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Hereafter, nj 2 f�1g; j = 1; 2; 3. The system (1.1) is a linear ombination of two dynamial systemsgiven by �qj = rqj W (q1; q2; q3) ; j = 1; 2; 3 ; (1.4)and �qj = _q?j ; j = 1; 2; 3 : (1.5)As � varies from zero to one, the system (1.1) deforms (1.4) into (1.5). The system (1.2) is a linearombination of the system (1.4) and�nj _q?j = rqj W (q1; q2; q3) ; j = 1; 2; 3 : (1.6)As � varies from zero to one, the system (1.2) deforms (1.4) into (1.6). Resaling the time variableby 1=p1� �, the system (1.2) an be transformed into�qj = rqj W (q1; q2; q3) + f0 nj _q?j ; j = 1; 2; 3 ; (1.7)where f0 = �=p1� � 2 [0;+1). Resaling the time variable by p1� �, we may transform (1.1)into �qj = rqj W (q1; q2; q3) + f0 _q?j ; j = 1; 2; 3 : (1.8)The system (1.7) and the system (1.8) have the same nonlinear terms. In partiular, (1.7) is sameas (1.8) if n1 = n2 = n3 = 1.We may rewrite the system (1.4) as follows.8>>>>>><>>>>>>: �q1 = n1 n2 q1 � q2jq1 � q2j2 + n1 n3 q1 � q3jq1 � q3j2 ;�q2 = n2 n1 q2 � q1jq2 � q1j2 + n2 n3 q2 � q3jq2 � q3j2 ;�q3 = n3 n1 q3 � q1jq3 � q1j2 + n3 n2 q3 � q2jq3 � q2j2 : (1.9)Exept the power of denominator, the system (1.9) is same as the planar harged three-bodyproblem in the standard Coulomb's law, where nj's play the role of harge. Therefore, we denotethe system (1.4) as the planar "harged three-body" problem.The system (1.4) omes from the dynamis of three quantized vorties in a nonlinear waveequation as follows. 8>>>><>>>>: utt = �u+ 1�2 (1� juj2)u for x 2 R2 ; t > 0 ;ujt=0 = u0(x) for x 2 R2 ;utjt=0 = u1(x) for x 2 R2 ; (1.10)2



where � > 0 is a small parameter, u is a omplex salar �eld and the initial data u0 has threevortex enters at qj(0); j = 1; 2; 3, with winding numbers nj 2 f�1g; j = 1; 2; 3. For the stability ofthe vortex struture in u, we require nj 2 f�1g; j = 1; 2; 3. From partile and �eld theory [Dira,1938; Neu, 1990℄, we learned that planar harged partiles with harges nj's may be regarded asquantized vorties with winding numbers nj's. Hereafter, we denote the harged partiles at qj'swith harges nj 's as the quantized vorties with vortex enters qj's and winding numbers nj's. InNeu [1990℄, Neu investigated the planar eletrodynamis by studying the dynamis of quantizedvorties in (1.10). However, Neu's result is very ompliated. As �! 0+ and under a suitable timesaling, we derived the system (1.4) as simply asymptoti motion equations of quantized vortiesin (1.10) (see e.g. Lin, [1999a℄ and Lin [1999℄). Hene we may regard the system (1.4) as theinteration of planar harged partiles at qj's with harges nj's.The system (1.6) may ome from the dynamis of three quantized vorties in a nonlinearShr�odinger equation as follows.8><>: �i ut = �u+ 1�2 (1� juj2)u for x 2 R2 ; t > 0 ;ujt=0 = u0(x) for x 2 R2 ; (1.11)where � > 0 is a small parameter, u is a omplex salar �eld and the initial data u0 has three vortexenters at qj(0); j = 1; 2; 3 with winding numbers nj 2 f�1g; j = 1; 2; 3. For the stability of thevortex struture in u, we require nj 2 f�1g; j = 1; 2; 3. The equation (1.11) is the Gross-Pitaevskiiequation whih is a well-known model on superuids (f. for example, Donnelly [1991℄, Frish et al.