}$.
- 3. Verify that $(Q_t)_{t>0}$ is a Feller semigroup. We denote its generator by L.
- 4. Let f be a twice continuously differentiable function on \mathbb{R}_+ , such that f and f'' belong to $C_0(\mathbb{R}_+)$. Show that, if $f'(0) = 0$, f belongs to the domain of L, and $Lf = \frac{1}{2}f''$. (Hint: One may observe that the function $g : \mathbb{R} \to \mathbb{R}$ defined by $g(y) = f(|y|)$ is then twice continuously differentiable on R.) Show that, conversely, if $f(0) \neq 0$, f does not belong to the domain of L.

Proof.

1. Set Q_t^B to be the semigroup of real Brownian motion (i.e. $Q_t^B(x, dy) = p_t(y - x)dy$). Given a bounded measurable function $f : \mathbb{R}_+ \to \mathbb{R}$. Define $g : \mathbb{R} \to \mathbb{R}$ by $g(y) = f(|y|)$. By definition of Markov process,

$$
\begin{split} \nE[f(X_{s+t}) \mid \mathscr{F}_{s}] &= E[g(B_{s+t}) \mid \mathscr{F}_{s}] = Q_{t}^{B} g(B_{s}) \\ \n&= \int_{-\infty}^{\infty} f(|y|) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y - B_{s})^{2}}{2t}\right) dy \\ \n&= \int_{0}^{\infty} f(|y|) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y - B_{s})^{2}}{2t}\right) dy + \int_{-\infty}^{0} f(|y|) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y - B_{s})^{2}}{2t}\right) dy \\ \n&= \int_{0}^{\infty} f(|y|) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y - B_{s})^{2}}{2t}\right) dy + \int_{0}^{\infty} f(|y|) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y + B_{s})^{2}}{2t}\right) dy \\ \n&= \int_{0}^{\infty} f(y) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y - B_{s})^{2}}{2t}\right) dy + \int_{0}^{\infty} f(y) \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y + B_{s})^{2}}{2t}\right) dy \\ \n&= Q_{t} f(X_{s}). \n\end{split}
$$

2. It's clear that

$$
(t,x) \in \mathbb{R}_+ \times \mathbb{R}_+ \mapsto Q_t(x,A) = \int_0^\infty \left(\frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y-x)^2}{2t}\right) + \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(y+x)^2}{2t}\right)\right) 1_A(y) dy
$$

is a measurable function. Thus, it suffices to show that $(Q_t)_{t\geq 0}$ satisfy Chapman-Kolmogorov's identity. Let f be a bounded measuable function on \mathbb{R}_+ . Define $g : \mathbb{R} \to \mathbb{R}$ by $g(y) = f(|y|)$. By using similar argument as the proof of problem 1, we have

$$
Q_t f(|x|) = Q_t^B g(x) \qquad \forall x \in \mathbb{R}.\tag{23}
$$

and therefore

$$
Q_{t+s}f(x) = Q_{t+s}^{B}g(x) = Q_{t}^{B}Q_{s}^{B}g(x) = \int_{\mathbb{R}} Q_{s}^{B}g(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y-x)^{2}}{2t})dy
$$

\n
$$
= \int_{\mathbb{R}_{+}} Q_{s}^{B}g(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y-x)^{2}}{2t})dy + \int_{\mathbb{R}_{-}} Q_{s}^{B}g(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y-x)^{2}}{2t})dy
$$

\n
$$
= \int_{\mathbb{R}_{+}} Q_{s}^{B}g(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y-x)^{2}}{2t})dy + \int_{\mathbb{R}_{+}} Q_{s}^{B}g(-y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y+x)^{2}}{2t})dy
$$

\n
$$
= \int_{\mathbb{R}_{+}} Q_{s}f(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y-x)^{2}}{2t})dy + \int_{\mathbb{R}_{+}} Q_{s}f(y)\frac{1}{\sqrt{2\pi t}}\exp(-\frac{(y+x)^{2}}{2t})dy
$$

\n
$$
= Q_{t}Q_{s}f(x) \qquad \forall x \in \mathbb{R}_{+}.
$$

3. Given $f \in C_0(\mathbb{R}_+)$. Then $g(x) \equiv f(|x|) \in C_0(\mathbb{R})$. Since $(Q_t^B)_{t \geq 0}$ is Feller semigroup, we see that $Q_t f(x) =$ $Q_t^B g(x) \in C_0(\mathbb{R}_+)$ and

$$
\sup_{x \in \mathbb{R}_+} |Q_t f(x) - f(x)| \le \sup_{x \in \mathbb{R}} |Q_t^B g(x) - g(x)| \stackrel{t \to 0}{\to} 0.
$$

Therefore $(Q_t)_{t\geq 0}$ is a Feller semigroup.

4. Let f be a twice continuously differentiable function on \mathbb{R}_+ , such that f and f'' belong to $C_0(\mathbb{R}_+)$. Define $g : \mathbb{R} \to \mathbb{R}$ by $g(y) = f(|y|)$. Observe that

$$
\lim_{t \to 0^+} \frac{g(x) - g(0)}{x} = \lim_{t \to 0^+} \frac{f(x) - f(0)}{x} = f'(0).
$$

and

$$
\lim_{t \to 0^{-}} \frac{g(x) - g(0)}{x} = \lim_{t \to 0^{-}} \frac{f(-x) - f(0)}{x} = -f'(0).
$$

Since $f'(0) = 0$, $g'(0)$ exists and therefore

$$
g'(y) = f'(|y|) sgn(y)
$$

and

$$
g''(y) = f''(|y|),
$$

where $sgn(y) = 1_{y>0} - 1_{y<0}$. Thus g is a twice continuously differentiable function on R, such that g and g'' belong to $C_0(\mathbb{R})$. Let L^B be the generator of $(Q_t^B)_{t\geq 0}$. Then $L^B h = \frac{1}{2}h''$ (see the example after Corollary 6.13). By [\(32\)](#page-89-0), we have

$$
Lf(x) = \lim_{t \to 0} \frac{Q_t f(x) - f(x)}{t} = \lim_{t \to 0} \frac{Q_t^B g(x) - g(x)}{t} = \frac{1}{2} g''(x) = \frac{1}{2} f''(x) \qquad \forall x \in \mathbb{R}_+
$$

and therefore $Lf = \frac{1}{2}f''$. Conversely, assume that there exists $f \in C_0(\mathbb{R}_+) \cap D(L)$ such that $f'(0) \neq 0$. Then $g'(0)$ doesn't exist and $\lim_{t\to 0} \frac{Q_tf(x)-f(x)}{t}$ exists for all $\forall x \in \mathbb{R}_+$. By [\(32\)](#page-89-0), we see that

$$
\lim_{t \to 0} \frac{Q_t^B g(x) - g(x)}{t} = \lim_{t \to 0} \frac{Q_t f(x) - f(x)}{t} = L_t f(x) \quad \forall x \ge 0,
$$

$$
\lim_{t \to 0} \frac{Q_t^B g(x) - g(x)}{t} = \lim_{t \to 0} \frac{Q_t f(-x) - f(-x)}{t} = L_t f(-x) \quad \forall x < 0,
$$

and therefore $L_t^B g(x) = L_t f(|x|)$ for all $x \in \mathbb{R}$. Since $L_t f \in C_0(\mathbb{R}_+)$, we see that $L^B g \in C_0(\mathbb{R})$ and, hence, $g \in D(L^B) = \{h \in C^2(\mathbb{R}) \mid h \text{ and } h'' \in C_0(\mathbb{R})\}$ (see the example after Corollary 6.13) which is a contradiction. Thus, we see that 22.2

$$
D(L) = \{ h \in C^2(\mathbb{R}_+) \mid h, h'' \in C_0(\mathbb{R}_+) \text{ and } h'(0) = 0 \}.
$$

and $Lf = \frac{1}{2}f''$.

6.2 Exercise 6.24

Let $(Q_t)_{t>0}$ be a transition semigroup on a measurable space E. Let π be a measurable mapping from E onto another measurable space F. We assume that, for any measurable subset A of F, for every $x, y \in E$ such that $\pi(x) = \pi(y)$, we have

$$
Q_t(x, \pi^{-1}(A)) = Q_t(y, \pi^{-1}(A)) \qquad \forall t > 0.
$$
\n(24)

We then set, for every $z \in F$ and every measurable subset A of F, for every $t > 0$,

$$
Q_t'(z, A) = Q_t(x, \pi^{-1}(A))
$$
\n(25)

 \Box

where x is an arbitrary point of E such that $\pi(x) = z$. We also set $Q'_0(z, A) = 1_A(z)$. We assume that the mapping $(t, z) \mapsto Q'_t(z, A)$ is measurable on $\mathbb{R}_+ \times F$, for every fixed A.

- 1. Verify that $(Q'_t)_{t\geq 0}$ forms a transition semigroup on F.
- 2. Let $(X_t)_{t\geq0}$ be a Markov process in E with transition semigroup $(Q_t)_{t\geq0}$ with respect to the filtration $(\mathscr{F}_t)_{t\geq0}$. Set $Y_t = \overline{\pi}(X_t)$ for every $t \geq 0$. Verify that $(Y_t)_{t \geq 0}$ is a Markov process in F with transition semigroup $(Q'_t)_{t \geq 0}$ with respect to the filtration $(\mathscr{F}_t)_{t>0}$.
- 3. Let $(B_t)_{t>0}$ be a d-dimensional Brownian motion, and set $R_t = B_t$ for every $t \geq 0$. Verify that $(R_t)_{t>0}$ is a Markov process and give a formula for its transition semigroup (the case $d = 1$ was treated via a different approach in Exercise 6.23).

Proof.

1. To show that $(Q'_t)_{t\geq0}$ forms a transition semigroup on F, it remain to show that $(Q'_t)_{t\geq0}$ satisfies Chapman–Kolmogorov identity. Since

$$
\int_F 1_A(y)Q'_t(\pi(x), dy) = \int_E 1_A(\pi(y))Q_t(x, dy),
$$

we get

$$
(Q_t' f)(\pi(x)) = Q_t g(x),\tag{26}
$$

where f is a bounded measurable function on F, $g = f \circ \pi$, and $x \in E$. Given $z \in F$. Since π is surjective, there exists $x \in E$ such that $z = \pi(x)$. By [\(26\)](#page-75-0) and [\(25\)](#page-75-1), we get

$$
Q'_{t+s}f(z) = Q_{t+s}g(x) = Q_tQ_sg(x) = \int_E Q_sg(y)Q_t(x, dy)
$$

$$
= \int_E Q'_sf(\pi(y))Q_t(x, dy) = \int_F Q'_sf(w)Q_t(\pi(x), dw)
$$

$$
= Q'_tQ'_sf(\pi(x)) = Q'_tQ'_sf(z).
$$

2. It's clear that $(Y_t)_{t\geq0}$ is an adapted process. It remain to show that has $(Y_t)_{t\geq0}$ Markov property. Let f be a bounded measurable function on F and $g = f \circ \pi$. By [\(26\)](#page-75-0), we get

$$
\mathbf{E}[f(Y_{t+s}) \mid \mathscr{F}_s] = \mathbf{E}[g(X_{t+s}) \mid \mathscr{F}_s] = Q_t g(X_s) = Q'_t f(\pi(X_s)) = Q'_t f(Y_s).
$$

3. The case $d = 1$ was solved in Exercise 6.23. Now we assume that $d \geq 2$. Recall that

$$
Q_t f(x) = \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{|w-x|^2}{2t}) f(w) dw.
$$

for all bounded measurable function f on \mathbb{R}^d . Define $\pi(x) = |x|$ and $Q'_t(z, A)$ as (25) for $z \in \mathbb{R}_+$ and $A \in \mathcal{B}_{\mathbb{R}_+}$. First we show that $(Q_t)_{t\geq 0}$ satisfies condition [\(24\)](#page-75-2). Let $A \in \mathcal{B}_{\mathbb{R}_+}$ and $B = \pi^{-1}(A)$. Then

$$
OB \equiv \{Ox \mid x \in B\} = B
$$

for all orthogonal matrix O. Given $x, y \in \mathbb{R}^d$ such that $\pi(x) = \pi(y)$. Choose an orthogonal matrix O such that $x = Oy$. Then

$$
Q_t(x, \pi^{-1}(A)) = Q_t(x, B) = \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{|w - x|^2}{2t}) 1_B(w) dw
$$

\n
$$
= \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{|Ou - Oy|^2}{2t}) 1_B(Ou) du \qquad (w = Ou)
$$

\n
$$
= \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{|u - y|^2}{2t}) 1_{O^{-1}B}(u) du
$$

\n
$$
= \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{|u - y|^2}{2t}) 1_B(u) du
$$

\n
$$
= Q_t(y, B) = Q_t(y, \pi^{-1}(A))
$$

Next we show that the mapping $(t, z) \mapsto Q'_t(z, A)$ is measurable on $\mathbb{R}_+ \times \mathbb{R}_+$ for all $A \in \mathcal{B}_{\mathbb{R}_+}$. Given a bounded measurable function f on \mathbb{R}_+ and $z \in \mathbb{R}_+$. Set $x = (z, 0, ..., 0)$ and $g = f \circ \pi$. By [\(26\)](#page-75-0), we have

$$
Q'_t f(z) = Q_t g(x) = \int_{\mathbb{R}^d} \frac{1}{\sqrt{2\pi t^d}} \exp(-\frac{1}{2t}((w_1 - z)^2 + \sum_{k=2}^d w_k^2)) f(|w|) dw.
$$
 (27)

This shows that the mapping $(t, z) \mapsto Q'_t(z, A)$ is measurable on $\mathbb{R}_+ \times \mathbb{R}_+$ for all $A \in \mathcal{B}_{\mathbb{R}_+}$. By problem 2, we see that $(R_t)_{t>0}$ is a Markov process with semigroup [\(27\)](#page-76-0).

$$
\Box
$$

In the remaining exercises, we use the following notation. (E, d) is a locally compact metric space, which is countable at infinity, and $(Q_t)_{t\geq 0}$ is a Feller semigroup on E. We consider an E-valued process $(X_t)_{t\geq 0}$ with càdlàg sample paths, and a collection $(P_x)_{x\in E}$ of probability measures on E, such that, under P_x , $(X_t)_{t\geq 0}$ is a Markov process with semigroup $(Q_t)_{t>0}$ with respect to the filtration $(\mathscr{F}_t)_{t>0}$ and $\mathbf{P}_x(X_0 = x) = 1$. We write L for the generator of the semigroup $(Q_t)_{t>0}$, $D(L)$ for the domain of L and R_λ for the λ -resolvent, for every $\lambda > 0$.

6.3 Exercise 6.25 (Scale Function)

In this exercise, we assume that $E = \mathbb{R}_+$ and that the sample paths of X are continuous. For every $x \in \mathbb{R}_+$, we set

$$
T_x \equiv \inf\{t \ge 0 \mid X_t = x\}
$$

and

$$
\varphi(x) \equiv \boldsymbol{P}_x(T_0 < \infty).
$$

1. Show that, if $0 \leq x \leq y$,

$$
\varphi(y) = \varphi(x) \mathbf{P}_y(T_x < \infty).
$$

2. We assume that $\varphi(x) < 1$ and $\mathbf{P}_x(\sup_{t>0} X_t = \infty) = 1$, for every $x > 0$. Show that, if $0 < x \leq y$,

$$
\boldsymbol{P}_x(T_0 < T_y) = \frac{\varphi(x) - \varphi(y)}{1 - \varphi(y)}.
$$

Proof.

1. By strong Markov property, we have

$$
\boldsymbol{P}_y(T_0 < \infty) = \boldsymbol{P}_y(T_0 < \infty, T_x < \infty) = \boldsymbol{E}_y[1_{\{T_x < \infty\}} 1_{\{T_0 < \infty\}}] = \boldsymbol{E}_y[1_{\{T_x < \infty\}} \boldsymbol{E}_{X_{T_x}}[1_{\{T_0 < \infty\}}]].
$$

Since $(X_t)_{t\geq 0}$ has continuous sample path, we get $X_{T_x} = x$ on $\{T_x < \infty\}$ and therefore

$$
\boldsymbol{P}_y(T_0 < \infty) = \boldsymbol{E}_y[1_{\{T_x < \infty\}} \boldsymbol{E}_{X_{T_x}}[1_{\{T_0 < \infty\}}]] = \boldsymbol{P}_y(T_x < \infty) \boldsymbol{P}_x(T_0 < \infty) = \varphi(x) \boldsymbol{P}_y(T_x < \infty).
$$

2. Because $\boldsymbol{P}_x(T_y < \infty) = 1$, we get

$$
\boldsymbol{P}_x(T_0 < \infty) = \boldsymbol{P}_x(T_0 < T_y) + \boldsymbol{P}_x(T_0 < \infty, T_y < T_0).
$$

By strong Markov property, we have

$$
\boldsymbol{E}_x[1_{\{T_y
$$

Since $(X_t)_{t\geq 0}$ has continuous sample path, we get $X_{T_y} = y$ (a.s.) and therefore

$$
\boldsymbol{E}_x[1_{\{T_y
$$

Hecen

$$
\varphi(x) = \mathbf{P}_x(T_0 < \infty) = \mathbf{P}_x(T_0 < T_y) + \mathbf{P}_x(T_y < T_0) \mathbf{P}_y(T_0 < \infty) = \mathbf{P}_x(T_0 < T_y) + \mathbf{P}_x(T_y < T_0) \varphi(y).
$$

Since

$$
1 = \boldsymbol{P}_x(T_0 < T_y) + \boldsymbol{P}_x(T_y < T_0)
$$

and

$$
\varphi(x) < 1 \qquad \forall x > 0,
$$

we have

$$
\boldsymbol{P}_x(T_0 < T_y) = \frac{\varphi(x) - \varphi(y)}{1 - \varphi(y)}.
$$

6.4 Exercise 6.26 (Feynman–Kac Formula)

Let v be a nonnegative function in $C_0(E)$. For every $x \in E$ and every $t \ge 0$, we set, for every $\varphi \in B(E)$,

$$
Q_t^*\varphi(x) \equiv \mathbf{E}_x[\varphi(X_t) \exp(-\int_0^t v(X_s)ds)].
$$

- 1. Show that, for every $\varphi \in B(E)$, and $s, t \geq 0$, $Q_{s+t}^* \varphi = Q_t^*(Q_s^* \varphi)$.
- 2. After observing that

$$
1 - \exp(-\int_0^t v(X_s)ds) = \int_0^t v(X_s) \exp(-\int_s^t v(X_u)du)ds,
$$

show that, for every $\varphi \in B(E)$,

$$
Q_t \varphi - Q_t^* \varphi = \int_0^t Q_s(vQ_{t-s}^* \varphi) ds.
$$
\n(28)

3. Assume that $\varphi \in D(L)$. Show that

$$
\frac{d}{dt}Q_t^*\varphi|_{t=0}=L\varphi-v\varphi.
$$

Proof.

1. Fix $s, t \geq 0$. Define $\Phi^{(s)}(f) = \varphi(f(s)) \exp(-\int_0^s v(f(u))du)$. By simple Markov property, we get

$$
Q_t^*(Q_s^*\varphi)(x) = \mathbf{E}_x[\mathbf{E}_{X_t}[\varphi(X_s) \exp(-\int_0^s v(X_u)du)] \exp(-\int_0^t v(X_u)du)]
$$

\n
$$
= \mathbf{E}_x[\mathbb{E}_{X_t}[\Phi^{(s)}] \exp(-\int_0^t v(X_u)du)]
$$

\n
$$
= \mathbf{E}_x[\mathbf{E}_x[\Phi^{(s)}((X_{t+r})_{r\geq 0}) : \mathscr{F}_t] \exp(-\int_0^t v(X_u)du)]
$$

\n
$$
= \mathbf{E}_x[\Phi^{(s)}((X_{t+r})_{r\geq 0}) \exp(-\int_0^t v(X_u)du)]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_{s+t}) \exp(-\int_0^s v(X_{u+t})du) \exp(-\int_0^t v(X_u)du)]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_{s+t}) \exp(-\int_t^{t+s} v(X_u)du) \exp(-\int_0^t v(X_u)du)] = Q_{s+t}^*\varphi(x)
$$

2. Observe that

$$
\frac{d}{ds}\exp(-\int_s^t v(X_u)du) = v(X_s)\exp(-\int_s^t v(X_u)du).
$$

Then we have

$$
1 - \exp(-\int_0^t v(X_s)ds) = \int_0^t v(X_s) \exp(-\int_s^t v(X_u)du)ds.
$$

simple Merkov property, we get

By Fubini's theorem and simple Markov property, we get

$$
Q_t\varphi(x) - Q_t^*\varphi(x) = \mathbf{E}_x[\varphi(X_t)] - \mathbf{E}_x[\varphi(X_t) \exp(-\int_0^t v(X_s)ds)]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_t)(1 - \exp(-\int_0^t v(X_s)ds))]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_t) \times \int_0^t v(X_s) \exp(-\int_s^t v(X_u)du)ds]
$$

\n
$$
= \int_0^t \mathbf{E}_x[\varphi(X_t) \times v(X_s) \exp(-\int_s^t v(X_u)du)]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s) \times \varphi(X_t) \exp(-\int_0^{t-s} v(X_{u+s})du)]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s)\Phi^{(t-s)}((X_{s+r})_{r\geq 0})]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s)\mathbf{E}_x[\Phi^{(t-s)}((X_{s+r})_{r\geq 0}) : \mathcal{F}_s]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s)\mathbf{E}_{X_s}[\Phi^{(t-s)}]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s)\mathbf{E}_{X_s}[\varphi(X_{t-s}) \exp(-\int_0^{t-s} v(X_u)du)]ds
$$

\n
$$
= \int_0^t \mathbf{E}_x[v(X_s)Q_{t-s}^*\varphi(X_s)]ds
$$

\n
$$
= \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds
$$

3. Note that

$$
Q_t\varphi(x) = \varphi(x) + \int_0^t Q_s(L\varphi)(x)ds
$$

and $Q_0^*\varphi(x) = \varphi(x)$. By differentiating [\(32\)](#page-89-0), we have

$$
\frac{d}{dt}Q_t^*\varphi(x)|_{t=0} = L\varphi(x) - v(x)\varphi(x).
$$

6.5 Exercise 6.27 (Quasi left-continuity)

Throughout the exercise we fix the starting point $x \in E$. For every $t > 0$, we write $X_{t-}(w)$ for the left-limit of the sample path $s \mapsto X_s(w)$ at t.

Let $(T_n)_{n\geq 1}$ be a strictly increasing sequence of stopping times, and $T = \lim_{n\to\infty} T_n$. We assume that there exists a constant $C < \infty$ such that $T \leq C$. The goal of the exercise is to verify that $X_T = X_{T-}$, P_x -a.s.

1. Let $f \in D(L)$ and $h = Lf$. Show that, for every $n \geq 1$,

$$
\boldsymbol{E}_x[f(X_T) \mid \mathscr{F}_{T_n}] = f(X_{T_n}) + \boldsymbol{E}_x \left[\int_{T_n}^T h(X_s) ds \mid \mathscr{F}_{T_n} \right].
$$

2. We recall from the theory of discrete time martingales that

$$
\boldsymbol{E}_x[f(X_T) \mid \mathscr{F}_{T_n}] \stackrel{a.s..L^1}{\rightarrow} \boldsymbol{E}_x[f(X_T) \mid \widetilde{\mathscr{F}}_T],
$$

where

$$
\widetilde{\mathscr{F}}_T = \bigvee_{n=1}^\infty \mathscr{F}_{T_n}.
$$

Infer from question (1) that

$$
\boldsymbol{E}[f(X_T) | \widetilde{\mathscr{F}}_T] = f(X_{T-}).
$$

3. Show that the conclusion of question (2) remains valid if we only assume that $f \in C_0(E)$, and infer that, for every choice of $f, g \in C_0(E)$,

$$
\boldsymbol{E}_x[f(X_T)g(X_{T-})] = \boldsymbol{E}_x[f(X_{T-})g(X_{T-})].
$$

Conclude that $X_{T-} = X_T$, \mathbf{P}_{x} -a.s.

Proof.

1. By Theorem 6.14, we see that $(f(X_t) - \int_0^t h(X_s) ds)_{t \geq 0}$ is a martingale with respect to $(\mathscr{F}_t)_{t \geq 0}$. By Corollary 3.23, we have

$$
\boldsymbol{E}_x[f(X_T) - \int_0^T h(X_s)ds \mid \mathscr{F}_{T_n}] = f(X_{T_n}) - \int_0^{T_n} h(X_s)ds
$$

and so

$$
\boldsymbol{E}_x[f(X_T) | \mathscr{F}_{T_n}] = f(X_{T_n}) + \boldsymbol{E}_x \left[\int_{T_n}^T h(X_s) ds | \mathscr{F}_{T_n} \right].
$$

2. Note that

$$
\boldsymbol{E}_x[f(X_T) \mid \widetilde{\mathscr{F}}_T] \leq ||f||_u < \infty,
$$

where $||f||_u = \sup_{x \in E} |f(x)|$. Then the discrete time martingale

$$
(\boldsymbol{E}_x[f(X_T) \mid \mathscr{F}_{T_n}])_{n\geq 0} = (\boldsymbol{E}_x[\boldsymbol{E}_x[f(X_T) \mid \widetilde{\mathscr{F}}_T] \mid \mathscr{F}_{T_n}])_{n\geq 0}
$$

is closed and, hence,

$$
f(X_{T_n}) + \mathbf{E}_x \left[\int_{T_n}^T h(X_s) ds \mid \mathscr{F}_{T_n} \right] = \mathbf{E}_x \left[f(X_T) \mid \mathscr{F}_{T_n} \right] \stackrel{a.s.,L^1}{\rightarrow} \mathbf{E}_x \left[f(X_T) \mid \widetilde{\mathscr{F}}_T \right].
$$

Note that $\lim_{n\to\infty} X_{T_n} = X_{T-}$, \mathbf{P}_x -a.s. and $||h||_u < \infty$. By Lebesgue's dominated convergence theorem, we get

$$
||f(X_{T-}) - f(X_{T_n}) - \mathbf{E}_x [\int_{T_n}^T h(X_s) ds \mid \mathcal{F}_{T_n}]||_{L^1}
$$

\n
$$
\leq ||f(X_{T-}) - f(X_{T_n})||_{L^1} + ||\mathbf{E}_x [\int_{T_n}^T h(X_s) ds \mid \mathcal{F}_{T_n}]||_{L^1}
$$

\n
$$
\leq \mathbf{E}_x[|f(X_{T-}) - f(X_{T_n})|] + \mathbf{E}_x [\int_{T_n}^T |h(X_s)| ds]
$$

\n
$$
\leq \mathbf{E}_x[|f(X_{T-}) - f(X_{T_n})|] + ||h||_u \mathbf{E}_x [T - T_n] \stackrel{n \to \infty}{\to} 0
$$

and therefore $\mathbf{E}[f(X_T) | \widetilde{\mathscr{F}}_T] = f(X_{T-}), \mathbf{P}_x$ -a.s.

3. First, we show that

$$
\boldsymbol{E}[f(X_T) \mid \widetilde{\mathscr{F}}_T] = f(X_{T-}) \qquad \forall f \in C_0(E).
$$

By proposition 6.8 and proposition 6.12, we see that

$$
D(L) = \mathscr{R} \equiv \{ R_{\lambda} f \mid f \in C_0(E) \}
$$

is dense in $C_0(E)$. Given $f \in C_0(E)$ and $\epsilon > 0$. Choose $g \in D(L)$ such that $||f - g||_u < \epsilon$. Then

$$
\boldsymbol{E}[g(X_T) \mid \mathscr{F}_T] = g(X_{T-})
$$

and, hence,

$$
\begin{aligned} &\boldsymbol{E}_x[|\boldsymbol{E}[f(X_T) \mid \mathscr{F}_T] - f(X_{T-})|] \\ &\leq \boldsymbol{E}_x[|\boldsymbol{E}[f(X_T) \mid \widetilde{\mathscr{F}}_T] - \boldsymbol{E}[g(X_T) \mid \widetilde{\mathscr{F}}_T]|] + \boldsymbol{E}_x[|g(X_{T-}) - f(X_{T-})|] \\ &\leq \boldsymbol{E}_x[|g(X_T) - f(X_T)|] + \boldsymbol{E}_x[|g(X_{T-}) - f(X_{T-})|] \\ &\leq 2||f - g||_u \leq 2\epsilon. \end{aligned}
$$

By letting $\epsilon \to 0$, we get

$$
\boldsymbol{E}[f(X_T) \mid \mathscr{F}_T] = f(X_{T-}).
$$

Next, we show that $X_{T-} = X_T$. Let $f, g \in C_0(E)$. Then $g(X_{T-})$ is \mathscr{F}_T -measurable and, hence,

$$
\boldsymbol{E}_x[f(X_T)g(X_{T-})]=\boldsymbol{E}_x[\boldsymbol{E}_x[f(X_T)\mid \widetilde{\mathscr{F}}_T]g(X_{T-})]=\boldsymbol{E}_x[f(X_{T-})g(X_{T-})].
$$

Thus, we have

$$
\boldsymbol{E}_x[f(X_T)g(X_{T-})] = \boldsymbol{E}_x[f(X_{T-})g(X_{T-})] \qquad \forall f, g \in C_0(E).
$$

Hence

$$
\boldsymbol{E}_x[f(X_T)g(X_{T-})] = \boldsymbol{E}_x[f(X_{T-})g(X_{T-})] \qquad \forall f, g \in B(E)
$$

and therefore

$$
\boldsymbol{E}_x[h(X_T, X_{T-})] = \boldsymbol{E}_x[h(X_{T-}, X_{T-})] \qquad \forall h \in B(E \times E).
$$

For $\epsilon > 0$, if we set $h(x, y) = 1_{d(x, y) > \epsilon}(x, y)$, then

$$
\mathbf{P}_x(d(X_T, X_{T-}) > \epsilon) = \mathbf{E}_x[h(X_T, X_{T-})] = \mathbf{E}_x[h(X_{T-}, X_{T-})] = 0.
$$

Therefore $X_{T-} = X_T$, \mathbf{P}_x -a.s.

