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Abstract

In this paper, we study the distribution of m segregated nodal do-

mains of the m-mixture of Bose-Einstein condensates under positive

and large repulsive scattering lengths. It is shown that components of

positive bound states may repel each other and form segregated nodal

domains as the repulsive scattering lengths go to infinity. Efficient

numerical schemes are created to confirm our theoretical results and

discover a new phenomenon called verticillate multiplying, i.e., the

generation of multiple verticillate structures. In addition, our pro-

posed Gauss-Seidel-type iteration method is very effective in that it

converges linearly in 10 to 20 steps.

1 Introduction

In an ultracold dilute Bose gas, two different hyperfine spin states may repel
each other and form segregated domains like the mixture of oil and wa-
ter. Such a phenomenon is called phase separation of a binary mixture of
Bose-Einstein condensates (BECs) and has been investigated extensively by
experimental and theoretical physicists ([15], [22], [25]). Recently, Bose-
Einstein condensation of the triplet states has been observed [24]. It is possi-
ble to observe multispecies Bose-Einstein condensates with more spin states.
This motivates us to study phase separation of general m-mixture of BECs
both mathematically and numerically. As the number m becomes larger and
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larger, due to phase separation, more and more segregated domains may oc-
cur. It is natural to ask how these segregated domains distribute. Are there
any rules for the distribution of segregated domains? We will answer such a
question by studying the distribution of nodal domains of the m-component
ground state when the number m increases from two to thirty-three. The
limit on m is merely due to the huge computational resources.

The coupled Gross-Pitaevskii equations ([15], [23]), i.e., the coupled non-
linear Schrödinger equations,






−ι
∂
∂t

Φj = ∆Φj − Vj(x)Φj − µj|Φj|2Φj −
∑

i6=j

βij|Φi|2Φj for x ∈ Ω, t > 0,

Φj = Φj(x, t) ∈ C , ι =
√
−1, j = 1, . . . ,m,

Φj(x, t) = 0 for x ∈ ∂Ω, t > 0,
(1.1)

can be used as a mathematical model for multispecies Bose-Einstein conden-
sates in m different hyperfine spin states on the corresponding condensate
wave functions Φj’s. Here Ω is a bounded smooth domain in R

d, d = 2, 3,
and the nonnegative constants µj’s and βij’s are the intraspecies and inter-
species scattering lengths which represents the interactions between like and
unlike particles, respectively. Hereafter, it is natural to assume that βij’s are
symmetric i.e. βij = βji for i 6= j. For simplicity, we may choose suitable
scales for the Planck constant, atom mass and mean number of atoms in hy-
perfine states to make the system (1.1) consistent with the physical model.
The functions Vj, j = 1, . . . ,m represent the magnetic trapping potentials.

From(cf. [25]), we learned that there are two distinct types of spatial sep-
aration: (i) potential separation, caused by the external trapping potentials
in much the same way that gravity can separate fluids of different specific
weight. (ii) phase separation, which persists in the absence of external poten-
tials. In the fluid analogy, phase separated condensates can be compared to a
system of two immiscible fluids, such as oil and water. The main purpose of
this paper is to study phase separation in the coupled nonlinear Schrödinger
equations. Hence we may assume Vj ≡ 0 for j = 1, . . . ,m in the rest of this
paper.

As m > 3 and Vj ≡ 0, j = 1, . . . ,m, the coupled nonlinear Schrödinger
equations of the system (1.1) are of physical relevance in the theory of multi-
channel bitparallel- wavelength optical fiber networks(cf. [27]) and photore-
fractive media in nonlinear optics(cf. [1]). Generically, the spatial dimension
d can be one, two and three for different physical situations. However, until

2



now, most results on the coupled nonlinear Schrödinger equations are of only
one spatial dimension(cf. [9], [16], [17], [18], etc). Here we may provide some
results in high spatial dimensions, especially in two spatial dimension for the
coupled nonlinear Schrödinger equations.

To find solitary wave solutions of the system (1.1) , we set

Φj = e−ι λj t uj(x) , j = 1, . . . ,m .