[1992℄, Ginzburg & Pitaevskii [1958℄, Josserand & Pomeau [1995℄, Landau & Lifshitz [1989℄, andreferenes of Nozieres & Pines [1990℄). As �! 0+ and under a suitable time saling, the asymptotimotion equations of three vorties qj's form the system (1.6) [E, 1994; Lin & Xin, preprint; Lin,submitted; Neu, 1990a℄.The system (1.6) is the Kirhho� problem whih is a standard problem for the motion of quan-tized vorties (f. p. 257 of Kirho� [1883℄). From Aref [1979, 1983℄, the Kirhho� problem (1.6)is integrable. Hene the bounded and ollisionless trajetories of the system (1.6) are either peri-odi or quasiperiodi. The system (1.4) desribes the interation of three planar harged partileswhih are denoted as three quantized vroties. Our numerial results show that the bounded andollisionless trajetories of the system (1.4) are either periodi or quasiperiodi. By studying thesystem (1.2), we may understand the deformation of long-time dynamis from the planar "hargedthree-body" problem (1.4) to the Kirhho� problem (1.6).The system (1.8) is equivalent to the system (1.1). Moreover, the system (1.8) desribes the3



motion of planar harged partiles in an e�et of the axial magneti �eld as follows. In a smallneighborhood of the harged partile at qj with harge nj, there is an axial magneti �eld on thediretion (0; 0; nj) with the strength f0, respetively. Here nj 2 f�1g; j = 1; 2; 3. Suh an e�etof the axial magneti �eld an be found in the (Ginzburg-Landau) quantized vorties of a typeII superondutor [de Gennes, 1989℄. Note that we have regarded harged partiles as quantizedvorties.The main purpose of this paper is to study the variety of long-time dynamis for (1.1) and (1.2)as � varies from zero to one. In this paper, we only onsider ollisionless orbits and investigatetheir long-time dynamis. All our results ome from numerial experiments. We �nd an orbitQ = f(q1; q2; q3)(t)jt > 0g of (1.4) satisfying that Q is quasiperiodi if n1 = �n2 = �n3 = 1,but Q is unbounded if n1 = n2 = n3 = 1. For � 2 [0; 1℄, let Q� be the orbit of (1.1) suh thatQ0 = Q;Q�jft=0g = Qjft=0g and dd t Q�jft=0g = dd t Qjft=0g. As n1 = �n2 = �n3 = 1, there existtwo onstants 0 < a0 < a1 < 1 suh that Q� is haoti for � 2 (a0; a1) and quasiperiodi for� 2 [0; a0) [ (a1; 1℄ : Furthermore, as n1 = n2 = n3 = 1, there exist three onstants 0 < a00 <a01 < a02 < 1 suh that Q� is bounded for � 2 [a00; 1℄, haoti for � 2 (a01; a02) and quasiperiodifor � 2 [a00; a01) [ (a02; 1℄ : Although Q0 is quasiperiodi, the homotopy deformation (1.1) makesQ� haoti as a0 < � < a1; n1 = �n2 = �n3 = 1 or a01 < � < a02; n1 = n2 = n3 = 1. Henethe long-time dynamis of Q� is not invariant as � varies from zero to one. This may provide anexample to show that the homotopy deformation of dynamial systems annot preserve the long-time (t!1) dynamis even though the dynamial systems have the same nonlinear terms. Notethat from the standard theorems of ordinary di�erential equations, Q� depends on � smoothly inany �nite time interval as � varies from zero to