 \Box

6.6 Exercise 6.28 (Killing operation)

In this exercise, we assume that X has continuous sample paths. Let A be a compact subset of E and

$$
T_A = \inf\{t \ge 0 \mid X_t \in A\}.
$$

1. We set, for every $t \geq 0$ and every bounded measurable function φ on E,

$$
Q_t^*\varphi(x) = \mathbf{E}_x[\varphi(X_t)1_{\{t < T_A\}}], \qquad \forall x \in E.
$$

Verify that $Q_{t+s}^* \varphi = Q_t^*(Q_s^* \varphi)$, for every $s, t > 0$.

2. We set $\overline{E} = (E \setminus A) \cup \{\Delta\}$, where Δ is a point added to $E \setminus A$ as an isolated point. For every bounded measurable function φ on \overline{E} and every $t \geq 0$, we set

$$
\overline{Q}_t \varphi(x) = \begin{cases} \mathbf{E}_x[\varphi(X_t)1_{\{t < T_A\}}] + \mathbf{P}_x(T_A \le t)\varphi(\Delta), & \text{if } x \in E \setminus A \\ \varphi(\Delta), & \text{if } x = \Delta. \end{cases}
$$

Verify that $(\overline{Q}_t)_{t\geq 0}$ is a transition semigroup on \overline{E} . (The proof of the measurability of the mapping $(t, x) \mapsto$ $\overline{Q}_t\varphi(x)$ will be omitted.)

3. Show that, under the probability measure P_x , the process \overline{X} defined by

$$
\overline{X}_t = \begin{cases} X_t, & \text{if } t < T_A \\ \Delta, & \text{if } t \ge T_A. \end{cases}
$$

is a Markov process with semigroup $(Q_t)_{t\geq 0}$, with respect to the canonical filtration of X.

4. We take it for granted that the semigroup $(\overline{Q}_t)_{t\geq 0}$ is Feller, and we denote its generator by \overline{L} . Let $f \in D(L)$ such that f and Lf vanish on an open set containing A. Write \overline{f} for the restriction of f to $E \setminus A$, and consider \overline{f} as a function on \overline{E} by setting $\overline{f}(\Delta) = 0$. Show that $\overline{f} \in D(\overline{L})$ and $\overline{Lf}(x) = Lf(x)$ for every $x \in E \setminus A$.

Proof.

1. By the simple Markov property, we have

$$
Q_t^*(Q_s^*\varphi)(x) = \mathbf{E}_x[Q_s^*\varphi(X_t)1_{\{t < T_A\}}]
$$

\n
$$
= \mathbf{E}_x[\mathbf{E}_{X_t}[\varphi(X_s)1_{\{s < T_A\}}]1_{\{t < T_A\}}]
$$

\n
$$
= \mathbf{E}_x[\mathbf{E}_x[\varphi(X_{s+t})1_{\{s < \inf\{r \ge 0 | X_{r+t} \in A\}\}} | \mathcal{F}_t]1_{\{t < T_A\}}]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_{s+t})1_{\{s < \inf\{r \ge 0 | X_{r+t} \in A\}\}}1_{\{t < T_A\}}]
$$

\n
$$
= \mathbf{E}_x[\varphi(X_{s+t})1_{\{t+s < T_A\}}] = Q_{t+s}^*\varphi(x)
$$

2. First, we show that $x \in \overline{E} \mapsto \overline{Q}_t \varphi(x)$ is measurable for every bounded measurable function φ on \overline{E} and every $t \geq 0$. Observe that

$$
\{x \in \overline{E} \mid \overline{Q}_t \varphi(x) \in \Gamma\} = (\{\overline{Q}_t \varphi \in \Gamma\} \bigcap (E \setminus A)) \bigcup \begin{cases} \{\Delta\}, & \text{if } \varphi(\Delta) \in \Gamma \\ \emptyset, & \text{otherwise.} \end{cases}
$$

Define $\widetilde{\varphi}: E \mapsto \mathbb{R}$ by

$$
\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & \text{if } x \in E \setminus A \\ 0, & \text{if } x \in A. \end{cases}
$$

Then $\tilde{\varphi}$ is a bounded measurable function on E and, hence,

$$
x \in E \mapsto \mathbf{E}_x[\widetilde{\varphi}(X_t)1_{\{t < T_A\}}]
$$

is measurabale on E. Note that

$$
\widetilde{\varphi}(X_t) = \varphi(X_t) \text{ in } \{t < T_A\}.
$$

Then we see that

$$
x \in E \setminus A \mapsto \mathbf{E}_x[\widetilde{\varphi}(X_t)1_{\{t < T_A\}}] = \mathbf{E}_x[\varphi(X_t)1_{\{t < T_A\}}]
$$

is measurable on $E \setminus A$. Similarly, we see that

$$
x \in E \setminus A \mapsto \mathbf{P}_x(T_A \le t)
$$

is measurable on $E \setminus A$. Thus,

$$
x\in E\setminus A\mapsto \boldsymbol{E}_x[\varphi(X_t)1_{\{t
$$

is measurable on $E \setminus A$ and, hence,

$$
\{x \in \overline{E} \mid \overline{Q}_t \varphi(x) \in \Gamma\} = (\{\overline{Q}_t \varphi \in \Gamma\} \cap (E \setminus A)) \bigcup \begin{cases} \{\Delta\}, & \text{if } \varphi(\Delta) \in \Gamma \\ \emptyset, & \text{otherwise.} \end{cases}
$$

is a meausbale set on $E \setminus A$.

Next, we show that $Q_tQ_s\varphi = Q_{t+s}\varphi$ for all bounded meausable funciotn φ on E. It's clear that

$$
\overline{Q}_t \overline{Q}_s \varphi(\Delta) = \overline{Q}_s \varphi(\Delta) = \varphi(\Delta) = \overline{Q}_{t+s} \varphi(\Delta).
$$

Now, we suppose $x \in E \setminus A$. By the simple Markov property, we get

$$
Q_t Q_s \varphi(x)
$$

= $\mathbf{E}_x [\overline{Q}_s \varphi(X_t) 1_{\{t < T_A\}}] + \mathbf{P}_x (T_A \le t) \overline{Q}_s \varphi(\Delta)$
= $\mathbf{E}_x [\overline{Q}_s \varphi(X_t) 1_{\{t < T_A\}}] + \mathbf{P}_x (T_A \le t) \varphi(\Delta)$
= $\mathbf{E}_x [(\mathbf{E}_{X_t} [\varphi(X_s) 1_{\{s < T_A\}}] + \mathbf{P}_{X_t} (T_A \le s) \varphi(\Delta)) 1_{\{t < T_A\}}] + \mathbf{P}_x (T_A \le t) \varphi(\Delta)$
= $\mathbf{E}_x [\mathbf{E}_{X_t} [\varphi(X_s) 1_{\{s < T_A\}}] 1_{\{t < T_A\}}] + \mathbf{E}_x [\mathbf{P}_{X_t} (T_A \le s) \varphi(\Delta) 1_{\{t < T_A\}}] + \mathbf{P}_x (T_A \le t) \varphi(\Delta)$
= $\mathbf{E}_x [\varphi(X_{s+t}) 1_{\{s < \inf\{r \ge 0 | X_{r+t} \in A\}}] 1_{\{t < T_A\}}] + \mathbf{E}_x [1_{\{\inf\{r \ge 0 | X_{r+t} \in A\} \le s\}} \varphi(\Delta) 1_{\{t < T_A\}}] + \mathbf{P}_x (T_A \le t) \varphi(\Delta)$
= $\mathbf{E}_x [\varphi(X_{s+t}) 1_{\{t+s < T_A\}}] + \varphi(\Delta) \mathbf{E}_x [1_{\{\inf\{r \ge 0 | X_{r+t} \in A\} \le s\}} 1_{\{t < T_A\}} + 1_{\{T_A \le t\}})]$
= $\mathbf{E}_x [\varphi(X_{s+t}) 1_{\{t+s < T_A\}}] + \mathbf{P}_x (T_A \le s + t) \varphi(\Delta) = \overline{Q}_{s+t}(x).$

3. For $t\geq 0$ and a measurable set Γ of \overline{E} such that $\Delta\not\in \Gamma,$

$$
\{\overline{X}_t \in \Gamma\} = \{X_t \in \Gamma\} \bigcap \{t < T_A\} \in \mathcal{F}_t
$$

and, hence, $(X_t)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq 0}$ -adapted process. Now, we show that $(X_t)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq 0}$ -Markov process on \overline{E} . Let $\varphi \in B(\overline{E})$. Note that

$$
\varphi(\overline{X}_t) = \begin{cases} \varphi(X_t), & \text{if } t < T_A \\ \varphi(\Delta), & \text{if } t \geq T_A. \end{cases}
$$

By the simple Markov property, we get

$$
\mathbf{E}_{x}[\varphi(\overline{X}_{t+s}) | \mathcal{F}_{s}]
$$
\n
$$
= \mathbf{E}_{x}[\varphi(\overline{X}_{t+s}) 1_{\{t+s\n
$$
= \mathbf{E}_{x}[\varphi(X_{t+s}) 1_{\{t+s\n
$$
= \mathbf{E}_{x}[\varphi(X_{t+s}) 1_{\{s\n
$$
= 1_{\{s\n
$$
= 1_{\{s\n
$$
= \overline{Q}_t \varphi(\overline{X}_s).
$$
$$
$$
$$
$$
$$

4. Let us show that

$$
\overline{L}\ \overline{f}(x) = \begin{cases} Lf(x), & \text{if } x \in E \setminus A \\ 0, & \text{if } x = \Delta. \end{cases}
$$

Since Δ is an isolated point of $E \setminus A$ and $f, Lf \in C_0(E)$, we see that $\overline{f}, \overline{Lf} \in C_0(\overline{E})$. By thoerem 6.14, it suffices to show that $(\overline{f}(\overline{X}_t) - \int_0^t \overline{Lf}(\overline{X}_s) ds)_{t \geq 0}$ is a $(\mathscr{F}_t)_{t \geq 0}$ -martingale under \mathbf{P}_x for all $x \in \overline{E}$. If $x = \Delta$, then

$$
\overline{X}_t = \Delta \qquad \forall t \ge 0 \quad \mathbf{P}_{x} \text{-a.s.}
$$

and so

$$
\overline{f}(\overline{X}_t) = \overline{Lf}(\overline{X}_t) = 0 \quad \forall t \ge 0 \quad \mathbf{P}_x\text{-a.s.}
$$

Thus $(\overline{f}(\overline{X}_t) - \int_0^t \overline{Lf}(\overline{X}_s)ds)_{t\geq 0}$ is a zero process. Now, we suppose $x \in E \setminus A$. Since f and Lf vanish on an open set containing A , we see that

$$
f(X_{t \wedge T_A}) = Lf(X_{t \wedge T_A}) = 0 \quad \forall t \geq T_A.
$$

Thus, we have

$$
\overline{f}(\overline{X}_t) = f(X_{t \wedge T_A}) \qquad \forall t \ge 0
$$

and

$$
\int_0^t \overline{Lf}(\overline{X}_s)ds = \int_0^t Lf(X_{s \wedge T_A})ds = \int_0^{t \wedge T_A} Lf(X_s)ds \qquad \forall t \ge 0.
$$

Since $(f(X_t) - \int_0^t Lf(X_s)ds)_{t \geq 0}$ is a $(\mathscr{F}_t)_{t \geq 0}$ -martingale under \mathbf{P}_x , we get

$$
(\overline{f}(\overline{X}_t) - \int_0^t \overline{Lf}(\overline{X}_s) ds)_{t \ge 0} = (f(X_{t \wedge T_A}) - \int_0^{t \wedge T_A} Lf(X_s) ds)_{t \ge 0}
$$

is a $(\mathscr{F}_t)_{t\geq 0}$ -martingale under $\boldsymbol{P}_x.$ Thus $\overline{f}\in D(\overline{L})$ and

$$
\overline{L}\ \overline{f}(x) = \overline{Lf}(x) = \begin{cases} Lf(x), & \text{if } x \in E \setminus A \\ 0, & \text{if } x = \Delta. \end{cases}
$$

 \Box

6.7 Exercise 6.29 (Dynkin's formula)

1. Let $g \in C_0(E)$ and $x \in E$, and let T be a stopping time. Justify the equality

$$
\boldsymbol{E}_x[1_{\{T<\infty\}}e^{-\lambda T}\int_0^\infty e^{-\lambda t}g(X_{T+t})dt] = \boldsymbol{E}_x[1_{\{T<\infty\}}e^{-\lambda T}R_\lambda g(X_T)]
$$
\n(29)

2. Infer that

$$
R_{\lambda}g(x) = \boldsymbol{E}_x \left[\int_0^T e^{-\lambda t} g(X_t) dt \right] + \boldsymbol{E}_x \left[1_{\{T < \infty\}} e^{-\lambda T} R_{\lambda} g(X_T) \right]. \tag{30}
$$

3. Show that, if $f \in D(L)$,

$$
f(x) = \mathbf{E}_x \left[\int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt \right] + \mathbf{E}_x \left[1_{\{T < \infty\}} e^{-\lambda T} f(X_T) \right].
$$

4. Assuming that $E_x[T] < \infty$, infer from the previous question that

$$
\boldsymbol{E}_x \big[\int_0^T L f(X_t) dt \big] = \boldsymbol{E}_x \big[f(X_T) \big] - f(x). \qquad \text{(Dynkin's formula)} \tag{31}
$$

.

How could this formula have been established more directly?

5. For every $\epsilon > 0$, we set $T_{\epsilon,x} = \inf\{t \geq 0 \mid d(x, X_t) > \epsilon\}$. Assume that $\mathbf{E}_x[T_{\epsilon,x}] < \infty$, for every sufficiently small ϵ . Show that (still under the assumption $f \in D(L)$) one has

$$
Lf(x) = \lim_{\epsilon \downarrow 0} \frac{E_x[f(X_{T_{\epsilon,x}})] - f(x)}{E_x[T_{\epsilon,x}]}
$$

6. Show that the assumption $E_x[T_{\epsilon,x}] < \infty$ for every sufficiently small ϵ holds if the point x is not absorbing, that is, if there exists a $t > 0$ such that $Q_t(x, \{x\}) < 1$. (Hint: Observe that there exists a nonnegative function $h \in C_0(E)$ which vanishes on a ball centered at x and is such that $Q_t h(x) > 0$. Infer that one can choose $\alpha > 0$ and $\eta \in (0,1)$ such that $\mathbf{P}_x(T_{\alpha,x} > nt) \le (1 - \eta)^n$ for every integer $n \ge 1$.)

Proof.

1. By Fubini's theorem and the strong Markov properpty, we get

$$
\begin{split} \boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}\int_{0}^{\infty}e^{-\lambda t}g(X_{T+t})dt] &= \int_{0}^{\infty}\boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}e^{-\lambda t}g(X_{T+t})]dt \\ &= \int_{0}^{\infty}\boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}e^{-\lambda t}\boldsymbol{E}_{x}[g(X_{T+t})\mid\mathscr{F}_{T}]]dt \\ &= \int_{0}^{\infty}\boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}e^{-\lambda t}\boldsymbol{E}_{X_{T}}[g(X_{t})]]dt \\ &= \int_{0}^{\infty}\boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}e^{-\lambda t}Q_{t}g(X_{T})]dt \\ &= \boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}\int_{0}^{\infty}e^{-\lambda t}Q_{t}g(X_{T})dt] \\ &= \boldsymbol{E}_{x}[1_{\{T<\infty\}}e^{-\lambda T}R_{\lambda}g(X_{T})]. \end{split}
$$

2. By [\(29\)](#page-83-0), we get

$$
\begin{split} &\mathbf{E}_{x}[\int_{0}^{T} e^{-\lambda t}g(X_{t})dt] + \mathbf{E}_{x}[\mathbf{1}_{\{T<\infty\}}e^{-\lambda T}R_{\lambda}g(X_{T})] \\ &= \mathbf{E}_{x}[\int_{0}^{T} e^{-\lambda t}g(X_{t})dt] + \mathbf{E}_{x}[\mathbf{1}_{\{T<\infty\}}e^{-\lambda T}\int_{0}^{\infty} e^{-\lambda t}g(X_{T+t})dt] \\ &= \mathbf{E}_{x}[\int_{0}^{T} e^{-\lambda t}g(X_{t})dt] + \mathbf{E}_{x}[\mathbf{1}_{\{T<\infty\}}\int_{T}^{\infty} e^{-\lambda t}g(X_{t})dt] \\ &= \mathbf{E}_{x}[\int_{0}^{\infty} e^{-\lambda t}g(X_{t})dt] = \int_{0}^{\infty} e^{-\lambda t}\mathbf{E}_{x}[g(X_{t})]dt = \int_{0}^{\infty} e^{-\lambda t}Q_{t}g(x)dt = R_{\lambda}g(x). \end{split}
$$

3. Fix $f \in D(L)$. By proposition 6.12, there exists $g \in C_0(E)$ such that $f = R_\lambda g \in D(L)$ and $(\lambda - L)f = g$. By (30) , we get

$$
f(x) = \mathbf{E}_x \left[\int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt \right] + \mathbf{E}_x \left[1_{\{T < \infty\}} e^{-\lambda T} f(X_T) \right].
$$

4. Note that $f, L(f)$ are bounded and $\mathbf{E}_x[T] < \infty$. By Lebesgue's dominated convergence theorem, we get

$$
\lim_{\lambda \to 0} \mathbf{E}_x \left[\int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt \right]
$$
\n
$$
= \lim_{\lambda \to 0} \mathbf{E}_x [1_{\{T < \infty\}} \int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt]
$$
\n
$$
= \mathbf{E}_x [1_{\{T < \infty\}} \lim_{\lambda \to 0} \int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt]
$$
\n
$$
= \mathbf{E}_x [1_{\{T < \infty\}} \int_0^T \lim_{\lambda \to 0} e^{-\lambda t} (\lambda f - Lf)(X_t) dt]
$$
\n
$$
= -\mathbf{E}_x \left[\int_0^T Lf(X_t) dt \right]
$$

and therefore

$$
f(x) = \lim_{\lambda \to 0} \mathbf{E}_x \left[\int_0^T e^{-\lambda t} (\lambda f - Lf)(X_t) dt \right] + \lim_{\lambda \to 0} \mathbf{E}_x \left[1_{\{T < \infty\}} e^{-\lambda T} f(X_T) \right] = -\mathbf{E}_x \left[\int_0^T Lf(X_t) dt \right] + \mathbf{E}_x \left[f(X_T) \right].
$$

Next, we prove [\(31\)](#page-84-1) directly. By theorem 6.14, we see that $(M_t)_{t\geq 0} \equiv (f(X_t) - \int_0^t Lf(X_s)ds)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq 0}$ martingale. Let $K > 0$. Then $(M_{t \wedge K})_{t \geq 0}$ is a uniformly integrable martingale. By optional stopping theorem, we have

$$
\boldsymbol{E}_x[f(X_{T\wedge K}) - \int_0^{T\wedge K} Lf(X_s)ds] = f(x).
$$

Since $E_x[T] < \infty$, we see that

$$
\lim_{K \to \infty} f(X_{T \wedge K}) = f(X_T) \qquad \mathbf{P}_{x} \text{-a.s.}
$$

By Lebesgue's dominated convergence theorem, we get

$$
f(x) = \boldsymbol{E}_x[f(X_T)] - \boldsymbol{E}_x[\int_0^T Lf(X_s)ds].
$$

5. Fix $f \in D(L)$. Given $\eta > 0$. Since Lf is continuous at x, there exists $\delta > 0$ such that $|Lf(y) - Lf(x)| < \eta$ whenever $d(y, x) < \delta$. For sufficiently small ϵ such that $\mathbf{E}_x[T_{\epsilon,x}] < \infty$ and $\epsilon < \delta$, we have

$$
|Lf(X_t) - Lf(x)| < \eta \qquad \forall 0 \le t \le T_{\epsilon,x}, \mathbf{P}_x\text{-a.s.}
$$

and therefore

$$
\begin{aligned}\n&|\frac{\boldsymbol{E}_{x}[\int_{0}^{T_{\epsilon,x}} Lf(X_{t})dt]}{\boldsymbol{E}_{x}[T_{\epsilon,x}]} - Lf(x)| \\
&= |\frac{\boldsymbol{E}_{x}[\int_{0}^{T_{\epsilon,x}} Lf(X_{t}) - Lf(x)dt]}{\boldsymbol{E}_{x}[T_{\epsilon,x}]}| \\
&= \frac{\boldsymbol{E}_{x}[\int_{0}^{T_{\epsilon,x}} |Lf(X_{t}) - Lf(x)|dt]}{\boldsymbol{E}_{x}[T_{\epsilon,x}]} \\
&< \frac{\boldsymbol{E}_{x}[T_{\epsilon,x}]}{\boldsymbol{E}_{x}[T_{\epsilon,x}]} \eta = \eta\n\end{aligned}
$$

By (31) , we get

$$
\lim_{\epsilon \downarrow 0} \frac{\boldsymbol{E}_x[f(X_{T_{\epsilon,x}})]-f(x)}{\boldsymbol{E}_x[T_{\epsilon,x}]} = \lim_{\epsilon \downarrow 0} \frac{\boldsymbol{E}_x[\int_0^{T_{\epsilon,x}} Lf(X_t)dt]}{\boldsymbol{E}_x[T_{\epsilon,x}]} = Lf(x).
$$

6. Since $Q_t(x,\{x\}) < 1$, there exists $r > 0$ such that $Q_t(x,\overline{B(x,r)}) < 1$. Then $E \setminus \overline{B(x,r)}$ is an open set and $Q_t(x, E \setminus \overline{B(x, r)}) > 0$. Choose $z \in E \setminus \overline{B(x, r)}$. Then there exists $R > 0$ such that $Q_t(x, (E \setminus \overline{B(x, r)})$. $B(x,r) \cap B(z,R) > 0$. Set $G = (E \setminus B(x,r)) \cap B(z,R)$. Then G is an bounded open set and $Q_t 1_G(x) =$ $Q_t(x, G) > 0$. Set

$$
f_k(y) = \left(\frac{d(y, E \setminus G)}{1 + d(y, E \setminus G)}\right)^{\frac{1}{k}} \quad \forall k \ge 1.
$$

Then

$$
0 \le f_k(y) \uparrow 1_G(y) \qquad \forall y \in E
$$

and $f_k \in C_0(E)$ for all $k \geq 1$. Since $(Q_t)_{t \geq 0}$ is Feller,

$$
Q_t f_k \in C_0(E) \qquad \forall k \ge 1
$$

and

$$
Q_t f_k(x) \stackrel{k \to \infty}{\to} Q_t(x, G).
$$

Choose large k such that $Q_t f_k(x) > 0$ and set $h = f_k$. Then $0 < Q_t h(x) \le 1$ and, hence, there exists $0 < \alpha < r$ and $0 < \eta < 1$ such that

$$
Q_t(y, G) \ge Q_t h(y) > \eta > 0 \qquad \forall y \in B(x, \alpha).
$$

Thus,

$$
Q_t(y, E \setminus G) \le (1 - \eta) \qquad \forall y \in B(x, \alpha).
$$

For $n \geq 1$, by the simple Markov property, we get

$$
\begin{split}\n& \mathbf{P}_x(T_{\alpha,x} > nt) \\
&\leq \mathbf{E}_x[1_{\{X_t \in B(x,\alpha)\}} \dots 1_{\{X_{(n-1)t} \in B(x,\alpha)\}} 1_{\{X_{nt} \in B(x,\alpha)\}}] \\
& = \mathbf{E}_x[1_{\{X_t \in B(x,\alpha)\}} \dots 1_{\{X_{(n-1)t} \in B(x,\alpha)\}} \mathbf{E}_{X_{(n-1)t}}[1_{X_t \in B(x,\alpha)}] \\
& = \mathbf{E}_x[1_{\{X_t \in B(x,\alpha)\}} \dots 1_{\{X_{(n-1)t} \in B(x,\alpha)\}} Q_t(X_{(n-1)t}, B(x,\alpha))] \\
&\leq \mathbf{E}_x[1_{\{X_t \in B(x,\alpha)\}} \dots 1_{\{X_{(n-1)t} \in B(x,\alpha)\}} Q_t(X_{(n-1)t}, E \setminus G)] \\
&\leq \mathbf{E}_x[1_{\{X_t \in B(x,\alpha)\}} \dots 1_{\{X_{(n-1)t} \in B(x,\alpha)\}}](1-\eta) \\
&\dots \\
&\leq (1-\eta)^n.\n\end{split}
$$

Therefore

$$
\boldsymbol{E}_x[T_{\epsilon,x}] \leq \boldsymbol{E}_x[T_{\alpha,x}] = \sum_{n=1}^{\infty} \int_{(n-1)t}^{nt} \boldsymbol{P}_x(T_{\alpha,x} > t) dt \leq \sum_{n=1}^{\infty} (1-\eta)^n < \infty
$$

for all $\epsilon < \alpha$.

 \Box

Chapter 7

Brownian Motion and Partial Differential Equations

7.1 Exercise 7.24

Let $B(0,1)$ be the open ball of \mathbb{R}^d $(d \geq 2)$, and $B(0,1)^* \equiv B(0,1) \setminus \{0\}$. Let g be the continuous function defined on $\partial B(0,1)^*$ by

$$
g(x) = \begin{cases} 0, & \text{if } |x| = 1 \\ 1, & \text{if } x = 0. \end{cases}
$$

Prove that the Dirichlet problem in $B(0, 1)$ [∗] with boundary condition g has no solution.

Proof.

We prove this by contradiction. Assume that there exists a $u \in C^2(B(0,1)^*) \cap C(\overline{B(0,1)})$ such that

$$
\begin{cases} \Delta u(x) = 0, & \text{if } x \in B(0,1)^* \\ \lim_{y \in B(0,1)^* \to x \in \partial B(0,1)^*} u(y) = g(x), & \text{if } x \in \partial B(0,1)^*. \end{cases}
$$

By proposition 7.7, we see that

$$
u(x) = \boldsymbol{E}_x[g(B_T)] \qquad \forall x \in B(0,1)^*,
$$

where $T = U_0 \wedge U_1$ and $U_a = \inf\{t \geq 0 \mid |B_t| = a\}$. By proposition 7.16, we see that

$$
\boldsymbol{P}_x(U_0 < U_1) = \lim_{\epsilon \downarrow 0} \boldsymbol{P}_x(U_\epsilon < U_1) = \begin{cases} \lim_{\epsilon \downarrow 0} \frac{0 - \log(|x|)}{0 - \log(\epsilon)}, & \text{if } d = 2\\ \lim_{\epsilon \downarrow 0} \frac{1 - |x|^{2 - d}}{1 - \epsilon^{2 - d}}, & \text{if } d \ge 3 \end{cases} = 0
$$

and, hence,

$$
u(x) = \mathbf{E}_x[g(B_T)] = \mathbf{E}_x[g(B_{U_1})1_{\{U_1 < U_0\}}] = 0 \quad \forall x \in B(0,1)^*
$$

which contradict to

$$
\lim_{y \in B(0,1)^* \to 0} u(y) = 0 \neq 1 = g(0).
$$

7.2 Exercise 7.25 (Polar sets)

Throughout this exercise, we consider a nonempty compact subset K of \mathbb{R}^d $(d \geq 2)$. We set $T_K = \inf\{t \geq 0 \mid T_t \in K\}$. We say that K is polar if there exists an $x \in K^c$ such that $P_x(T_K < \infty) = 0$.

- 1. Using the strong Markov property as in the proof of Proposition 7.7 (ii), prove that the function $x \mapsto P_x(T_K \leq$ ∞) is harmonic on every connected component of K^c .
- 2. From now on until question 4., we assume that K is polar. Prove that K^c is connected, and that the property $\mathbf{P}_x(T_K < \infty) = 0$ holds for every $x \in K^c$. Hint: Observe that $\{x \in K^c \mid \mathbf{P}_x(T_K < \infty) = 0\}$ is both open and closed.
- 3. Let D be a bounded domain containing K, and $D' = D \setminus K$. Prove that any bounded harmonic function h on D' can be extended to a harmonic function on D. Does this remain true if the word "bounded" is replaced by "positive"?

4. Define

$$
g(x) = \begin{cases} 0, & \text{if } x \in \partial D \\ 1, & \text{if } x \in \partial D' \setminus \partial D. \end{cases}
$$

Prove that the Dirichlet problem in D' with boundary condition g has no solution. (Note that this generalizes the result of Exercise 7.24.)

5. If $\alpha \in (0, d]$, we say that the compact set K has zero α -dimensional Hausdorff measure if, for every $\epsilon > 0$, we can find an integer $N_{\epsilon} \ge 1$ and N_{ϵ} open balls $B(c_k, r_k)$, $k = 1, 2, ..., N_{\epsilon}$, such that

$$
K \subseteq \bigcup_{k=1}^{N_{\epsilon}} B(c_k, r_k)
$$
 and
$$
\sum_{k=1}^{N_{\epsilon}} r_k^{\alpha} \le \epsilon.
$$

Prove that if $d \geq 3$ and K has zero $d-2$ -dimensional Hausdorff measure then K is polar.

Proof.

