
DYNAMICS OF VORTICES IN

TWO-DIMENSIONAL BOSE-EINSTEIN

CONDENSATES

Shu-Ming Chang�, Tai-Chia Liny, and Wen-Wei Linz

y Department of Mathematics, Chung Cheng U., Chiayi 621, Taiwan
z Department of Mathematics, Tsing Hua U., Hsingchu 300, Taiwan

Abstract

We derive the asymptotic motion equations of vortices for the time-dependent

Gross-Pitaevskii equation with a harmonic trap potential. The asymptotic motion

equations form a system of ordinary di�erential equations which can be regarded as a

perturbation of the standard Kirchho� problem. From the numerical simulation on the

asymptotic motion equations, we observe that the bounded and collisionless trajectories

of three vortices form chaotic, quasi 2- or quasi 3-periodic orbits. Furthermore, a new

phenomenon of 1 : 1-topological synchronization is observed in the chaotic trajectories

of two vortices.

1 Introduction

In this paper, we study the time-dependent Gross-Pitaevskii equation given by

�i ut = �u� V�(x; y) u+
1

�2
(1� juj2) u for (x; y) 2 R

2 ; t > 0; (1.1)

with the initial data

ujt=0 = u0(x; y) for (x; y) 2 R
2 ; (1.2)

where u is a complex-valued order parameter and � is a positive small parameter. Hereafter,

V�(x; y) = �� x
2 + �� y

2 is a harmonic trap potential in a two-dimensional Bose-Einstein

condensate, where �� and �� are positive constants depending on �. The time-dependent

Gross-Pitaevskii equation was introduced as a phenomenological equation for the order pa-

rameter in superuids. Due to recent experiments on Bose-Einstein condensation of dilute
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gases in magnetic traps, the time-dependent Gross-Pitaevskii equation has become a well-

known model to describe a trapped Bose-Einstein condensate (see Dalfovo et al. [1999]).

Vortices and their motions have long been an important phenomenon in superuids and

Bose-Einstein condensates. In superuids, the circulation in a vortex must be quantized,

i.e., in a closed path around the vortex, the phase undergoes a �2� winding. Mean-�eld

theories, which are based on the Bogoliubov approximation [Bogoliubov, 1947], predict that

a continuum Bose-Einstein condensate with repulsive interactions should be a superuid

and it can exhibit quantized vortices [Feder et al., 1999]. Recently, quantized vortices in a

Bose-Einstein condensate have been observed in experiments (cf. [Matthews et al., 1999;

Madison et al., 2000]). For the dynamics of a vortex in a Bose-Einstein condensate, Lundh

and Ao [2000] used the hydrodynamic approach and found that an o�-center vortex will move

in a circular trajectory around the trap center. Svidzinsky and Fetter [preprint] investigated

the dynamic law of a vortex by the formal asymptotic analysis. However, the communication

of multiple vortices is still unknown. In this paper, we will study a general result on the

dynamics of vortices in trapped Bose-Einstein condensates.

One of our main results is to derive the dynamics of vortices in trapped Bose-Einstein

condensates. Suppose the initial data u0 in (1.2) has d 2 N vortex centers at qj(0); j =

1; � � � ; d with winding numbers nj 2 f�1g; j = 1; � � � ; d. For the stability of the vortex

structure in u, we require nj 2 f�1g; j = 1; � � � ; d. Under some speci�c assumptions on u0,

we may derive the asymptotic motion equations of d vortices qj's in the following:

Case 1. Assume that ��; �� � ��2 (log 1
�
)�1, i.e., �� = ��2 (log 1

�
)�1 (�0 + o�(1)) ; �� =

��2 (log 1
�
)�1 (�0+ o�(1)), where �0 and �0 are positive constants independent of �, and

o�(1) is a small quantity which tends to zero as � goes to zero. Then the asymptotic

motion equations of d vortices qj's are

nj _qjx = �@qjy W (q1; � � � ; qd)� 2nj �0 qjy ; (1.3)

nj _qjy = @qjx W (q1; � � � ; qd) + 2nj �0 qjx ;

for j = 1; � � � ; d :

Case 2. Assume that ��; �� � ��2 (log 1
�
)�1, i.e., ��; �� = o�(1) �

�2 (log 1
�
)�1, where o�(1)

is a small quantity which tends to zero as � goes to zero. Then the asymptotic motion

equations of d vortices qj's are

nj _qjx = �@qjy W (q1; � � � ; qd) ; (1.4)

nj _qjy = @qjx W (q1; � � � ; qd) ;

for j = 1; � � � ; d :

Case 3. Assume that ��; �� � ��2 (log 1
�
)�1, i.e., �� = �� �0 ; �� = �� �0 and �� �

2 log 1
�
!1

as � ! 0+. Then under a suitable time scale O(�� �
2 log 1

�
), the asymptotic motion
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equations of d vortices qj's are

_qjx = �2 �0 qjy ; _qjy = 2�0 qjx ; j = 1; � � � ; d ; (1.5)

where qj = qj(t) = (qjx(t); qjy(t)) ; and

W =
dX

j; k = 1

j 6= k

nj nk log jqj � qkj : (1.6)

For the vortex dynamics in superuids, the governing equation is given by(
�i ut = �u+ 1

�2
(1� juj2)u for (x; y) 2 R

2 ; t > 0 ;

ujt=0 = u0(x; y) for (x; y) 2 R
2 ;

(1.7)

where � is a positive small parameter, u is a complex-valued order parameter and the initial

data u0 has d 2 N vortex centers at qj(0); j = 1; � � � ; d with winding numbers nj 2 f�1g; j =

1; � � � ; d. For the stability of the vortex structure in u, we require nj 2 f�1g; j = 1; � � � ; d.

The equation (1.7) is the Gross-Pitaevskii equation for superuids (cf. [Donnelly, 1991;

Frisch et al., 1992; Ginzburg & Pitaevskii, 1958; Josserand & Pomeau, 1995; Landau &

Lifschitz, 1989; Nozieres & Pines, 1990]). From [E, 1994], [Lin & Xin, 1999] and [Neu, 1990],

the asymptotic motion equations of d vortices qj's form the system (1.4).

To distinguish the dynamics of (1.3) and (1.4), we study the long-time dynamics of (1.3)

and (1.4) with d = 3 by numerical simulations. The system (1.4) is the Kirchho� problem

which is a standard problem for the motion of vortices in uid mechanics (cf. Kirchho�

[1883]). From Aref [1979, 1983], the Kirchho� problem (1.4) is an integrable system if d � 3,

and it may have chaotic motions in a bounded region if d � 4. Hence the bounded and

collisionless trajectories of the system (1.4) with d = 3 are either periodic or quasiperiodic.

The system (1.3) can be regarded as a perturbation of the system (1.4). Moreover, the

system (1.3) has the same nonlinear terms as the system (1.4). However, by the numerical

simulation on the system (1.3) with d = 3, we may observe chaotic motions of qj's in a

bounded region for some �0 and �0. Hence it is possible that the dynamics of three vortices

in two-dimensional Bose-Einstein condensates may have chaotic motions in a bounded region.

This may provide a di�erence between Bose-Einstein condensates and superuids.