one. For � 2 [0; 1℄, let ~Q� be the orbit of (1.2) suhthat ~Q0 = Q; ~Q�jft=0g = Qjft=0g and dd t ~Q�jft=0g = dd t Qjft=0g. As n1 = n2 = n3 = 1, ~Q�'s havethe same behavior as Q�'s when � varies from zero to one. As n1 = �n2 = �n3 = 1, there existsa2 2 (0; 1) suh that ~Q� is quasiperiodi for 0 < � < a2 but ~Q� is unbounded for � > a2.In the rest of this paper, we will provide our numerial evidenes to show that the boundedand ollisionless trajetories of the system (1.4) are either periodi or quasiperiodi in Setion 2.Furthermore, we use the Newton's method to �nd a periodi orbit of the system (1.4) and we usethe Poinar�e setion to obtain quasiperiodi orbits of the system (1.4). In Setion 3 and 4, we shownumerially the variety of long-time dynamis of Q�'s and ~Q�'s, respetively, as � varies from zeroto one. 4



2 Numerial Results on the "Charged Three-Body" ProblemIn this setion, we present our numerial results on the "harged three-body" problem (1.4).Based on our numerial results, the bounded and ollisionless trajetories of the system (1.4) areeither periodi or quasiperiodi. For all ODE systems in this paper, we use the ODEABM preditor-orretor solver (see http://www.netlib.org/slate) in FORTRAN 77 with the time step 0:05 seon a Digital PW500au workstation with mahine double preision eps � 10�16.Without loss of generality, we may onsider (n1; n2; n3) = (1; 1; 1) and (1;�1;�1) for the system(1.4). For the ase n1 = n2 = n3 = 1, the system (1.4) implies that qj's repell eah other and theollisionless orbits of (1.4) are unbounded. Now, we hoose n1 = �n2 = �n3 = 1 and we rewrite(1.4) as follows. 8>>>>>><>>>>>>: �q1 = � q1 � q2jq1 � q2j2 � q1 � q3jq1 � q3j2 ;�q2 = � q2 � q1jq2 � q1j2 + q2 � q3jq2 � q3j2 ;�q3 = � q3 � q1jq3 � q1j2 + q3 � q2jq3 � q2j2 : (2.1)2.1 Quasiperiodi Orbits of the System (2.1)In this Setion, we �nd ollisionless and quasiperiodi orbits of the system (2.1). We simulatethe solution of (2.1) with the initial onditions given byq(k)1 (0) = (�k; 1:7 + �k); _q1(0) = (0; 0) ;q2(0) = (�1; 0); _q2(0) = (0; 0) ;q3(0) = (1; 0); _q3(0) = (0; 0) ; (2.2)where the initial values of q(k)1 (0); k = 1; � � � ; 7, varying in a half region of an ellipsoid E enteredat (0; 1:7), are denoted by "�" in Fig. 3.1. Here 12E = f(x; y) : x � 0; x20:12 + (y�1:7)20:052 � 1g is plottedby solid line in Fig. 3.1. Fig. 3.1 is near here.In Fig. 3.2 and 3.3, we plot the trajetories of qj's and _qj's with di�erent initial values q(2)1 (0) =(0; 1:7); q(5)1 (0) = (0:05; 1:7) and q(7)1 (0) = (0:1; 1:7), respetively. For the other initial valuesq(k)1 (0); k = 1; 3; 4; 6, the motion of qj's is very similar to the motion of qj 's with initial valuesq(k)1 (0); k = 2; 5; 7. Fig. 3.2 and 3.3 show that the system (2.1) numerially has a quasiperiodisolution as the initial value q1(0) in the region E.5