We define $T_A = \inf\{t \ge 0 \mid B_t \in A\}$ for all closed subset A of \mathbb{R}^d .

1. Define $\varphi: K^c \mapsto \mathbb{R}$ by $\varphi(x) = \mathbf{P}_x(T_K < \infty)$. To show that φ is harmonic on every connected component of K^c , it suffices to show that φ satisfies the mean value property for every $x \in K^c$. Fix $x \in K^c$. Let $r > 0$ such that $B(x,r) \subseteq K^c$. Set $T_{x,r} = \inf\{t \geq 0 \mid |B_t - x| = r\}$. Then

$$
T_{x,r} < T_K, \quad T_{x,r} < \infty \qquad \mathbf{P}_x\text{-a.s.}
$$

By the strong Markov property, we get

$$
\varphi(x) = \mathbf{E}_x[1_{\{T_K < \infty\}}] = \mathbf{E}_x[\mathbf{E}_{B_{T_{x,r}}} [1_{\{T_K < \infty\}}]] = \mathbf{E}_x[\varphi(B_{T_{x,r}})].
$$

Since the distribution of $B_{T_{x,r}}$ under \mathbf{P}_x is the uniform probability measure $\sigma_{x,r}$ on the $\partial B(x,r)$, we have

$$
\varphi(x) = \boldsymbol{E}_x[\varphi(B_{T_{x,r}})] = \int_{\partial B(x,r)} \varphi(y)\sigma_{x,r}(dy).
$$

2. First, we show that K^c is connected. We prove this by contradiction. Assume that $K^c = \bigcup_{n=1}^m G_n$, where G_n is a connected component of K^c and $2 \le m \le \infty$. Then

$$
\bigcup_{n=1}^{m} \partial G_n \subseteq K.
$$

For $x \in G_i$, choose $y \in G_j$, where $i \neq j$, and $r > 0$ such that $B(y, r) \subseteq G_j$. By proposition 7.16, we get

$$
\boldsymbol{P}_x(T_K < \infty) \ge \boldsymbol{P}_x(T_{\partial G_i} < \infty) \ge \boldsymbol{P}_x(T_{\overline{B(y,r)}} < \infty) > 0.
$$

Thus, we get

$$
\mathbf{P}_x(T_K < \infty) > 0 \qquad \forall x \in K^c
$$

which contradict to K is polar.

Next, we show that

$$
\mathbf{P}_x(T_K < \infty) = 0 \quad \forall x \in K^c.
$$

Since K^c is connected, it suffices to show that

$$
\Gamma \equiv \{ x \in K^c \mid \mathbf{P}_x(T_K < \infty) = 0 \}
$$

is both open and closed in K^c . Indeed, since K is polar, we see that Γ is nonempty and, hence, $\Gamma = K^c$. By problem 1., we see that $\varphi(z) = \mathbf{P}_z(T_K < \infty)$ is continuous in K^c and so

$$
\Gamma = \varphi^{-1}(\{0\})
$$

is closed in K^c. Now, we show that Γ is open in K^c. Fix $x \in \Gamma$. We choose $r > 0$ such that $B(x,r) \subseteq K^c$. Assume that there exists $y \in B(x,r)$ such that $P_y(T_K < \infty) > \eta$ for some $\eta > 0$. Since $\varphi(z) = P_z(T_K < \infty)$ is continuous in K^c , there exists exists $r' > 0$ such that $\overline{B(y, r')} \subseteq B(x, r)$ and

$$
\boldsymbol{P}_z(T_K < \infty) > \frac{\eta}{2} \qquad \forall z \in \overline{B(y,r')}.
$$

By the strong Markov property, we get

$$
\boldsymbol{P}_x(T_K < \infty) \ge \boldsymbol{P}_x(T_{\overline{B(y,r')}} < T_K < \infty) = \boldsymbol{E}_x[\boldsymbol{E}_{B_{T_{\overline{B(y,r)}}}}[1_{\{T_K < \infty\}}]] \ge \frac{\eta}{2} > 0
$$

which is a contradiction. Thus, $B(x, r) \subseteq \Gamma$ and therefore Γ is open in K^c .

3. (a) Choose a sequence of bounded domains $\{\Gamma_n\}$ such that

$$
K \subseteq \Gamma_n, \quad \overline{\Gamma_n} \subseteq \Gamma_{n+1} \qquad \forall n \ge 1, \text{ and } \overline{\Gamma_n} \uparrow D.
$$

Define $u : D \mapsto \mathbb{R}$ by

$$
u(x) = \lim_{n \to \infty} \mathbf{E}_x[h(B_{T_{\partial \Gamma_n}})].
$$

Now we show that u satisfy

$$
\begin{cases} \Delta u(x) = 0, & \text{if } x \in D \\ u(x) = h(x), & \text{if } x \in D'. \end{cases}
$$

First, we show that $u = h$ in D' and u is well-defined.

i. Fix $x \in D'$. Choose large n such that $x \in \Gamma_n$. Since $x \in K^c$ and K is polar, we get $T_K = \infty$ \mathbf{P}_x -(a.s.) and so

$$
B_{T_{\partial \Gamma_n} \wedge t} \in D' \qquad \forall t \ge 0 \quad \mathbf{P}_{x}(\text{a.s.}).
$$

By Itô's formula, we have

$$
h(B_{t \wedge T_{\partial \Gamma_n}}) = h(x) + \int_0^{t \wedge T_{\partial \Gamma_n}} \nabla h(B_s) \cdot dB_s \qquad \forall t \ge 0 \quad \mathbf{P}_{x}(\text{a.s.})
$$

and therefore $(h(B_{t\wedge T_{\partial\Gamma_n}}))_{t\geq 0}$ is a continuous local martingale. Since h is bounded in D' , $(h(B_{t\wedge T_{\partial\Gamma_n}}))_{t\geq 0}$ is a uniformly integrable martingale and, hence,

$$
h(x) = \mathbf{E}_x[h(B_{T_{\partial \Gamma_n}})].
$$

Therefore, if $x \in \Gamma_m$ for some $m \geq 1$, then

$$
E_x[h(B_{T_{\partial \Gamma_n}})] = h(x) \qquad \forall n \ge m. \tag{32}
$$

Moreover,

$$
u(x) = \lim_{n \to \infty} \mathbf{E}_x[h(B_{T_{\partial \Gamma_n}})] = h(x).
$$

ii. Fix $x \in K$. We show that

$$
\boldsymbol{E}_x[h(B_{T_{\partial \Gamma_n}})] = \boldsymbol{E}_x[h(B_{T_{\partial \Gamma_m}})] \qquad \forall n > m \ge 1.
$$
\n(33)

Fix $n > m$. Then $\Gamma_m \subseteq \Gamma_n$. By the strong Markov property, we get

$$
\boldsymbol{E}_{x}[h(B_{T_{\partial \Gamma_n}})] = \boldsymbol{E}_{x}[\boldsymbol{E}_{B_{T_{\partial \Gamma_m}}}[h(B_{T_{\partial \Gamma_n}})]].
$$

By (32) , we have

$$
\boldsymbol{E}_{B_{T_{\partial \Gamma_m}}}[h(B_{T_{\partial \Gamma_n}})] = h(B_{T_{\partial \Gamma_m}}) \quad \boldsymbol{P}_{x}(\text{a.s.})
$$

and so

$$
\boldsymbol{E}_{x}[h(B_{T_{\partial \Gamma_n}})] = \boldsymbol{E}_{x}[h(B_{T_{\partial \Gamma_m}})].
$$

Moveover,

$$
\lim_{n\to\infty} \mathbf{E}_x[h(B_{T_{\partial\Gamma_n}})] = \mathbf{E}_x[h(B_{T_1})]
$$

and, hence, u is well-defined.

Next, we show that u is harmonic on D . It suffices to show that u satisfies the mean value property. Fix $x \in D$ and $r > 0$ such that $B(x, r) \subseteq D$. Choose $n \ge 1$ such that $B(x, r) \subseteq \Gamma_n$. Set $T_{x,r} = \inf\{t \ge 0\mid r\le T\}$ $|B_t - x| = r$. By [\(32\)](#page-89-0) and [\(33\)](#page-89-1), we have

$$
\boldsymbol{E}_z[h(B_{T_{\partial \Gamma_n}})] = u(z) \qquad \forall z \in \Gamma_n.
$$

By the strong Markov property, we get

$$
u(x) = \boldsymbol{E}_x[h(B_{T_{\partial \Gamma_n}})] = \boldsymbol{E}_x[\boldsymbol{E}_{B_{T_{x,r}}}[h(B_{T_{\partial \Gamma_n}})]] = \boldsymbol{E}_x[u(B_{T_{x,r}})].
$$

Since the distribution of $B_{T_{x,r}}$ under \mathbf{P}_x is the uniform probability measure $\sigma_{x,r}$ on the $\partial B(x,r)$, we have

$$
u(x) = \int_{\partial B(x,r)} u(y)\sigma_{x,r}(dy).
$$

Therefore u is a harmonic function on D such that $u(x) = h(x)$ for all $x \in D'$.

(b) Now we show that boundedness is necessary for this statement. Set $K = \{0\}$. By proposition 7.16, K is a polar. Choose $D = B(0, r)$ for some $0 < r < 1$. Then $D' = B(0, r) \setminus \{0\}$. Define Φ to be the fundamental solution of Laplace equation. That is,

$$
\Phi(x) = \begin{cases} \frac{-1}{2\pi} \log(|x|), & \text{if } d = 2\\ \frac{1}{n(n-2)w_n} \frac{1}{|x|^{d-2}}, & \text{if } d \ge 3. \end{cases}
$$

Then Φ is a unbounded, positive harmonic function on D' and Φ can't be extended to a harmonic function on D.

4. We prove this by contradiction. Assume that there exists a $u \in C^2(D') \cap C(\overline{D'})$ such that

$$
\begin{cases} \Delta u(x) = 0, & \text{if } x \in D' \\ \lim_{y \in D' \to x \in \partial D'} u(y) = g(x), & \text{if } x \in \partial D'. \end{cases}
$$

By proposition 7.7, we see that

$$
u(x) = \mathbf{E}_x[g(B_T)] \qquad \forall x \in D',
$$

where $T = T_{\partial D} \wedge T_{\partial D' \setminus \partial D}$. Note that

$$
T_{\partial D' \setminus \partial D} = T_K \quad \mathbf{P}_x\text{-a.s.} \qquad \forall x \in D'.
$$

Fix $x \in D'$. Since $T_K = \infty$ \mathbf{P}_x -(a.s.), we see that $T = T_{\partial D}$ \mathbf{P}_x -(a.s.) and, hence,

$$
u(x) = \boldsymbol{E}_x[g(B_T)] = \boldsymbol{E}_x[g(B_{T_{\partial D}})] = 0.
$$

Thus, we see that

$$
u(x) = 0 \qquad \forall x \in D'
$$

which contradict to

$$
\lim_{x \in D' \to y \in \partial D' \setminus \partial D} u(x) = 0 \neq 1 = g(y) \quad \forall y \in \partial D' \setminus \partial D.
$$

5. To show that K is polar, we show that $P_x(T_K < \infty) = 0$ for all $x \in K^c$. Fix $x \in K^c$. Then

$$
h_{x,K} \equiv \inf\{|x - z| \mid z \in K\} > 0.
$$

Given $\epsilon > 0$. There exists $N_{\epsilon} \ge 1$ and N_{ϵ} open balls $B(c_k, r_k)$, $k = 1, 2, ..., N_{\epsilon}$, such that

$$
K \subseteq \bigcup_{k=1}^{N_{\epsilon}} B(c_k, r_k) \text{ and } \sum_{k=1}^{N_{\epsilon}} r_k^{d-2} \le \epsilon.
$$

Without loss of generality, we assume that

$$
B(c_k, r_k) \bigcap K \neq \emptyset \qquad \forall k = 1, 2, ..., N_{\epsilon}.
$$

Choose $\tilde{c}_k \in B(c_k, r_k) \cap K$ and set $\tilde{r}_k = 2r_k$ for all $k = 1, 2, ..., N_{\epsilon}$. Then

$$
K \subseteq \bigcup_{k=1}^{N_{\epsilon}} B(\widetilde{c}_k, \widetilde{r}_k)
$$
 and $\sum_{k=1}^{N_{\epsilon}} \widetilde{r}_k^{d-2} \leq 2^{d-2} \epsilon$.

Set $T_k = \inf\{t \geq 0 \mid |B_t - \widetilde{c}_k| = \widetilde{r}_k\}$ for all $k = 1, 2, ..., N_{\epsilon}$. Then

$$
\boldsymbol{P}_x(T_K < \infty) \leq \boldsymbol{P}_x(\wedge_{k=1}^{N_{\epsilon}} T_k < \infty) \leq \sum_{k=1}^{N_{\epsilon}} \boldsymbol{P}_x(T_k < \infty).
$$

By proposition 7.16, we get

$$
\boldsymbol{P}_x(T_k < \infty) = \left(\frac{\widetilde{r}_k}{|x - \widetilde{c}_k|}\right)^{d-2} \qquad \forall k = 1, 2, \dots, N_{\epsilon}
$$

and, hence,

$$
\boldsymbol{P}_x(T_K < \infty) \le \sum_{k=1}^{N_{\epsilon}} \left(\frac{\widetilde{r}_k}{|x - \widetilde{c}_k|}\right)^{d-2} \le \sum_{k=1}^{N_{\epsilon}} \left(\frac{\widetilde{r}_k}{h_{x,K}}\right)^{d-2} < \frac{2^{d-2}}{h_{x,K}^{d-2}} \epsilon.
$$

By letting $\epsilon \downarrow 0$, we have $\boldsymbol{P}_x(T_K < \infty) = 0$.

In this exercise, $d \geq 3$. Let K be a compact subset of the open unit ball of \mathbb{R}^d , and $T_K = \inf\{t \geq 0 : B_t \in K\}$. We assume that $D := \mathbb{R}^d \setminus K$ is connected. We also consider a function g defined and continuous on K. The goal of the exercise is to determine all functions $u : \overline{D} \mapsto \mathbb{R}$ that satisfy:

(P) u is bounded and continuous on \overline{D} , harmonic on D, and $u(y) = g(y)$ if $y \in \partial D$.

(This is the Dirichlet problem in D, but in contrast with Sect. 7.3 above, D is unbounded here.) We fix an increasing sequence $\{R_n\}_{n\geq 1}$ of reals, with $R_1 \geq 1$ and $R_n \uparrow \infty$ as $n \to \infty$. For every $n \geq 1$, we set $T_n = \inf\{t \geq 0 : |B_t| \geq R_n\}$.

1. Suppose that u satisfies (P). Prove that, for every $n \geq 1$ and every $x \in D$ such that $|x| < R_n$,

$$
u(x) = \mathbf{E}_x[g(B_{T_K})1_{\{T_K \le T_n\}}] + \mathbf{E}_x[u(B_{T_n})1_{\{T_n \le T_K\}}].
$$

2. Show that, by replacing the sequence $\{R_n\}$ with a subsequence if necessary, we may assume that there exists a constant $\alpha \in \mathbb{R}$ such that, for every $x \in D$,

$$
\lim_{n\to\infty} \mathbf{E}_x[u(B_{T_n})] = \alpha,
$$

and that we then have

$$
\lim_{|x| \to \infty} u(x) = \alpha.
$$

3. Show that, for every $x \in D$,

$$
u(x) = \mathbf{E}_x[g(B_{T_K})1_{\{T_K < \infty\}}] + \alpha \mathbf{P}_x(T_K = \infty).
$$

4. Assume that D satisfies the exterior cone condition at every $y \in \partial D$ (this is defined in the same way as when D is bounded). Show that, for any choice of $\alpha \in \mathbb{R}$ the formula of question 3. gives a solution of the problem (P).

Proof.

We define $T_A := \inf\{t \geq 0 : B_t \in A\}$ for all closed subset A of \mathbb{R}^d .

1. Fix $n \geq 1$. Set continuous function

$$
f(x) = \begin{cases} u(x), & \text{if } y \in \partial B(0, R_n) \\ g(x), & \text{if } y \in \partial K, \end{cases}
$$

By using proposition 7.7 on the bounded domain $B(0, R_n) \setminus K$, we get

$$
u(x) = \boldsymbol{E}_x[g(B_{T_K})1_{\{T_K \leq T_n\}}] + \boldsymbol{E}_x[u(B_{T_n})1_{\{T_n \leq T_K\}}] \quad \forall x \in D \bigcap B(0, R_n).
$$

- 2. Denote $M := \sup_{z \in \overline{D}} |u(z)|$.
	- (a) We show that there exists $1 \leq n_1 < n_2 < n_3 < \dots$ such that $\lim_{k\to\infty} E_x[u(B_{T_{n_k}})]$ converges uniformly on every compact subset $K \subseteq \mathbb{R}^d$ for every $x \in \mathbb{R}^d$. Denote

$$
f_n(x) := \mathbf{E}_x[u(B_{T_n})] \quad \forall x \in B(0, R_n), \quad n \ge 1.
$$

By the strong Markov property, we get f_n is harmonic on $B(0, R_n)$ for every $n \geq 1$. First, we show that $\{f_n\}$ is equicontinuous on $B(p,r)$ for every $p \in \mathbb{Q}^d$ and $r \in \mathbb{Q}_+$. Fix $p \in \mathbb{Q}^d$ and

 $r \in \mathbb{Q}_+$. Choose $N \geq 1$ such that $B(p,r) \subseteq B(0,R_N)$ and $\eta := d(B(p,r), \partial B(0,R_N)) > 0$. By local estimates for harmonic function, there exists $C_1 > 0$ such that

$$
|Df_n(x)| \le \frac{C_1}{(\eta/2)^{d+1}} ||f_n||_{L^1(B(x,\eta/2))} \le \frac{C_1M}{\eta/2} \quad \forall x \in B(p,r+\eta/2), \quad n \ge N.
$$

Fix $\epsilon > 0$. Let $x, y \in \overline{B(p, r)}$ such that $|x - y| < \frac{\eta}{2C_1M} \epsilon$. Then

$$
|f_n(x) - f_n(y)| \le \sup_{z \in B(p, r + \eta/2)} |Df_n(z)| |x - y| < \epsilon \quad \forall n \ge N.
$$

Moreover, by Arzelà–Ascoli theorem, there exists a subsequence $N \leq n_1 < n_2 < n_3 < ...$ such that $f_{n_k}(x)$ converges uniformly on $B(p, r)$.

Next, by a standard diagonalization procedure, there exists $1 \leq n_1 < n_2 < n_3 < ...$ such that $f_{n_k}(x)$ converges uniformly on $\overline{B(p_i, r_i)}$ for each $i \geq 1$, where $Q^d = \{p_i\}_{i \geq 1}$ and $Q_+ = \{r_i\}_{i \geq 1}$, and so, $\lim_{k \to \infty} f_{n_k}(x)$ uniformly on every compact subset K of \mathbb{R}^d .

(b) We show that there exists $\alpha \in \mathbb{R}$ such that

$$
\lim_{k \to \infty} \mathbf{E}_x[u(B_{T_{n_k}})] = \alpha \quad \forall x \in D.
$$

Set

$$
f(x) := \lim_{k \to \infty} f_{n_k}(x) \quad \forall x \in \mathbb{R}^d.
$$

By the strong Markov property, we get

$$
\int f(y)\sigma_{x,r}(dy) = \lim_{k \to \infty} \int \mathbf{E}_y[u(B_{T_{n_k}})]\sigma_{x,r}(dy) = \lim_{k \to \infty} \mathbf{E}_x[u(B_{T_{n_k}})] = f(x)
$$

and so f is a bounded, harmonic function. By Liouville's theorem, we see that $f = \alpha$ for some $\alpha \in \mathbb{R}$.

(c) We show that $\lim_{|x|\to\infty} u(x) = \alpha$. Fix $\epsilon > 0$. Choose $R > 0$ such that $\frac{1}{R^{d-2}} < \epsilon$. Let $|x| \ge R$. Choose large $j \geq 1$ such that $|x| \leq R_{n_j}$,

$$
|\boldsymbol{E}_x[u(B_{T_{n_j}})] - \alpha| < \epsilon,
$$

and

$$
\frac{R_{n_j}^{2-d} - |x|^{2-d}}{R_{n_j}^{2-d} - 1} \le |x|^{2-d} + \epsilon.
$$

Set $B := \overline{B(0,1)}$. Then

$$
\boldsymbol{P}_x(T_B < T_{n_j}) = \frac{R_{n_j}^{2-d} - |x|^{2-d}}{R_{n_j}^{2-d} - 1} \le |x|^{2-d} + \epsilon \le R^{2-d} + \epsilon < 2\epsilon
$$

and so

$$
|u(x) - \alpha| = |\mathbf{E}_x[g(B_{T_K})1_{\{T_K \le T_{n_j}\}}] - \mathbf{E}_x[u(B_{T_{n_j}})1_{\{T_j > T_K\}}] + \mathbf{E}_x[u(B_{T_{n_j}})] - \alpha|
$$

\n
$$
\le MP_x(T_{n_j} > T_K) + MP_x(T_{n_j} > T_K) + \epsilon \le (4M + 1)\epsilon.
$$

3. Since $\lim_{t\to\infty} |B_t| = \infty$ and $u(x) \stackrel{|x|\to\infty}{\to} \alpha$, we get $T_{n_k} < \infty$ for every $k \ge 1$ (a.s.) and so

$$
\boldsymbol{E}_{x}[u(B_{T_{n_k}})1_{\{T_{n_k} \le T_K\}}] = \boldsymbol{E}_{x}[u(B_{T_{n_k}})1_{\{T_{n_k} \le T_K < \infty\}}] + \boldsymbol{E}_{x}[u(B_{T_{n_k}})1_{\{T_{n_k} < \infty\}} \cap \{T_K = \infty\}}] \stackrel{k \to \infty}{\to} 0 + \alpha \boldsymbol{P}_{x}(T_K = \infty).
$$

By problem 1 and problem 2, we have

$$
u(x) = \lim_{k \to \infty} \mathbf{E}_x[g(B_{T_K})1_{\{T_K \le T_n\}}] + \lim_{k \to \infty} \mathbf{E}_x[u(B_{T_n})1_{\{T_n \le T_K\}}] = \mathbf{E}_x[g(B_{T_K})1_{\{T_K < \infty\}}] + \alpha \mathbf{P}_x(T_K = \infty).
$$

4. It suffices to show that $\lim_{x\in D\to y}u(x)=g(y)$ for every $y\in \partial D$. Denote $M:=\sup_{z\in K}|g(z)|$. Fix $\epsilon>0$ and $y \in \partial D$. Choose $\delta > 0$ such that

$$
|g(z) - g(y)| < \epsilon \quad \forall z \in K \bigcap B(y, \delta).
$$

Choose $\eta > 0$ such that

$$
\mathbf{P}_0(\sup_{t\leq \eta}|B_t|\geq \frac{\delta}{2})<\epsilon.
$$

Observe that

$$
\lim_{x \in D \to y} \mathbf{P}_x(T_K > \eta) = 0
$$

(This proof is the same as the proof of lemma 7.9) and so there exists $\delta' > 0$ such that

$$
\boldsymbol{P}_x(T_K > \eta) < \epsilon \quad \forall x \in D \bigcap B(y, \delta').
$$

Let $x \in D \cap B(y, \delta' \wedge \frac{\delta}{2})$. Then

$$
\mathbf{P}_x(\sup_{t \le \eta} |B_t - x| \ge \frac{\delta}{2}) = \mathbf{P}_0(\sup_{t \le \eta} |B_t| \ge \frac{\delta}{2}) < \epsilon
$$

and so

$$
|u(x) - g(y)|
$$

\n
$$
\leq \mathbf{E}_x[|g(B_{T_K}) - g(y)|1_{\{T_K \leq \eta\}}] + \mathbf{E}_x[|g(B_{T_K}) - g(y)|1_{\{\eta < T_K < \infty\}}] + (g(y) + \alpha)\mathbf{P}_x(T_K = \infty)
$$

\n
$$
\leq \mathbf{E}_x[|g(B_{T_K}) - g(y)|1_{\{T_K \leq \eta\}}1_{\{\sup_{t \leq \eta} |B_t - x| < \frac{\delta}{2}\}}] + 2M\mathbf{P}_x(\sup_{t \leq \eta} |B_t - x| \geq \frac{\delta}{2}) +
$$

\n
$$
\mathbf{E}_x[|g(B_{T_K}) - g(y)|1_{\{\eta < T_K < \infty\}}] + (g(y) + \alpha)\mathbf{P}_x(T_K = \infty)
$$

\n
$$
\leq \epsilon + 2M\epsilon + 2M\mathbf{P}_x(\eta < T_K < \infty) + (g(y) + \alpha)\mathbf{P}(T_K = \infty)
$$

\n
$$
\leq \epsilon + 2M\epsilon + (3M + \alpha)\mathbf{P}_x(T_K > \eta) < \epsilon + 2M\epsilon + (3M + \alpha)\epsilon.
$$

7.4 Exercise 7.27

Let $f: \mathbb{C} \to \mathbb{C}$ be a nonconstant holomorphic function. Use planar Brownian motion to prove that the set $\{f(x) : z \in \mathbb{C}\}$ $\mathbb{C}\}$ is dense in C. (Much more is true, since Picard's little theorem asserts that the complement of $\{f(x): z \in \mathbb{C}\}$ in C contains at most one point: This can also be proved using Brownian motion, but the argument is more involved)

Proof.

We prove this by contradiction. Assume that there exists $z \in \mathbb{C}$ and $r > 0$ such that $\overline{B(z,r)} \subseteq G^c$, where $G = \{f(z) :$ $z \in \mathbb{C}$. For any filtration $(\mathscr{G}_t)_{t\geq0}$ and $(\mathscr{G}_t)_{t\geq0}$ -adapted process $(A_t)_{t\geq0}$ on \mathbb{C} , we define a stopping time

$$
T_F^A = \inf\{t \ge 0 : A_t \in F\}
$$

for closed subset F of $\mathbb C$. Let $(B_t)_{t\geq0}$ be a complex Brownian motion that starts from 0 under the probability measure \boldsymbol{P}_0 . Since $\overline{B(z,r)} \subseteq G^c$, we get

$$
\boldsymbol{P}_0(T_{\overline{B(z,r)}}^{f(B)} < \infty) = 0.
$$

By Theorem 7.18, there exists a complex Brownian motion Γ that starts from $f(0)$ under \mathbf{P}_0 , such that

$$
f(B_t) = \Gamma_{C_t} \qquad \forall t \ge 0 \quad \mathbf{P}_0\text{-}(a.s.),
$$

where

$$
C_t = \int_0^t |f'(B_s)|^2 ds \qquad \forall t \ge 0.
$$

By Proposition 7.16, we see that

$$
\boldsymbol{P}_0(T^{\Gamma}_{\overline{B(z,r)}}<\infty)=1.
$$

Since $(C_t)_{t>0}$ is a continuous increasing process and $C_\infty = \infty$ P_0 -(a.s.), we have

$$
\boldsymbol{P}_0(T_{\overline{B(z,r)}}^{f(B)} < \infty) = \boldsymbol{P}_0(T_{\overline{B(z,r)}}^{\Gamma_C} < \infty) = 1
$$

which is a contradiction.

7.5 Exercise 7.28 (Feynman–Kac formula for Brownian motion)

This is a continuation of Exercise 6.26 in Chap. 6. With the notation of this exercise, we assume that $E = \mathbb{R}^d$ and $X_t = B_t$. Let v be a nonnegative function in $C_0(\mathbb{R}^d)$, and assume that v is continuously differentiable with bounded first derivatives. As in Exercise 6.26, set, for every $\varphi \in B(\mathbb{R}^d)$,

$$
Q_t^*\varphi(x) = \mathbf{E}_x[\varphi(X_t)e^{-\int_0^t v(X_s)ds}].
$$

- 1. Using the formula derived in question 2. of Exercise 6.26, prove that, for every $t > 0$, and every $\varphi \in C_0(\mathbb{R}^d)$, the function $Q_t^*\varphi$ is twice continuously differentiable on \mathbb{R}^d , and that $Q_t^*\varphi$ and its partial derivatives up to order 2 belong to $C_0(\mathbb{R}^d)$. Conclude that $Q_t^*\varphi \in D(L)$.
- 2. Let $\varphi \in C_0(\mathbb{R}^d)$ and set $u_t(x) = Q_s^* \varphi(x)$ for every $t > 0$ and $x \in \mathbb{R}^d$. Using question 3. of Exercise 6.26, prove that, for every $x \in \mathbb{R}^d$, the function $t \mapsto u_t(x)$ is continuously differentiable on $(0, \infty)$, and

$$
\frac{\partial}{\partial t}u_t = \frac{1}{2}\Delta u_t - vu_t.
$$

Proof.

1. For $f: \mathbb{R}^d \to \mathbb{R}$, we set $||f|| = \sup_{x \in \mathbb{R}^d} |f(x)|$. Observe that we have the following facts:

 \Box

(a) Fix $\varphi \in B(\mathbb{R}^d)$ and $t \geq 0$. By the definition of $Q_t^*\varphi$, we get

$$
||Q_t^* \varphi|| \leq ||\varphi||.
$$

(b) Fix $\varphi \in C_0(\mathbb{R}^d)$ and $t \geq 0$. By question 2. of Exercise 6.26, we get

$$
Q_t^*\varphi(x) = Q_t\varphi(x) - \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds \qquad \forall x \in \mathbb{R}^d,
$$

where $\{Q_t\}$ is the semigroup of $(B_t)_{t\geq 0}$.