Then we may transform the system (1.1) into a m-component system of
semilinear elliptic equations given by

−∆uj + µju
3
j + Λ

∑

i6=j

β̃iju
2
i uj = λjuj in Ω , j = 1, . . . ,m , (1.2)

which are time independent vector Gross-Pitaevskii Hartree-Fock equations
(cf. [11], [12]) for the condensate wave functions uj’s, where βij = Λβ̃ij, Λ
is a parameter, and β̃ij’s are positive constants. The standard conservation
law of mass on the coupled nonlinear Schrödinger equations of the system
(1.1) may give

∫
Ω

u2
j = mj for j = 1, . . . ,m, where mj’s are constants. For

simplicity, we may set mj = 1 for j = 1, . . . ,m and assume

∫

Ω

u2
j = 1 , j = 1, . . . ,m . (1.3)

Moreover, by the boundary conditions of the system (1.1), we obtain the
Dirichlet boundary conditions:

uj|∂Ω = 0 , j = 1, . . . ,m . (1.4)

From [2] and [12], a large interspecies scattering length may set in spon-
taneous symmetry breaking inducing phase separation. Furthermore, due to
Feshbach resonance, interspecies scattering lengths can be positive and large
by adjusting the externally applied magnetic field [14]. Hence we may as-
sume the parameter Λ as a large parameter. Actually, in a binary mixture of
Bose-Einstein condensates i.e. m = 2, spontaneous symmetry breaking may
occur when Λ2β̃2

12 > µ1µ2(cf. [2], [25] and [26]). To fulfill such a condition,
we may assume intraspecies scattering lengths µj’s are constants and the pa-
rameter Λ as a large parameter. However, when the parameter Λ is large but
finite, it is easy to show that each component uj of the solution (u1, · · · , um)
of the system (1.2) cannot be zero in a nonempty domain by the standard
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maximum principle of elliptic partial differential equations(cf. [13]). Hence
the segregated nodal domains are not clear to figure out as the parameter Λ is
large but finite. On the other hand, it is expected that repelling condensates
would separate into single condensate regions if the repulsive interaction is
sufficiently large(cf. [25]). Therefore we let the parameter Λ tend to infinity
to find well separated nodal domains.

As the parameter Λ goes to infinity, some basic questions need to be asked
as follows:

1. What are the governing equations of the limiting functions of the
bound state solutions of the system (1.2)?

2. What the nodal domains of the limiting functions look like?
To answer these questions, we state the following theorem:

Theorem 1.1 Assume Ω is a bounded smooth domain in R
2. Let (u1,Λ, . . . , um,Λ)

be a positive solution of the system (1.2) satisfying (1.3) and (1.4), where λj’s
are bounded quantities as Λ → ∞. Then

(i) uj,Λ ⇀ uj,0 , in H1
0 (Ω; R) , as Λ → ∞ , (up to a sub-

sequence)

(ii) Assume the nodal domains Ωj ≡ {x ∈ Ω : uj,0(x) > 0} , j =
1, . . . ,m are open. Then the limiting functions uj,0’s satisfy

−∆uj,0 + µju
3
j,0 = λ̃juj,0 in Ωj , (1.5)

where λ̃j’s are the limits of λj’s as Λ → ∞ (up to a subsequence).
Moreover, uj,0 is smooth in Ωj for j = 1, . . . ,m.

(iii) The nodal domains Ωj ≡ {x ∈ Ω : uj,0(x) > 0} , j = 1, . . . ,m
are finitely union of disjoint domains with positive Lebesgue mea-
sure.