We may rewrite the system (1.3) with d = 3 as follows:

_qjx = �

dX
k = 1

k 6= j

nk
qjy � qky

jqj � qkj2
� !1 qjy ; (1.8)

_qjy =
dX

k = 1

k 6= j

nk
qjx � qkx

jqj � qkj2
+ !2 qjx ;

for j = 1; � � � ; d ; where !1 = 2�0 and !2 = 2�0. Generically, we may set !1; !2 to be any

real numbers (see Remark 3 in Section 2). From numerical experiments, we observe that
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the bounded and collisionless trajectories of three vortices form chaotic orbits, quasi 2- or

3-periodic solutions. Furthermore, we obtain a new phenomenon of 1 : 1-topological synchro-

nization on two chaotic trajectories of vortices. Actually, this topological synchronization

is of frequency synchronization but not of identical synchronization, phase synchronization

and lag synchronization.

The rest of this paper is organized as follows. In Section 2, we derive the system (1.3) for

the asymptotic motion equations of vortices. The main tool of our argument is the spectrum

of the linearized operator for the steady state equation of (1.7) with respect to the symmetric

vortex solution of the steady state equation of (1.7). In Section 3, we state the numerical

results on the system (1.8).

2 Vortex Dynamics in Bose-Einstein Condensates

For the dynamics of a single vortex, we assume that the solution u of (1.1) has only one

vortex center at q(t), where q(t) = (qx(t); qy(t)) is smooth in t, and Br0(q(t)) is the vortex

core which moves along with the vortex trajectory (x; y) = q(t). Here Br0(q(t)) is a disk

on R
2 with radius r0 and center at q(t), where r0 is a positive constant independent of �.

Moreover, there is an essential hypothesis given by

Main Hypothesis. When a vortex begins to move at the time t = 0, the vortex structure

on the vortex core Br0(q) does not change much at the time t = 0.

Main Hypothesis is to preserve the vortex structure on the vortex core when the vortex moves.

We will use Assumption 2.1 in the middle part of this section to ful�ll Main Hypothesis and

derive the vortex dynamics.

Now we focus on the vortex core Br0(q) and consider the following system of equations:(
�i ut = �u� V�(x; y) u+

1
�2
(1� juj2) u for (x; y) 2 Br0(q(t)); t > 0;

ujt=0 = u0(x; y) for (x; y) 2 Br0(q(0)) :
(2.1)

We introduce the stretched variables

X =
x� qx(t)

�
; Y =

y � qy(t)

�
; (2.2)

and we set

	(X;Y; t; �) = u(x; y; t; �)

for (x; y) 2 Br0(q), i.e., (X;Y) 2 Br0=�(0). From (2.2), the trap potential V�(x; y) = �� x
2 +

�� y
2 can be written by

V�(x; y) = 2�(�� qx X+ �� qy Y) + [��(q
2
x + �2X2) + ��(q

2
y + �2Y2)] : (2.3)

Then by (2.1) and (2.3), we have8>>>><>>>>:
�i �2	t = �i � _q � ~r	+ ~�	+ (1� j	j2)	

� �2 f2�(�� qx X+ �� qy Y) + [��(q
2
x + �2X2) + ��(q

2
y + �2Y2)]g	

for (X;Y) 2 Br0=�(0); t > 0;

	jt=0 = u0 for (X;Y) 2 Br0=�(0) ;

(2.4)
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where
~r = (@X; @Y) ; ~� = @2

X
+ @2

Y
; (2.5)

and 	t =
@
@t
	(�; �; t; �). We take an expansion form of 	 as follows.

	(X; Y; t; �) = 	0(X;Y) e
iH + �	1(X; Y; t; �) e

iH ; (2.6)

where 	0 = 	0(X;Y) satis�es that

	0(X;Y) = f0(R) e
i � ; R = j(X;Y)j; � = arg(X;Y) ; (2.7)

and f0(R) is the solution of8>>><>>>:
�f 00 �

1

R
f 0 +

1

R2
f = (1� f 2) f for R > 0 ;

f(+1) = 1; f(0) = 0; f � 0 :

(2.8)

From [Chen et al., 1994], [Hagan, 1982] and [Herv�e & Herv�e, 1994], we learned that (2.8) has

a unique solution and 	0 is called the symmetric vortex solution of the steady state equation

of (1.7) in R
2 . In addition, we assume that H = H(x; y; t; �) is a smooth real-valued function

and satis�es

�H = 0 ; jrHj ; jHtj ; jrHtj � K for (x; y) 2 Br0(q(t)) ; t > 0 ; (2.9)

where Ht =
@
@t
H and K is a positive constant independent of �.

By (2.6){(2.9), (2.4) becomes

�i _q � ( ~r	0 + � ~r	1) � �	0Ht � �2	1Ht + i �2	1; t

= �	0 jrHj
2
� 2i( ~r	0 � rH) + ~L�(	1) + N̂� (	1)

+ � f2�(�� qx X+ �� qy Y) + [��(q
2
x + �2X2) + ��(q

2
y + �2Y2)]g (	0 + �	1)

for (X;Y) 2 Br0=�(0); t > 0 ;

(2.10)

where 8><>:
� ~L�(	1) = ~�	1 + (1 � j	0j

2)	1 � 2(	0 � 	1)	0 ;

N̂� (	1) = �2	1jrHj
2
� 2i�( ~r	1 � rH) + �2 j	1j

2	1

+ �[ 2(	0 �	1)	1 + j	1j
2	0 ] ;

(2.11)

and 	1; t =
@

@ t
	1(� ; t ; �). Note that in the �rst term of (2.11), (	0 �	1) =

1
2
( �	0	1 + �	1	0)

and �(�) denotes as the complex conjugate.

The spectrum information of the linear operator ~L� is essential for our argument. From

Lin [1997, 2000], we have estimates on the eigenvalues of ~L� as follows.

Theorem 2.1 Let �1 and �2 be the �rst and the second eigenvalue of ~L�. Then

(i) the eigenvalue �1 has only two associated eigenfunctions ~e1 = a�(R) + b�(R) e
2i � and

~e2 = ia�(R)� ib�(R) e
2i �, where a� and b� are real-valued.
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(ii) 0 < �1 = O(�2(log r0
�
)�1) as �! 0+.

(iii) there exist �1 > 0 and c1 > 0 independent of � such that �2 � �2 c1 for 0 < � � �1.

Let

~w1 =
@X	0

k@X	0kL2
; ~w2 =

@Y	0

k@Y	0kL2
; (2.12)

where k�kL2 is the L
2 norm on the disk B r

0

�
(0). We observe that ~wj's are from the translation

invariance. In Lin [2000], we used Theorem 2.1 to derive a useful estimate of eigenfunctions

~ej's as follows.

Proposition 2.1 Assume that

h ~wj; ~eji > 0; k~ejkL2 = 1 ; j = 1; 2 :

Then the eigenfunctions ~ej's satisfy

~ej = ~wj + �j ;� ; k�j ;�kL2 = O((log
1

�
)�

1

2 ) as �! 0+ ; for j = 1; 2:

Hereafter, we use k�kL2 and h�; �i to denote the L
2 norm and the L2 inner product respectively

on the disk B r
0

�
(0). Let ~V1 = fa(R) + b(R) e2i � 2 H1

0 (B r
0

�
(0) ; C )g. Then it is easy to check

that ~V1 is invariant under ~L�1� . Hence we set ~ej ;k 2 ~V1's the unit L2 norm eigenfunctions

of ~L� corresponding to the eigenvalue ~�k respectively for k � 2 . Then ~ej's and ~ej ;k's are

dense in V1 = fa(R) + b(R) e2i � 2 L2(B r
0

�
(0) ; C )g. Since ~wl 2 V1; l = 1; 2, then ~wl's can be

represented by ~ej's and ~ej ;k's as follows.