Fig. 3.2 and 3.3 are near here.In order to haraterize the motion of qj's, we ompute (I) Poinar�e maps, (II) Liapunovexponents and (III) spetrums of the waveforms, of the 12th order ODE system (2.1) with initialvalues given by (2.2). We desribe our numerial omputations on (I), (II) and (III) as follows.(I) Poinar�e maps: A Poinar�e map program is written in FORTRAN aording to the pseudo-ode of Chap. 2 of Parker & Chua [1989℄. The normal vetor v11 of 11-dimensional hyperplane �11is hosen by v11 = g(x�), where x� 2 �11 and g is the vetor�eld of (2.1). Let P : �11 ! �11 bethe (�rst) Poinar�e map. It is well known that if the points Pk(x�); k = 1; 2; 3; � � �, densely �ll outa losed urve, then the solution of (2.1) forms a quasi 2-periodi orbit i.e. two-torus. Otherwise,it is diÆult to tell that the solution of (2.1) forms a quasi 2-periodi orbit (two-torus) or a quasi3-periodi orbit (three-torus). For the identi�ation of a quasi 3-periodi orbit, the seond Poinar�emap is neessary (f. pp. 43-47 of Parker & Chua [1989℄). The sampling of the seond Poinar�emaps uses a 10-dimensional hyperplane �10 � �11 with a suitable normal vetor. The pointsPk(x�)'s that lie on �10 make up the orbit of the seond Poinar�e maps. In pratie, none of thePk(x�)'s lies exatly on �10, so those Pk(x�)'s within � � 10�5 of �10 are seleted. Suppose thatthe orbit of the seond Poinar�e maps in �10 densely �lls out a losed urve. Then the solution of(2.1) forms a quasi 3-periodi orbit i.e. three-torus. The extension to higher order Poinar�e mapsfor quasi n-periodi orbits is obvious. Fig. 3.4 is near here.In Fig. 3.4(a)(b), the losed urves of the �rst (11-dimensional) Poinar�e maps for the initialvalues of q(1)1 (0) and q(3)1 (0) are displayed, respetively. In Fig 3.5(a)-(d), the losed urves ofthe seond (10-dimensional) Poinar�e maps for the initial values of q(4)1 (0); � � � ; q(7)1 (0) are plotted,respetively. Note that beause of the use of �-neighborhood, the losed urves here are somewhatfuzzy. Consequently, we observe that the solution of (2.1) forms a numerially quasi 2-periodiorbit if the initial value q(k)1 (0) is on y-axis and jq(k)1 (0)j is between 1:65 and 1:75. Moreover, thesolution of (2.1) forms a numerially quasi 3-periodi orbit if the initial value q(k)1 (0) is on the openellipsoid E but not on y-axis. Fig. 3.5 is near here.When the initial values q(k)1 (0)'s in (2.2) are outside the region onstrained by the dotted-linein Fig. 3.1, our numerial experiments show that the ollision happens. Moreover, the orbit of the6



seond Poinar�e maps is shown in Fig. 3.6(a)-() if the initial value q(k)1 (0) is one of q(8)1 (0); q(9)1 (0)and q(10)1 (0) denoted by "+" in Fig. 3.1, respetively. Here we observe that eah orbit of the seondPoinar�e maps is broken and an not form a losed urve learly.(II) Liapunov exponents: Let m1(t); � � � ;mn(t) be the eigenvalues of �t(x0) whih is the tran-sition matrix with �0(x0) = In. The Liapunov exponents of x0 are�i = limt!1 1t jmi(t)j ; i = 1; � � � ; n ; (2.3)Fig. 3.6 is near here.whenever the limit exists. A pratial algorithm is developed here in FORTRAN 77 aording tothe pseudo-ode of Chap. 3 of Parker & Chua [1989℄. Liapunov exponents are a generalization of theeigenvalues at an equilibrium point of harateristi multipliers. They an be used to determine thestability of quasi-periodi and haoti behavior as well as that of equilibrium points and periodisolutions.We run our algorithm to ompute the Liapunov exponents until the total time steps = 2� 105with the initial onditions q(k)1 (0); k = 1; � � � ; 7 in (2.2). For eah k, the Liapunov exponents�(k)i ; i = 1; � � � ; 12 are loated as follows.