(c) Fix $f \in C_0(\mathbb{R}^d)$ and $t \geq 0$. Since $Q_t f(x) = f * k_s(x)$, where

$$
k(x) := (2\pi)^{-\frac{d}{2}} e^{-\frac{|x|^2}{2}}
$$
 and $k_s(x) := (s)^{-\frac{d}{2}} k(\frac{x}{\sqrt{s}}),$

we see that $Q_t f \in C^{\infty}(\mathbb{R}^d)$, and that $Q_t f$ and all its partial derivatives belong to $C_0(\mathbb{R}^d)$. Moreover, if $t > 0$, then

$$
||D_j Q_t f|| \le \frac{1}{\sqrt{t}} ||D_j k||_{L^1(\mathbb{R}^d)} ||f||. \tag{34}
$$

.

Indeed, since

$$
D_j Q_t f(x) = D_j (f * k_t)(x) = \int_{\mathbb{R}^d} (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2t}} \left(-\frac{x-y}{t}\right) f(y) dy = \frac{-1}{\sqrt{t}} \left(((D_j k)_t) * f\right)(x),
$$

we have

$$
||D_j Q_t f(x)|| \leq \frac{1}{\sqrt{t}} ||((D_j k)_t) * f|| \leq \frac{1}{\sqrt{t}} ||D_j k||_{L^1(\mathbb{R}^d)} ||f||.
$$

(d) Let $s > 0$. Then

$$
D_i k_s(x) = \frac{1}{\sqrt{s}} (D_i k)_s(x) \qquad \forall x \in \mathbb{R}^d.
$$

(e) Let $\varphi \in C_0(\mathbb{R}^d)$. Then

 $||Q_r^*\varphi|| \le ||\varphi||$

for all $r \geq 0$. We will show that $x \in \mathbb{R}^d \mapsto Q_r^*\varphi(x)$ is continuous for all $r \geq 0$. Therefore $vQ_r^*\varphi \in C_0(\mathbb{R}^d)$,

$$
Q_s(vQ_r^*\varphi)(x) = ((vQ_r^*\varphi) * k_s)(x) \in C^\infty(\mathbb{R}^d),
$$

and that $Q_s(vQ_r^*\varphi)(x)$ and all its derivatives belong to $C_0(\mathbb{R}^d)$ for all $r, s \geq 0$. Moreover,

$$
\int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds = \int_0^t ((vQ_{t-s}^*\varphi) * k_s)(x)ds \qquad \forall x \in \mathbb{R}^d
$$

(f) Note that

$$
\{h \in C^2(\mathbb{R}^d) \mid h \text{ and } \Delta h \in C_0(\mathbb{R}^d)\} \subseteq D(L),
$$

where L is the generator of B and $D(L)$ is the domain of L.

Fix $\varphi \in C_0(\mathbb{R}^d)$. To prove problem 1, it suffices to show that $x \in \mathbb{R}^d \mapsto \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds$ is twice continuously differentiable, and that $x \in \mathbb{R}^d \mapsto \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds$ and its partial derivatives up to order 2 belong to $C_0(\mathbb{R}^d)$.

(a) We show that $x \in \mathbb{R}^d \mapsto \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds$ belong to $C_0(\mathbb{R}^d)$. It suffices to show that $x \in \mathbb{R}^d \mapsto Q_r^*\varphi(x)$ is continuous for all $r \geq 0$. Indeed, since

$$
Q_s(vQ_{t-s}^*\varphi) \in C_0(\mathbb{R}^d) \qquad \forall s \in [0, t]
$$

and

$$
||Q_s(vQ^*_{t-s}\varphi)|| \le ||v|| ||\varphi|| \qquad \forall s \in [0,t],
$$

we get

$$
\lim_{x \to a} \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds = \int_0^t \lim_{x \to a} Q_s(vQ_{t-s}^* \varphi)(x) ds = \begin{cases} \int_0^t Q_s(vQ_{t-s}^* \varphi)(a) ds, & \text{if } a \neq \infty \\ 0, & \text{otherwise} \end{cases}
$$

and, hence, $x \in \mathbb{R}^d \mapsto \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds$ belong to $C_0(\mathbb{R}^d)$. Now we show that $x \in \mathbb{R}^d \mapsto Q_r^*\varphi(x)$ is continuous for all $r \geq 0$. Fix $r \geq 0$. Observe that

$$
\mathbf{E}_x[\varphi(X_r)e^{-\frac{r}{n}\sum_{i=1}^n v(X_{\frac{ir}{n}})}] \stackrel{n\to\infty}{\to} Q_r^*\varphi(x) := \mathbf{E}_x[\varphi(X_r)e^{-\int_0^r v(X_s)ds}] \text{ uniformly on } \mathbb{R}^d.
$$

Indeed, since

$$
\mathbf{E}_{x}[\varphi(X_{r})e^{-\frac{r}{n}\sum_{i=1}^{n}v(X_{\frac{ir}{n}})}] = \mathbf{E}_{0}[\varphi(X_{r}+x)e^{-\frac{r}{n}\sum_{i=1}^{n}v(X_{\frac{ir}{n}}+x)}] \qquad \forall n \geq 1,
$$

$$
\mathbf{E}_{x}[\varphi(X_{r})e^{-\int_{0}^{r}v(X_{s})ds}] = \mathbf{E}_{0}[\varphi(X_{r}+x)e^{-\int_{0}^{r}v(X_{s}+x)ds}] \qquad \forall n \geq 1,
$$

and

$$
\frac{r}{n}\sum_{i=1}^{n}v(X_{\frac{ir}{n}}+x)\stackrel{n\to\infty}{\to}\int_{0}^{r}v(X_{s}+x)ds\text{ uniformly on }\mathbb{R}^{d} \qquad \mathbf{P}_{0}(\text{a.s.}),
$$

we get

$$
\lim_{n \to \infty} \mathbf{E}_x[\varphi(X_r)e^{-\frac{r}{n}\sum_{i=1}^n v(X_{\frac{ir}{n}})}] = \lim_{n \to \infty} \mathbf{E}_0[\varphi(X_r + x)e^{-\frac{r}{n}\sum_{i=1}^n v(X_{\frac{ir}{n}} + x)}]
$$

$$
= \mathbf{E}_0[\varphi(X_r + x)e^{-\int_0^r v(X_s + x)ds}]
$$

$$
= \mathbf{E}_x[\varphi(X_r)e^{-\int_0^r v(X_s)ds}] \text{ uniformly on } \mathbb{R}^d.
$$

By Lebesgue's dominated convergence theorem, we get

$$
x \in \mathbb{R}^d \mapsto \mathbf{E}_0[\varphi(X_r + x)e^{-\frac{r}{n}\sum_{i=1}^n v(X_{\frac{ir}{n}} + x)}] = \mathbf{E}_x[\varphi(X_r)e^{-\frac{r}{n}\sum_{i=1}^n v(X_{\frac{ir}{n}})}]
$$

is continuous for all $n\geq 1$ and so

$$
x \in \mathbb{R}^d \mapsto \mathbf{E}_x[\varphi(X_r)e^{-\int_0^r v(X_s)ds}] = Q_r^*\varphi(x)
$$

is continuous.

(b) We show that

$$
D_i \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds = D_i \int_0^t ((vQ_{t-s}^* \varphi) * k_s)(x) ds = \int_0^t ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds
$$

for all $x \in \mathbb{R}^d$ and

$$
x \in \mathbb{R}^d \mapsto D_i \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds
$$

belong to $C_0(\mathbb{R}^d)$ for all $i = 1, 2, ..., d$. Since $vQ_{t-s}^* \varphi$ is bounded, we have

$$
D_i((vQ_{t-s}^*\varphi)*k_s)(x) = ((vQ_{t-s}^*\varphi)*(D_ik_s))(x) \qquad \forall x \in \mathbb{R}^d.
$$

Note that, if $s \in [0, t]$, then

$$
|| (vQ_{t-s}^* \varphi) * (D_i k_s)|| \le ||vQ_{t-s}^* \varphi|| \times ||D_i k_s||_{L^1(\mathbb{R}^d)}
$$

\n
$$
\le ||v|| ||\varphi|| \times \frac{1}{\sqrt{s}} ||(D_i k)_s||_{L^1(\mathbb{R}^d)}
$$

\n
$$
\le ||v|| ||\varphi|| \times \frac{1}{\sqrt{s}} ||D_i k||_{L^1(\mathbb{R}^d)} \in L^1([0, t]).
$$

By mean value theorem and Lebesgue's dominated convergence theorem, we have

$$
D_i \int_0^t ((vQ_{t-s}^* \varphi) * k_s)(x) ds = \int_0^t D_i((vQ_{t-s}^* \varphi) * k_s)(x) ds = \int_0^t ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds
$$

for all $x \in \mathbb{R}^d$. Given $a \in \mathbb{R}^d \cup \{\infty\}$. By Lebesgue's dominated convergence theorem, we have

$$
\lim_{x \to a} D_i \int_0^t ((vQ_{t-s}^* \varphi) * k_s)(x) ds = \lim_{x \to a} \int_0^t ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds
$$

$$
= \int_0^t \lim_{x \to a} ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds
$$

$$
= \int_0^t \lim_{x \to a} D_i((vQ_{t-s}^* \varphi) * (k_s))(x) ds
$$

$$
= \int_0^t \lim_{x \to a} D_i(Q_s(vQ_{t-s}^* \varphi))(x) ds.
$$

Since $D_i Q_s (vQ_{t-s}^* \varphi) \in C_0(\mathbb{R}^d)$, we see that

$$
\int_0^t \lim_{x \to a} D_i(Q_s(vQ_{t-s}^*\varphi))(x)ds = \begin{cases} \int_0^t D_i(Q_s(vQ_{t-s}^*\varphi))(a)ds, & \text{if } a \neq \infty \\ 0, & \text{otherwise} \end{cases}
$$

$$
= \begin{cases} D_i \int_0^t (Q_s(vQ_{t-s}^*\varphi))(a)ds, & \text{if } a \neq \infty \\ 0, & \text{otherwise.} \end{cases}
$$

and so

$$
x \in \mathbb{R}^d \mapsto D_i \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds
$$

belong to $C_0(\mathbb{R}^d)$.

(c) We show that

$$
D_{j,i} \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds = D_{j,i} \int_0^t ((vQ_{t-s}^* \varphi) * k_s)(x) ds = \int_0^t ((D_j(vQ_{t-s}^* \varphi)) * (D_i k_s))(x) ds
$$

for all $x \in \mathbb{R}^d$ and

$$
x \in \mathbb{R}^d \mapsto D_{j,i} \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds
$$

belong to $C_0(\mathbb{R}^d)$ for all $i, j = 1, 2, ..., d$. Since we have shown that

$$
D_j Q_r^* \varphi(x) = D_j Q_r \varphi(x) - D_j \int_0^r Q_s(vQ_{r-s}^* \varphi)(x) ds
$$

and

$$
D_j Q_r \varphi(x), D_j \int_0^r Q_s(vQ_{r-s}^* \varphi)(x) ds \in C_0(\mathbb{R}^d)
$$

for all $r \geq 0$ and $j = 1, 2, ..., d$, we see that

$$
vQ_r^*\varphi \in C^1(\mathbb{R}^d)
$$
 and $D_j(vQ_r^*\varphi) \in C_0(\mathbb{R}^d)$.

Thus $\int_0^t ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x)ds$ is well-defined. Fix $0 < s < t$. First, we show that

$$
D_{j,i}Q_s(vQ_{t-s}^*\varphi)(x) = D_j((vQ_{t-s}^*) * (D_ik_s))(x) = ((D_j(vQ_{t-s}^*\varphi)) * (D_ik_s))(x)
$$

for all $x \in \mathbb{R}^d$. Note that $D_i k_s \in L^1(\mathbb{R}^s)$ and

$$
||D_j(vQ_{t-s}^* \varphi)|| = ||(D_j v)Q_{t-s}^* \varphi + vD_j Q_{t-s}^* \varphi||
$$

\n
$$
= ||(D_j v)Q_{t-s}^* \varphi + vD_j Q_{t-s} \varphi - vD_j \int_0^{t-s} Q_u(vQ_{t-s-u}^* \varphi) du||
$$

\n
$$
= ||(D_j v)Q_{t-s}^* \varphi + vD_j Q_{t-s} \varphi - v \int_0^{t-s} D_j Q_u(vQ_{t-s-u}^* \varphi) du||
$$

\n
$$
= ||(D_j v)Q_{t-s}^* \varphi + vD_j Q_{t-s} \varphi - v \int_0^{t-s} D_j(vQ_{t-s-u}^* \varphi) * (k_u) du||
$$

\n
$$
= ||(D_j v)Q_{t-s}^* \varphi + vD_j Q_{t-s} \varphi - v \int_0^{t-s} (vQ_{t-s-u}^* \varphi) * (D_j k_u) du||
$$

\n
$$
\leq ||D_j v||||\varphi|| + ||v||||D_j Q_{t-s} \varphi|| + \int_0^t ||(vQ_{t-s-u}^* \varphi) * (D_j k_u)||du
$$

\n
$$
\leq ||D_j v||||\varphi|| + ||v||||D_j Q_{t-s} \varphi|| + \int_0^t ||(vQ_{t-s-u}^* \varphi)||||(D_j k_u)||_{L^1(\mathbb{R}^d)} du
$$

\n
$$
\leq ||D_j v||||\varphi|| + ||v||||D_j Q_{t-s} \varphi|| + \int_0^t ||v||||\varphi|| \frac{1}{\sqrt{u}} ||D_j k||_{L^1(\mathbb{R}^d)} du.
$$

By (34) , we get

$$
||D_j(vQ_{t-s}^*\varphi)|| \le C(1+\frac{1}{\sqrt{t-s}}),
$$

where C is a constant independent of s and j (We may set $C = \max_{1 \leq i \leq d} C_i$ and so C is independent of i). Fix $x \in \mathbb{R}^d$. By mean value theorem, we get

$$
|D_i k_s(y) (\frac{(vQ_{t-s}^* \varphi)(x - y + he_j) - (vQ_{t-s}^* \varphi)(x - y + he_j)}{h})| \leq C(1 + \frac{1}{\sqrt{t-s}})|D_i k_s(y)| \in L^1(\mathbb{R}^d).
$$

By Lebesgue's convergence theorem, we have

$$
D_{j,i}Q_s(vQ_{t-s}^*\varphi)(x) = D_j((vQ_{t-s}^*) * (D_i k_s))(x) = ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x).
$$

Next, we show that

$$
D_{j,i} \int_0^t Q_s(vQ_{t-s}^*\varphi)(x)ds = D_{j,i} \int_0^t ((vQ_{t-s}^*\varphi) * k_s)(x)ds = \int_0^t ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x)ds
$$

for all $x \in \mathbb{R}^d$. Note that we already have

$$
D_i \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds = \int_0^t ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds.
$$

It suffices to show that

$$
D_j \int_0^t ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x) ds = \int_0^t ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x) ds.
$$

Fix $x \in \mathbb{R}^d$. If $0 < s < t$, then

$$
\begin{split}\n&|\frac{((vQ_{t-s}^*\varphi)*(D_iks))(x+he_j)-((vQ_{t-s}^*\varphi)*(D_iks))(x)}{h}| \\
&\leq ||(D_j(vQ_{t-s}^*\varphi))*(D_iks)|| \\
&\leq ||D_j(vQ_{t-s}^*\varphi)||||D_iks||_{L^1(\mathbb{R}^d)} \\
&\leq C\left(1+\frac{1}{\sqrt{t-s}}\right)\frac{1}{\sqrt{s}}||(D_ik)_s||_{L^1(\mathbb{R}^d)} \\
&= C\left(1+\frac{1}{\sqrt{t-s}}\right)\frac{1}{\sqrt{s}}||D_ik||_{L^1(\mathbb{R}^d)} \in L^1((0,t)).\n\end{split}
$$

By Lebesgue's dominated convergence theorem, we have

$$
D_j D_i \int_0^t Q_s (vQ_{t-s}^* \varphi)(x) ds = D_j \int_0^t ((vQ_{t-s}^* \varphi) * (D_i k_s))(x) ds = \int_0^t ((D_j (vQ_{t-s}^* \varphi)) * (D_i k_s))(x) ds.
$$

Given $a \in \mathbb{R}^d \cup \{\infty\}$. Note that

$$
D_{j,i} \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds = \int_0^t ((D_j(vQ_{t-s}^* \varphi)) * (D_i k_s))(x) ds
$$

$$
= \int_0^t D_{j,i}((vQ_{t-s}^* \varphi)) * (k_s)(x) ds
$$

$$
= \int_0^t D_{j,i} Q_s(vQ_{t-s}^* \varphi)(x) ds
$$

and

$$
D_{j,i}Q_s(vQ_{t-s}^*\varphi) \in C_0(\mathbb{R}^d) \qquad \forall s \in (0,t).
$$

By Lebesgue's dominated convergence theorem, we have

$$
\lim_{x \to a} D_{j,i} \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds
$$
\n
$$
= \int_0^t \lim_{x \to a} D_{j,i} Q_s(vQ_{t-s}^* \varphi)(x) ds
$$
\n
$$
= \begin{cases}\n\int_0^t D_{j,i} Q_s(vQ_{t-s}^* \varphi)(a) ds, & \text{if } a \neq \infty \\
0, & \text{otherwise.} \n\end{cases}
$$
\n
$$
= \begin{cases}\nD_{j,i} \int_0^t Q_s(vQ_{t-s}^* \varphi)(a) ds, & \text{if } a \neq \infty \\
0, & \text{otherwise.}\n\end{cases}
$$

2. Since $u_t(x) = Q_t \varphi(x) - \int_0^t Q_s(vQ_{t-s}^* \varphi)(x) ds$, we show that

$$
\frac{\partial}{\partial t}(Q_t\varphi - \int_0^t Q_s(vQ_{t-s}^*\varphi)ds) = \frac{1}{2}\Delta u_t - vu_t
$$

and

$$
t \in [0, \infty) \mapsto \frac{1}{2}\Delta u_t(x) - v(x)u_t(x)
$$

is continuous for all $x \in \mathbb{R}^d$. Note that

$$
u_t(x) = Q_t \varphi - \int_0^t Q_s(vQ_{t-s}^* \varphi) ds = Q_t \varphi - \int_0^t Q_{t-s}(vQ_s^* \varphi) ds.
$$

By Theorem 7.1 and Leibniz integral rule, we get

$$
\frac{\partial}{\partial t}u_t(x) = \frac{\partial}{\partial t}Q_t\varphi(x) - v(t)Q_t^*\varphi(x) - \int_0^t \frac{\partial}{\partial t}Q_{t-s}(vQ_s^*\varphi)ds.
$$

$$
= \frac{1}{2}\Delta Q_t\varphi(x) - v(t)Q_t^*\varphi(x) - \int_0^t \frac{1}{2}\Delta Q_{t-s}(vQ_s^*\varphi)ds.
$$

Since we have shown that

$$
D_{i,j} \int_0^t Q_{t-s}(vQ_s^*\varphi)ds = D_{i,j} \int_0^t Q_s(vQ_{t-s}^*\varphi)ds = \int_0^t D_{i,j}Q_s(vQ_{t-s}^*\varphi)ds = \int_0^t D_{i,j}Q_{t-s}(vQ_s^*\varphi)ds,
$$

we get

$$
\frac{\partial}{\partial t}u_t(x) = \frac{1}{2}\Delta(Q_t\varphi(x) - \int_0^t Q_{t-s}(vQ_s^*\varphi)(x)ds) - vQ_t^*\varphi(x) = \frac{1}{2}\Delta u_t(x) - v(x)u_t(x).
$$

Now we show that

$$
t \in [0, \infty) \mapsto \frac{1}{2}\Delta u_t(x) - v(x)u_t(x)
$$

is continuous for all $x \in \mathbb{R}^d$. Fix $x \in \mathbb{R}^d$. By Lebesgus's dominated convergence theorem, we see that

$$
t\in[0,\infty)\mapsto u_t(x)=Q_t^*(x)=\boldsymbol{E}_x[\varphi(X_t)e^{-\int_0^t v(X_s)ds}]
$$

is continuous. It remain to show that $t \in [0, \infty) \mapsto \Delta u_t(x)$ is continuous. Let $h > 0$. Because

$$
D_{i,i}u_t(x) = \int_0^t ((D_j(vQ_{t-s}^*\varphi)) * (D_i k_s))(x)ds \qquad \forall t \ge 0,
$$

we get

$$
|D_{i,i}u_{t+h}(x) - D_{i,i}u_t(x)|
$$

\n
$$
\leq |\int_0^{t+h} ((D_j(vQ_{t+h-s}^* \varphi)) * (D_i k_s))(x) ds - \int_0^t ((D_j(vQ_{t+h-s}^* \varphi)) * (D_i k_s))(x) ds|
$$

\n
$$
+ |\int_0^t ((D_j(vQ_{t+h-s}^* \varphi)) * (D_i k_s))(x) ds - \int_0^t ((D_j(vQ_{t-s}^* \varphi)) * (D_i k_s))(x) ds|.
$$

\n
$$
\leq \int_t^{t+h} ||(D_j(vQ_{t+h-s}^* \varphi)) * (D_i k_s)||ds + \int_0^t |((D_j(vQ_{t+h-s}^* \varphi)) - (D_j(vQ_{t-s}^* \varphi))) * (D_i k_s))(x)| ds
$$

\n
$$
= \alpha + \beta.
$$

Note that

$$
\alpha \le \int_{t}^{t+h} ||D_j(vQ^*_{t+h-s}\varphi)|| ||D_ik_s||_{L^1(\mathbb{R}^d)} ds
$$

$$
\le \int_{t}^{t+h} C(1+\frac{1}{\sqrt{t+h-s}}) \frac{1}{\sqrt{s}} ||D_ik||_{L^1(\mathbb{R}^d)} ds \stackrel{h \to 0}{\to} 0.
$$

Now we show that $\beta \stackrel{h\to 0}{\to} 0$. Fix $0 < s < t$. First, we show that

$$
|((D_j(vQ_{t+h-s}^*\varphi)) - (D_j(vQ_{t-s}^*\varphi))) * (D_ik_s))(x)| \stackrel{h \to 0}{\to} 0
$$

for all $x \in \mathbb{R}^d$. Note that

$$
\begin{aligned} &\left| \left((D_j(vQ_{t+h-s}^*)\varphi)(x-y) - (D_j(vQ_{t-s}^*)\varphi)(x-y) \right) \times (D_ik_s)(y) \right| \\ &\leq (||D_j(vQ_{t+h-s}^*)\varphi)|| + ||D_j(vQ_{t-s}^*)\varphi)|| ||(D_ik_s)(y)| \\ &\leq (C(1+\frac{1}{t+h-s})+C(1+\frac{1}{t-s}))|(D_ik_s)(y)| \\ &\leq 2C(1+\frac{1}{t-s})|(D_ik_s)(y)| \in L^1(\mathbb{R}^d). \end{aligned}
$$

By Lebesgue convergence theorem, we have

$$
\left| \left((D_j(vQ^*_{t+h-s}\varphi)) - (D_j(vQ^*_{t-s}\varphi)) \right) * (D_ik_s) \right) (x) \right| \stackrel{h \to 0}{\to} 0.
$$

Next, we show that $\beta \stackrel{h\to 0}{\rightarrow} 0$. Note that

$$
\begin{split}\n&\|((D_j(vQ_{t+h-s}^* \varphi)) - (D_j(vQ_{t-s}^* \varphi))) * (D_i k_s))\| \\
&\leq \|((D_j(vQ_{t+h-s}^* \varphi)) - (D_j(vQ_{t-s}^* \varphi)))\| \times \|((D_i k_s))\|_{L^1(\mathbb{R}^d)} \\
&\leq (\|((D_j(vQ_{t+h-s}^* \varphi)))\| + \|((D_j(vQ_{t-s}^* \varphi)))\|) \times \|((D_i k_s))\|_{L^1(\mathbb{R}^d)} \\
&\leq (C(1 + \frac{1}{\sqrt{t+h-s}}) + C(1 + \frac{1}{\sqrt{t-s}})) \times \frac{1}{\sqrt{s}} \|D_i k\|_{L^1(\mathbb{R}^d)} \\
&\leq 2C(1 + \frac{1}{\sqrt{t-s}}) \times \frac{1}{\sqrt{s}} \|D_i k\|_{L^1(\mathbb{R}^d)} \in L^1((0,t)).\n\end{split}
$$

By Lebesgue's convergence theorem, we have $\beta \stackrel{h\to 0}{\to} 0$ and so $t \in [0,\infty) \mapsto \Delta u_t(x)$ is right continuous. By using similar way, we get $t \in [0, \infty) \mapsto \Delta u_t(x)$ is left continuous and, hence, $t \in [0, \infty) \mapsto \Delta u_t(x)$ is continuous which complete the proof.

7.6 Exercise 7.29

In this exercise $d = 2$ and \mathbb{R}^2 is identified with the complex plane C. Let $\alpha \in (0, 2\pi)$, and consider the open cone

$$
\mathscr{C}_{\alpha} = \{ re^{i\theta} : r > 0, \theta \in (-\alpha, \alpha) \}.
$$

Set $T := \inf\{t \geq 0 : B_t \notin \mathscr{C}_\alpha\}.$

- 1. Show that the law of log $|B_T|$ under P_1 is the law of $\beta_{\inf\{t>0:\vert\gamma_t\vert=\alpha\}}$, where β and γ are two independent linear Brownian motions started from 0.
- 2. Verify that, for every $\lambda \in \mathbb{R}$,

$$
\boldsymbol{E}_1[e^{i\lambda \log |B_T|}] = \frac{1}{\cosh(\alpha \lambda)}.
$$

Proof.

1. By the skew-product representation (Theorem 7.19), there exist two independent linear Brownian motions β and γ that start from 0 under P_1 such that

$$
B_t = e^{\beta_{H_t} + i\gamma_{H_t}} \qquad \forall t \ge 0 \quad \mathbf{P}_{1}(\text{a.s.}),
$$

where $H_t = \int_0^t \frac{1}{|B_s|^2} ds$. Set $S := \inf\{t \geq 0 : |\gamma_t| = \alpha\}$. Since $(H_t)_{t \geq 0}$ is a continuous increasing process and $H_{\infty} = \infty$ \mathbf{P}_1 -(a.s.), we have

$$
H_T = H_{\inf\{t \ge 0: |\gamma_{H_t}| = \alpha\}} = \inf\{t \ge 0: |\gamma_t| = \alpha\} = S
$$

and so $\log |B_T| = \beta_{H_T} = \beta_S = \beta_{\inf\{t>0:|\gamma_t|=\alpha\}} P_1$ -(a.s.).

2. Note that $cosh(x)$ is an even function. By taking complex conjugate in both side of the identity, we may assume that $\lambda \geq 0$. By problem 1., we get

$$
\boldsymbol{E}_1[e^{i\lambda \log |B_T|}] = \boldsymbol{E}_1[e^{i\lambda \beta_S}] = \boldsymbol{E}_1[\boldsymbol{E}_1[e^{i\lambda \beta_S} \mid \sigma(\gamma_t, t \geq 0)]].
$$

Recall that, if $X \sim \mathcal{N}(\mu, \sigma),$ then the characteristic function of X is

$$
\mathbf{E}[e^{i\xi X}] = e^{i\mu\xi - \frac{\sigma^2}{2}\xi^2}.
$$

Since β and γ are independent, we get

$$
\boldsymbol{E}_1[\boldsymbol{E}_1[e^{i\lambda\beta_S} \mid \sigma(\gamma_t, t \ge 0)]] = \boldsymbol{E}_1[\int_{\mathbb{R}} e^{i\lambda y} \frac{1}{\sqrt{2\pi S}} e^{-\frac{y^2}{2S}} dy] = \boldsymbol{E}_1[e^{-\frac{S}{2}\lambda^2}].
$$

Since $(e^{\lambda \gamma_{t\wedge S}-\frac{\lambda^2}{2}(t\wedge S)})_{t\geq 0}$ is an uniformly integrable martingale, we see that

$$
\boldsymbol{E}_1[e^{\lambda \gamma_S - \frac{\lambda^2}{2}S}] = 1.
$$

and so

$$
e^{\lambda\alpha}\mathbf{E}_1[e^{-\frac{\lambda^2}{2}S}1_{\{\gamma_S=\alpha\}}]+e^{-\lambda\alpha}\mathbf{E}_1[e^{-\frac{\lambda^2}{2}S}1_{\{\gamma_S=-\alpha\}}]=1.
$$

By symmetry ($-\gamma$ is a Brownian motion), we have

$$
\mathbf{E}_1[e^{-\frac{\lambda^2}{2}S}1_{\{\gamma_S=\alpha\}}] = \mathbf{E}_1[e^{-\frac{\lambda^2}{2}S}1_{\{\gamma_S=-\alpha\}}] = \frac{1}{2}\mathbf{E}_1[e^{-\frac{\lambda^2}{2}S}]
$$

and, hence,

$$
\boldsymbol{E}_1[e^{-\frac{\lambda^2}{2}S}] = \frac{1}{\cosh(\alpha\lambda)}.
$$

Chapter 8

Stochastic Differential Equations

8.1 Exercise 8.9 (Time change method)

We consider the stochastic differential equation

$$
E(\sigma, 0): \qquad dX_t = \sigma(X_t)dB_t
$$

where the function $\sigma : \mathbb{R} \to \mathbb{R}$ is continuous and there exist constants $\epsilon > 0$ and M such that $\epsilon \leq \sigma \leq M$.