~wl =
2X

j=1

h ~wl; ~eji~ej +
1X
k=2

J(k)X
j=1

h ~wl; ~ej ;ki~ej ;k ; (2.13)

where J(k) is the multiplicity of the eigenvalue ~�k; k � 2. Using integration by parts, we

have 8>><>>:
h~L�(	1) ; ~eji =

Z
@Br

0
=�(0)

	1 � @n̂~ej + �1h	1 ; ~eji ;

h~L�(	1) ; ~ej ;ki =

Z
@Br

0
=�(0)

	1 � @n̂~ej ;k + ~�kh	1 ; ~ej ;ki ;
(2.14)

where @n̂ is the normal derivative. Hereafter, (� � �) � 1
2
(��� + ���) for �; � 2 C . Here

we have used the fact that the eigenfunctions ~ej; ~ej ;k 2 H1
0 (B r

0

�
(0) ; C ). Then all the termsR

@B r
0

�
(0) ~ej � @n̂	1 and

R
@B r

0

�
(0) ~ej ;k � @n̂	1 in (2.14) become zero. Hence by (2.13), (2.14) and

Proposition 2.1, we obtain

h~L�(	1) ; ~wli =
2X

j=1

"
�1h	1 ; ~eji+

Z
@Br

0
=�(0)

	1 � @n̂~ej

#
h ~wl ; ~eji

+
1X
k=2

J(k)X
j=1

"
~�kh	1 ; ~ej ;ki+

Z
@Br

0
=�(0)

	1 � @n̂~ej ;k

#
h ~wl ; ~ej ;ki

= o�((log
1
�
)�

1

2 ) ; l = 1; 2 ;

(2.15)
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provided that 	1 satis�es

jh	1 ; ~ejij = o�(�
�2(log 1

�
)1=2) ; j = 1; 2 ;

1X
k=2

J(k)X
j=1

�2�k jh	1 ; ~ej ;kij = o�(1) ;
(2.16)

������
Z
@B r

0

�
(0)

	1 � @~n ~ej

������ = o�((log
1
�
)�1=2) ; j = 1; 2 ;

1X
k=2

J(k)X
j=1

������
Z
@B r

0

�
(0)

	1 � @~n ~ej ;k

������ = o�(1) ;

(2.17)

where K > 0 is a constant and @~n is the normal derivative. Hereafter, we denote o�(1) as a

small quantity, independent of time t, and tending to zero as �! 0+.

The main idea of the proof of vortex dynamics is to make the L2 inner product with

(2.10) and ~wj; j = 1; 2. We require that 	1 satis�es the "small" perturbation condition

(2.16), (2.17) and

k ~r	1kL2(Br
0
=�(0))

� K��� ; 0 < � < 1 ;

k	1kL6(Br
0
=�(0))

� K�� ; 0 <  < 1
3
;

k	1kL2(Br
0
=�(0))

= o�((log
1
�
)
1

2 ) ;

k	1 ;tkL2(Br
0
=�(0))

� K��Æ ; 0 < Æ < 2 ;

(2.18)

Note that the upper bound of (2.18) and the �rst term of (2.16) tend to in�nity as � goes

to zero. From Haraux [1981], the equation (1.1) is well posed. Then 	1 is smooth in both

space and time variables. Hence (2.16), (2.17) and (2.18) can be ful�lled at least in a short

time when 	1jt=0 satis�es

Assumption 2.1 	1 = 	1(X;Y; t; �) satis�es

(a) 	1(�; �; 0; �) has suÆciently small C1 norm on the vortex core (X;Y) 2 Br0=�(0) at t = 0,

(b) k@t	1(�; �; 0; �)kL2(Br
0
=�(0))

= O(��Æ); 0 < Æ < 2.

By the suitable choice of initial data u0, we obtain Assumption 2.1(a). Assumption 2.1(b)

preserves the vortex structure on the vortex core when the associated vortex point begins to

move at the time t = 0. Note that the upper bound of Assumption 2.1(b) is � ��Æ; 0 < Æ < 2

which tends to in�nity as � goes to zero. Actually, Assumption 2.1 which may assure (2.16),

(2.17) and (2.18) is more generalized than the assumptions of the standard asymptotic

analysis. To derive the dynamics of vortices, the standard asymptotic analysis is well-

accepted (cf. [E, 1994; Neu, 1990; Ting & Klein, 1991]). In E [1994] and Neu [1990], E

and Neu used a speci�c asymptotic expansion formula and some pointwise conditions for

the solution on vortex cores to derive the dynamics of vortices. However, (2.16), (2.17) and

(2.18) are not pointwise. This is a kind of generalization for the assumptions of the standard

asymptotic analysis.
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Now we derive the vortex dynamics as follows. Making the inner product with (2.10)

and ~wj; j = 1; 2 and using (2.15), we have

� _qx [hi@X	0 ; ~wji+ �hi@X	1 ; ~wji]� _qy [hi@Y	0 ; ~wji+ �hi@Y	1 ; ~wji]

= �̂j + �2 (hi	1;t ; ~wji + h	1Ht ; ~wji) + hN̂�(	1) ; ~wji+ o�
�
(log 1

�
)�1=2

� (2.19)

where

�̂j = �2hi@X	0 @xH ; ~wji � 2hi@Y	0 @y H ; ~wji

+ �h	0jrHj2 ; ~wji + �h	0Ht ; ~wji

+ 2�2[�� qx hX(	0 + �	1) ; ~wji+ �� qy hY(	0 + �	1) ; ~wji]

+ � (��q
2
x + ��q

2
y)h(	0 + �	1) ; ~wji+ �3 h(��X

2 + ��Y
2) (	0 + �	1) ; ~wji :

(2.20)

It is easy to check that

@X	0 =
1
2
(1
s
f0 + f 00) +

1
2
(f 00 �

1
s
f0) e

2i � ;

@Y	0 =
i
2
(1
s
f0 + f 00) +

i
2
(1
s
f0 � f 00) e

2i � :
(2.21)

Hence

hi@X	0 ; ~w1i = hi@Y	0 ; ~w2i = 0:

Thus (2.19) becomes

� _qx �̂12 + _qy (�̂11 + ��̂1) = �1 ;

_qx(�̂21 + ��̂2) + � _qy �̂22 = �2
(2.22)

where
�̂11 = hi@Y	0 ; ~w1i ; �̂21 = hi@X	0 ; ~w2i ; �̂12 = hi@X	1 ; ~w1i ;

�̂22 = hi@Y	1 ; ~w2i ; �̂1 = hi@Y	1 ; ~w1i ; �̂2 = hi@X	1 ; ~w2i ;

�j = hN̂�(	1); ~wji ;

and

j = �̂j + �2(h	1Ht; ~wji+ hi	1;t; ~wji) + �j + o�

�
(log

1

�
)�1=2

�
:

By (2.9), (2.18) and (2.21), we have

�̂11 = �
�

�� 1
; �̂21 =

�
�� 2

;

�j�̂j 2j � K�1�� ; �j�̂jj � K�1�� ; 0 < � < 1 ;

j�jj = o�
�
(log 1

�
)�1=2

�
; j = �̂j + o�

�
(log 1

�
)�1=2

�
; j = 1; 2 ;