Theorem 1.1 is the main result of this paper which shows that phase sep-
aration may occur for all positive bound state solutions as the parameter
Λ → ∞ . The main difficulty in proving Theorem 1.1 is to show that m com-
ponents uj,Λ’s of the solution repel each other and form separate domains
Ωj’s, as Λ goes to infinity. Moreover, Λu2

i,Λuj,Λ,∀i 6= j, tend to zero point-
wise in Ω respectively, as Λ goes to infinity. This is essential to derive the
system (1.5) as the governing equations of the limiting functions uj,0’s. One
may read Proposition 2.1 and 2.2 in Section 2 for detail.
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To investigate ground state solutions of the system (1.2), we may study
the energy minimization problem given by

Minimize EΛ(u) for u = (u1, . . . , um) ∈
(
H1

0 (Ω; R)
)m

,

∫

Ω

u2
j = 1 , (1.6)

where Ω is a bounded smooth domain in R
d , d = 2, 3, and the energy func-

tional EΛ is defined by

EΛ(u) =

∫

Ω

m∑

j=1

1

2
|∇uj|2 +

µj

4
u4

j +
1

4
Λ

m∑

i,j=1,
i6=j

β̃ij

∫

Ω

u2
i u

2
j . (1.7)

Here µj’s and β̃ij’s are nonnegative constants independent of Λ, and Λ is a
large parameter. The Euler-Lagrange equation of (1.7) is the system (1.2)
with λj’s the associated Lagrange multipliers. For ground state solutions, we
prove

Theorem 1.2 Assume Ω is a bounded smooth domain in R
d , d = 2, 3. Then

there exists uΛ = (u1,Λ, . . . , um,Λ) the energy minimizer of (1.6) such that uΛ

is a positive solution of the system (1.2), and satisfy

Λ

∫

Ω

u2
i,Λ u2

j,Λ → 0 ,∀i 6= j as Λ → ∞ (up to a subsequence) , (1.8)

and

uj,Λ → uj,∞ in H1
0 (Ω; R) as Λ → ∞ (up to a subsequence) . (1.9)

The multipliers λj’s are positive constants and are bounded quantities as Λ →
∞. Assume the nodal domains Ωj ≡ {x ∈ Ω : uj,∞(x) > 0} , j = 1, . . . ,m
are open. Then the nodal domains Ωj’s are separated by the nodal line
{x ∈ Ω : uj,∞(x) = 0, j = 1, . . . ,m} which has no interior point. Further-
more, if uj,∞ depends on µj continuously for j = 1, . . . ,m, then the nodal
domains Ωj’s are m disjoint domains.

From Theorem 1.2, m nodal domains Ωj’s can be determined by finding
an optimal partition of the domain Ω that achieves

min

{
m∑

j=1

ξj(ωj) : ωj ∈ A(Ω) ,∪m
j=1ω̄j = Ω̄ , ωi ∩ ωj = ∅,∀i 6= j

}
, (1.10)
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where A(Ω) is the class of all admissible domains, and ξj(ωj) denotes the
first Dirichlet eigenvalue defined by

ξj(ωj) = min
u∈H1

0(ωj),

‖u‖
L2(ωj)

=1

∫

ωj

1

2
|∇u|2 +

µj

4
u4 . (1.11)

The problem (1.10) is complicated but may have some geometric structures
for the distribution of nodal domains. For instance, if µj = 0 ,∀j and m = 2,
the problem (1.10) can be reduced to

min {λ(A) + λ(B) : A,B ∈ A(Ω) , A ∩ B = ∅} , (1.12)

where λ denotes the first Dirichlet eigenvalue for the operator −∆, and A(Ω)
is the class of all admissible domains. About the problem (1.12), only few
results are known which may depend on the geometric restriction of the
domain Ω (cf. [7]). Generically, if the domain Ω is assumed to be convex,
then it is conjectured that the minimum of (1.12) is achieved when A,B are
two nodal domains of the second Dirichlet eigenfunction for the operator −∆.
A remark by Kawohl [19] may support such a conjecture. However, such a
conjecture has not yet been proved.