1. In this question and the next one, we assume that X solves $E(\sigma, 0)$ with $X_0 = x$, for every $t \ge 0$,

$$
A_t = \int_0^t \sigma(X_s)^2 ds, \quad \tau_t = \inf\{s \ge 0 \mid A_s > t\}.
$$

Justify the equalities

$$
\tau_t = \int_0^t \frac{1}{\sigma(X_{\tau_r})^2} dr, \quad A_t = \inf\{s \ge 0 \mid \int_0^s \frac{1}{\sigma(X_{\tau_r})^2} dr > t\}.
$$

2. Show that there exists a real Brownian motion $\beta = (\beta_t)_{t>0}$ started from x such that, a.s. for every $t \geq 0$,

$$
X_t = \beta_{\inf\{s\geq 0 \mid \int_0^s \sigma(\beta_r)^{-2} dr > t\}}.
$$

3. Show that weak existence and weak uniqueness hold for $E(\sigma, 0)$. (Hint: For the existence part, observe that, if X is defined from a Brownian motion β by the formula of question 2., X is (in an appropriate filtration) a continuous local martingale with quadratic variation $\langle X, X \rangle_t = \int_0^t \sigma(X_r)^2 dr$.

Proof.

For the sake of simplicity, sometimes we denote A_t and τ_t as $A(t)$ and $\tau(t)$, respectively.

1. Since $\sigma \in C(\mathbb{R})$ and $A'(t) = \sigma(X_t)^2 \geq \epsilon^2 > 0$, we see that $A(t)$ is strickly increasing and so $A(t)$ is injective. Because $A(\tau(t)) = t$ for all $t \geq 0$, we see that $\tau(t) = A^{-1}(t)$ and, hence, $\tau(t) \in C^{1}(R)$. By setting $s = \tau(r)$, we get $r = A(s)$, $dr = A'(s)ds$, and so

$$
\int_0^t \frac{1}{\sigma(X_{\tau(r)})^2} dr = \int_0^t A'(\tau(r))^{-1} dr = \int_0^{\tau(t)} A'(s)^{-1} A'(s) ds = \tau(t).
$$

Moreover,

$$
A(t) = \inf\{s \ge 0 \mid s > A(t)\} = \inf\{s \ge 0 \mid \tau(s) > t\} = \inf\{s \ge 0 \mid \int_0^s \frac{1}{\sigma(X_{\tau(r)})^2} dr > t\}.
$$

2. Note that $X_t = X_0 + \int_0^t \sigma(X_s) dB_s$ is a continuous local maringale and

$$
\langle X, X \rangle_t = \int_0^t \sigma(X_s)^2 ds = A(t) \qquad \forall t \ge 0.
$$

Since $\sigma \geq \epsilon > 0$, we see that $\langle X, X \rangle_{\infty} = \infty$ and, hence, there exists a Brownian motion $\beta = (\beta_t)_{t\geq 0}$ such that

$$
X_t = \beta_{\langle X, X \rangle_t} = \beta_{A(t)} \qquad \forall t \ge 0 \text{ (a.s.)}.
$$

By problem 1., we get $X_{\tau(r)} = \beta_r$ and

$$
X_t = \beta_{A(t)} = \beta_{\inf\{s \ge 0 \mid \int_0^s \frac{1}{\sigma(X_{\tau_r})^2} dr > t\}} = \beta_{\inf\{s \ge 0 \mid \int_0^s \sigma(\beta_r)^{-2} dr > t\}}.
$$

3. (a) We prove that weak existence hold for $E(\sigma, 0)$. Fix $x \in \mathbb{R}$. We show that there exists a solution $(X, B), (\Omega, \mathscr{F}, (\mathscr{C}_t)_{t\geq 0}, P)$ of $E_x(\sigma, 0)$. Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ be a filtered probability space $((\mathscr{F}_t)_{t\geq 0}$ is complete) and $(\beta_t)_{t\geq 0}$ is a $(\mathscr{F}_t)_{t\geq 0}$ -Brownian motion such that $\beta_0 = x$. Define

$$
\tau(t) := \int_0^t \sigma(\beta_r)^{-2} dr \text{ and } A(t) := \inf\{s \ge 0 \mid \tau(s) > t\}.
$$

As the proof in probelm 1., we have $\tau(A(t)) = t$ for all $t \geq 0$ and $A(t), \tau(t) \in C^1(\mathbb{R})$. Moreover, since $A'(\tau(t)) = \tau'(t)^{-1} = \sigma(\beta_t)^2$, we see that

$$
A(t) = \int_0^t \sigma(\beta_r)^2 dr.
$$

Set

$$
X_t := \beta_{A(t)}
$$
 and $\mathscr{C}_t := \mathscr{F}_{A_t}$.

Then X is continuous. Because $(\mathscr{F}_t)_{t>0}$ is complete, we see that $(\mathscr{C}_t)_{t>0}$ is complete. Since $A_t < \infty$ (a.s.) and A_t is a $(\mathscr{F}_t)_{t\geq0}$ -stopping time for all $t\geq0$, we see that X_t is \mathscr{C}_t -measuable for all $t\geq0$. Define

$$
Y_t := \int_0^t \sigma(\beta_s)^{-1} d\beta_s, \quad B_t := Y_{A_t}.
$$

Then $B_0 = 0$ and B_t is \mathscr{C}_t -measurable for all $t \geq 0$. Now, we show that $(B_t)_{t>0}$ is a $(\mathscr{C}_t)_{t>0}$ -Brownian motion such that $B_0 = 0$. It suffices to show that $(B_t)_{t\geq 0}$ is a $(\mathscr{C}_t)_{t\geq 0}$ -martingale and $\langle B, B \rangle_t = t$ for all $t \geq 0$. Fix $s \leq r < t$. Since Y is a $(\mathscr{F}_t)_{t \geq 0}$ -continuous local martingale, Y^{A_t} is a $(\mathscr{F}_t)_{t \geq 0}$ -continuous local martingale. Moreover, since

$$
\langle Y^{A_t}, Y^{A_t} \rangle_{\infty} = \int_0^{A_t} \sigma(X_r)^{-2} dr \leq \delta^2 A_t \leq \delta^{-2} M^2 t < \infty,
$$

we see that Y^{A_t} is a uniform integrable $(\mathscr{F}_t)_{t\geq 0}$ -martingale. By optional stopping theorem, we get

$$
\boldsymbol{E}[B_r \mid \mathscr{C}_s] = \boldsymbol{E}[Y_{A_r}^{A_t} \mid \mathscr{F}_{A_s}] = Y_{A_s}^{A_t} = Y_{A_s} = B_s
$$

and so $(B_t)_{t\geq 0}$ is a $(\mathscr{C}_t)_{t\geq 0}$ -martingale. Moreover, since $\langle Y, Y \rangle_t = \tau(t)$, we get

$$
\langle B, B \rangle_t = \langle Y, Y \rangle_{A_t} = \tau(A(t)) = t \quad \forall t \ge 0
$$

and, hence, $(B_t)_{t>0}$ is a $(\mathscr{C}_t)_{t>0}$ -Brownian motion. Observe that

$$
\int_0^t \sigma(\beta_{A_s})dY_{A_s} = \int_0^{A_t} \sigma(\beta_s)dY_s.
$$

Indeed, since

$$
\sum_{i=0}^{n-1} \sigma(\beta_{A_{\frac{it}{n}}})(Y_{A_{\frac{(i+1)t}{n}}}-Y_{A_{\frac{it}{n}}}) \xrightarrow{P} \int_0^t \sigma(\beta_{A_s})dY_{A_s} \text{ as } n \to \infty,
$$

there exists ${n_k}$ such that

$$
\sum_{i=0}^{n_k-1} \sigma(\beta_{A_{\frac{it}{n_k}}})(Y_{A_{\frac{(i+1)t}{n_k}}}-Y_{A_{\frac{it}{n_k}}}) \stackrel{(a.s.)}{\rightarrow} \int_0^t \sigma(\beta_{A_s})dY_{A_s} \text{ as } n \to \infty.
$$

Because

$$
\sum_{i=0}^{n_k-1} \sigma(\beta_{A_{\frac{it}{n_k}}})(Y_{A_{\frac{(i+1)t}{n_k}}}-Y_{A_{\frac{it}{n_k}}}) \stackrel{(a.s.)}{\rightarrow} \int_0^{A_t} \sigma(\beta_s)dY_s \text{ as } n \to \infty,
$$

we have

$$
\int_0^t \sigma(\beta_{A_s})dY_{A_s} = \int_0^{A_t} \sigma(\beta_s)dY_s \text{ (a.s.)}
$$

and so

$$
\int_0^t \sigma(X_s) dB_s = \int_0^t \sigma(\beta_{Y_{A_s}}) dY_{A_s} = \int_0^{A_t} \sigma(\beta_s) dY_s = \int_0^{A_t} \sigma(\beta_s) \sigma(\beta_s)^{-1} d\beta_s = \beta_{A_t} - \beta_0 = X_t - x.
$$

Therefore $(X, B), (\Omega, \mathscr{F}, (\mathscr{C}_t)_{t\geq 0}, P)$ is a soltion of $E_x(\sigma, 0)$.

(b) We prove that weak uniqueness hold for $E(\sigma, 0)$. Fix $x \in \mathbb{R}$. Let $(X, B), (\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ be a soltion of $E_x(\sigma, 0)$. By problem 2., there exists a Borwnian motion $(\beta_t)_{t\geq 0}$ such that

$$
X_t = \beta_{\inf\{s \ge 0 \mid \int_0^s \sigma(\beta_r)^{-2} dr > t\}} \text{ (a.s.)} \quad \forall t \ge 0.
$$

Define $\Phi_t : C(\mathbb{R}_+, \mathbb{R}) \mapsto \mathbb{R}$ by

$$
\Phi_t(b) := b(\inf\{s \ge 0 \mid \int_0^s \sigma(b(r))^{-2} dr > t\}).
$$

Let $f_i: \mathbb{R} \to \mathbb{R}$ be bounded measuable functions for $i = 1, 2, ..., m$ and $0 \le t_1 < t_2 < ... < t_m$. Then

$$
\begin{aligned} \mathbf{E}[f_1(X_{t_1})f_2(X_{t_2})...f_m(X_{t_m})] &= \mathbf{E}[f_1(\Phi_{t_1}(\beta))f_2(\Phi_{t_2}(\beta))...f_m(\Phi_{t_m}(\beta))] \\ &= \int f_1(\Phi_{t_1}(w))f_2(\Phi_{t_2}(w))...f_m(\Phi_{t_m}(w))W(dw), \end{aligned}
$$

where $W(dw)$ is the Wiener measure on $C(\mathbb{R}_+, \mathbb{R})$. Thus, weak uniqueness hold for $E_x(\sigma, 0)$.

8.2 Exercise 8.10

We consider the stochastic differential equation

$$
E(\sigma, b): \quad dX_t = \sigma(X_t)dB_t + b(X_t)dt
$$

where the function $\sigma, b : \mathbb{R} \to \mathbb{R}$ are bounded and continuous, and such that $\int_{\mathbb{R}} |b(x)| dx < \infty$ and $\sigma \geq \epsilon$ for some $\epsilon > 0$.

- 1. Let X be a solution of $E(\sigma, b)$. Show that there exists a monotone increasing function $F : \mathbb{R} \to \mathbb{R}$, which is also twice continuously differentiable, such that $F(X_t)$. Give an explicit formula for F in terms of σ and b.
- 2. Show that the process $Y_t = F(X_t)$ solves a stochastic differential equation of the form $dY_t = \sigma'(Y_t)dB_t$, with a function σ' to be determined.
- 3. Using the result of the preceding exercise, show that weak existence and weak uniqueness hold for $E(\sigma, b)$. Show that pathwise uniqueness also holds if σ is Lipschitz.

Proof.

For the sake of simplicity, we define $||f||_u := \sup_{x \in \mathbb{R}} |f(x)|$ and $||f||_{L^1(\mathbb{R})} := \int_{\mathbb{R}} |f(x)| dx$.

1. Suppose $F \in C^2(\mathbb{R})$. By Itô's formula, we get

$$
F(X_t) = F(X_0) + \int_0^t F'(Xs) dX_s + \frac{1}{2} \int_0^t F''(X_s) d\langle X, X \rangle_s
$$

= $F(X_0) + \int_0^t F'(Xs) \sigma(X_s) dB_s + \int_0^t F'(X_s) b(X_s) ds + \frac{1}{2} \int_0^t F''(X_s) \sigma(X_s)^2 ds.$

 \Box

Define $F : \mathbb{R} \mapsto \mathbb{R}$ by

$$
F(x) := \int_0^x e^{-\int_0^s \frac{2b(r)}{\sigma(r)^2} dr} ds.
$$

Note that

$$
F'(x) = e^{-\int_0^x \frac{2b(r)}{\sigma(r)^2} dr}, F''(x) = -e^{-\int_0^x \frac{2b(r)}{\sigma(r)^2} dr} \frac{2b(x)}{\sigma(x)^2},
$$

and

$$
2F'(x)b(x) + F''(x)\sigma(x)^2 = 0.
$$

Then F is a monotone increasing, twice continuously differentiable function and

$$
F(X_t) = F(X_0) + \int_0^t F'(X_s) \sigma(X_s) dB_s
$$

is a continuous local martingale. Since

$$
\mathbf{E}[\langle F(X), F(X) \rangle_t] = \mathbf{E}[\int_0^t F'(X_s)^2 \sigma(X_s)^2 ds] \le t \times ||(F')^2||_u ||\sigma^2||_u \le t \times e^{\frac{4}{\epsilon^2} \int_{\mathbb{R}} |b(r)| dr} ||\sigma^2||_u < \infty,
$$

we see that $(F(X_t))_{t\geq 0}$ is a martingale.

2. Since $F'(x) > 0$ for all $x \in \mathbb{R}$, F is strictly increasing and so F^{-1} exist. Observe that

$$
e^{-\int_0^s \frac{2b(r)}{\sigma(r)^2} dr} \ge e^{-|\int_0^s \frac{2b(r)}{\sigma(r)^2} dr|} \ge e^{-\frac{2}{\epsilon^2} ||b||_{L^1(\mathbb{R})}} > 0.
$$

Then

$$
\lim_{x \to \pm \infty} F(x) = \lim_{x \to \pm \infty} \int_0^x e^{-\int_0^s \frac{2b(r)}{\sigma(r)^2} dr} ds = \pm \infty
$$

and so the domain of F^{-1} is R. Moreover, since $F \in C^2(\mathbb{R})$, we see that $F^{-1} \in C^2(\mathbb{R})$. Set

$$
H(x) := F'(x)\sigma(x)
$$
 and $\sigma'(y) := H(F^{-1}(y)).$

Then

$$
E'(\sigma'):\quad dY_t = H(X_t)dB_t = H(F^{-1}(Y_t))dB_t = \sigma'(Y_t)dB_t.
$$

3. First, we show that weak existence and weak uniqueness hold for $E'(\sigma')$. By Exercise 8.9, it suffices to show that $\sigma': \mathbb{R} \to \mathbb{R}$ is a continuous function and the exist $\epsilon, M > 0$ such that $\delta \leq \sigma'(y) \leq M$ for all $y \in \mathbb{R}$. Since F^{-1} and H are continuous,

$$
H(x) = e^{-\int_0^x \frac{2b(s)}{\sigma(s)^2} ds} \sigma(x) \ge e^{-\left|\int_0^x \frac{2b(s)}{\sigma(s)^2} ds\right|} \sigma(x) \ge e^{-\frac{2}{\epsilon^2}||b||_{L^1(\mathbb{R})}} \epsilon := \delta > 0 \quad \forall x \in \mathbb{R},
$$

and

$$
H(x) = e^{-\int_0^x \frac{2b(s)}{\sigma(s)^2} ds} \sigma(x) \le e^{\int_0^x \frac{2b(s)}{\sigma(s)^2} ds} \sigma(x) \le e^{\frac{2}{\epsilon^2} ||b||_{L^1(\mathbb{R})}} ||\sigma||_u := M < \infty \quad \forall x \in \mathbb{R},
$$

we see that $\sigma'(y) = H(F^{-1}(y))$ is continuous and $\delta \leq \sigma'(x) \leq M$ for all $x \in \mathbb{R}$. Thus, weak existence and weak uniqueness hold for $E'(\sigma')$.

Now, we show that weak existence hold for $E(\sigma, b)$. Fix $x \in \mathbb{R}$. Set $y = F(x)$. There exists a solution $(Y, B), (\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \geq 0}, \mathbb{P})$ of $E'_y(\sigma')$. Define

$$
X_t := F^{-1}(Y_t).
$$

By Itô's formula, we get

$$
X_t = x + \int_0^t \frac{dF^{-1}}{dy} (Y_s) dY_s + \frac{1}{2} \int_0^t \frac{d^2F^{-1}}{dy^2} (Y_s) d\langle Y, Y \rangle_s.
$$

By $F^{-1}(F(x)) = x$, we get

$$
\frac{dF^{-1}}{dy}(F(x))\frac{dF}{dx}(x) = 1 \text{ and } \frac{d^2F^{-1}}{dy^2}(F(x))\left(\frac{dF}{dx}(x)\right)^2 + \frac{dF^{-1}}{dy}(F(x))\frac{d^2F}{dx^2}(x) = 0.
$$

Thus,

$$
\frac{dF^{-1}}{dy}(Y_s) = \frac{dF^{-1}}{dy}(F(X_s)) = (\frac{dF}{dx}(X_s))^{-1} = e^{\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr}
$$

and

$$
\frac{d^2F^{-1}}{dy^2}(Y_s) = \frac{d^2F^{-1}}{dy^2}(F(X_s)) = \left(-\frac{dF^{-1}}{dy}(F(X_s))\frac{d^2F}{dx^2}(X_s)\right) \times \left(\frac{dF}{dx}(X_s)\right)^{-2}
$$

$$
= \left(-e^{\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} \times -e^{-\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} \left(\frac{2b(X_s)}{\sigma(X_s)^2}\right)\right) \times e^{2\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr}
$$

$$
= \frac{2b(X_s)}{\sigma(X_s)^2} e^{2\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr}.
$$

By

$$
dY_t = \sigma'(Y_t)dB_t = H(F^{-1}(Y_t))dB_t = H(X_t)dB_t = e^{-\int_0^{X_t} \frac{2b(r)}{\sigma(r)^2} dr} \sigma(X_t)dB_t,
$$

we get

$$
X_t = x + \int_0^t \frac{dF^{-1}}{dy} (Y_s) dY_s + \frac{1}{2} \int_0^t \frac{d^2F^{-1}}{dy^2} (Y_s) d\langle Y, Y \rangle_s
$$

\n
$$
= x + \int_0^t e^{\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} e^{-\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} \sigma(X_s) dB_s + \frac{1}{2} \int_0^t \frac{2b(X_s)}{\sigma(X_s)^2} e^{-\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} e^{-2\int_0^{X_s} \frac{2b(r)}{\sigma(r)^2} dr} \sigma(X_s)^2 ds
$$

\n
$$
= x + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds
$$

and so $(X, B), (\Omega, \mathscr{F},(\mathscr{F}_t)_{t\geq 0}, P)$ is a solution of $E_x(\sigma, b)$. Now, we show that weak uniqueness hold for $E(\sigma, b)$. Fix $x \in \mathbb{R}$ and $y = F(x)$. Let $(X, B), (\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \geq 0}, P)$ and $(X', B'), (\Omega', \mathscr{F}', (\mathscr{F}_t')_{t\geq 0}, P')$ be solutions of $E_x(\sigma, b)$. By problem 2., we see that $(Y_t)_{t\geq 0} := (F(\overline{X_t}))_{t\geq 0}$ and $(Y'_t)_{t\geq 0} := (F(X'_t))_{t\geq 0}$ are solutions of $E'_y(\sigma')$. Since weak uniqueness hold for $E'(\sigma')$ and F is injective, we get

$$
\begin{aligned} \boldsymbol{E}[1_{X_{t_1}\in\Gamma_1}...1_{X_{t_k}\in\Gamma_k}] &= \boldsymbol{E}[1_{Y_{t_1}\in F(\Gamma_1)}...1_{Y_{t_k}\in F(\Gamma_k)}] \\ &= \boldsymbol{E}'[1_{Y'_{t_1}\in F(\Gamma_1)}...1_{Y'_{t_k}\in F(\Gamma_k)}] \\ &= \boldsymbol{E}'[1_{X'_{t_1}\in\Gamma_1}...1_{X'_{t_k}\in\Gamma_k}] \end{aligned}
$$

and, hence, weak uniqueness hold for $E(\sigma, b)$.

Finally, we show that pathwise uniqueness hold for $E(\sigma, b)$ whenever σ is Lipshitz. To show this, it suffices to show that σ' is Lipshitz. Indeed, by Theorem 8.3 and σ' is Lipshitz, we see that pathwise uniquness hold for $E'(\sigma')$. Let X and X' are solutions of $E(\sigma, b)$ under $(\Omega, \mathscr{F}, (\mathscr{F})_{t\geq 0}, P)$ and $(\mathscr{F})_{t\geq 0}$ -Brownian motion $(B_t)_{t\geq 0}$ started from 0 such that $P(X_0 = X'_0) = 1$. By problem 2., we get $(Y_t)_{t\geq 0} := (F(X_t))_{t\geq 0}$ and $(Y'_t)_{t\geq 0} := (F(X'_t))_{t\geq 0}$ are solutions of $E'(\sigma')$ such that $P(Y_0 = Y'_0) = 1$ and so

$$
F(X_t) = Y_t = Y'_t = F(X'_t) \qquad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

Since F is injective, we get

$$
X_t = X'_t \qquad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

Now, we show that $\sigma'(y) := H(F^{-1}(y))$ is Lipshitz whenever σ is Lipshitz. Choose $C > 0$ such that

$$
|\sigma(x_1) - \sigma(x_2)| \le C|x_1 - x_2|.
$$
Fix real numbers y_1 and y_2 . Set $x_i = F^{-1}(y_i)$ for $i = 1, 2$. Note that

$$
||F'||_u \le e^{\frac{2}{\epsilon^2}||b||_{L^1(\mathbb{R})}} < \infty.
$$

and

$$
||F''||_u \le \frac{2||b||_u}{\epsilon^2} e^{\frac{2}{\epsilon^2}||b||_{L^1(\mathbb{R})}} < \infty.
$$

By mean value theorem, we get

$$
|\sigma'(y_1) - \sigma'(y_2)| = |H(x_1) - H(x_2)| = |F'(x_1)\sigma(x_1) - F'(x_2)\sigma(x_2)|
$$

\n
$$
\leq |F'(x_1)\sigma(x_1) - F'(x_1)\sigma(x_2)| + |F'(x_1)\sigma(x_2) - F'(x_2)\sigma(x_2)|
$$

\n
$$
\leq ||F'||_u C|x_1 - x_2| + ||\sigma||_u ||F''||_u |x_1 - x_2| := C'|x_1 - x_2|,
$$

where $C' := (||F'||_u C) \vee (||\sigma||_u ||F''||_u)$. Because

$$
\left|\frac{dF^{-1}}{dy}(y)\right| = |F'(F^{-1}(y))| \le ||(F')^{-1}||_u = \sup_{x \in \mathbb{R}} e^{\int_0^x \frac{2b(r)}{\sigma(r)^2} dr} \le e^{\frac{2}{\epsilon^2}||b||_{L^1(\mathbb{R})}} < \infty,
$$

we get

$$
|x_2 - x_1| = |F^{-1}(y_2) - F^{-1}(y_1)|^{-1} \le ||\frac{dF^{-1}}{dy}||_u|y_2 - y_1|
$$

and so

$$
|\sigma'(y_1) - \sigma'(y_2)| \le C|y_1 - y_2|,
$$

8.3 Exercise 8.11

We suppose that, for every $x \in \mathbb{R}_+$, one can construct on the same filtered probability space $(\Omega, \mathscr{F}, (\mathscr{F})_{t\geq 0}, P)$ a process X^x taking nonnegative values, which solves the stochastic differential equation

$$
\begin{cases} dX_t = \sqrt{2X_t} dB_t \\ X_0 = x. \end{cases}
$$

and that the processes X^x are Markov processes with values in \mathbb{R}_+ , with the same semigroup $(Q_t)_{t\geq 0}$, with respect to the filtration $(\mathscr{F}_t)_{t\geq0}$ (This is, of course, close to Theorem 8.6, which however cannot be applied directly because to the function $\sqrt{2x}$ is not Lipschitz.)
the function $\sqrt{2x}$ is not Lipschitz.)

1. We fix $x \in \mathbb{R}_+$, and real $T > 0$. We set, for every $t \in [0, T]$

$$
M_t = e^{-\frac{\lambda X_t^x}{1 + \lambda (T - t)}}.
$$

Show that the process $(M_{t \wedge T})$ is a martingale.

2. Show that $(Q_t)_{t\geq 0}$ is the semigroup of Feller's branching diffusion (see the end of Chap. 6).

Proof. Note that $\lambda \geq 0$.

1. Fix $T > 0$. By Itô's formula, we get

$$
M_t = e^{\frac{-\lambda x_t^x}{1+\lambda(T-t)}}
$$

\n
$$
= e^{\frac{-\lambda x}{1+\lambda(T-t)}}
$$

\n
$$
= e^{\frac{-\lambda x}{1+\lambda(T-t)}}
$$

\n
$$
+ \frac{1}{2} \int_0^t \frac{\lambda^2}{(1+\lambda(T-s))^2} e^{\frac{-\lambda x_x^x}{1+\lambda(T-s)}} dX_s^x + \int_0^t \frac{-\lambda^2 X_s^x}{(1+\lambda(T-s))^2} e^{\frac{-\lambda x_s^x}{1+\lambda(T-s)}} ds
$$

\n
$$
+ \frac{1}{2} \int_0^t \frac{\lambda^2}{(1+\lambda(T-s))^2} e^{\frac{-\lambda x_t^x}{1+\lambda(T-t)}} d\langle X^x, X^x \rangle_s
$$

\n
$$
= e^{\frac{-\lambda x}{1+\lambda(T)}} + \int_0^t \frac{-\lambda}{1+\lambda(T-s)} e^{\frac{-\lambda x_s^x}{1+\lambda(T-s)}} \sqrt{2X_s^x} dB_s + \int_0^t \frac{-\lambda^2 X_s^x}{(1+\lambda(T-s))^2} e^{\frac{-\lambda x_s^x}{1+\lambda(T-s)}} ds
$$

\n
$$
+ \frac{1}{2} \int_0^t \frac{\lambda^2}{(1+\lambda(T-s))^2} e^{\frac{-\lambda x_t^x}{1+\lambda(T-t)}} (2X_s^x) ds
$$

\n
$$
= e^{\frac{-\lambda x}{1+\lambda(T)}} + \int_0^t \frac{-\lambda}{1+\lambda(T-s)} e^{\frac{-\lambda x_s^x}{1+\lambda(T-s)}} \sqrt{2X_s^x} dB_s
$$

is a continuous local martingale. Since $x \leq e^x$ for all $x \geq 0$, we have

$$
\mathbf{E}[\langle M, M \rangle_T] = \mathbf{E}[\int_0^T \frac{\lambda^2 2X_s^x}{(1 + \lambda(T - s))^2} e^{\frac{-2\lambda X_s^x}{1 + \lambda(T - s)}} ds] \le \mathbf{E}[\int_0^T \frac{\lambda}{1 + \lambda(T - s)} ds]
$$

$$
= \int_0^T \frac{\lambda}{1 + \lambda(T - s)} ds < \infty
$$

and so $(M_{t \wedge T})_{t \geq 0}$ is an uniformly integrable martingale.

2. Fix $T > 0$. By optional stopping theorem and problem 1., we get

$$
e^{\frac{-\lambda x}{1+\lambda T}} = \boldsymbol{E}[M_{0\wedge T}] = \boldsymbol{E}[M_{\infty\wedge T}] = \boldsymbol{E}[e^{-\lambda X_T^x}] = \int e^{-\lambda y} Q_T(x, dy).
$$

Thus, we have

$$
\int e^{-\lambda y} Q_t(x, dy) = e^{-x\psi_t(\lambda)},
$$

where $\psi_t(\lambda) := \frac{\lambda}{1+\lambda t}$ and $t > 0$. By the last example in chapter 6., we see that $(Q_t)_{t\geq 0}$ is the semigroup of Feller's branching diffusion.

8.4 Exercise 8.12

We consider two sequences $(\sigma_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ of real functions defined on R. We assume that:

- 1. There exists a constant $C > 0$ such that $|\sigma_n(x)| \vee |b_n(x)| \leq C$ for every $n \geq 1$ and $x \in \mathbb{R}$.
- 2. There exists a constant $K > 0$ such that, for every $n \ge 1$ and $x, y \in \mathbb{R}$,

$$
|\sigma_n(x) - \sigma_n(y)| \vee |b_n(x) - b_n(y)| \le K|x - y|.
$$

Let B be an $(\mathscr{F}_t)_{t\geq0}$ -Brownian motion and, for every $n\geq1$, let X^n be the unique adapted process satisfying

$$
X_t^n = \int_0^t \sigma_n(X_s^n) dB_s + \int_0^t b_n(X_s^n) ds.
$$

1. Let $T > 0$. Show that there exists a constant $A > 0$ such that, for every real $M > 0$ and for every $n \ge 1$,

$$
\mathbf{P}(\sup_{t\leq T}|X_t^n|\geq M)\leq \frac{A}{M^2}.
$$

2. We assume that the sequences $\{\sigma_n\}$ and $\{b_n\}$ converge uniformly on every compact subset of R to limiting functions denoted by σ and b respectively. Justify the existence of an adapted process $X = (X_t)_{t\geq0}$ with continuous sample paths, such that

$$
X_t = \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds,
$$

then show that there exists a constant A' such that, for every real $M > 0$, for every $t \in [0, T]$ and $n \ge 1$,

$$
\mathbf{E}[\sup_{s\leq t}|X_s^n - X_s|^2] \leq 4(4+T)K^2 \int_0^t \mathbf{E}[|X_s^n - X_s|^2]ds + \frac{A'}{M^2} + 4T(4\sup_{|x|\leq M}|\sigma_n(x) - \sigma(x)|^2 + T\sup_{|x|\leq M}|b_n(x) - b(x)|^2).
$$

3. Infer from the preceding question that

$$
\lim_{n \to \infty} E[\sup_{s \le T} |X_s^n - X_s|^2] = 0.
$$

Proof.