�10�4 < �(k)12 � � � � � �(k)7 < �10�6 < 10�6 < �(k)6 � � � � � �(k)1 < 10�4 : (2.4)The numerial experiments show that for eah k, the absolute values j�(k)i j; i = 1; � � � ; 12 dereaseabout 1=10 provided the total time steps inrease by a fator of 10. These indiate that the quasi2- or 3-periodi solutions of (2.1) with initial onditions on E are stable but not asymptoti stable,i.e. the dimension of the attrator is zero.(III) Spetrum of the waveform: The spetrum of the waveform q(t) � (q1(t); q2(t); q3(t)) withinitial values q(k)1 (0); k = 3; 6; 7 are omputed by FFT subroutine by MATLAB and the frequenyversus log10 (jfft(q)j2) are displayed in Fig. 3.7(a)-(), respetively. The spetrum distributionsshow that eah solution with the assoiated initial value of q(k)1 (0)'s on E is numerially quasi-periodi. Fig. 3.7 is near here.7



Numerial evidenes of (I),(II) and (III) show that the ollisionless trajetories of the "hargedthree-body" problem (2.1) an only our a quasi 2- or 3-periodi orbit. In the rest of this setion,we will �nd a periodi orbit of the system (2.1) by numerial simulation.2.2 Periodi Orbit of the System (2.1)Finding a periodi orbit is a fundamental problem on dynamial systems. In the standardharged three-body problem, the MGehee transform [MGehee, 1974℄ is useful to prove the ex-istene of periodi orbits. By the MGehee transform, the ollision manifold [Devaney, 1981℄ isbounded and it enloses a bounded region. Then the existene of periodi orbits is proved by theargument in Atela [1988℄. Until now, there is no rigorous proof on the existene of periodi orbits inthe "harged three-body problem" (2.1). One diÆulty of �nding periodi orbit is that the ollisionmanifold is unbounded and it annot enlose a bounded region.The other diÆulty of �nding periodi orbit is that the periodi orbit is loally unstable. Forexample, suppose the isoseles "harged three-body problem" has a periodi orbit (q1; q2; q3) suhthat 8>>>><>>>>: q1x � 0; q1y(t) = y(t) ;q2x(t) = x(t); q2y(t) = z(t) ;q3x(t) = �x(t); q3y(t) = z(t) : (2.5)with initial datax(0) = x0 > 0; y(0) = y0; z(0) = z0; _x(0) = _y(0) = _z(0) = 0 ; (2.6)where y0 6= z0. Note that (2.5) implies that q2 and q3 are symmetri with respet to y-axis, and q1lies on y-axis. Then the system (2.1) beomes8>>>>>><>>>>>>: �x = � xx2 + (y � z)2 + 12x ;�y = � 2(y � z)x2 + (y � z)2 ;�z = y � zx2 + (y � z)2 : (2.7)By the last two equations of (2.7) and initial data (2.6), we have y + 2z = 2C0 ;8t > 0 , whereC0 = 12y0 + z0. Moreover, we obtain that8>>><>>>: �x = � xx2 + (32y � C0)2 + 12x ;�y = � 3y � 2C0x2 + (32y � C0)2 : (2.8)8