As m becomes larger and larger, it is natural to believe that the dis-
tribution of m nodal domains may become more and more complicated. To
study the distribution of m nodal domains Ωj’s, we design efficient numerical
schemes by Gauss-Seidel-type iteration method to do numerical computation.
When the domain Ω is a unit disk, and the number m varies from two to
thirty-three, we may observe multiple verticillate structures of m nodal do-
mains. For m = 2, . . . , 5, m equal nodal domains Ωj’s with centers at vertices
of m-polygon form (m)-verticillate structures. As m = 6, 7, 8, one nodal do-
main Ωj0 occupies the center of Ω and the rest m− 1 nodal domains equally
distribute around the outside of Ωj0 . As m = 9, 10, 11, two nodal domains
Ωj1 and Ωj2 locate near the center of Ω and the rest m − 2 nodal domains
equally distribute around the outside of Ωj1 and Ωj2 . As m increases from 12
to 16, three, four, and five nodal domains may occur near the center of Ω and
the rest nodal domains equally distribute the rest of domain Ω. Basically,
centers of nodal domains are located at vertices of two eccentric polygons.
Such new structures of nodal domains called verticillate doubling can be ob-
served in Figure 4.1 (a) − (c). It is naturally expected that we should have
verticillate tripling or quadrupling for structures of m nodal domains when

6



m increases. In Figure 4.1 (c) and (e), we observe verticillate tripling at
m = 17 and quadrupling at m = 32.

The rest of this paper is organized as follows: We prove Theorem 1.1
and 1.2 in Section 2 and 3, respectively. In Section 4, we demonstrate our
numerical results for multiple verticillate structures.

2 Phase Separation on Positive Bound States

In this section, we shall prove Theorem 1.1 as follows: Without loss of gen-
erality, we may assume m = 2, u1 ≡ u , u2 ≡ v , µ1 = α , µ2 = β , β̃ij = 1 , and
rewrite the system (1.2) as

−∆u + αu3 + Λv2 u = λ1u in Ω , (2.1)

−∆v + βv3 + Λu2 v = λ2v in Ω , (2.2)

Let (uΛ, vΛ) be a positive solution of equations (2.1) and (2.2), and satisfy
(1.3) and (1.4). We may multiply both sides of the equation (2.1) by uΛ and
integrate over Ω. Then by (1.3) and (1.4), we have

∫

Ω

|∇uΛ|2 + α u4
Λ + Λ u2

Λv2
Λ = λ1 . (2.3)

Similarly, by the equation (2.2), (1.3) and (1.4), we obtain

∫

Ω

|∇vΛ|2 + β v4
Λ + Λ u2

Λv2
Λ = λ2 . (2.4)

Since λ1 and λ2 are bounded quantities as Λ → ∞, then by (2.3) and (2.4),
we have

uΛ ⇀ u0 , vΛ ⇀ v0 in H1
0 (Ω; R) (up to a subsequence) , (2.5)

and
u0 v0 = 0 almost everywhere in Ω . (2.6)

Moreover, by (1.3) and (2.5), we obtain

uΛ → u0 , vΛ → v0 almost everywhere in Ω (up to a subsequence) ,
(2.7)
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and
|{x : u0(x) > 0}| > 0 and |{x : v0(x) > 0}| > 0 , (2.8)

where |·| denotes the Lebesgue measure. Moreover, the equation (2.6) implies
that the sets {x : u0(x) > 0} and {x : v0(x) > 0} are disjoint. Hence we
complete the proof of Theorem 1.1 (i). For (ii) of Theorem 1.1, we need two
crucial lemmas to obtain an L∞ estimate and a gradient estimate. Now we
state these two lemmas as follows:

Lemma 2.1 (L∞ estimate) There exists a positive constant C0 independent
of Λ such that

‖uΛ‖L∞(Ω) ≤ C0 , ‖vΛ‖L∞(Ω) ≤ C0 .

Lemma 2.2 (interior gradient estimate) Let x0 ∈ Ω and R1 be a positive
constant such that the disk BR1

(x0) is in the interior of Ω. Then there exists
a positive constant C1 depending only on C0 which is defined in Lemma 2.1
such that

‖∇uΛ‖L∞(BR2
(x0)) ≤ C1

√
Λ , ‖∇vΛ‖L∞(BR2

(x0)) ≤ C1

√
Λ ,

where R2 = R1 − Λ− 1

2 .