1. Fix $T > 0$ and $M > 0$. By Burkholder–Davis–Gundy inequalities (Theorem 5.16), we get

$$
\begin{split} \mathbf{P}(\sup_{t \leq T} |X_t^n| \geq M) &\leq \frac{1}{M^2} \mathbf{E}[\sup_{t \leq T} |X_t^n|^2] \leq \frac{C_2}{M^2} \mathbf{E}[\langle X^n, X^n \rangle_T] \\ &= \frac{C_2}{M^2} \mathbf{E}[\int_0^T \sigma_n (X_s^n)^2 ds] \leq \frac{C_2 T C^2}{M^2} := \frac{A}{M^2}, \end{split}
$$

where $A = A(T) := C_2TC^2$.

2. Since $\sigma_n \to \sigma$ and $b_n \to b$ uniformly on every compact subset of \mathbb{R} , we get

$$
|\sigma(x)-\sigma(y)|\vee|b(x)-b(y)|\leq K|x-y| \quad \forall x,y\in\mathbb{R},
$$

and

$$
|\sigma(x)| \vee |b(x)| \le C \quad \forall x \in \mathbb{R}.
$$

By Theorem 8.5, there exists an adapted process $X = (X_t)_{t\geq 0}$ with continuous sample paths, such that

$$
X_t = \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds \quad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

By similar argument, we have

$$
\mathbf{P}(\sup_{t \leq T} |X_t| \geq M) \leq \frac{A(T)}{M^2} \quad \forall T > 0 \text{ and } M > 0.
$$

Fix $T > 0$, $t \in [0, T]$, and $M > 0$. Now, we show that

$$
\begin{aligned} \n\mathbf{E}[\sup_{s\leq t}|X_s^n-X_s|^2] &\leq 2\times 4^2K^2(4+T)\int_0^t \mathbf{E}[|X_s^n-X_s|^2]ds + \frac{(4+T)T4^3C^22A(T)}{M^2} \\ \n&\quad + 4T(4^2\sup_{|x|\leq M}|\sigma_n(x)-\sigma(x)|^2+4T\sup_{|x|\leq M}|b_n(x)-b(x)|^2) \n\end{aligned}
$$

for all $n \geq 1$. (Note that this upper bound is larger then the upper bound in problem 2. However, this doesn't affect of the proof of problem 3.) Let $n\geq 1.$ Then

$$
\mathbf{E}[\sup_{s\leq t}|X_s^n-X_s|^2] \leq 4\mathbf{E}[\sup_{s\leq t}|\int_0^s \sigma_n(X_r^n)-\sigma(X_r)dB_r|^2] + 4\mathbf{E}[\sup_{s\leq t}|\int_0^s b_n(X_r^n)-b(X_r)dr|^2].
$$

Since $|\sigma_n(x)| \vee |\sigma(x)| \leq C$ for all $x \in \mathbb{R}$, we see that $(\int_0^s \sigma_n(X_r^n) - \sigma(X_r) d_s_r)_{s \geq 0}$ is a martingale. By Doob's inequality in L^2 and Hölder's inequality, we have

$$
4E[\sup_{s\leq t}|\int_{0}^{s}\sigma_{n}(X_{r}^{n})-\sigma(X_{r})dB_{r}|^{2}]+4E[\sup_{s\leq t}|\int_{0}^{s}b_{n}(X_{r}^{n})-b(X_{r})dr|^{2}]
$$

\n
$$
\leq 4\times 4E[|\int_{0}^{t}\sigma_{n}(X_{s}^{n})-\sigma(X_{s})dB_{s}|^{2}]+4TE[\int_{0}^{t}|b_{n}(X_{s}^{n})-b(X_{s})|^{2}ds]
$$

\n
$$
\leq 4\times 4E[\int_{0}^{t}|\sigma_{n}(X_{s}^{n})-\sigma(X_{s})|^{2}ds]+4TE[\int_{0}^{t}|b_{n}(X_{s}^{n})-b(X_{s})|^{2}ds]
$$

\n
$$
\leq 4\times 4E[\int_{0}^{t}|\sigma_{n}(X_{s}^{n})-\sigma(X_{s})|^{2}ds1_{\{\sup_{s\leq T}|X_{s}^{n}|\geq M\}}\cup{\sup_{s\leq T}|X_{s}|\geq M\}}]
$$

\n
$$
+4\times 4E[\int_{0}^{t}|\sigma_{n}(X_{s}^{n})-\sigma(X_{s})|^{2}ds1_{\{\sup_{s\leq T}|X_{s}^{n}|\leq M\}}\cap{\sup_{s\leq T}|X_{s}|\leq M\}}]
$$

\n
$$
+4\times TE[\int_{0}^{t}|b_{n}(X_{s}^{n})-b(X_{s})|^{2}ds1_{\{\sup_{s\leq T}|X_{s}^{n}|\leq M\}}\cup{\sup_{s\leq T}|X_{s}|\leq M\}}]
$$

\n
$$
+4\times TE[\int_{0}^{t}|b_{n}(X_{s}^{n})-b(X_{s})|^{2}ds1_{\{\sup_{s\leq T}|X_{s}^{n}|\geq M\}}\cup{\sup_{s\leq T}|X_{s}|\leq M\}}]
$$

\n
$$
+4\times 4E[\int_{0}^{t}4|\sigma_{n}(X_{s}^{n})-\sigma_{n}(X_{s})|^{2}ds1_{\{\sup_{s\leq T}|X_{s}^{n}|\geq M\}}\cup{\sup_{s\leq T}|X_{s}|\leq M\}}]
$$

\n
$$
+4\times 4E[\int_{
$$

$$
\leq 4^{2} \mathbf{E} [\int_{0}^{t} 4K^{2} |X_{s}^{n} - X_{s}|^{2} ds] + 4^{3} (T4C^{2} \mathbf{P} (\{ \sup_{s \leq T} |X_{s}^{n} | \geq M \} \bigcup \{ \sup_{s \leq T} |X_{s}| \geq M \}))
$$
\n
$$
+ 4^{2} \mathbf{E} [\int_{0}^{t} 4K^{2} |X_{s}^{n} - X_{s}|^{2} ds] + 4^{3} T \sup_{|x| \leq M} |\sigma_{n}(x) - \sigma(x)|^{2}
$$
\n
$$
+ 4T \mathbf{E} [\int_{0}^{t} 4K^{2} |X_{s}^{n} - X_{s}|^{2} ds] + 4^{2} T (T4C^{2} \mathbf{P} (\{ \sup_{s \leq T} |X_{s}^{n} | \geq M \} \bigcup \{ \sup_{s \leq T} |X_{s}| \geq M \}))
$$
\n
$$
+ 4T \mathbf{E} [\int_{0}^{t} 4K^{2} |X_{s}^{n} - X_{s}|^{2} ds] + 4^{2} T \times T \sup_{|x| \leq M} |b_{n}(x) - b(x)|^{2}
$$
\n
$$
= 2 \times 4^{2} K^{2} (4 + T) \int_{0}^{t} \mathbf{E} [|X_{s}^{n} - X_{s}|^{2}] ds + (4 + T) T 4^{3} C^{2} \mathbf{P} (\{ \sup_{s \leq T} |X_{s}^{n} | \geq M \} \bigcup \{ \sup_{s \leq T} |X_{s}| \geq M \})
$$
\n
$$
+ 4T (4^{2} \sup_{|x| \leq M} |\sigma_{n}(x) - \sigma(x)|^{2} + 4T \sup_{|x| \leq M} |b_{n}(x) - b(x)|^{2})
$$
\n
$$
= 2 \times 4^{2} K^{2} (4 + T) \int_{0}^{t} \mathbf{E} [|X_{s}^{n} - X_{s}|^{2}] ds + (4 + T) T 4^{3} C^{2} (\mathbf{P} (\sup_{s \leq T} |X_{s}| \geq M) + \mathbf{P} (\sup_{s \leq T} |X_{s}| \geq M))
$$
\n<math display="block</math>

3. Fix $M,T>0$ and $n\geq 1.$ By problem 2., we get

$$
\begin{split} \n\mathbf{E}[\sup_{s\leq t}|X_{s}^{n}-X_{s}|^{2}] &\leq 2\times4^{2}K^{2}(4+T)\int_{0}^{t}\mathbf{E}[|X_{s}^{n}-X_{s}|^{2}]ds+(4+T)T4^{3}C^{2}(2\frac{A(T)}{M^{2}}) \\ \n&+4T(4^{2}\sup_{|x|\leq M}|\sigma_{n}(x)-\sigma(x)|^{2}+4T\sup_{|x|\leq M}|b_{n}(x)-b(x)|^{2}) \\ \n&\leq 2\times4^{2}K^{2}(4+T)\int_{0}^{t}\mathbf{E}[\sup_{r\leq s}|X_{r}^{n}-X_{r}|^{2}]ds+(4+T)T4^{3}C^{2}(2\frac{A(T)}{M^{2}}) \\ \n&+4T(4^{2}\sup_{|x|\leq M}|\sigma_{n}(x)-\sigma(x)|^{2}+4T\sup_{|x|\leq M}|b_{n}(x)-b(x)|^{2}) \n\end{split}
$$

for all $t\in [0,T].$ Define $g:[0,T]\mapsto \mathbb{R}_+$ by

$$
g(t) := \mathbf{E}[\sup_{s \le t} |X_s^n - X_s|^2].
$$

Set positive real numbers

$$
a := (4+T)T4^{3}C^{2}(2\frac{A(T)}{M^{2}}) + 4T(4^{2}\sup_{|x| \le M}|\sigma_{n}(x) - \sigma(x)|^{2} + 4T\sup_{|x| \le M}|b_{n}(x) - b(x)|^{2})
$$

and

$$
b := 2 \times 4^2 K^2 (4 + T).
$$

Then we have

$$
g(t) \le b \int_0^t g(s)ds + a \quad \forall t \in [0, T].
$$

By Burkholder–Davis–Gundy inequalities (Theorem 5.16) and Hölder's inequality, we get

$$
|g(t)| = \mathbf{E}[\sup_{s \le t} |X_s^n - X_s|^2]
$$

\n
$$
\le 4\mathbf{E}[\sup_{s \le t} |\int_0^s \sigma_n(X_r^n) - \sigma(X_r) dBr|^2] + 4\mathbf{E}[\sup_{s \le t} |\int_0^s b_n(X_r^n) - b(X_r) dr|^2]
$$

\n
$$
\le 4C_2 \mathbf{E}[\int_0^t |\sigma_n(X_s^n) - \sigma(X_s)|^2 ds] + 4t\mathbf{E}[|\int_0^t |b_n(X_s^n) - b(X_s)|^2 ds]
$$

\n
$$
\le 4C_2 (4C^2T) + 4T(4C^2T) < \infty
$$

and so g is bounded. By Gronwall's lemma (Lemma 8.4), we have

$$
E[\sup_{s\leq T} |X_s^n - X_s|^2] = g(T) \leq a \times e^{bT}
$$

\n
$$
\leq ((4+T)T4^3C^2(2\frac{A(T)}{M^2}) + 4T(4^2 \sup_{|x|\leq M} |\sigma_n(x) - \sigma(x)|^2 + 4T \sup_{|x|\leq M} |b_n(x) - b(x)|^2))
$$

\n
$$
\times \exp(2 \times 4^2 K^2 (4+T) \times T)
$$

and so

$$
\limsup_{n \to \infty} \mathbf{E}[\sup_{s \le T} |X_s^n - X_s|^2] \le (4+T)T 4^3 C^2 (2 \frac{A(T)}{M^2}) \exp(2 \times 4^2 K^2 (4+T) \times T).
$$

By letting $M \to \infty$, we get

$$
\lim_{n \to \infty} E[\sup_{s \leq T} |X_s^n - X_s|^2] = 0.
$$

Let $\beta = (\beta_t)_{t\geq 0}$ be an $(\mathscr{F}_t)_{t\geq 0}$ -Brownian motion started from 0. We fix two real parameters α and r , with $\alpha > \frac{1}{2}$ and $r > 0$. For every integer $n \geq 1$ and every $x \in \mathbb{R}$, we set

$$
f_n(x) = \frac{1}{|x|} \wedge n.
$$

1. Let $n \geq 1$. Justify the existence of unique semimartingale \mathbb{Z}^n that solves the equation

$$
Z_t^n = r + \beta_t + \alpha \int_0^t f_n(Z_s^n) ds.
$$

2. We set $S_n := \inf\{t \geq 0 \mid Z_t^n \leq \frac{1}{n}\}\.$ After observing that, for $t \leq S_{n+1} \wedge S_n$,

$$
Z_t^{n+1} - Z_t^n = \alpha \int_0^t \frac{1}{Z_s^{n+1}} - \frac{1}{Z_s^n} ds,
$$

show that $Z_t^{n+1} = Z_t^n$ for every $t \in [0, S_{n+1} \wedge S_n]$ (a.s.). Infer that $S_{n+1} \geq S_n$.

3. Let g be a twice continuously differentiable function on \mathbb{R} . Show that the process

$$
g(Z_t^n) - g(r) - \int_0^t (\alpha g'(Z_s^n) f_n(Z_s^n) + \frac{1}{2}g''(Z_s^n)) ds
$$

is a continuous local martingale.

- 4. We set $h(x) = x^{1-2\alpha}$ for every $x > 0$. Show that, for every integer $n \ge 1$, $h(Z_{t \wedge S_n}^n)$ is a bounded martingale. Infer that, for every $t' \geq 0$, $P(S_n \leq t') \to 0$ as $n \to \infty$, and consequently $S_n \to \infty$ as $n \to \infty$ P -(a.s.).
- 5. Infer from questions 2. and 4. that there exists a unique positive semimartingale Z such that, for every $t \geq 0$,

$$
Z_t = r + \beta_t + \alpha \int_0^t \frac{ds}{Z_s}.
$$

6. Let $d \geq 3$ and let B be a d-dimensional Brownian motion started from $y \in \mathbb{R}^d \setminus \{0\}$. Show that $Y_t = |B_t|$ satisfies the stochastic equation in question 5. (with an appropriate choice of β) with $r = |y|$ and $\alpha = \frac{d-1}{2}$. One may use the results of Exercise 5.33.

Proof.

1. To prove the existence of unique of soltion of

$$
E_r^n: \quad dZ_t^n = d\beta_t + \alpha f_n(Z_t^n)dt
$$

it suffices to show that f_n is Lipschitz. Observe that, if $|x|, |y| \geq \frac{1}{n}$, and if $|v| < \frac{1}{n} \leq |u|$, then

$$
|f_n(x) - f_n(y)| = |\frac{1}{|x|} - \frac{1}{|y|} = |\frac{|x| - |y|}{|x||y|} \le n^2 |x - y|
$$

and

$$
|f_n(v) - f_n(u)| = n - \frac{1}{|u|} = \frac{|u| - | \pm \frac{1}{n}|}{\frac{1}{n}|u|} \le n^2(|u + \frac{1}{n}| \wedge |u - \frac{1}{n}|) \le n^2|u - v|.
$$

Hence f_n is Lipschitz. By Theorem 8.5.(iii), there exists a unique solution of E_r^n .

2. Obsreve that, if $0 \le t \le S_{n+1} \wedge S_n$, then

$$
Z_t^k = r + \beta_t + \alpha \int_0^t \frac{1}{Z_s^k} ds \quad \forall k = n, n+1
$$

and

$$
Z_t^{n+1} - Z_t^n = \alpha \int_0^t \frac{1}{Z_s^{n+1}} - \frac{1}{Z_s^n} ds.
$$

Then $Z_t^n \geq \frac{1}{n} > 0$ and $Z_t^{n+1} \geq \frac{1}{n+1} > 0$ for every $0 \leq t \leq S_n \wedge S_{n+1}$. Fix $0 \leq t \leq S_n \wedge S_{n+1}$. Note that $\frac{1}{a} \leq \frac{1}{b}$
whenever $0 < b \leq a$. Suppose $Z_s^{n+1} \geq Z_s^n$ for all $s \in [0, t]$. Then

$$
0 \le Z_s^{n+1} - Z_s^n = \alpha \int_0^s \frac{1}{Z_r^{n+1}} - \frac{1}{Z_r^n} dr \le 0
$$

and so $Z_s^{n+1} = Z_s^n$ for all $s \in [0, t]$. Similarly, if $Z_s^{n+1} \leq Z_s^n$ for all $s \in [0, t]$, then $Z_s^{n+1} = Z_s^n$ for all $s \in [0, t]$. Thus, we get

$$
Z_t^{n+1} = Z_t^n \qquad \forall t \in [0, S_n \wedge S_{n+1}] \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

Now, we show that $S_{n+1} \geq S_n$ for every $n \geq 1$ by contradiction. Fix $n \geq 1$. Aussme that $P(S_{n+1} < S_n) > 0$. Then

$$
\mathbf{P}(S_{n+1} < S_n, Z_t^{n+1} = Z_t^n \quad \forall t \in [0, S_n \land S_{n+1}]) > 0.
$$

Fix $w \in \{S_{n+1} < S_n\} \cap \{Z_t^{n+1} = Z_t^n \quad \forall t \in [0, S_n \land S_{n+1}]\}$. Set $\lambda = S_{n+1}(w)$. Since $Z_t^{n+1}(w) = Z_t^n(w)$ for all $0 \leq t \leq S_n(w) \wedge S_{n+1}(w) = S_{n+1}(w) = \lambda$, we get

$$
Z_{\lambda}^{n}(w) = Z_{\lambda}^{n+1}(w) = \frac{1}{n+1} < \frac{1}{n}
$$

and so $S_{n+1}(w) = \lambda \ge S_n(w)$ which contradict to $S_{n+1}(w) < S_n(w)$. Therefore, we have

$$
S_{n+1} \ge S_n \quad \forall n \ge 1 \quad P\text{-}(a.s.).
$$

3. By Itô's formula, we get

$$
g(Z_t^n) = g(r) + \int_0^t g'(Z_s^n) dZ_s^n + \frac{1}{2} \int_0^t g''(Z_s^n) d\langle Z^n, Z^n \rangle_s
$$

= $g(r) + \int_0^t g'(Z_s^n) d\beta_s + \int_0^t g'(Z_s^n) \alpha f_n(Z_s^n) ds + \frac{1}{2} \int_0^t g''(Z_s^n) ds$

and so

$$
g(Z_t^n) - g(r) - \int_0^t (\alpha g'(Z_s^n) f_n(Z_s^n) + \frac{1}{2}g''(Z_s^n)) ds = \int_0^t g'(Z_s^n) d\beta_s
$$

is a continuous local martingale.

4. Fix large $n \geq 1$ such that $n > \frac{1}{r}$. Then $S_n > 0$. Since $Z_{t \wedge S_n}^n \geq \frac{1}{n}$ for every $t \geq 0$, we have $f_n(Z_{t \wedge S_n}^n) = \frac{1}{Z_{t \wedge S_n}^n}$ for every $t \geq 0$ and so

$$
\int_0^t 1(s)_{\{s \le S_n\}} dZ_s^n = \int_0^t 1(s)_{\{s \le S_n\}} d\beta_s + \alpha \int_0^t \frac{1}{Z_{s \wedge S_n}^n} 1(s)_{\{s \le S_n\}} ds.
$$

By Itô's formula, we get

$$
M_{t} := h(Z_{t \wedge S_{n}}^{n})
$$

\n
$$
= r^{1-2\alpha} + \int_{0}^{t} (1 - 2\alpha)(Z_{s \wedge S_{n}}^{n})^{-2\alpha} 1(s)_{\{s \leq S_{n}\}} dZ_{s}^{n}
$$

\n
$$
+ \frac{(-2\alpha)(1 - 2\alpha)}{2} \int_{0}^{t} (Z_{s \wedge S_{n}}^{n})^{-2\alpha - 1} 1(s)_{\{s \leq S_{n}\}} d\langle Z^{n}, Z^{n} \rangle_{s}
$$

\n
$$
= r^{1-2\alpha} + \int_{0}^{t} (1 - 2\alpha)(Z_{s \wedge S_{n}}^{n})^{-2\alpha} 1(s)_{\{s \leq S_{n}\}} d\beta_{s} + \int_{0}^{t} (1 - 2\alpha)(Z_{s \wedge S_{n}}^{n})^{-2\alpha} \frac{1}{Z_{s \wedge S_{n}}^{n}} 1(s)_{\{s \leq S_{n}\}} ds
$$

\n
$$
+ \frac{(-2\alpha)(1 - 2\alpha)}{2} \int_{0}^{t} (Z_{s \wedge S_{n}}^{n})^{-2\alpha - 1} 1(s)_{\{s \leq S_{n}\}} ds
$$

\n
$$
= r^{1-2\alpha} + \int_{0}^{t} (1 - 2\alpha)(Z_{s \wedge S_{n}}^{n})^{-2\alpha} 1(s)_{\{s \leq S_{n}\}} d\beta_{s}
$$

is a continuous local martingale. Moreover, since

$$
\boldsymbol{E}[\langle M,M\rangle_t] = \boldsymbol{E}[(1-2\alpha)^2 \int_0^t (Z^n_{s\wedge S_n})^{-4\alpha} 1(s)_{\{s\leq S_n\}} ds] \leq (1-2\alpha)^2 \times t \times n^{4\alpha} < \infty
$$

for every $t \geq 0$, we see that $(h(Z_{t \wedge S_n}^n))_{t \geq 0} = (M_t)_{t \geq 0}$ is a martingale. Because

$$
0 < M_t = h(S_{t \wedge S_n}^n) = (Z_{t \wedge S_n}^n)^{1 - 2\alpha} \le n^{2\alpha - 1} < \infty
$$

for every $t \geq 0$, we get $(h(Z_{t \wedge S_n}^n))_{t \geq 0} = (M_t)_{t \geq 0}$ is a bounded martingale. Now, we show that $\lim_{n\to\infty} P(S_n \leq t') = 0$ for every $t' \geq 0$. Fix $t' \geq 0$. Choose large $n \geq 1$ such that $n > \frac{1}{r}$. Since $(h(Z_{t \wedge S_n}^n))_{t \geq 0}$ is a bounded martingale and h is positive, we get

$$
r^{1-2\alpha} = h(r) = \mathbf{E}[h(Z_{0 \wedge S_n}^n)] = \mathbf{E}[h(Z_{t' \wedge S_n}^n)]
$$

= $\mathbf{P}(S_n \le t')n^{2\alpha-1} + \mathbf{E}[h(Z_{t' \wedge S_n}^n)1_{t' < S_n}]$
 $\ge \mathbf{P}(S_n \le t')n^{2\alpha-1}$

and, hence,

$$
\boldsymbol{P}(S_n \le t') \le (\frac{1}{nr})^{2\alpha - 1} \to 0 \text{ as } n \to \infty.
$$

Moreover, since $S_{n+1} \geq S_n$ for every $n \geq 1$, $S := \lim_{n \to \infty} S_n$ exist and so

$$
\mathbf{P}(S \le t) = \lim_{n \to \infty} \mathbf{P}(S_n \le t) = 0
$$

for every $t \geq 0$. Thus,

$$
\lim_{n \to \infty} S_n = S = \infty \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

5. (a) We show that there exists a positive semimartingale Z such that, for every $t \geq 0$,

$$
Z_t = r + \beta_t + \alpha \int_0^t \frac{ds}{Z_s}.
$$

By problem 2., we have

$$
Z_t^{n+1} = Z_t^n \quad \forall t \in [0, S_n] \text{ and } n \ge 1 \text{ outside a zero set } N.
$$

For the sake of simplicity, we redefine N as

$$
N \bigcup \left(\bigcap_{n \ge 1} \{ Z_t^n = r + \beta_t + \alpha \int_0^t f_n(Z_s^n) ds \quad \forall t \ge 0 \} \right)^c.
$$

Define

$$
Z_t(w) = \begin{cases} Z_t^n(w), & \text{if } w \notin N \text{ and } t \le S_n(w) \\ 0, & \text{otherwise.} \end{cases}
$$

Then Z is a positive, adapted, continuous process. Fix $w \notin N$ and $t \geq 0$. Choose large $n \geq 1$ such that $S_n(w) \geq t$. Then

$$
Z_t(w) = Z_t^n(w) = r + \beta_t(w) + \int_0^t f_n(Z_s^n(w))ds
$$

$$
= r + \beta_t(w) + \int_0^t \frac{1}{Z_s^n(w)}ds
$$

$$
= r + \beta_t(w) + \int_0^t \frac{1}{Z_s(w)}ds.
$$

Thus, Z is a positive semimartingale such that

$$
Z_t = r + \beta_t + \alpha \int_0^t \frac{ds}{Z_s} \quad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

(b) Let Z and Z' are postive semimartingales such that

$$
Z_t = r + \beta_t + \alpha \int_0^t \frac{ds}{Z_s} \quad \forall t \ge 0 \quad \mathbf{P}(\text{a.s.})
$$

and

$$
Z'_t = r + \beta_t + \alpha \int_0^t \frac{ds}{Z'_s} \quad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}
$$

under filered probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ and Brownian motion β started from 0. Note that $\frac{1}{a} \leq \frac{1}{b}$ whenever $0 < b \le a$. Fix $w \in \Omega$. Observe that, if there exists real number $T > 0$ such that

$$
Z_t \ge Z'_t \quad \forall t \in [0, T],
$$

then

$$
Z_t = r + \beta_t + \alpha \int_0^t \frac{1}{Z_s} ds \le r + \beta_t + \alpha \int_0^t \frac{1}{Z_s'} ds = Z_t'
$$

for all $t \in [0, T]$ and so $Z_t = Z'_t$ for all $t \in [0, T]$. Similarly, if there exists real number $T > 0$ such that

$$
Z_t \le Z'_t \quad \forall t \in [0, T],
$$

then $Z_t = Z'_t$ for all $t \in [0, T]$. This shows that

$$
Z_t = Z'_t \quad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

6. Let $(0, \mathscr{F},(\mathscr{F}_t)_{t\geq0}, P)$ be filered probability space and B be d-dimensional Brownian motion started from $y \in \mathbb{R}^d \setminus \{0\}$. By Exercise 5.33, we get

$$
|B_t| = |y| + \beta_t + \frac{d-1}{2} \int_0^t \frac{ds}{|B_s|},
$$

where

$$
\beta_t = \sum_{i=1}^d \int_0^t \frac{B_s^i}{|B_s|}dB_s^i
$$

is a $(\mathscr{F}_t)_{t\geq0}$ 1-dimensional Brownian motion started from 0. Thus, $(|B|,\beta),(\Omega,\mathscr{F},(\mathscr{F})_{t\geq0},P)$ is a solution of the stochastic equation in question

$$
Z_t = |y| + \beta_t + \frac{d-1}{2} \int_0^t \frac{ds}{Z_s}.
$$

8.6 Exercise 8.14 (Yamada–Watanabe uniqueness criterion)

The goal of the exercise is to get pathwise uniqueness for the one-dimensional stochastic differential equation

$$
dX_t = \sigma(X_t)dB_t + b(X_t)dt
$$

when the functions σ and b satisfy the conditions

$$
|\sigma(x) - \sigma(y)| \le K\sqrt{|x - y|}, \quad |b(x) - b(y)| \le K|x - y|,
$$

for every $x, y \in \mathbb{R}$, with a constant $K < \infty$.

1. Preliminary question. Let Z be a semimartingale such that $\langle Z, Z \rangle_t = \int_0^t h_s ds$, where $0 \le h_s \le C|Z_s|$, with a constant $C < \infty$. Show that, for every $t \geq 0$,

$$
\lim_{n\to\infty} n\mathbf{E}[\int_0^t 1_{\{0<|Z_s|\leq \frac{1}{n}\}} d\langle Z,Z\rangle_s] = 0.
$$

(Hint: Observe that, $\mathbf{E}[\int_0^t |Z_s|^{-1} 1_{\{0<|Z_s|\leq 1\}} d\langle Z,Z\rangle_s] \leq Ct < \infty$.)

2. Fir every $n \geq 1$, let φ_n be the function defined on $\mathbb R$ by

$$
\varphi_n(x) = \begin{cases} 0, & \text{if } |x| \ge \frac{1}{n} \\ 2n(1 - nx), & \text{if } 0 \le x \le \frac{1}{n} \\ 2n(1 + nx), & \text{if } \frac{-1}{n} \le x \le 0. \end{cases}
$$

Also write F_n for the unique twice continuously differentiable function on R such that $F_n(0) = F'_n(0) = 0$ and $F''_n = \varphi_n$. Note that, for every $x \in \mathbb{R}$, one has $F_n(x) \to |x|$ and $F'_n(x) \to sgn(x) := 1_{\{x>0\}} - 1_{\{x<0\}}$ when

 $n \to \infty$.