It is easy to hek that there are one positive, one negative and two purely imaginary eigenvaluesof the linearized system of (2.8) with respet to any periodi solution of (2.8). Hene the periodisolution of (2.8) is loally unstable i.e. the periodi orbit of the isoseles "harged three-bodyproblem" is loally unstable. The instablility of the periodi orbit makes it impossible to �nd theperiodi orbit by the diret omputation of (2.1) numerially.To obtain the periodi orbit of (2.1), we use the Poinar�e map method whih is a generalizationof the nonautonomous shooting method. Moreover, we apply the Newton-Raphson algorithm to�nd the �xed points of the one-sided Poinar�e map P+ : �p ! �p (f. e.q. Chap. 5 of Parker& Chua [1989℄). Let q � (q1x; q1y; _q1x; _q1y; � � � ; q3x; q3y; _q3x; _q3y)T be the vetor form of variablesof (2.1) represented in the �rst order system. Take ~hp = (0; 1; 0; � � � ; 0)T 2 R12 as the normaldiretion of the Poinar�e setion �p through the point qp = (0; 0; 0; 0; 1; 0; � � � ; 0)T 2 R12 . De�neH(q) = P+(q)� q : Then to loate a periodi orbit of (2.1) is equivalent to �nd a zero of H(q).We take kq(k+1) � q(k)k � 10�6 as the stop riterion for eah two adjaent vetor fq(k); q(k+1)gomputed by the Poinar�e map algorithm. Aording to our numerial experiene, the algorithmstarts with q(0) = (0; 1:691335; 0; 0; 1; 0; 0; 0;�1; 0; 0; 0)T and the algorithm stops at q(4) with om-ponents (q(4)1x ; q(4)1y ) = (0:000; 4:245e � 16); ( _q(4)1x ; _q(4)1y ) = (0:000; 1:010);(q(4)2x ; q(4)2y ) = (1:119; 0:846); ( _q(4)2x ; _q(4)2y ) = (0:147;�0:505);(q(4)3x ; q(4)3y ) = (�1:119; 0:846); ( _q(4)3x ; _q(4)3y ) = (�0:147;�0:505) :We ompute the minimal distane dmin between q(0) and the numerial orbit of (2.1) from q(3) 2 �pto q(4) 2 �p. The numerial result shows that dmin ' 10�4. Thus we an fairly say that there is aperiodi orbit of (2.1) through a point p near q(0) with omponents(p1x; p1y) ' (0; 1:691335); ( _p1x; _p1y) = (0; 0);(p2x; p2y) = (1; 0); ( _p2x; _p2y) = (0; 0);(p3x; p3y) = (�1; 0); ( _p3x; _p3y) = (0; 0) :3 Numerial Results of the System (1.1)From Setion 1, the system (1.1) an be transformed to the system (1.8) given by8>>>>>><>>>>>>: �q1 = n1 n2 q1 � q2jq1 � q2j2 + n1 n3 q1 � q3jq1 � q3j2 + f0 _q?1 ;�q2 = n2 n1 q2 � q1jq2 � q1j2 + n2 n3 q2 � q3jq2 � q3j2 + f0 _q?2 ;�q3 = n3 n1 q3 � q1jq3 � q1j2 + n3 n2 q3 � q2jq3 � q2j2 + f0 _q?3 ; (3.1)9



where f0 = �=p1� � 2 [0 ;+1). Now we fous on the ODE system (3.1) with f0 > 0 and onsiderthe ases n1 = 1; n2 = n3 = �1 as well as n1 = n2 = n3 = 1. We �x the initial onditions:q1(0) = (0; 1:7); q2(0) = (�1; 0); q3(0) = (1; 0); _qj(0) = (0; 0); j = 1; 2; 3 and vary the onstant f0from 0 to 2:0.Case 1: n1 = 1; n2 = n3 = �1.For the onveniene of omputations, we set f0 = 0:01; 0:1; 1:0 and 2:0, respetively. In Fig. 3.8,we plot the trajetories of qj's as f0 = 0:01; 0:1; 1:0 and 2:0, where (q1; q2; q3) is the solution of thesystem (3.1). The trajetories of qj's are bounded and ollisionless. They have a daning pattern(hanging partners) desribed as follows. Firstly, q1 and q3 rotate eah other and move togetherbut q2 moves away from q1 and q3 in the time interval-1. Then q2 omes forwards and attrats q1suh that q1 and q2 rotate eah other and move together. In addition, q2 repelles q3 suh that q3moves away from q1 and q2 in the time interval-2. As time inreases, the motion ontinues withoutollision