(2.23)

where �� 1 = k@X	0kL2 and �� 2 = k@Y	0kL2. Furthermore, (2.22) implies

_qx (t) = �

1

̂
[(�̂11 + ��̂1)2 � ��̂221] ; _qy (t) = �

1

̂
[(�̂21 + ��̂2)1 � ��̂122] ; (2.24)

where ̂ = (�̂11+ ��̂1)(�̂21+ ��̂2) � �2�̂12�̂22. Moreover, by (2.9), (2.21) and the mean-value

theorem of harmonic functions, we have

� h	0Ht ; ~wji =
� �2

�� j

 Z 1

�

0
s2f0f

0

0 ds

!
@xjHt(q ; t ; �) ; (2.25)
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where x1 = x; x2 = y. From (1.7) and (1.3), we obtain thatZ 1

�

0
s2f0f

0

0 ds = log
1

�
+ O(1) : (2.26)

Furthermore by (2.9), (2.21), and the mean-value theorem of harmonic functions, we have

hi @Xj
	0 @xjH ; ~wji = 0 ; j = 1; 2 ;

hi @X1
	0 @x1H ; ~w2i =

�

�� 2
@x1H(q ; t ; �) f20(

1
�
) ;

hi @X2
	0 @x2H ; ~w1i = �

�

�� 1
@x2H(q ; t ; �) f20(

1
�
) ;

j� h	0jrHj2 ; ~wjij �
� C
�� j

; C = 2�K2 sup
0<�<1

Z 1

�

0
sf0f

0

0 ds > 0 ;

� hi	0Ht ; ~w1i = �
�

�� 1

�
�2
R 1

�
0 sf 2

0 ds

�
@x2 Ht(q ; t ; �) ;

� hi	0Ht ; ~w2i = �

�� 2

�
�2
R 1

�
0 sf 2

0 ds

�
@x1 Ht(q ; t ; �) ;

(2.27)

where X1 = X; X2 = Y; x1 = x; x2 = y. Hence by (2.20), (2.25), (2.26) and (2.27), we obtain

�̂1 =
�

�� 1
[2@yH(q ; t ; �) + 2�0 qx

+ �2(log 1
�
+O(1))@xHt(q ; t ; �) + o�(1)] ;

�̂2 =
�

�� 2
[�2@xH(q ; t ; �) + 2 �0 qy

+ �2(log 1
�
+O(1))@yHt(q ; t ; �) + o�(1)] :

(2.28)

For the terms of �0 and �0 in (2.28), we have used

�� = ��2
�
log

1

�

��1
(�0 + o�(1)) ; �� = ��2

�
log

1

�

��1
(�0 + o�(1)) ;

the third term of (2.18), and the fact that

hX	0 ; ~w1i =
�

�� 1

�
log

1

�
+O(1)

�
;

hY	0 ; ~w2i =
�

�� 2

�
log

1

�
+O(1)

�
;

hX	0 ; ~w2i = hY	0 ; ~w1i = 0 ;

h	0 ; ~wji = hX
2	0 ; ~wji = hY

2	0 ; ~wji = 0 ; j = 1; 2 :

Thus by (2.9), (2.23), (2.24), and (2.28), we obtain

_qx = 2@xH(q ; t ; �) � 2�0 qy ;

_qy = 2@y H(q ; t ; �) + 2�0 qx :
(2.29)

Remark 1. Suppose H is a constant function. Then (2.29) becomes

_qx = �2�0 qy ; _qy = 2�0 qx : (2.30)
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Hence

qx = A cos

�
2
q
�0�0 t

�
+ B sin

�
2
q
�0�0 t

�
;

qy =
q
�0=�0

�
A sin

�
2
q
�0�0 t

�
� B cos

�
2
q
�0�0 t

��
;

where A and B are constants determined by the initial data qx(0) and qy(0). This is consis-

tent with the result in [Lundh, 2000] and [Svidzinsky & Fetter, [preprint]].

For the motion of d-vortices, we restrict (1.1) on the vortex cores Br0(qj)'s and we consider

the following system of equations.(
�i ut = �u� V�(x; y) u+

1
�2
(1� juj2) u for (x; y) 2 Bj

r0
(t); t > 0;

ujt=0 = uj 0(x) for (x; y) 2 Bj
r0
(0) ;

(2.31)

where (x; y) = qj(t) = (qjx(t); qjy(t)) is the j-th vortex trajectory, qj is smooth in t, jqj � qkj >

2r0 for j 6= k, and Bj
r0
(t) � f(x; y) : j(x; y)� qj(t)j < r0g is the j-th vortex core which moves

along with the j-th vortex trajectory (x; y) = qj(t); j = 1; � � � ; d. Now we assume that

X
j =

x� qjx(t)

�
; Y

j =
y � qjy(t)

�
; 	(Xj;Yj; t; �) = u(x; y; t; �) (2.32)

for (x; y) 2 Bj
r0
, i.e., (Xj;Yj) 2 Br0=�(0) ; j = 1; � � � ; d : As for (2.6), we take a similar

expansion form of 	 on each vortex core as follows.

	(Xj;Yj; t; �) = 	0(X
j;Yj) eiHj + �	1(X

j;Yj; t; �) eiHj for (Xj;Yj) 2 Br0=�(0) ; (2.33)

where

	0(X
j;Yj) = f0(Rj)e

i nj �j ; nj 2 f�1g ; Rj = j(Xj;Yj)j; �j = arg(Xj;Yj) :

Here we assume that8><>:
Hj =

X
k 6=j

nk �k + H ;�H = 0 for (x; y) 2 Br0(qj(t)) ; t > 0 ; j = 1; � � � ; d ;

jrHj ; jHtj ; jrHtj � K for (x; y) 2 Br0(qj(t)) ; t > 0 ;
(2.34)

where nk 2 f�1g. As for (2.29), we obtain the equations of qj given by

_qjx = 2@xHj(qj ; t ; �) � 2�0 qjy ;

_qjy = 2@yHj(qj ; t ; �) + 2�0 qjx :
(2.35)

Here we require that 	1 satis�es the "small" perturbation conditions on each vortex core

(Xj;Yj) 2 B r
0

�
(0) as follows.

kr(Xj;Yj)	1kL2(B r
0

�
(0)) � K��� ; 0 < � < 1 ;

k	1kL6(B r
0

�
(0)) � K�� ; 0 <  < 1

3
;

k	1kL2(B r
0

�
(0)) = o�

�
(log 1

�
)
1

2

�
;

k	1 ;tkL2(B r
0

�
(0)) � K��Æ ; 0 < Æ < 2 ;

(2.36)
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jh	1 ; ~emij = o�
�
��2(log 1

�
)1=2

�
; m = 1; 2 ;

1X
k=2

J(k)X
j=1

�2�k jh	1 ; ~em;kij = o�(1) ;
(2.37)

������
Z
@B r

0

�
(0)

	1 � @~n ~em

������ = o�
�
(log 1

�
)�1=2

�
; m = 1; 2 ;

1X
k=2

J(k)X
m=1

������
Z
@B r

0

�
(0)

	1 � @~n ~em;k

������ = o�(1) ;

(2.38)

where J(k) is the mutliplicity of the eigenvalue �k and K > 0 is a constant. In particular,

suppose H � 0. Then (2.35) becomes (1.3) and we complete the proof of (1.3).