Let X and X' be two solutions of $E(\sigma, b)$ on the same filtered probability space and with the same Brownian motion B. Infer from question 1. that

$$
\lim_{n \to \infty} \mathbf{E} \left[\int_0^t \varphi_n(X_s - X'_s) d\langle X - X', X - X' \rangle_s \right] = 0.
$$

3. Let T be a stopping time such that the semimartingale $X_{t \wedge T} - X'_{t \wedge T}$ is bounded. By applying Itô's formula to $F_n(X_{t \wedge T} - X'_{t \wedge T}),$ show that

$$
\boldsymbol{E}[|X_{t\wedge T} - X'_{t\wedge T}|] = \boldsymbol{E}[|X_0 - X'_0|] + \boldsymbol{E}[\int_0^{t\wedge T} (b(X_s) - b(X'_s))sgn(X_s - X'_s)ds].
$$

4. Using Gronwall's lemma, show that, if $X_0 = X'_0$, one has $X_t = X'_t$ for every $t \ge 0$ (a.s.). Proof.

1. Note that

$$
\begin{aligned} \boldsymbol{E}[\int_0^t |Z_s|^{-1} 1_{\{0<|Z_s|\leq 1\}} d\langle Z, Z\rangle_s] &= \boldsymbol{E}[\int_0^t |Z_s|^{-1} 1_{\{0<|Z_s|\leq 1\}} h_s ds] \\ &= \boldsymbol{E}[\int_0^t |Z_s|^{-1} 1_{\{0<|Z_s|\leq 1\}} 1_{\{h_s>0\}} h_s ds] \\ &\leq \boldsymbol{E}[\int_0^t \frac{C}{h_s} 1_{\{0<|Z_s|\leq 1\}} 1_{\{h_s>0\}} h_s ds] \\ &\leq Ct \end{aligned}
$$

and

$$
\int_0^t n 1_{\{0<|Z_s|\leq \frac{1}{n}\}} d\langle Z,Z\rangle_s \leq \int_0^t |Z_s|^{-1} 1_{\{0<|Z_s|\leq 1\}} d\langle Z,Z\rangle_s \quad \forall n\geq 1.
$$

By Lebesgue's dominated convergence theorem, we get

$$
\lim_{n \to \infty} \mathbf{E}[\int_0^t n1_{\{0 < |Z_s| \le \frac{1}{n}\}} d\langle Z, Z \rangle_s] = \mathbf{E}[\lim_{n \to \infty} \int_0^t n1_{\{0 < |Z_s| \le \frac{1}{n}\}} d\langle Z, Z \rangle_s]
$$
\n
$$
= \mathbf{E}[\lim_{n \to \infty} \int_0^t n1_{\{0 < |Z_s| \le \frac{1}{n}\}} h_s ds]
$$
\n
$$
\le \mathbf{E}[\lim_{n \to \infty} \int_0^t n1_{\{0 < |Z_s| \le \frac{1}{n}\}} C|Z_s| ds]
$$
\n
$$
\le \mathbf{E}[\lim_{n \to \infty} \int_0^t n1_{\{0 < |Z_s| \le \frac{1}{n}\}} C\frac{1}{n} ds]
$$
\n
$$
= \mathbf{E}[\lim_{n \to \infty} \int_0^t 1_{\{0 < |Z_s| \le \frac{1}{n}\}} C ds]
$$
\n
$$
= \mathbf{E}[\int_0^t \lim_{n \to \infty} 1_{\{0 < |Z_s| \le \frac{1}{n}\}} C ds] = 0
$$

2. Since $\varphi_n \in C(\mathbb{R})$, we get $F_n \in C^2(\mathbb{R})$. Note that

$$
F_n'(x) = \int_0^x \varphi_n(t)dt = \begin{cases} (2nx - n^2x)1_{[0, \frac{1}{n})}(x) + 1_{[\frac{1}{n}, \infty)}(x), & \text{if } x \ge 0\\ (2nx + n^2x)1_{(-\frac{1}{n}, 0]}(x) - 1_{(-\infty, -\frac{1}{n}]}(x), & \text{if } x \le 0 \end{cases}
$$

and

$$
F_n(x) = \int_0^x F'_n(t)dt = \begin{cases} (x - \frac{1}{n})1_{[\frac{1}{n}, \infty)}(x) + (n(x \wedge \frac{1}{n})^2 - \frac{n^2}{3}(x \wedge \frac{1}{n})^3), & \text{if } x \ge 0\\ -(x + \frac{1}{n})1_{(-\infty, -\frac{1}{n}]}(x) + (n(x \vee \frac{-1}{n})^2 + \frac{n^2}{3}(x \vee \frac{-1}{n})^3), & \text{if } x \le 0. \end{cases}
$$

Then $F'_n(x) \to sgn(x)$ and $F_n(x) \to |x|$ as $n \to \infty$. Indeed, if $x > 0$ and $y < 0$, choose large $N \ge 1$ such that $\frac{1}{N} \le x$ and $-\frac{1}{N} \ge y$, we have

$$
F_n(x) = x - \frac{1}{n} + (n\frac{1}{n^2} - \frac{n^2}{3}\frac{1}{n^3}) = x - \frac{1}{3n} \quad \forall n \ge N,
$$

$$
F_n(y) = -y - \frac{1}{n} + (n\frac{1}{n^2} - \frac{n^2}{3}\frac{1}{n^3}) = -y - \frac{1}{3n} \quad \forall n \ge N
$$

and so $F_n(x) \to x$ and $F_n(y) \to -y$ as $n \to \infty$.

Let X and X' be two solutions of $E(\sigma, b)$ on the same filtered probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ and with the same Brownian motion $(B_t)_{t\geq 0}$. Then

$$
X_t = X_0 + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds
$$

and

$$
X'_{t} = X'_{0} + \int_{0}^{t} \sigma(X'_{s})dB_{s} + \int_{0}^{t} b(X'_{s})ds
$$

for all $t \geq 0$. Set $Z_t := X_t - X'_t$ and $h_t := (\sigma(X_t) - \sigma(X'_t))^2$ for all $t \geq 0$. Then

$$
\langle Z, Z \rangle_t = \int_0^t h_s ds
$$

and

$$
0 \le h_t \le K^2 |X_t - X'_t| = K^2 |Z_t|
$$

for all $t \geq 0$. By problem 1., we get

$$
\lim_{n \to \infty} \mathbf{E} \left[\int_0^t \varphi_n(X_s - X'_s) d\langle X - X', X - X' \rangle_s \right]
$$
\n
$$
= \lim_{n \to \infty} \mathbf{E} \left[\int_0^t \varphi_n(X_s - X'_s) 1_{0 < |X_s - X'_s| \le \frac{1}{n}}(s) d\langle X - X', X - X' \rangle_s \right]
$$
\n
$$
\le \lim_{n \to \infty} \mathbf{E} \left[\int_0^t (2n + 2n^2 |Z_s|) 1_{0 < |Z_s| \le \frac{1}{n}}(s) d\langle Z, Z \rangle_s \right]
$$
\n
$$
\le \lim_{n \to \infty} 2n \mathbf{E} \left[\int_0^t 1_{0 < |Z_s| \le \frac{1}{n}}(s) d\langle Z, Z \rangle_s \right] + \lim_{n \to \infty} \mathbf{E} \left[\int_0^t 2n^2 \times \frac{1}{n} 1_{0 < |Z_s| \le \frac{1}{n}}(s) d\langle Z, Z \rangle_s \right] = 0.
$$

3. Fix $M > 0$. Define $T_M := \inf\{t \geq 0 \mid |X_t| + |X_t'| \geq M\}$. For the sake of simplicity, we denote T as T_M . Then $(X_{t\wedge T} - X'_{t\wedge T})_{t\geq 0}$ is a bounded martingale. Fix $t \geq 0$. By Itô's formula, we get

$$
F_n(X_{t \wedge T} - X'_{t \wedge T}) = F_n(X_0 - X'_0)
$$

+
$$
\int_0^{t \wedge T} F'_n(X_s - X'_s)(\sigma(X_s) - \sigma(X'_s))dB_s(:= Y_t)
$$

+
$$
\int_0^{t \wedge T} F'_n(X_s - X'_s)(b(X_s) - b(X'_s))ds
$$

+
$$
\frac{1}{2} \int_0^{t \wedge T} \varphi_n(X_s - X'_s) d\langle X - X', X - X' \rangle_s.
$$

Since

$$
\begin{aligned} \n\mathbf{E}[\langle Y, Y \rangle_t] &= \mathbf{E}[\int_0^{t \wedge T} |F_n'(X_s - X_s')|^2 |\sigma(X_s) - \sigma(X_s')|^2 ds] \\ \n&\le \mathbf{E}[\int_0^{t \wedge T} 1 \times K^2 |X_s - X_s'| ds] \quad (|F_n'(x)| \le 1) \\ \n&\le K^2 2Mt < \infty \quad \forall t \ge 0, \n\end{aligned}
$$

we see that Y is a martingale and so

$$
\begin{aligned} \boldsymbol{E}[F_n(X_{t \wedge T} - X'_{t \wedge T})] &= \boldsymbol{E}[F_n(X_0 - X'_0)] \\ &+ \boldsymbol{E}[\int_0^{t \wedge T} F'_n(X_s - X'_s)(b(X_s) - b(X'_s))ds] \\ &+ \boldsymbol{E}[\frac{1}{2} \int_0^{t \wedge T} \varphi_n(X_s - X'_s)d\langle X - X', X - X' \rangle_s]. \end{aligned}
$$

Note that $|X_{s \wedge T}| \vee |X'_{s \wedge T}| \leq M$, $\sup_{|x| \leq M} |b(x)| < \infty$, and $F_n(x)$ are uniformly bounded over $[-2M, 2M]$. By Lebesgue's domainated theorem, we get

$$
\begin{split} \boldsymbol{E}[|X_{t\wedge T} - X'_{t\wedge T}|] &= \lim_{n \to \infty} \boldsymbol{E}[F_n(X_{t\wedge T} - X'_{t\wedge T})] \\ &= \lim_{n \to \infty} \boldsymbol{E}[F_n(X_0 - X'_0)] \\ &+ \lim_{n \to \infty} \boldsymbol{E}[\int_0^{t\wedge T} F'_n(X_s - X'_s)(b(X_s) - b(X'_s))ds] \\ &+ \lim_{n \to \infty} \boldsymbol{E}[\frac{1}{2} \int_0^{t\wedge T} \varphi_n(X_s - X'_s)d\langle X - X', X - X' \rangle_s] \\ &= \boldsymbol{E}[|X_0 - X'_0|] + \boldsymbol{E}[\int_0^{t\wedge T} sgn(X_s - X'_s)(b(X_s) - b(X'_s))ds] \\ &+ \lim_{n \to \infty} \boldsymbol{E}[\frac{1}{2} \int_0^{t\wedge T} \varphi_n(X_s - X'_s)d\langle X - X', X - X' \rangle_s]. \end{split}
$$

By problem 2., we get

$$
\lim_{n\to\infty} \mathbf{E}\left[\frac{1}{2}\int_0^{t\wedge T} \varphi_n(X_s - X'_s) d\langle X - X', X - X'\rangle_s\right] \le \lim_{n\to\infty} \mathbf{E}\left[\frac{1}{2}\int_0^t \varphi_n(X_s - X'_s) d\langle X - X', X - X'\rangle_s\right] = 0
$$

and so

$$
\boldsymbol{E}[|X_{t\wedge T}-X'_{t\wedge T}|] = \boldsymbol{E}[|X_0-X'_0|] + \boldsymbol{E}[\int_0^{t\wedge T} sgn(X_s-X'_s)(b(X_s)-b(X'_s))ds].
$$

4. Fix $t_0 \geq 0$, $t_0 \leq L$, and $M > 0$. Define $g : [0, L] \mapsto \mathbb{R}_+$ by

$$
g(t) := \mathbf{E}[|X_{t \wedge T_M} - X'_{t \wedge T_M}|].
$$

Then $0 \le g(t) \le 2M$. By problem 3., we get

$$
g(t) \leq |\mathbf{E}[\int_0^{t \wedge T_M} sgn(X_s - X'_s)(b(X_s) - b(X'_s))ds]|
$$

\n
$$
\leq \mathbf{E}[\int_0^t |sgn(X_{s \wedge T_M} - X'_{s \wedge T_M})(b(X_{s \wedge T_M}) - b(X'_{s \wedge T_M}))|ds]
$$

\n
$$
\leq \mathbf{E}[\int_0^t K^2|X_{s \wedge T_M} - X'_{s \wedge T_M}|ds] = K^2 \int_0^t g(s)ds.
$$

By Gronwall's lemma, we get $g=0$ and so

$$
\boldsymbol{E}[|X_{t_0\wedge T_M}-X'_{t_0\wedge T_M}|]=0.
$$

Bt letting $M \to \infty$, we get $E[|X_{t_0} - X'_{t_0}|] = 0$ and, hence, $X_{t_0} = X'_{t_0}$ (a.s.). Since X and X' have continuous sample path, we get

$$
X_t = X'_t \quad \forall t \ge 0 \quad \mathbf{P}\text{-}\text{(a.s.)}.
$$

Chapter 9

Local Times

9.1 Exercise 9.16

Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone increasing function, and assume that f is a difference of convex functions. Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, for every $a \in \mathbb{R}$,

$$
L_t^a(Y) = f'_{+}(a)L_t^a(X)
$$
 and $L_t^{a-}(Y) = f'_{-}(a)L_t^{a-}(X)$.

In particular, if X is a Brownian motion, the local times of $f(X)$ are continuous in the space variable if and only if f is continuously differentiable.

Remark.

Note that $(L^{a}(X), a \in \mathbb{R})$ is the càdlàg modification of local time of X. The formula

$$
L_t^a(Y) = f'_+(a)L_t^a(X)
$$

doesn't hold for all increasing function $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on R. For example, if $\varphi_1(x) = 2e^x$ and $\varphi_2(x) = e^x$, and if X is a continuous semimartingale such that $P(L_t^a(X) \neq 0) > 0$ for some $a < 0$ and $t > 0$, then $f(x) = e^x$ and so

$$
L_t^a(Y) = L_t^a(f(X)) = 0 \neq e^a L_t^a(X) = f'(a)L_t^a(X)
$$

on $\{L_t^a(X)\neq 0\}.$

To avoid this problem, we restatement Exercise 9.16 as following: Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function such that $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on R. Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, a.s.

$$
L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \text{ and } L_t^{f(a)-}(Y) = f'_-(a)L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0
$$

In particular, if X is a Brownian motion and $(u, v) \subseteq R(f) := \{a \in \mathbb{R} \mid f(a)\}\$, we have, a.s. $a \in (u, v) \mapsto L^a(Y)$ is continuous if and only if $a \in (u, v) \mapsto f(a)$ is continuously differentiable.

Proof.

1. Since $f = \varphi_1 - \varphi_2$, we see that f is continuous and f'_{+} is right continuous. We show that, a.s.

$$
L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall t > 0, a \in \mathbb{R}.
$$

To show this, it suffices to show that $P(L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X)) = 1$ for all $t \ge 0$ and $a \in \mathbb{R}$. Indeed, since $a \in \mathbb{R} \mapsto f'_{+}(a)L_t^a(X)$ is right continuous for $t \geq 0$ and

$$
E_a := \{ L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall t \ge 0 \} = \bigcap_{s \in \mathbb{Q}_+} E_{a,s} \quad \forall a \in \mathbb{R},
$$

where

$$
E_{a,s} := \{ L_s^{f(a)}(Y) = f'_+(a)L_s^a(X) \} \quad \forall a \in \mathbb{R}, s > 0,
$$

we see that

$$
\boldsymbol{P}(L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall a \in \mathbb{R}, t \ge 0) = \boldsymbol{P}(\bigcap_{q \in \mathbb{Q}} E_q) = 1.
$$

Fix $a \in \mathbb{R}$ and $t > 0$. Now, we show that $P(L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X)) = 1$. By generalized Itô formula, we see that

$$
d\langle Y, Y \rangle_s = f'_{-}(X_s)^2 d\langle X, X \rangle_s.
$$

By Proposition 9.9 and Corollary 9.7, we have, a.s.

$$
L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \mathbb{1}_{\{f(a) \le f(X_s) \le f(a) + \epsilon\}} f'_{-}(X_s)^2 d\langle X, X \rangle_s
$$

$$
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{-}(b)^2 L_t^b(X) db
$$

$$
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{+}(b)^2 L_t^b(X) db.
$$

We show that, a.s.

$$
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{+}(b)^{2} L_{t}^{b}(X) db = f'_{+}(a) L_{t}^{a}(X).
$$

Fix w. Given $\eta > 0$. Choose $h > 0$ such that

$$
|f'_{+}(a)L_{t}^{a}(X) - f'_{+}(b)L_{t}^{b}(X)| < \eta
$$

whenever $a \leq b < a + h$. Note that f is a continuous strictly increasing function. For $\epsilon > 0$, define

 $a_{\epsilon} := \inf \{ b \in \mathbb{R} \mid f(b) = f(a) + \epsilon \}.$

Choose $j > 0$ such that $a < a_{\epsilon} < a + h$ for every $0 < \epsilon < j$. Let $0 < \epsilon < j$. Then $-\infty < a < a_{\epsilon} < \infty$, $f(a_{\epsilon}) = f(a) + \epsilon,$

$$
|f'_{+}(a)L_{t}^{a}(X) - f'_{+}(b)L_{t}^{b}(X)| < \eta \quad \forall b \in [a, a_{\epsilon}],
$$

$$
\{b \in \mathbb{R} \mid f(a) \le f(b) \le f(a) + \epsilon\} = [a, a_{\epsilon}],
$$

and so

$$
\frac{1}{\epsilon} \int 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b) db = \frac{1}{\epsilon} \int_a^{a_{\epsilon}} f'_+(b) db = \frac{f(a_{\epsilon}) - f(a)}{\epsilon} = 1.
$$

Thus,

$$
\begin{split}\n&\Big| \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbf{1}_{\{a \le f(b) \le a+\epsilon\}} f'_{+}(b)^{2} L_{t}^{b}(X) db - f'_{+}(a) L_{t}^{a}(X) \Big| \\
&= \Big| \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b)^{2} L_{t}^{b}(X) db - \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) f'_{+}(a) L_{t}^{a}(X) db \Big| \\
&\le \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) |f'_{+}(b) L_{t}^{b}(X) - f'_{+}(a) L_{t}^{a}(X) | db \\
&< \eta \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) db = \eta \frac{1}{\epsilon} (f(a_{\epsilon}) - f(a)) = \eta \frac{1}{\epsilon} \epsilon = \eta.\n\end{split}
$$

Therefore, we have, a.s.

$$
L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b)^2 L_t^b(X) db = f'_+(a) L_t^a(X).
$$

2. We show that, a.s.

$$
L_t^{f(a)-}(Y) = f'_{-}(a)L_t^{a-}(X) \quad \forall t > 0, a \in \mathbb{R}.
$$

To show this, it suffices to show that $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$ for every $a \in \mathbb{R}$. Indeed, if $w \in E$, where $E = \{L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X) \quad \forall a \in \mathbb{R}, t \ge 0\},\$ then

$$
L_t^{f(a)-}(Y) = \lim_{b \uparrow a} L_t^{f(b)}(Y) = \lim_{b \uparrow a} f'_+(b) L_t^b(X) = f'_-(a) L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0.
$$

Fix $a \in \mathbb{R}$. Now, we show that $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$. Since $f = \varphi_1 - \varphi_2$, it suffices to show that $\lim_{b \uparrow a} \varphi'_{i,+}(b) =$ $\varphi'_{i,-}(a)$ for $i = 1, 2$. We denote φ_i as φ . It's clear that

$$
\varphi'_+(b) \le \varphi'_-(a) \quad \forall b < a.
$$

Given $\eta > 0$. There exists $c < a$ such that

$$
\varphi'_{-}(a) - \eta \le \frac{\varphi(a) - \varphi(c)}{a - c}.
$$

By continuity, there exists $c < d < a$ such that

$$
\frac{\varphi(a) - \varphi(c)}{a - c} - \eta \le \frac{\varphi(d) - \varphi(c)}{d - c}
$$

and so

$$
\varphi'_{-}(a) - 2\eta \le \frac{\varphi(d) - \varphi(c)}{d - c} \le \varphi'_{+}(b) \quad \forall d < b < a.
$$

Thus, we get

$$
\varphi'_-(a) - 2\eta \le \varphi'_+(b) \le \varphi'_-(a) \quad \forall d < b < a
$$

and, hence, $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$.

3. Assume that X is a Brownian motion and $(u, v) \subseteq R(f)$. Then $a \mapsto L^a(X)$ is continuous and so, a.s.

$$
L_t^a(X) = L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0.
$$

Note that, a.s.

 $a \in (u, v) \mapsto L^a(Y)$ is continuous if and only if $L_t^{a-}(Y) = L_t^a(Y) \quad \forall a \in (u, v), t \ge 0$.

Thus, if f is continuously differentiable, then we have, a.s.

$$
L_t^a(Y) = f'(f^{-1}(a))L_t^{f^{-1}(a)}(X) = f'(f^{-1}(a))L_t^{f^{-1}(a)-}(X) = L_t^{a-}(Y) \quad \forall a \in (u, v), t \ge 0.
$$

Now, we suppose $a \in (u, v) \mapsto L^a(Y)$ is continuous. Note that $-\infty = \liminf_{t \to \infty} X_t$ and $\limsup_{t \to \infty} X_t = \infty$. By Theorem 9.12, we get, a.s.

$$
\forall a \in \mathbb{R} \quad \exists t_a > 0 \quad \forall t > t_a \quad L_t^a(X) > 0
$$

 $(t_a \text{ also depend on } w)$. Fix $\alpha \in (u, v)$. Choose w and $t > 0$ such that $L_t^{\alpha}(X) > 0$, $L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X)$ and, $L_t^{f(a)-}(Y) = f'_{-}(a)L_t^{a-}(X)$ for all $a \in \mathbb{R}$. Thus,

$$
f'_{+}(\alpha)L_t^{\alpha}(X) = L_t^{f(\alpha)}(Y) = L_t^{f(\alpha)-}(Y) = f'_{-}(\alpha)L_t^{\alpha-}(X) = f'_{-}(\alpha)L_t^{\alpha}(X)
$$

and so $f'_{+}(\alpha) = f'_{-}(\alpha)$. Therefore f is differentiable at α . Moreover, since $(a, s) \mapsto L_s^a(X)$ is continuous, there exists $\delta>0$ such that

$$
L_s^a(X) > 0 \quad \forall (a, s) \in (\alpha - \delta, \alpha + \delta) \times (t - \delta, t + \delta)
$$

and so $a \in (\alpha - \delta, \alpha + \delta) \mapsto f'(a) = \frac{L_t^{f(a)}(Y)}{L_t^a(X)}$ is continuous.

9.2 Exercise 9.17

Let M be a continuous local martingale such that $\langle M, M \rangle = \infty$ (a.s.) and let B be the Brownian motion associated with M via the Dambis–Dubins–Schwarz theorem (Theorem 5.13). Prove that, a.s. for every $a \ge 0$ and $t \ge 0$,

$$
L_t^a(M) = L_{\langle M,M \rangle_t}^a(B).
$$

Proof.

Note that $(L^a(X), a \in \mathbb{R})$ is the càdlàg modification of local time of continuous semimartingale X. Set

$$
E_{a,t} := \{ L_t^a(M) = L_{\langle M,M \rangle_t}^a(B) \} \quad \forall t > 0, a \in \mathbb{R}.
$$

Then it suffices to show that $P(E_{a,t}) = 1$ for all $t > 0$ and $a \in \mathbb{R}$. Indeed, since

$$
E_a := \{ L_t^a(M) = L_{\langle M, M \rangle_t}^a(B) \quad \forall t \ge 0 \} = \bigcap_{q \in \mathbb{Q}_+} E_{a,q} \quad \forall a \in \mathbb{R}
$$

and

$$
E := \{L_t^a(M) = L_{\langle M, M \rangle_t}^a(B) \quad \forall t \ge 0 \, , a \in \mathbb{R}\} = \bigcap_{a \in \mathbb{Q}} E_a,
$$

we see that $P(E) = 1$. Fix $t > 0$ and $a \in \mathbb{R}$. Now, we show that $P(E_{a,t}) = 1$. Note that $M_s = B_{\langle M,M \rangle_s}$ $\forall s \ge 0$ (a.s.). By Tanaka's formula, we get, a.s.

$$
|M_t - a| = |M_0 - a| + \int_0^t sgn(M_s - a)dM_s + L_t^a(M)
$$

and

$$
|M_t - a| = |B_{\langle M, M \rangle_t} - a| = |M_0 - a| + \int_0^{\langle M, M \rangle_t} sgn(B_s - a) dB_s + L^a_{\langle M, M \rangle_t}(B).
$$

By Proposition 5.9, there exists ${n_k}$ such that, a.s.

$$
\int_{0}^{t} sgn(M_{s}-a)dM_{s} = \lim_{k \to \infty} \sum_{i=0}^{n_{k}-1} sgn(M_{\frac{it}{n_{k}}} - a)(M_{\frac{t(i+1)}{n_{k}}} - M_{\frac{it}{n_{k}}})
$$

=
$$
\lim_{k \to \infty} \sum_{i=0}^{n_{k}-1} sgn(B_{\langle M,M \rangle_{\frac{it}{n_{k}}} - a)(B_{\langle M,M \rangle_{\frac{(i+1)t}{n_{k}}} - B_{\langle M,M \rangle_{\frac{it}{n_{k}}}}).
$$

Since $s \in \mathbb{R}_+ \mapsto \langle M, M \rangle_s$ is increasing continuous function, we have, a.s.

$$
\lim_{k \to \infty} \sum_{i=0}^{n_k - 1} sgn(B_{\langle M, M \rangle_{\frac{it}{n_k}}} - a)(B_{\langle M, M \rangle_{\frac{(i+1)t}{n_k}}} - B_{\langle M, M \rangle_{\frac{it}{n_k}}}) = \int_0^{\langle M, M \rangle_t} sgn(B_s - a) dB_s
$$

and so

$$
\int_0^t sgn(M_s-a)dM_s = \int_0^{\langle M,M\rangle_t} sgn(B_s-a)dB_s.
$$

Thus, we have, a.s.

$$
L_t^a(M) = L_{\langle M,M \rangle_t}^a(B).
$$

9.3 Exercise 9.18

Let X be a continuous semimartingale, and assume that X can be written in the form

$$
X_t = X_0 + \int_0^t \sigma(w, s) dB_s + \int_0^t b(w, s) ds,
$$

where B is a Brownian motion and σ and b are progressive and locally bounded. Assume that $\sigma(w, s) \neq 0$ for Lebesgue a.e. $s \geq 0$ a.s. Show that the local times $L_t^a(X)$ are jointly continuous in the pair (a, t) .

Proof.

By the proof of theorem 9.4, it suffices to show that

$$
\int_0^t 1_{\{X_s=a\}}(s)b(w,s)ds = 0 \quad \forall t \ge 0, a \in \mathbb{R} \quad (a.s.)
$$

and so we show that $1_{\{X_s=a\}}=0$ for almost every $s\geq 0$ and for every $a\in\mathbb{R}$ (a.s.). By density of occupation time formula (Corollary 9.7), we have

$$
\int_0^t \varphi(X_s)\sigma(w,s)^2 ds = \int_{\mathbb{R}} \varphi(a)L_t^a(X) da
$$

for all nonnegative measurable function $\varphi : \mathbb{R} \to \mathbb{R}_+$ and $t \geq 0$ (a.s.) and so

$$
\int_0^t 1_{\{X_s=a\}} \sigma(w,s)^2 ds = 0 \quad \forall t \ge 0, a \in \mathbb{R} \quad (a.s.).
$$

Since $\sigma(w, s) \neq 0$ for almost every $s \geq 0$ (a.s.), we get $1_{\{X_s=a\}} = 0$ for almost every $s \geq 0$ and for every $a \in \mathbb{R}$ \Box (a.s.).

9.4 Exercise 9.19

Let X be a continuous semimartingale. Show that the property

$$
supp(d_sL_s^a(X)) \subseteq \{s \ge 0 \mid X_s = a\}
$$

holds simultaneously for all $a \in \mathbb{R}$, outside a single set of probability zero.

Proof.

Note that $(L^a(X), a \in \mathbb{R})$ is the càdlàg modification of local time of X. Set

$$
E_a := \{ w \in \Omega \mid \operatorname{supp}(d_s L_s^a(X)) \subseteq \{ s \ge 0 \mid X_s = a \} \} \quad \forall a \in \mathbb{R}
$$

and

$$
E = \bigcap_{q \in \mathbb{Q}} E_q.
$$

By Proposition 9.3, $P(E) = 1$ and so it suffices to show that

$$
supp(d_s L_s^a(X)) \subseteq \{ s \ge 0 \mid X_s = a \} \quad \forall a \in \mathbb{R} \text{ on } E.
$$

Fix $w \in E$. Assume that there exists $b \in \mathbb{R}$ and $0 \le s < t$ such that $L_s^b(X)(w) < L_t^b(X)(w)$ and $X_r(w) \ne b$ for all $s \leq r \leq t$. Suppose that $b < \min_{s \leq r \leq t} X_r(w)$. Choose $\epsilon > 0$ such that

$$
L_s^b(X)(w) + \epsilon < L_t^b(X)(w) - \epsilon.
$$

Since $a \mapsto L^a(X)(w)$ is right continuous, there exists $q \in \mathbb{Q}$ such that $b < q < \min_{s \leq r \leq t} X_r$ and

$$
|L_s^q(X)(w)-L_s^b(X)(w)|\vee |L_t^q(X)(w)-L_t^q(X)(w)|<\epsilon.
$$

Thus, we get $X_r(w) \neq q$ for all $s \leq r \leq t$ and $L_s^q(X)(w) < L_t^q(X)(w)$ which is a contradiction. By similar argument, we see that $b > \max_{s \leq r \leq t} X_r(w)$ is a contradiction and so

$$
supp(d_s L_s^a(X)(w)) \subseteq \{s \ge 0 \mid X_s(w) = a\} \quad \forall a \in \mathbb{R}.
$$

9.5 Exercise 9.20

Let B be a Brownian motion started from 0. Show that a.s. there exists an $a \in \mathbb{R}$ such that the inclusion $supp(d_s L_s^a(X)) \subseteq \{s \geq 0 \mid X_s = a\}$ is not an equality. (Hint: Consider the maximal value of B over [0, 1].)