Proof of Lemma 2.1: For simplicity, we write u and v instead of uΛ and vΛ,
respectively. We may multiply both sides of the equation (2.1) by u2s−1 (s ≥
1) and integrate over Ω. Then by (1.4), we have

s−2(2s − 1)

∫

Ω

|∇us|2 = λ1

∫

Ω

u2s − α

∫

Ω

u2s+2 − Λ

∫

Ω

u2sv2 . (2.9)

Similarly, by (2.2) and (1.4), we have

s−2(2s − 1)

∫

Ω

|∇vs|2 = λ2

∫

Ω

v2s − β

∫

Ω

v2s+2 − Λ

∫

Ω

v2su2 . (2.10)

Hence

s−2(2s − 1)

∫

Ω

|∇us|2 ≤ λ1

∫

Ω

u2s , (2.11)

and

s−2(2s − 1)

∫

Ω

|∇vs|2 ≤ λ2

∫

Ω

v2s . (2.12)
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By (2.11), (2.12) and u, v ∈ H1
0 (Ω; R), we obtain us, vs ∈ H1

0 (Ω; R) . Then by
a Sobolev imbedding , we have

(∫

Ω

usν

)2/ν

≤ C2

∫

Ω

|∇us|2 , (2.13)

and (∫

Ω

vsν

)2/ν

≤ C2

∫

Ω

|∇vs|2 , (2.14)

for 2 < ν < ∞ , where C2 = C2(Ω) is the imbedding constant. Moreover, by
(2.11)-(2.14), we have

(∫

Ω

usν

)2/ν

≤ λ1C2s

∫

Ω

u2s , (2.15)

and (∫

Ω

vsν

)2/ν

≤ λ2C2s

∫

Ω

v2s , (2.16)

for 2 < ν < ∞ . Here we have used the fact that s ≥ 1, i.e., 2s − 1 ≥ s.
We define sequences {sj} and {Mj} by

2s0 = ν , 2sj+1 = νsj , for j ≥ 0 ,

and
M0 = (λ1 C2)

ν/2 ,Mj+1 = (λ1C2sjMj)
ν/2 ,

where ν > 2 is a constant. Then sj = (ν/2)j+1 . Now we claim that
∫

Ω

u2sj ≤ Mj , for j ≥ 0 , (2.17)

Mj ≤ em sj−1 , (2.18)

for some constant m > 0. We may prove (2.17) by induction as follows: As
j = 0 , we may use (1.3) and (2.15) with s = 1 to obtain (2.17). Suppose
(2.17) holds as j = k. Then by (2.15), we have

∫

Ω

u2sk+1 =

∫

Ω

uνsk

≤
(

λ1C2sk

∫

Ω

u2sk

)ν/2

( by (2.15))

≤ (λ1C2skMk)
ν/2 = Mk+1 ( by induction hypothesis) .
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Hence (2.17) is true. Now we prove (2.18) as follows: Let µj = log Mj . Then
µj+1 = ν

2
µj + σj , where σj = ν

2
log (λ1C2sj) . Hence

σj =
ν

2

[
log (λ1C2) + (j + 1) log

ν

2

]
≤ C∗(j + 1) ,

where
C∗ = ν max{log (λ1C2) , log

ν

2
} . (2.19)

We may define a sequence {τj} by τ0 = µ0 and τj+1 = ν
2
τj + C∗(j + 1) for

j ≥ 0. Clearly, µj ≤ τj for j ≥ 0. Moreover, since

τj = (ν/2)j (
µ0 + 2C∗ν(ν − 2)−2

)
− 2C∗(ν − 2)−1 [j + ν/(ν − 2)] ,

then by sj = (ν/2)j+1 , we have τj ≤ msj−1 , where

m = µ0 + 2C∗ν(ν − 2)−2 =
ν

2
log (λ1C2) + 2C∗ν(ν − 2)−2 . (2.20)

By (2.19) and (2.20), the constant m is a positive constant depending only
on ν, λ1 and C2. Hence log Mj ≤ msj−1 and we obtain (2.18). By (2.17) and
(2.18), we have

‖u‖L2sj (Ω) ≤ em/ν ∀j ≥ 0 ,

and hence letting j → ∞, we obtain ‖u‖L∞(Ω) ≤ em/ν . Similarly, by (2.16), we
may obtain ‖v‖L∞(Ω) ≤ em∗/ν , where m∗ is a positive constant independent
of Λ. Therefore, we may complete the proof of Lemma 2.1.