Remark 2. Suppose �� ; �� = o�(�
�2 (log 1

�
)�1) . Then as for (1.3), the asymptotic motion

equations of qj's becomes (1.4). However, suppose

�� = �� �0 ; �� = �� �0 ; �� �
2 log

1

�
!1 ;

as � goes to zero. Then under a suitable time scale O(�� �
2 log 1

�
), the asymptotic motion

equations of qj's becomes (1.5). Hence there is no interaction between qj's and the trajectories

of qj's may be same as in Remark 1.

Remark 3. From [Dalfovo & Giorgini, 1999] and [Feder et al., [preprint]], we learned the

generalized Bose-Pitaevskii equation given by

�i ut = �u� V�(x; y) u+ i! (y ux � x uy) +
1

�2
(1� juj2) u for (x; y) 2 R

2 ; t > 0 ; (2.39)

with the initial data

ujt=0 = u0(x; y) for (x; y) 2 R
2 ; (2.40)

where u is a complex-valued order parameter, � is a positive small parameter, and V�(x; y)

is de�ned in (1.1). The term i! (y ux� x uy) appears for Bose-Einstein condensates rotating

about the z axis at an angular frequency !. From physical experiments (cf. Madison et

al. [2000] ), multiple vortices were generated in con�ned single-component condensates by

rotating a weakly anisotropic trap at an angular frequency !. Hence we may assume that

(2.39) is well-posed. As for (1.3), we may derive the motion equation of d vortices qj's as

follows:

nj _qjx = �@qjy W (q1; � � � ; qd)� nj !1 qjy ; (2.41)

nj _qjy = @qjx W (q1; � � � ; qd) + nj !2 qjx ;

for j = 1; � � � ; d ; where !1 = �! + 2�0 ; !2 = 2�0 � ! and W is de�ned in (1.6). Note that

!1; !2 can be any real numbers if we suitably choose !; �0 and �0.
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3 Numerical Study of Three Vortices

In this Section, we present the numerical experiments on the asymptotic motion equations

(1.8) of three vortices qj's. The equations (1.8) can be rewritten as8>>>>><>>>>>:
_qjx = �

3P
k = 1

k 6= j

nk
qjy�qky
jqj�qkj

2
� !1qjy;

_qjy =
3P

k = 1

k 6= j

nk
qjx�qkx
jqj�qkj

2
+ !2qjx;

(3.1)

for j = 1; 2; 3, where qj = qj(t) = (qjx(t); qjy(t)) and (!1; !2) is chosen in the �rst or third

quadrant. For the case !1 = !2 = 0, the system (3.1) becomes the standard Kirchho�

problem (cf. Kirchho� [1883]). From Aref [1979, 1983], we learned that the system (3.1)

with !1 = !2 = 0 is an integrable system and has either periodic or quasi periodic solu-

tion. The system (3.1) with (!1; !2) 6= 0 can be regarded as a perturbation of the standard

Kirchho� problem. Hereafter, we set the winding numbers nk's as (n1; n2; n3) = (1; 1; 1) and

(1;�1;�1) for the numerical experiments. From the numerical experiments, we observe that

the trajectories of qj's have chaotic behavior in a bounded region for some (!1; !2). Further-

more, there are two chaotic trajectories being frequency synchronized [Brown & Kocarev,

2000] and topologically synchronized (see [Afraimovich, 1999; Afraimovich et al., 2000]).

All ODE systems in the following are solved by using ODEABM predictor-corrector solver

(http://www.netlib.org/slatec) in a FORTRAN 77 program on a Compaq DS20 workstation

with machine double precision eps � 2:22 � 10�16. In order to characterize the motion of

qj's we compute (I) Lyapunov exponents, (II) Poincar�e maps, (III) Spectrums of waveforms

of the system (3.1) with di�erent pairs (!1; !2). Here we briey describe (I), (II) and (III)

as follows.

(I) Lyapunov exponents: Let m1(t); � � � ; m6(t) be the eigenvalues of the transition matrix

�t(x0) of (3.1) with �0(x0) = I6. The Lyapunov exponents of x0 are given by

�i(x0) = lim
t!1

1

t
jmi(t)j; i = 1; � � � ; 6; (3.2)

whenever the limit exists. Lyapunov exponents are a generalization of the eigenvalues at an

equilibrium point of characteristic multipliers. They can be used to determine the stability

of quasi-periodic and chaotic behavior as well as that of equilibrium points are periodic

solutions. A practical algorithm is developed in FORTRAN 77 according to the pseudo-code

in Chapter 3 of Parker & Chua [1989].

(II) Poincar�e maps: Poincar�e map is a technique to be used to characterized the periodic

of quasi K-periodic solution of the ODE system. Let P :
P

5 !
P

5 be the (�rst) Poincar�e

map on the 5-dimensional hyperplane
P

5 with the normal vector v5 =
�!v (x

�

), where x
�

2

P
5

and �!v is the vector �eld of (3.1). It is well known from the numerical point of view that

if the points Pk(x
�
); k = 1; 2; 3; � � �, freeze at one point or densely �ll out a closed curve,

then the solution of (3.1) forms a periodic solution or a quasi 2-periodic orbit, i.e., two-

torus. Otherwise, a second-order Poincar�e map is needed to compute which allows an easier

12



identi�cation of quasi 3-periodic orbit, i.e., 3-torus. (See pp. 43{47 of Parker & Chua [1989].)

The sampling of the second-order Poincar�e map uses a 4-dimensional hyperplane
P

4 �
P

5

with a suitable normal vector. The points Pk(x
�
)'s that lie on

P
4 make up the orbit of the

second-order Poincar�e map. In practice, none of the P
k(x

�
)'s lies exactly on

P
4, so those

P
k(x

�
)'s within " � 10�5 of

P
4 are collected. If the orbit of the second-order Poincar�e map inP

4 densely �ll out a closed curve, then the solution of (3.1) can fairly be said to form a quasi

3-periodic orbit. The extension to higher-order Poincar�e maps for quasi K-periodic orbits is

obvious. A practical program is written in FORTRAN 77 according to the pseudo-code in

Chapter 2 of Parker & Chua [1989].

(III) Spectrums of waveforms: The spectrum of waveform q(t) � (q1(t); q2(T ); q3(t)) is

computed using FFT subroutine in MATLAB and the spectrum distribution is displayed by

the frequency versus log10(j�t(q)j2).

3.1 Topological Synchronization

Now we shall introduce the fractal dimension for Poincar�e recurrence which can be used as an

indicator for topologically synchronized chaotic regimes (see [Afraimovich, 1999; Afraimovich

et al., 2000]). Let X; Y be complete metric spaces and f t : X � Y ! X � Y be a dynamical

system. Let A be a compact invariant subset of X � Y and �1A = A1 � X; �2A = A2 � Y

be the images under natural projections A to X and Y , respectively. Let U1 � X \ A1

(U2 � Y \ A2) be an open set in A1 (A2), and x0 2 U1 (y0 2 U2). Then we may de�ne the

number

t1(x0; U1) = inf
y2Yx

0

infft0(y)j�1f
t0(y)(x0; y) 2=U1g; 

t2(y0; U2) = inf
x2Xy

0

infft0(x)j�2f
t0(x)(x; y0)) 2=U2g

!
;

where Yx0 = �2(�
�1
1 (x0) \ A) (Xy0 = �1(�

�1
2 (y0) \ A)). If there exists �t > t1(x0; U1) (�t >

t2(y0; U2)) such that �1(f
�t(x0; y)) 2 U1 for some y 2 Yx0 (�2(f

�t(x; y0)) 2 U2 for some x 2

Xy0), then there is a maximal interval (�; �) 3 �t such that �1(f
t(x0; y)) 2 U1 (�2(f

t(x; y0)) 2

U2) for any t 2 (�; �). Set

t(x0; U1) =

8<: 0 if t1(x0; U1) =1 ;

inf
y2Yx

0

inf �+�
2

if t1(x0; U1) <1 : (3.3)

Similarly, introduce

t(y0; U2) =

8<: 0 if t2(y0; U2) =1 ;

inf
x2Xy

0

inf �+�

2
if t2(y0; U2) <1 : (3.4)

De�nition 3.1 The numbers

�x(U1) = inf
x02U1

t(x0; U1); �y(U2) = inf
y02U2

t(y0; U2) (3.5)

are called the x-Poincar�e and y-Poincar�e recurrences for U1 and U2, respectively.
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De�nition 3.2 (cf. [Afraimovich et al., 2000]) A dynamical system f t : X �Y ! X �Y is
m0

n0
-topologically synchronized if (i){(iv) hold as follows:

(i) It has an attractor A such that nonwandering orbits are dense in A.