and the motion style hanges alternatively in di�erent time intervals.Fig. 3.8 is near here.To study the daning pattern of qj's, we design a step funtion vs time interval by�(t) = 8><>: 2 if jq1(t)� q2(t)j � jq1(t)� q3(t)j ;3 if jq1(t)� q2(t)j > jq1(t)� q3(t)j ; (3.2)In Fig. 3.9(a)-(d), we plot the the step funtion � vs the spei�ed time intervals for the asesf0 = 0:01; 0:1; 1:0 and 2:0, respetively. Fig. (a), (d) show that the time period of q1 rotating withq2 and the time period of q1 rotating with q3 are almost same. However, Fig (b), () show that thetime period of q1 rotating with q2 and the time period of q1 rotating with q3 are hanged irregularly.Fig. 3.9 is near here.We now ompute the Lyapunov exponents of the system (3.1) as f0 varies from 0 to 2:5.Fig. 3.10(a)-(d) show that the system (3.1) is haoti as f0 2 (0:0143; 1:68) but regular as f0 2(0; 0:0143) [ (1:68; 2:5). Atually, the numerial simulation beomes very vague and it is diÆultto haraterize when f0 is lose to the endpoints 0:0143 and 1:68.Fig. 3.10 is near here.10



We now ompute the Poinar�e maps of the system (3.1) with f0 = 0:01; 0:1; 1:0 and 2:0, re-spetively. In Fig. 3.11(b)(), we plot the �rst Poinar�e maps (11-dim.) with f0 = 0:1 projetedonto (q2y; _q3x)-plane and f0 = 1:0 projeted onto (q2x; _q3x)-plane. The maps form a fratal pattern.Thus the trajetories of qj's are fairly said to be haoti as f0 = 0:1 and 1:0. In Fig. 3.11 (a)(d),we plot the seond Poinar�e maps (10-dim.) of (3.1) with f0 = 0:01 projeted onto ( _q1y; q3x)-planeand f0 = 2:0 projeted onto ( _q1x; q3y)-plane. The maps form an invariant losed urve. Note thatthe fuzzy bands aused by using �-neighborhood in omputation. Thus the trajetories of qj's arefairly said to be quasi 3-periodi as f0 = 0:01 and 2:0. Furthermore, the spetrums of waveformsof (3.1) for f0 = 0:01; 0:1; 1:0 and 2:0 are shown in Fig. 3.12.Fig. 3.11 and 3.12 are near here.All numerial evidenes displayed here sustain our previous viewpoints that the system (3.1)has haoti trajetories as f0 2 (0:0143; 1:68) and has quasi 3-periodi orbits as f0 2 (0; 0:0143) [(1:68; 2:5).Remark: Suppose that the initial onditions are q1(0) = (0; 1:7); q2(0) = (�1; 0); q3(0) = (1; 0),and _qj(0) = (0:01; 0); j = 1; 2; 3. Note that the initial veloities _qj(0)'s are nonzero. Then bythe same numerial methods, the motion of qj's is haoti if f0 2 (; 1:4), where  � 0:005 and(q1; q2; q3) is the solution of (3.1). Hene the nonzero initial veloities may hange the interval off0 for the haoti motion.Case 2: n1 = n2 = n3 = 1.In this ase, all qj's repell eah other and the ollisionless orbits of (3.1) beome unbounded asf0 is lose to zero. When we inrease f0, the trajetories of qj's beome bounded. In Fig. 3.13, weplot the diameters of qj's as f0 varies from e�2 to e2.Fig. 3.13 is near here.Now we ompute the largest Lyapunov exponents of (3.1) with f0 from e�0:5 to e2 and plotthem in Fig. 3.14. Numerial results show that the system (3.1) in this ase is haoti when f0 isin a tiny interval (1:268; 1:285). Otherwise, the system (3.1) has only quasi-periodi solutions.Fig. 3.14 is near here.