Proof of Lemma 2.2: Without loss of generality, we may assume x0 is at

the origin. Let ũ(x) = uΛ

(
x/

√
Λ

)
, ṽ(x) = vΛ

(
x/

√
Λ

)
, for x ∈ BR1

√
Λ(0) .

Then ũ and ṽ satisfy

−∆ũ + αΛ−1ũ3 + ṽ2 ũ = λ1Λ
−1ũ in BR1

√
Λ(0) , (2.21)

−∆ṽ + βΛ−1ṽ3 + ũ2 ṽ = λ2Λ
−1ṽ in BR1

√
Λ(0) , (2.22)

Hence by (2.21), (2.22), Lemma 2.1 and the standard theorem of interior
gradient estimates (cf. Theorem 8.32 of [13]), we have

‖∇ũ‖
L∞

(
BR2

√
Λ
(0)

) ≤ C1 , ‖∇ṽ‖
L∞

(
BR2

√
Λ
(0)

) ≤ C1 ,

where R2 = R1 − Λ− 1

2 , and C1 is a positive constant depending only on C0

which is defined in Lemma 2.1. Here we have used the fact that α and β are
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nonnegative constants independent of Λ, and λj’s are bounded quantities as
Λ → ∞. Thus we have

‖∇uΛ‖L∞(BR2
(0)) ≤ C1

√
Λ , ‖∇vΛ‖L∞(BR2

(0)) ≤ C1

√
Λ .

Therefore we complete the proof of Lemma 2.2.
By Lemma 2.1 and Lemma 2.2, we may obtain

Proposition 2.1 Assume x0 ∈ Ω such that uΛ(x0) → u0(x0) ≥ 2ǫ0 > 0 ,
as Λ → ∞ , where ǫ0 is any positive constant independent of Λ. Then ∀η >
1 , vΛ(x0) ≤ 2C0 Λ−η , as Λ ≥ Λ0 , where C0 is the positive constant defined
in Lemma 2.1, and Λ0 is a positive constant depending only on x0 , ǫ0 , η , C0 ,
and the upper bound of λ1.

As for the proof of Proposition 2.1, we have

Proposition 2.2 Assume x1 ∈ Ω such that vΛ(x1) → v0(x1) ≥ 2ǫ1 > 0 ,
as Λ → ∞ where ǫ1 is any positive constant independent of Λ. Then ∀η >
1 , uΛ(x1) ≤ 2C0 Λ−η , as Λ ≥ Λ1 , where C0 is the positive constant defined
in Lemma 2.1, and Λ1 is a positive constant depending only on x1 , ǫ1 , η , C0 ,
and the upper bound of λ2.

We shall prove Proposition 2.1 and 2.2 later. Now we want to prove Theo-
rem 1.1 (ii) and (iii) as follows. By Lebesgue dominated convergence theorem,
Proposition 2.1 and 2.2, it is easy to prove Theorem 1.1 (ii). Now we want
to prove Theorem 1.1 (iii) by contradiction. Suppose that Ωu can be de-
composed into infinitely many disjoint subdomains Ωj , j = 1, 2, 3, . . . . Then
without loss of generality, we may assume

λ(Ωj) → ∞ as j → ∞ , (2.23)

where λ(Ωj) is the first eigenvalue of −∆ on the space H1
0 (Ωj). Moreover,

u0 satisfies
−∆u0 + αu3

0 = λ̃1u0 in Ωj , j = 1, 2, 3, . . . ,

and
u0 = 0 on ∂Ωj , j = 1, 2, 3, . . . .