(ii) The sets Yx0 and Xy0 contain at most N points, respectively, for any x0 2 �1(A) and

y0 2 �2(A).

(iii) For any (x0; y0) 2 A, there are numbers "0 > 0 and a1 � a2 � 1 such that: for any

open set U1 � X;U1 3 x0; diamU1 � " � "0, there is an open set U2 � Y; diamU2 �

a1diamU1; U2 3 y0, and for any open set eU2 � Y; eU2 3 y0; diam
eU2 � " � "0, there is an

open set eU1; diam
eU1 � a2diam

eU2;
eU1 3 x0 such that

�y(U2) =
m0

n0

�x(U1) + �2; �x(
eU1) =

n0

m0

�y(
eU2) + �1; (3.6)

where m0; n0 2 Z+, and �1; �2 are bounded as "! 0.

(iv) For any set U1 3 x0 ( eU2 3 y0); diamU1 = " < "0 (diam eU2 = " < "0), there are �nitely

many x0s 2 U1 (y0s 2
eU2), s = 1; � � � ; S, such that

[
x02U1

[
y2Yx

0

U2(x0; y) =
S[
s=1

[
y2Yx

0s

U2(x0s ; y); (3.7)

0B@ [
y02eU2

[
x2Xy

0

eU1(x; y0) =
S[
s=1

[
x2Xy

0s

eU1(x; y0s)

1CA ;

where diamU2(x0; y0) � a1" (diam eU1(x; y0) � a2").

Now we consider the sums

Mx(�x; "; q) = inf
G1

X
k

exp�px�x(U1k)(diamU1k)
�x; (3.8)

My(�y; "; q) = inf
G2

X
k

exp�py�y(U2k)(diamU2k)
�y ; (3.9)

where the in�mum is taken over all covers G1 (and G2) of the set A1 (and A2 correspondingly)

by open sets with diameters � ". The critical values p
(x)
0 and p

(y)
0 satisfying �x(p

(x)
0 ) = 0 and

�y(p
(y)
0 ) = 0 in (3.8) and (3.9), respectively are said to be x-and y-Poincar�e dimensions for

the x-and y-Poincar�e recurrences, respectively. We denote

dimP (A1) = p
(x)
0 ; dimP (A2) = p

(y)
0 : (3.10)

The following Theorem states the Poincar�e dimension for Poincar�e recurrences as an indicator

of topologically synchronized regimes.
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Theorem 3.1 (cf. [Afraimovich, 1999; Afraimovich et al., 2000]) If a dynamical system f t :

X � Y ! X � Y is m0

n0
-topologically synchronized, then

dimP (A2) =
m0

n0

dimP (A1): (3.11)

The asymptotic equalities of (3.8) and (3.9) show that we may expect

hexp
�
�p

(x)
0 �x(U

"
1k)
�
i � "b1; hexp

�
�p

(y)
0 �y(U

"
2k)
�
i � "b2 ; (3.12)

where bi = dimB(Ai) (box dimension) for i = 1; 2, and h�i denotes the arithmetic average

over k. We may also expect that b = b1 = b2. In this case (3.12) implies the asymptotic

equalities

h�x(U
"
1k)i �

�b

p
(x)
0

ln "; h�y(U
"
2k)i �

�b

p
(y)
0

ln "; (3.13)

where diamU1k � " and diamU2k � ".

From the asymptotic equalities of (3.13), b=p
(x)
0 and b=p

(y)
0 can be regarded as slopes of

straight lines through (0; 0) on the (h�x(U
"
1k)i;� ln ")- and (h�y(U

"
2k)i;� ln ")-planes, respec-

tively, for some 0 < "0 � " � "1 � 1. Thus b=p
(x)
0 (and b=p

(y)
0 ) can be evaluated by the

average ratio between h�x(U
"
1k)i and � ln ", (h�y(U

"
2k)i and � ln ") for some di�erent chosen

value " of diameters, e.g. " from e�3 to e�2. From Theorem 3.1 and (3.10) the x- and

y-Poincar�e dimensions of Poincar�e recurrences may serve as indicator for the onset of topo-

logically synchronized chaotic oscillations. This indicator is able to detect the regimes of

chaotic synchronization characterized by the frequency ratio m0 : n0.

3.2 For the case (n1; n2; n3) = (1;�1;�1)

We now compute the Lyapunov exponents of the ODE system (3.1) by using ODEABM solver

with time-step 0:05 sec. starting with q1(0) = (0; 2); q2(0) = (1; 0) and q3(0) = (�1; 0). The

�rst Lyapunov exponent is computed from 500 sec. to 25000 sec. and plots in Figure 3.1 for

!1; !2 2 (�10; 10).

Fig. 3.1 is near here.

From Figure 3.1 we claim that the system (3.1) has a chaotic orbits whenever (!1; !2)

is chosen from the \black" zone in the �rst quadrant, and fairly has quasi-periodic solution

whenever (!1; !2) is chosen form the \gray" zones in the �rst and the third quadrants. The

\white" zone con�rms that the solution of the system (3.1) is unbounded as time goes to

in�nity.

In Figure 3.2 we plot the chaotic trajectories of three vortices (qjx(t); qjy(t)) for j = 1; 2; 3,

from 25050 sec. to 25100 sec. with (!1; !2) = (9:88; 2:24). The trajectories q1(t) in red, q2(t)

in blue and q3(t) in green are bounded and collisionless. The corresponding �rst Lyapunov

exponent is evaluated as 0:4956.
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Fig. 3.2 is near here.

Now we compute the second-order Poincar�e maps of the system (3.1) with (!1; !2) =

(9:88; 2:24). In Figure 3.3 we plot the second-Poincar�e maps (4 dim.) projected onto

(q3x; q3y)-plane. The maps form a fractal pattern. Thus the trajectories of qj's are fairly

said to be chaotic.

Fig. 3.3 is near here.

The spectrum of wave forms of (3.1) with the same (!1; !2) as above is shown in Figure 3.4.

Fig. 3.4 is near here.

Now we characterized the behavior of trajectories of qj's insightfully. The vortices qj(t)

(j = 1; 2; 3) are observed to rotate around origin counterclockwisely and clockwisely for

(!1; !2) 2 I and III, respectively. In Figure 3.5 and 3.6 we plot the trajectories of radius and

arguments, respectively, of qj(t); j = 1; 2; 3 with (!1; !2) = (9:88; 2:24). The corresponding

spectrums of wave forms are shown in Figure 3.7.