11



As in Case 1, Fig. 3.15 plots the spetrums of waveforms as well as the �rst (11 dim.) and theseond (10 dim.) Poinar�e maps of (3.1), respetively, with (a) f0 = 1, projeted onto (q1x; q2x)-plane; (b) f0 = 1:271, projeted onto (q1y; q2x)-plane; () f0 = 5, projeted onto (q1x; q2x)-plane.Here the seond (10 dim.) Poinar�e maps for the ases (a) and () form invariant losed urves.Thus the orbits an be regarded as quasi 3-periodi solutions. The �rst (11 dim.) Poinar�e mapfor the ase (b) forms a fratal pattern and the trajetory an be fairly said to be haoti. Allnumerial evidenes sustain our previous viewpoints.Fig. 3.15 is near here.4 Numerial Results of the System (1.2)In this Setion, we will study the long-time dynamis of (1.2). From Setion 1, the system (1.2)an be transformed to the system (1.7) given by8>>>>>><>>>>>>: �q1 = n1 n2 q1 � q2jq1 � q2j2 + n1 n3 q1 � q3jq1 � q3j2 + f0 n1 _q?1 ;�q2 = n2 n1 q2 � q1jq2 � q1j2 + n2 n3 q2 � q3jq2 � q3j2 + f0 n2 _q?2 ;�q3 = n3 n1 q3 � q1jq3 � q1j2 + n3 n2 q3 � q2jq3 � q2j2 + f0 n3 _q?3 ; (4.1)where f0 = �=p1� � 2 [0 ;+1).The system (4.1) an be regarded as a linear ombination of the "harged three-body" problemand the Kirhho� problem that is derived in Setion 1. Note that if n1 = n2 = n3 = �1 thesystem (4.1) is equivalent to the Case 2 of (3.1) whih has been disussed in Setion 3. Nowwe fous on the system (4.1) with n1 = �n2 = �n3 = 1; f0 > 0 and the initial onditions:q1(0) = (0; 1:7); q2(0) = (�1; 0); q3(0) = (1; 0); _qj(0) = (0; 0); j = 1; 2; 3. From our numerialexperienes, we observe that the system (4.1) has bounded solutions only when 0 � f0 � f�0 = 0:038.For the ase that f0 > f�0 , the trajetory of (4.1) beomes unbounded and is ollisionless. Fig. 4:1plots the diameters of the orbit range for (4.1) versus f0 from e�5 to e2.Fig. 4.1 is near here.As f0 > f�0 , the solution (q1; q2; q3) of (4.1) behaves like that q1; q2 rotate eah other and movetoward in�nity as t tends to in�nity. In addition, q3 forms a bounded orbit near (�48; 0). Fig. 4.2plots the unbounded orbit and the orresponding spetrum of waveform for the system (4.1) with12



f0 = 0:5. Here "*" and "o" denote the positions of qj; j = 1; 2; 3 at t = 550 se. and t = 1000 se.respetively. Fig. 4.2 is near here.For f0 2 (0; 0:038), our numerial omputations show that the orbits of (4.1) almost form quasi3-periodi solutions whih preserve the property of orbits as in the "harged three-body" problem(1.4). Fig. 4:3 plots the spetrum of waveform and the seond (10 dim.) Poinar�e map of (4.1) withf0 = 0:01. We observe that the seond Poinar�e map forms an invariant losed urve projetedonto ( _q1y; _q2x)-plane. This indiates that the orbit forms a quasi 3-periodi solution of (4.1).Fig. 4.3 is near here.Conluding Remarks:We study two dynamial systems (1.1) and (1.2) with a parameter � 2 [0; 1℄. The system(1.1) is a homotopy deformation from (1.4) the "harged three-body" problem to the system (1.5).The system (1.2) is also a homotopy deformation from (1.4) the "harged three-body" problemto (1.6) the Kirhho� problem for three quantized vorties. As � = 0; 1, the dynamial systems(1.1) and (1.2) have no haos. However, one dynamial system may reate haos as � varies fromzero to one. This may provide an example to show that the homotopy deformation of dynamialsystems annot preserve the long-time dynamis even though the dynamial systems have the samenonlinear terms.
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