Proof.

We denote B as X. Note that $(L^a(B), a \in \mathbb{R})$ is the càdlàg modification of local time of B. First, we show that, a.s.

$$
\max_{0 \le t \le 1} B_t > B_1.
$$

Note that

$$
\boldsymbol{P}(B_1 \geq \max_{0 \leq t \leq 1} B_s) = \boldsymbol{P}(\min_{0 \leq t \leq 1} B_1 - B_t \geq 0) = \boldsymbol{P}(\min_{0 \leq t \leq 1} B_1 - B_{1-t} \geq 0).
$$

Define

$$
B'_t = B_1 - B_{1-t} \quad \forall t \in [0,1].
$$

By Exercise 2.31, we see that $(B_t')_{[0,1]}$ and $(B_t)_{[0,1]}$ have the same law and so

$$
\mathbf{P}(\min_{0 \le t \le 1} B_1 - B_{1-t} \ge 0) = \mathbf{P}(\min_{0 \le t \le 1} B_t \ge 0).
$$

By Proposition 2.14, we get

$$
\boldsymbol{P}(\max_{0 \le t \le 1} B_t > B_1) = 1 - \boldsymbol{P}(B_1 \ge \max_{0 \le t \le 1} B_s) = 1 - \boldsymbol{P}(\min_{0 \le t \le 1} B_t \ge 0) = 1.
$$

Next, we show that a.s. there exists an $a \in \mathbb{R}$ such that the inclusion

$$
supp(d_sL_s^a(X)) \subseteq \{s \ge 0 \mid X_s = a\}
$$

is not an equality. Fix

$$
w \in \{\max_{0 \le t \le 1} B_t > B_1\} \bigcap \{L_t^a(B) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t 1_{\{a \le B_s \le a + \epsilon\}} ds \quad \forall a \in \mathbb{R}, t > 0\}.
$$

Choose $a = \max_{0 \le t \le 1} B_s$. Since $\max_{0 \le t \le 1} B_t > B_1$, there exists $t \in (0,1)$ such that $B_t = a$. Let $b > a$. Then

$$
L_1^b(B) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^1 1_{\{b \le B_s \le b + \epsilon\}} ds = 0.
$$

By right continuity, we get

$$
L_1^a(B)=\lim_{b\downarrow a}L_1^b(B)=0
$$

and so

$$
t \in \{s \ge 0 \mid B_s = a\} \bigcap (supp(d_s L_s^a(B)))^c
$$

.

9.6 Exercise 9.21

Let B be a Brownian motion started from 0. Note that

$$
\int_0^\infty 1_{\{B_s>0\}} ds = \infty
$$

a.s. and set, for every $t \geq 0$,

$$
A_t = \int_0^t 1_{\{B_s > 0\}} ds, \quad \sigma_t = \inf\{s \ge 0 \mid A_s > t\}.
$$

1. Verify that the process

$$
\gamma_t = \int_0^{\sigma_t} 1_{\{B_s > 0\}} dB_s
$$

is a Brownian motion in an appropriate filtration.

- 2. Show that the process $\Lambda_t = L^0_{\sigma_t}(B)$ has nondecreasing and continuous sample paths, and that the support of the measure $d_s \Lambda_s$ is contained in $\{s \geq 0 \mid B_{\sigma_s} = 0\}.$
- 3. Show that the process $(B_{\sigma_t})_{t\geq 0}$ has the same distribution as $(|B_t|)_{t\geq 0}$.

Proof.

1. Since $\limsup_{t\to\infty} B_s = \infty$, we see that $\int_0^\infty 1_{\{B_s > 0\}} ds = \infty$ (a.s.) and so

$$
\sigma_t < \infty \quad \forall t \ge 0 \quad (a.s.).
$$

Note that γ_t is \mathscr{F}_{σ_t} -measurable for every $t \geq 0$ and $(\sigma_t)_{t \geq 0}$ is nondecreasing. It's clear that $t \mapsto \sigma_t$ is right continuous and so $(\gamma_t)_{t\geq 0}$ has a right continuous sample path. Observe that

$$
B_s \le 0 \quad \forall s \in (\sigma_{t-}, \sigma_t), \quad \forall t > 0 \quad (a.s.).
$$

Then

$$
\lim_{t \uparrow u} \gamma_t = \lim_{t \uparrow u} \int_0^{\sigma_t} 1_{\{B_s > 0\}} dB_s = \int_0^{\sigma_{u-}} 1_{\{B_s > 0\}} dB_s = \int_0^{\sigma_u} 1_{\{B_s > 0\}} dB_s = \gamma_u \quad \forall u > 0 \quad (a.s.)
$$

and so $(\gamma_t)_{t\geq 0}$ has a continuous sample path.

Now, we show that $(\gamma_t)_{t\geq 0}$ is a $(\mathscr{F}_{\sigma_t})_{t\geq 0}$ -martingale. Fix $s_1 < s_2$. Since

$$
\boldsymbol{E}[\langle \int_0^{\cdot \wedge \sigma_{s_2}} 1_{\{B_s > 0\}} dB_s, \int_0^{\cdot \wedge \sigma_{s_2}} 1_{\{B_s > 0\}} dB_s \rangle_{\infty}] \leq \boldsymbol{E}[\int_0^{\sigma_{s_2}} 1_{\{B_s > 0\}} ds] = \boldsymbol{E}[A_{\sigma_{s_2}}] = s_2,
$$

we get $(\int_0^{t \wedge \sigma_{s_2}} 1_{\{B_s > 0\}} dB_s)_{t \geq 0}$ is a L^2 -bounded $(\mathscr{F}_t)_{t \geq 0}$ -martingale and so $(\int_0^{t \wedge \sigma_{s_2}} 1_{\{B_s > 0\}} dB_s)_{t \geq 0}$ is an uniformly integrable $(\mathscr{F}_t)_{t\geq 0}$ -martingale. By optional stopping theorem, we get

$$
\mathbf{E}[\int_0^{\sigma_{s_2}} 1_{\{B_s > 0\}} dB_s \mid \mathcal{F}_{\sigma_{s_1}}] = \int_0^{\sigma_{s_1}} 1_{\{B_s > 0\}} dB_s
$$

and so $(\int_0^{t \wedge \sigma_{s_2}} 1_{\{B_s > 0\}} dB_s)_{t \geq 0}$ is a $(\mathscr{F}_t)_{t \geq 0}$ -martingale. Moreover, since

$$
\langle \gamma, \gamma \rangle_{\infty} = \int_0^{\infty} 1_{\{B_s > 0\}} ds = \infty
$$
 and $\langle \gamma, \gamma \rangle_t = t \quad \forall t \ge 0$,

we see that $(\gamma_t)_{t\geq 0}$ is a $(\mathscr{F}_{\sigma_t})_{t\geq 0}$ -Brownian motion.

2. It's clear that $(\Lambda_t)_{t\geq 0} = (L^0_{\sigma_t}(B))_{t\geq 0}$ has nondecreasing and right continuous sample paths. Note that

$$
B_{\sigma_t}^+ = \int_0^{\sigma_t} 1_{\{B_s > 0\}} dB_s + \frac{1}{2} L_{\sigma_t}^0(B) = \gamma_t + \frac{1}{2} L_{\sigma_t}^0(B) \quad \forall t \ge 0 \quad (a.s.).
$$

Recall that

$$
B_s \le 0 \quad \forall s \in (\sigma_{t-}, \sigma_t), \quad \forall t > 0 \quad (a.s.).
$$

Observe that if $\sigma_{t-} < \sigma_t$, then $\lim_{u \uparrow t} B_u^+ = B_{\sigma_{t-}}^+ = 0 = B_{\sigma_t}^+$ and so $(L^0_{\sigma_t}(B))_{t \geq 0}$ has a continuous sample path. Now, we show that $supp(d_s \Lambda_s) \subseteq \{s \geq 0 \mid B_{\sigma_s} = 0\}$. Recall that

$$
supp(d_s L_s^0(B)) = \{ s \ge 0 \mid B_s = 0 \} \quad (a.s.).
$$

Fix $w \in \{ \text{supp}(d_s L_s^0(B)) = \{ s \ge 0 \mid B_s = 0 \} \}$. Let $t \in \text{supp}(d_s \Lambda_s)$. If $\sigma_{t-} < \sigma_t$, it's clear that $B_{\sigma_t} = 0$. Now, we assume that $(\sigma_t)_{t\geq 0}$ is continuous at t. Let $\alpha < \sigma_t < \beta$. Then there exists $u < t < v$ such that $(\sigma_u, \sigma_v) \subseteq (\alpha, \beta),$

$$
L^0_{\alpha}(B) \le L^0_{\sigma_u}(B) < L^0_{\sigma_v}(B) \le L^0_{\beta}(B),
$$

and so $\sigma_t \in supp(d_s L_s^0(B)) = \{ s \ge 0 \mid B_s = 0 \}.$

3. Observe that $B_{\sigma_t} \ge 0 \quad \forall t \ge 0 \quad (a.s.)$ and so $B_{\sigma_t} = B_{\sigma_t}^+ \quad \forall t \ge 0 \quad (a.s.)$. Then

$$
B_{\sigma_t} = B_{\sigma_t}^+ = \gamma_t + \frac{1}{2} L_{\sigma_t}^0(B) \quad \forall t \ge 0 \quad (a.s.).
$$

By Skorokhod's Lemma (Appendices), we see that

$$
\sup_{s\leq t}(-\gamma_s) = \frac{1}{2}L^0_{\sigma_t}(B) \quad \forall t \geq 0 \quad (a.s.).
$$

By Theorem 9.14, we get

$$
B_{\sigma_t} = \sup_{s \le t} (-\gamma_s) + \gamma_t = \sup_{s \le t} (-\gamma_s) - (-\gamma_t) \stackrel{d}{=} |-\gamma_{\sigma_t}| \stackrel{d}{=} |B_t| \quad \forall t \ge 0
$$

and so

$$
(B_{\sigma_t})_{t\geq 0} \stackrel{d}{=} (|B_t|)_{t\geq 0}.
$$

9.7 Exercise 9.22

9.8 Exercise 9.23

Let $g: \mathbb{R} \to \mathbb{R}$ be a real integrable function $(\int_{\mathbb{R}} |g(x)|dx < \infty)$. Let B be a Brownian motion started from 0, and set

$$
A_t = \int_0^t g(B_s)ds.
$$

1. Justify the fact that the integral defining A_t makes sense, and verify that, for every $c > 0$ and every $u \ge 0$, A_{c^2u} has the same distribution as

$$
c^2 \int_0^u g(cB_s)ds.
$$

2. Prove that

$$
\frac{A_t}{\sqrt{t}} \stackrel{d}{\to} (\int_{\mathbb{R}} g(x)dx)|N| \text{ as } t \to \infty,
$$

where N is $\mathcal{N}(0, 1)$.

Proof.

1. Let $t > 0$. Then

$$
\begin{aligned} \n\mathbf{E} \left[\int_0^t |g(B_s)| ds \right] &= \int_{\mathbb{R}} \int_0^t \frac{1}{\sqrt{2\pi s}} \exp\left(-\frac{x^2}{2s}\right) ds |g(x)| dx \le \int_{\mathbb{R}} \int_0^t \frac{1}{\sqrt{2\pi s}} \times 1 ds |g(x)| dx \\ \n&= \sqrt{\frac{2t}{\pi}} \int_{\mathbb{R}} |g(x)| dx < \infty \n\end{aligned}
$$

and so $\int_0^t |g(B_s)|ds < \infty$ (a.s.). Since

$$
\int_0^t |g(B_s)|ds < \infty \quad \forall t \in \mathbb{Q}_+ \quad (a.s.),
$$

we see that

$$
\int_0^t |g(B_s)|ds < \infty \quad \forall t \in \mathbb{R} \quad (a.s.)
$$

and so $(A_t)_{t\geq 0}$ is well-defined. Moreove, by changing of variable, we get

$$
A_{c^2u} = \int_0^{c^2u} g(B_s)ds = c^2 \int_0^u g(B_{c^2s})ds = c^2 \int_0^u g(c\frac{1}{c}B_{c^2s})ds \stackrel{d}{=} c^2 \int_0^u g(cB_s)ds.
$$

2. By Density of occupation time formula, we get

$$
\frac{A_u}{\sqrt{u}} = \int_{\mathbb{R}} g(a) \frac{1}{\sqrt{u}} L_u^a(B) da \quad (a.s.)
$$

for every $u > 0$. First, we show that

$$
(\frac{1}{\sqrt{u}}L_u^a(B))_{a\in\mathbb{R}} \stackrel{d}{=} (L_1^{\frac{a}{\sqrt{u}}}(B))_{a\in\mathbb{R}} \quad \forall u > 0.
$$

Fix $u > 0$ and $a \in \mathbb{R}$. Define Brownian motion \widetilde{B} by $\widetilde{B}_t = \frac{1}{\sqrt{u}} B_{tu}$. By Tanaka's formula, we get

$$
|\tilde{B}_1 - \frac{a}{\sqrt{u}}| = |\frac{a}{\sqrt{u}}| + \frac{1}{\sqrt{u}} \int_0^u sgn(B_s - a) dB_s + \frac{1}{\sqrt{u}} L_u^a(B) \quad (a.s.).
$$

Choose increasing sequence $\{n_k\}_{k\geq 1}$ such that (1),(2) hold (a.s.):

$$
\frac{1}{\sqrt{u}} \int_0^u sgn(B_s - a) dB_s \stackrel{(1)}{=} \frac{1}{\sqrt{u}} \lim_{k \to \infty} \sum_{i=0}^{n_k - 1} sgn(B_{\frac{i}{n_k}u} - a)(B_{\frac{i+1}{n_k}u} - B_{\frac{i}{n_k}u})
$$

$$
= \lim_{k \to \infty} \sum_{i=0}^{n_k - 1} sgn(\widetilde{B}_{\frac{i}{n_k}} - \frac{a}{\sqrt{u}})(\widetilde{B}_{\frac{i+1}{n_k}} - \widetilde{B}_{\frac{i}{n_k}})
$$

$$
\stackrel{(2)}{=} \int_0^1 sgn(\widetilde{B}_s - a) d\widetilde{B}_s.
$$

Thus,

$$
|\widetilde{B}_1 - \frac{a}{\sqrt{u}}| = |\frac{a}{\sqrt{u}}| + \int_0^1 sgn(\widetilde{B}_s - a)d\widetilde{B}_s + \frac{1}{\sqrt{u}}L_u^a(B) \quad (a.s.)
$$

and so $\frac{1}{\sqrt{u}}L^a_u(B) = L_1^{\frac{a}{\sqrt{u}}}(\widetilde{B})$ (a.s.). By right continuity, we get

$$
\frac{1}{\sqrt{u}}L_u^a(B) = L_1^{\frac{a}{\sqrt{u}}}(\widetilde{B}) \quad \forall a \in \mathbb{R} \quad (a.s.)
$$

and so

$$
(\frac{1}{\sqrt{u}}L_u^a(B))_{a\in\mathbb{R}} \stackrel{d}{=} (L_1^{\frac{a}{\sqrt{u}}}(B))_{a\in\mathbb{R}} \quad \forall u > 0.
$$

Next, we show that

$$
\frac{A_u}{\sqrt{u}} \stackrel{d}{\to} (\int_{\mathbb{R}} g(x)dx)|N| \text{ as } u \to \infty.
$$

Note that

$$
\boldsymbol{E}[\exp(i\xi\frac{A_u}{\sqrt{u}})] = \boldsymbol{E}[\exp(i\xi\int_{\mathbb{R}}g(a)\frac{1}{\sqrt{u}}L_u^a(B)da)] = \boldsymbol{E}[\exp(i\xi\int_{\mathbb{R}}g(a)L_1^{\frac{a}{\sqrt{u}}}(B)da)].
$$

Since

$$
L_1^a(B) = 0 \quad \forall a \notin \left[\min_{0 \le s \le 1} B_s, \max_{0 \le s \le 1} B_s\right] \quad (a.s.),
$$

we get

$$
|L_1^a(B)|\leq M \text{ for some } M=M(w)<\infty \quad (a.s.)
$$

and so

$$
|L_1^{\frac{a}{\sqrt{u}}}(B)| \le M(w) < \infty \quad \forall a \in \mathbb{R}, u \in \mathbb{R}_+ \quad (a.s.).
$$

By dominated convergence theorem and right continuity, we get

$$
\lim_{u \to \infty} \mathbf{E}[\exp(i\xi \frac{A_u}{\sqrt{u}})] = \lim_{u \to \infty} \mathbf{E}[\exp(i\xi \int_{\mathbb{R}} g(a) L_1^{\frac{a}{\sqrt{u}}}(B) da)] = \mathbf{E}[\exp(i\xi \lim_{u \to \infty} \int_{\mathbb{R}} g(a) L_1^{\frac{a}{\sqrt{u}}}(B) da)]
$$

$$
= \mathbf{E}[\exp(i\xi \int_{\mathbb{R}} g(a) L_1^0(B) da)].
$$

By Theorem 9.14 and Theorem 2.21, we have

$$
L_1^0(B) \stackrel{d}{=} \sup_{0 \le s \le 1} B_s \stackrel{d}{=} |B_1|
$$

and so

$$
\lim_{u\to\infty} \mathbf{E}[\exp(i\xi \frac{A_u}{\sqrt{u}})] = \mathbf{E}[\exp(i\xi \int_{\mathbb{R}} g(a)L_1^0(B)da)] = \mathbf{E}[\exp(i\xi \int_{\mathbb{R}} g(a)da|B_1|)].
$$

9.9 Exercise 9.24

Let σ and b be two locally bounded measurable functions on $\mathbb{R}_+ \times \mathbb{R}$, and consider the stochastic differential equation

$$
E(\sigma, b): \quad dX_t = \sigma(t, X_t)dB_t + b(t, X_t)dt.
$$

Let X and X' be two solutions of $E(\sigma, b)$ on the same filtered probability space and with the same Brownian motion B.

- 1. Suppose that $L_t^0(X X') = 0$ for every $t \geq 0$. Show that both $X \vee X'$ and $X \wedge X'$ are solutions of $E(\sigma, b)$. (Hint: Write $X_t \vee X'_t = X_t + (X'_t - X_t)^+$, and use Tanaka's formula.)
- 2. Suppose that $\sigma(t, x) = 1$ for all t,a. Show that the assumption in question 1. holds automatically. Suppose in addition that weak uniqueness holds for $E(\sigma, b)$. Show that, if $X_0 = X'_0 = x \in \mathbb{R}$, the two processes X and X' are indistinguishable.

Proof.

1. Note that

$$
X_t \vee X'_t = X_t + (X'_t - X_t)^+.
$$

By Tanaka's formula, we get

$$
(X'_t - X_t)^+ = (X'_0 - X_0)^+ + \int_0^t 1_{\{X'_s > X_s\}} (\sigma(s, X'_s) - \sigma(s, X_s)) dB_s + \int_0^t 1_{\{X'_s > X_s\}} (b(s, X'_s) - b(s, X_s)) ds
$$

for all $t \geq 0$ (a.s.). Since

$$
\sigma(s,(X'_s \vee X_s)) = 1_{\{X'_s > X_s\}} \sigma(s,X'_s) + 1_{\{X_s \ge X'_s\}} \sigma(s,X_s)
$$

and

$$
b(s,(X'_s\vee X_s))=1_{\{X'_s>X_s\}}b(s,X'_s)+1_{\{X_s\geq X'_s\}}b(s,X_s),
$$

we get

$$
(X'_{t} \vee X_{t}) = X_{t} + (X'_{t} - X_{t})^{+}
$$

= $X_{0} + \int_{0}^{t} \sigma(s, X_{s}) dB_{s} + \int_{0}^{t} b(s, X_{s}) ds$
+ $(X'_{0} - X_{0})^{+} + \int_{0}^{t} 1_{\{X'_{s} > X_{s}\}} (\sigma(s, X'_{s}) - \sigma(s, X_{s})) dB_{s} + \int_{0}^{t} 1_{\{X'_{s} > X_{s}\}} (b(s, X'_{s}) - b(s, X_{s})) ds$
= $(X'_{0} \vee X_{0}) + \int_{0}^{t} \sigma(s, (X'_{s} \vee X_{s})) dB_{s} + \int_{0}^{t} b(s, (X'_{s} \vee X_{s})) ds$

for all $t \geq 0$ (a.s.) and so $X \vee X'$ is a soltion of $E(\sigma, b)$. Note that

$$
(X_t \wedge X'_t) = X_t - (X_t - X'_t)^+.
$$

By similar argument, we see that $X \wedge X'$ is a soltion of $E(\sigma, b)$.

2. Suppose $\sigma(t, x) = 1$ for all t, x. Then

$$
X_t - X'_t = X_0 - X'_0 + \int_0^t (b(s, X_s) - b(s, X_s))ds
$$

for all $t \geq 0$ (a.s.) and so $L_t^0(X - X') = 0$ for all $t \geq 0$ (a.s.). Suppose in addition that weak uniqueness holds for $E(\sigma, b)$ and $X_0 = X_0' = x \in \mathbb{R}$. By question 1, $X \vee X'$ and $X \wedge X'$ are solution of $E(\sigma, b)$ and so $X \vee X' \stackrel{d}{=} X \wedge X'$. It's clear that

$$
X_t \vee X_t' = X_t \wedge X_t' \quad (a.s.)
$$

for all $t \geq 0$. Indeed, if $P(X_t \vee X_t' > X_t \wedge X_t') > 0$, then $E[X_t \wedge X_t'] < E[X_t \vee X_t']$ which contradict to $X_t \vee X'_t \stackrel{d}{=} X_t \wedge X'_t$. Thus, we have $X_p = X'_p$ for all $p \in \mathbb{Q}_+$ (a.s.) and so

$$
X_t = \lim_{p \in \mathbb{Q}_+ \to t} X_p = \lim_{p \in \mathbb{Q}_+ \to t} X'_p = X'_t
$$

for all $t \geq 0$ (a.s.). Therefore X and X' are indistinguishable.

 \Box

9.10 Exercise 9.25 (Another look at the Yamada–Watanabe criterion)

Let ρ be a nondecreasing function from $[0, \infty)$ into $[0, \infty)$ such that, for every $\epsilon > 0$,

$$
\int_0^\epsilon \frac{du}{\rho(u)} = \infty.
$$

Consider then the one-dimensional stochastic differential equation

$$
E(\sigma, b): \qquad dX_t = \sigma(X_t)dB_t + b(X_t)dt
$$

where one assumes that the functions σ and b satisfy the conditions

$$
(\sigma(x) - \sigma(y))^2 \le \rho(|x - y|), \quad |b(x) - b(y)| \le K|x - y|,
$$

for every $x, y \in \mathbb{R}$, with a constant $K < \infty$. Our goal is use local times to give a short proof of pathwise uniqueness for $E(\sigma, b)$ (this is slightly stronger than the result of Exercise 8.14).

1. Let Y be a continuous semimartingale such that, for every $t > 0$,

$$
\int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} < \infty \quad (a.s.).
$$

Prove that $L_t^0(Y) = 0$ for every $t \ge 0$ (a.s.).

2. Let X and X_0 be two solutions of $E(\sigma, b)$ on the same filtered probability space and with the same Brownian motion B. By applying question 1. to $Y = X - X'$, prove that $L_t^0(X - X')$ for every $t \ge 0$ (a.s.) and therefore,

$$
|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)dB_s + \int_0^t (b(X_s) - b(X'_s))sgn(X_s - X'_s)ds.
$$

3. Using Gromwall's lemma, prove that if $X_0 = X'_0$, then $X_t = X'_t$ for every $t \ge 0$ (a.s.).

Proof.

1. Since $L_t^a(Y) \stackrel{a\downarrow 0}{\rightarrow} L_t^0(Y)$ $\forall t \ge 0$ (a.s.), there exists $C = C(w) > 0$ and $\epsilon = \epsilon(w) > 0$ such that $L_t^a(Y) \geq CL_t^0(Y) \quad \forall 0 < a < \epsilon \quad \forall t \geq 0 \quad (a.s.).$

By Density of occupation time formula (Corollary 9.7), we have

$$
\infty > \int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} = \int_{\mathbb{R}} \frac{1}{\rho(|a|)} L_t^a(Y) da \geq CL_t^0(Y) \int_0^{\epsilon} \frac{1}{\rho(a)} da \quad \forall t \geq 0 \quad (a.s.).
$$

Since $\int_0^{\epsilon} \frac{du}{\rho(u)} = \infty$ for all $\epsilon > 0$, we get $L_t^0(Y) = 0$ for all $t \ge 0$ (a.s.).

2. Set $Y = X - X'$. Then

$$
Y_t = X_0 - X'_0 + \int_0^t (\sigma(X_s) - \sigma(X'_s))dB_s + \int_0^t (b(X_s) - b(X'_s))ds
$$

and so

$$
d\langle Y, Y \rangle_t = (\sigma(X_t) - \sigma(X'_t))^2 dt.
$$

Thus,

$$
\int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} = \int_0^t \frac{(\sigma(X_s) - \sigma(X'_s))^2}{\rho(|X_s - X'_s|)} ds \le \int_0^t \frac{\rho(|X_s - X'_s|)}{\rho(|X_s - X'_s|)} ds = t < \infty \quad \forall t \ge 0 \quad (a.s.).
$$

By question 1., we get $L_t^0(X - X') = 0$ for every $t \ge 0$ (a.s.). By Tanaka's formula, we have

$$
|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)dB_s + \int_0^t (b(X_s) - b(X'_s))sgn(X_s - X'_s)ds
$$

for every $t \geq 0$ (a.s.).

3. By continuity, it suffices to show that $X_t = X'_t$ (a.s.) for every $t \ge 0$. Fix $t_0 > 0$ and choose $L > t_0$. Define

$$
T_M = \inf\{s \ge 0 \mid |X_s| \ge M \text{ or } |X'_s| \ge M\} \quad \forall M > 0.
$$

Fix $M > 0$. Since

$$
\mathbf{E}[\langle \int_0^{\cdot} (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}dB_s, \int_0^{\cdot} (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}dB_s \rangle_t]
$$
\n
$$
= \mathbf{E}[\int_0^t (\sigma(X_s) - \sigma(X'_s))^2 1_{[0,T_M]}ds] \le \mathbf{E}[\int_0^t \rho(|X_s - X'_s|)1_{[0,T_M]}ds] \le \rho(2M)t < \infty \quad \forall t > 0,
$$

we see that $(\int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}dB_s)_{t \geq 0}$ is a martingale. Thus

$$
0 \le g(t) \equiv E[|X_t - X'_t| 1_{[0,T_M]}(t)] \le 2M
$$

and

$$
g(t) = \boldsymbol{E}[|X_t-X_t'|1_{[0,T_M]}(t)] = \boldsymbol{E}[\int_0^t (b(X_s)-b(X_s'))sgn(X_s-X_s')1_{[0,T_M]}ds] \leq 2K\int_0^t g(s)ds
$$

for every $t \in [0, L]$. By Gromwall's lemma, we get $g(t) = 0$ in $[0, L]$ and so $\mathbf{E}[|X_{t_0 \wedge T_M} - X'_{t_0 \wedge T_M}|] = 0$. By letting $M \uparrow \infty$, we have $\mathbf{E}[|X_{t_0} - X'_{t_0}|] = 0$ and so $X_{t_0} = X'_{t_0}$.

Chapter 10

Appendices

10.1 Skorokhod's Lemma

Let y be a real-valued continuous function on $[0, \infty)$ such that $y(0) \geq 0$. There exists a unique pair (z, a) of functions on $[0, \infty)$ such that

- 1. $z(t) = y(t) + a(t)$,
- 2. $z(t)$ is nonnegative,
- 3. $a(t)$ is increasing, continuous, vanishing at zero and $supp(da_s) \subseteq \{s \geq 0 : z(s) = 0\}.$

Moreover, the function $a(t)$ is given by

$$
a(t) = \sup_{s \le t} (-y(s) \vee 0).
$$

Proof.

It's clear that $(y - a, a)$ satisfies all properties above, where $a(t) = \sup_{s \le t} (-y(s) \vee 0)$, and so, it suffices to prove the uniqueness of the pair (z, a) . Suppose that (z, a) and $(\overline{z}, \overline{a})$ satisfy all properties above. Then

$$
z(t) - \overline{z}(t) = a(t) - \overline{a}(t) \quad \forall t \ge 0
$$

and so

$$
0 \le (a(t) - \overline{a}(t))^2 = 2 \int_0^t z(s) - \overline{z}(s) d(a - \overline{a})(s) \quad \forall t \ge 0.
$$

Since

$$
\int_0^t z_s da(s) = \int_0^t \overline{z}(s) d\overline{a}(s) = 0 \quad \forall t \ge 0,
$$

we see that

$$
2\int_0^t z(s) - \overline{z}(s)d(a - \overline{a})(s) = -2\left(\int_0^t z(s)d\overline{a}(s) + \int_0^t \overline{z}da(s)\right) \le 0 \quad \forall t \ge 0
$$

and so $z(t) = \overline{z}(t)$ for every $t \geq 0$.

References

- [1] Daniel W. Stroock, Essentials of Integration Theory for Analysis.
- [2] Dennis G. Zill, Warren S. Wright, Differential Equations with Boundary-Value Problems, Eighth Edition.