Fig. 3.5, 3.6 and 3.7 are near here.

We denote

�j = max
s2[0;1]

log10 j�t (qj)(s)j; j = 1; 2; 3: (3.14)

The following table shows the ratios of �1=�3 and �2=�3 with various pairs of (!1; !2). It

is observed that the ratio of �2=�3 is close to one. Thus, the trajectories of q2(t) and q3(t)

are fairly said to be \partially" 1 : 1-frequency synchronized. The Tabel 3.1 motivates us to

study the synchronization behavior between the trajectories of q2(t) and q3(t).

Table 3.1. The ratios of �1=�3 and �2=�3.
(!1,!2) �1=�3 �2=�3 �3

(9.88,2.24) 1.0624 1.0004 11.0103

(9,10) 1.0564 1.0006 11.5492

(8,6) 1.0552 1.0001 11.4795

(6,1) 1.0562 1.0000 11.1935

(-6,-4) 1.0574 1.0000 11.5438

(-9,-10) 1.0488 1.0000 11.5468

(14,2) 1.0399 1.0000 11.2646

Unfortunately, synchronization regimes between q2(t) and q3(t) can not occur in some clas-

sical sense. For the case (!1; !2) = (9:88; 2:24), we observe that

No identical synchr. (cf. [31]) lim sup
t!1

jq2(t)� q3(t)j 6= 0

No phase synchr. (cf. [32]) lim sup
t!1

j arg(q2(t))� arg(q3(t))j 6= 0

No lag synchr. (cf. [33] [1]) lim sup
t!1

jq2(t + �)� q3(t)j 6= 0 for any � > 0
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Let

Aj = fqj(t)jt 2 (1000; 1025)g; j = 2; 3;

for (!1; !2) = (9:88; 2:24). We now recall the asymptotic equality (3.13) and (3.10) for

computation of the Poincar�e dimensions dimP (A2) and dimP (A3) of the Poincar�e recurrence.

Choosing O2 = fU "
2kg and O3 = fU "

3kg as open ball coverings of A2 and A3, respectively, with

various radius ", we compute the averages of the �rst return times h�x(U
"
2k)i and h�y(U

"
3k)i

on O2 and O3, respectively. Figure 3.8 shows that the plots of h�x(U
"
2k)i vs (� ln ") and

h�y(U
"
3k)i vs (� ln ") calculated for the \q2 -" and \q3 -" oscillators have almost the same

slopes (ratio=45.0/44.8 � 1:0045). From Theorem 3.1 and Figure 3.8 it is fairly said that

the chaotic trajectories of q2(t) and q3(t) with (!1; !2) = (9:88; 2:24) are 1 : 1-topologically

synchronized.

Fig. 3.8 is near here.

We now present some numerical evidences of (I) Lyapunov exponents, (II) Poincar�e maps,

and (III) spectrum of ware form to con�rm that the system (3.1) has a quasi 2- or 3-periodic

solution for some (!1; !2) 2 (�10; 10).

Case (i): Assume (!1; !2) = (9; 10). The bounded and collisionless trajectories of three

vortices qj(t); j = 1; 2; 3, form 25080 sec. to 25095 sec. are ploted in Figure 3.9. The

Lyapunov exponent is evaluated by 0:000155. The spectrum of wave form from 1000 sec.

to 25500 sec. is shown in Figure 3.10. The second-order Poincar�e maps from 41179 sec. to

4000000 sec. projected onto (q2x; q3x)-plane is ploted in Figure 3.11. The plots of Poincar�e

maps form two invariant \closed" curves. Note that the fuzzy bands in Figure 3.11 is caused

by using a 10�5-neighborhood strategy in computation. Thus the trajectories of qj's form a

quasi 3-periodic solution, i.e., 3-torus, of the system (3.1).

Fig. 3.9, 3.10 and 3.11 are near here.

Case (ii): Assume (!1; !2) = (6; 1). The bounded and collisionless trajectories of qj's

from 25155 sec. to 25190 sec. are ploted in Figure 3.12. The �rst Lyapunov exponent is

evaluated by 0:000236. The spectrum of waveform from 2000 sec. to 25500 sec. is shown

in Figure 3.13. The �rst-order Poincar�e maps from 37193 sec. to 1000000 sec. projected

onto (q1x; q1y)-plane is ploted in Figure 3.14. The plots of Poincar�e maps form an invariant

closed curve. Thus the trajectories of qj's form a quasi 2-periodic solution, i.e., 2-torus, of

the system (3.1).

Fig. 3.12, 3.13 and 3.14 are near here.
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3.3 For the case (n1; n2; n3) = (1; 1; 1)

As in subsection 3.2, Figure 3.15 plots the �rst Lyapunov exponents of the system (3.1) from

500 sec. to 25000 sec. starting with q1(0) = (0; 1); q2(0) = (1; 0) and q3(0) = (�1; 0), for

(!1; !2) 2 (�10; 10). The \black" and \gray" zones claim that the system (3.1) have chaotic

and quasi periodic solutions, respectively. The \white" zone shows that the solution of (3.1)

is unbounded as time goes to in�nity.

We now present some numerical evidences to illustrate the chaotic and quasi periodic

regimes of the system (3.1).

Fig. 3.15 is near here.

Case (iii): Assume (!1; !2) = (7:40; 0:025). We plot trajectories of three vortices qj(t); j =

1; 2; 3, from 2505 sec. to 25070 sec. in Figure 3.16. The �rst Lyapunov exponent is evaluated

by 0:4697. The corresponding Poincar�e maps and spectrum of wave form are ploted in

Figure 3.17 and 3.18, respectively. The orbit is fairly said to be chaotic.

Fig. 3.16, 3.17 and 3.18 are near here.

We now characterize synchronization behavior of qj's. The individual spectrum of q(t); j =

1; 2; 3, from 2000 sec. to 25500 sec. as shown in Figure 3.19 evaluates the ratios �1=�3 and

�2=�3 to be 1:0001 and 0:9995, respectively, where �j is de�ned by (3.14).

Fig. 3.19 is near here.

Let

Aj = fqj(t)jt 2 (1000; 1025)g; j = 1; 2; 3;

and let Oj = fU "
jkg be the open ball covering of Aj, with various radius ", for j = 1; 2; 3. As

in subsection 3.2, we compute the average of the �rst return times h�j(U
"
jk)i on Oj; j = 1; 2; 3.

Figure 3.20 shows that plots of h�j(U
"
jk)i vs �ln " calculated by \qj�" oscillator, for j = 1; 2; 3

have almost the same slope. The ratio of slopes = 27:5 : 28:4 : 28:5 � 0:97 : 0:9965 : 1.

From Theorem 3.1 and Figure 3.20, it is fairly said that the chaotic trajectories of qj's

with (!1; !2) = (7:40; 0:025) are 1 : 1 : 1-topologically synchronized. From our numerical

experiments, such a topological synchronization is not of identical synchronization, phase

synchronization and lag synchronization. In fact, the trajectories of qj(t) for the case nj =

1; j = 1; 2; 3 behave more complicated than that for the case (n1; n2; n3) = (1;�1;�1).

Fig. 3.20 is near here.

The following Table shows that the ratios of �1=�3 and �2=�3 with various pairs (!1; !2).

It is observed that all the ratios are almost close to one. From Brown and Kocarev [2000],

the trajectories of qj's are fairly said to be \partially" 1 : 1 : 1-frequency synchronized.
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Table 3.2. The ratios of �1=�3 and �2=�3.
(!1; !2) �1=�3 �2=�3 �3

(0.1,1) 0.9973 0.9926 9.0310

(7.40,0.025) 1.0001 0.9995 11.9722

(-7.79,-1.83) 0.9962 0.9978 9.9978

(-8.46,-1.63) 0.9956 0.9960 9.9799

(-9.80,-1.63) 0.9976 0.9977 10.0885

(8,6) 1.0000 0.9999 10.3570

(-9,-6) 1.0000 1.0000 10.2718

Case (iv): Assume (!1; !2) = (4; 7). The bounded and collisionless trajectories of three

vortices qj(t); j = 1; 2; 3, from 25050 sec. to 25085 sec. are plotted in Figure 3.21. The

�rst Lyapunov exponent is evaluated by 0:0043. The second-order Poincar�e maps (4 dim.)

projected onto (q1x; q1y; q3x)-space from 5094 sec. to 4000000 sec. is plotted in Figure 3.22.

The plots of Poincar�e maps form an invariant closed curve. The fuzzy bands in Figure 3.22 is

caused by using a 10�5-neighborhood strategy in computation. The corresponding spectrum

of wave form is shown in Figure 3.23. Thus the trajectories of qj's form a quasi 3-periodic

solution, i.e., 3-torus, of the system (3.1).

Fig. 3.21, 3.22 and 3.23 are near here.

4 Conclusions

In this paper, we �rst derived the asymptotic motion equation of vortices for the time-

dependent Gross-Pitaevskii equation with a harmonic trap potential in a two-dimensional

Bose-Einstein condensate. The asymptotic motion equations (3.1) can be regarded as a

perturbation of standard Kirchho� problem. We then presented numerical results on the

motion of three vortices of (3.1) in a plane for the case with three positive winding numbers

as well as with 1 positive and 2 negative winding numbers. Numerical experiments illus-

trated that the bounded and collisionless trajectories of three vortices form chaotic orbits,

quasi 2- or 3-periodic solutions. Furthermore, we observed a new phenomenon of 1 : 1-

topological synchronization on two chaotic trajectories of vortices with the same sign of

winding numbers. In general, this topological synchronization is typically of \partially"

1 : 1-frequency synchronization, but not of identical synchronization, phase synchronization

and lag synchronization. This provides a further understanding on the dynamics of vortices

in two-dimensional Bose-Einstein condensates.
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Fig. 3.1. The �rst Lyapunov exponents for (!1; !2) 2 (�10; 10) with

(n1; n2; n3) = (1;�1;�1).
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Fig. 3.2. Trajectories of three vortices q1(t) (in red), q2(t) (in blue) and q3(t)

(in green) from 25050 sec. to 25100 sec. for a chaotic regime with

(!1; !2) = (9:88; 2:24). The 1st Lyapunov exponent is evaluated 0:4956.
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Fig. 3.3. The second-order Poincar�e maps (4 dim.) projected onto (q3x; q3y)-

plane from 1393 sec. to 5000000 sec. for a chaotic regime with

(!1; !2) = (9:88; 2:24).
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Fig. 3.4. Spectrum of waveforms from 1000 sec. to 25500 sec. for a chaotic

regime with (!1; !2) = (9:88; 2:24).
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Fig. 3.5. Trajectories of radius for (a) q1(t), (b) q2(t) and (c) q3(t) from 25085 sec.

to 25100 sec. with (!1; !2) = (9:88; 2:24).
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Fig. 3.6. Trajectories of arguments for (a) q1(t), (b) q2(t) and (c) q3(t) from

25085 sec. to 25100 sec. with (!1; !2) = (9:88; 2:24).
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Fig. 3.7. Individual spectrum of (a) q1(t), (b) q2(t) and (c) q3(t) from 1000 sec.

to 25500 sec. with (!1; !2) = (9:88; 2:24).
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Fig. 3.9. Trajectories of three vortices q1(t) (in red), q2(t) (in blue) and q3(t) (in

green) from 25080 sec. to 25095 sec. for a quasi 3-periodic solution with

(!1; !2) = (9; 10). The 1st Lyapunov exponent is evaluated 0:000155.
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Fig. 3.10. Spectrum of waveforms from 1000 sec. to 25500 sec. for a quasi 3-

periodic solution with (!1; !2) = (9; 10).

32



−4 −3 −2 −1 0 1 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q2x

q
3

x

Fig. 3.11. The second-order Poincar�e maps (4 dim.) projected onto (q2x; q3x)-

plane from 41179 sec. to 4000000 sec. for a quasi 3-periodic solution

with (!1; !2) = (9; 10).
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Fig. 3.12. Trajectories of three vortices q1(t) (in red), q2(t) (in blue) and q3(t) (in

green) from 25155 sec. to 25190 sec. for a quasi 2-periodic solution with

(!1; !2) = (6; 1). The 1st Lyapunov exponent is evaluated 0:000236.
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Fig. 3.13. Spectrum of waveforms from 2000 sec. to 25500 sec. for a quasi 2-

periodic solution with (!1; !2) = (6; 1).
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Fig. 3.14. The �rst-order Poincar�e maps (5 dim.) projected onto (q1x; q1y)-plane

from 37193 sec. to 1000000 sec. for a quasi 2-periodic solution with

(!1; !2) = (6; 1).
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Fig. 3.15. The �rst Lyapunov exponents for (!1; !2) 2 (�10; 10) with

(n1; n2; n3) = (1; 1; 1).
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Fig. 3.16. Trajectories of three vortices q1(t) (in red), q2(t) (in blue) and q3(t) (in

green) from 25050 sec. to 25070 sec. for a chaotic regime with (!1; !2) =

(7:40; 0:025). The 1st Lyapunov exponent is evaluated 0:4697.
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Fig. 3.17. The �rst-order Poincar�e maps (5 dim.) projected onto (q2x; q2y)-plane

from 1000 sec. to 100000 sec. for a chaotic regime with (!1; !2) =

(7:4; 0:025).
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Fig. 3.18. Spectrum of waveforms from 2000 sec. to 25500 sec. for a chaotic

regime with (!1; !2) = (7:4; 0:025).
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Fig. 3.19. Individual spectrum of (a) q1(t), (b) q2(t) and (c) q3(t) from 2000 sec.

to 25500 sec. with (!1; !2) = (7:40; 0:025).
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Fig. 3.20. Plots of (a) h�1(U
"
1k)i vs (� ln "), (b) h�2(U

"
2k)i vs (� ln "), (c)

h�3(U
"
3k)i vs (� ln ") with " from e�3 to e�2. The ratio of slopes

= 27:5 : 28:4 : 28:5 � 0:97 : 0:9965 : 1.

42



−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

qjx(t)

q
jy
(t

)

Fig. 3.21. Trajectories of three vortices q1(t) (in red), q2(t) (in blue) and q3(t) (in

green) from 25050 sec. to 25085 sec. for a quasi 3-periodic solution

with (!1; !2) = (4; 7). The 1st Lyapunov exponent is evaluated 0:0043.
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Fig. 3.22. The second-order Poincar�e maps (4 dim.) projected onto (q1x; q1y); q3x-

space from 5094 sec. to 4000000 sec. for a quasi 3-periodic solution

with (!1; !2) = (4; 7).
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Fig. 3.23. Spectrum of waveforms from 2000 sec. to 25500 sec. for a quasi 3-

periodic solution with (!1; !2) = (4; 7).
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