In each Ωj, we may define Uj = u0/‖u0‖L2(Ωj) . Then Uj ∈ H1
0 (Ωj) , ‖Uj‖L2(Ωj) =

1 , for j = 1, 2, 3, . . . . Moreover, Uj satisfies

−∆Uj + α‖u0‖2
L2(Ωj)

U3
j = λ̃1Uj in Ωj , j = 1, 2, 3, . . . . (2.24)
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We may multiply both sides of (2.24) by Uj and integrate over Ωj. Then we
have ∫

Ωj

|∇Uj|2 ≤ λ̃1

∫

Ωj

U2
j = λ̃1 .

Consequently, we have λ(Ωj) ≤ λ̃1 < ∞. This contradict with (2.23) and the
proof of Theorem 1.1 (iii) is completed.

The main ideas of the proof of Proposition 2.1 are as follows: (i) rescale
spatial variables of the solution (uΛ, vΛ) by

√
log Λ/Λ and show that uΛ is

positive in a suitable neighborhood of x0. (ii) find the comparison function
and apply maximum principle to force the function vΛ tending to zero near
x0(see the formulation of the statements right after (2.36)). By Lemma 2.2,
the solution uΛ may be positive in a ball Bρ(x0) , ρ =

√
a/Λ for some constant

a > 0. It is natural to rescale spatial variables by
√

1/Λ. However, when

we rescale spatial variables of the solution (uΛ, vΛ) by
√

1/Λ, the nonlinear
terms Λu2v and Λv2u become u2v and v2u, respectively. Consequently, the
large parameter Λ disappears and we cannot find the comparison function to
force the function vΛ tending to zero near x0. We need to enlarge the scale√

1/Λ but due to Lemma 2.2, the scale
√

1/Λ cannot be enlarged arbitrarily.

So one may enlarge the scale
√

1/Λ as
√

log Λ/Λ. Then the nonlinear terms
Λu2v and Λv2u become (log Λ)u2v and (log Λ)v2u, respectively. Hence we
may find the comparison function to force the function vΛ tending to zero
near x0.

Now we demonstrate the proof of Proposition 2.1 as follows:
Proof of Proposition 2.1: Without loss of generality, we may assume x0 =
0 , uΛ(0) ≥ 2ǫ0 for Λ > 0, where the origin 0 is in the interior of Ω, and ǫ0 is a
positive constant independent of Λ. Let û(x) = uΛ(Λ̃x) , and v̂(x) = vΛ(Λ̃x) ,
for x ∈ Br0Λ̃−1(0) , where Λ̃ =

√
log Λ/Λ , and r0 is a positive constant

independent of Λ such that the disk Br0
(0) with radius r0 and center at the

origin is in the interior of Ω. Then the equations of û and v̂ are

−∆û + αΛ̃2 û3 + (log Λ) v̂2 û = λ1Λ̃
2 û in Br0Λ̃−1(0) , (2.25)

−∆v̂ + βΛ̃2 v̂3 + (log Λ) û2 v̂ = λ2Λ̃
2 v̂ in Br0Λ̃−1(0) , (2.26)

Let fΛ(r) = 1
2πr

∫

∂Br(0)

û2 dS , for 0 < r ≤ r0Λ̃
−1 , Λ > 0 . Fix ǫ1 as a

positive constant. Let {Λi} be any increasing sequence of positive numbers
such that Λi → ∞ as i → ∞ . Let 0 < δ < 1

2
be a positive constant such

12



that ǫ1 log
(

1
2
/δ

)
≥ 3C2

0 , where C0 is the positive constant in Lemma 2.1.

Now we replace Λ by the sequence {Λi} and û(x) = uΛi
(Λ̃ix) , where Λ̃i =√

log Λi/Λi . We claim that there exists a sequence {ri} such that

ri ∈ [Λδ
i , Λ

1

2

i / log Λi] and |f ′
Λi

(ri)| ≤ ǫ1r
−1
i (log ri)

−1 . (2.27)

We may prove (2.27) by contradiction. Suppose f ′
Λi

(r) > ǫ1r
−1 (log r)−1 , for

r ∈ [Λδ
i , Λ

1

2

i / log Λi] . Then

fΛi
(Λ

1

2

i / log Λi) − fΛi
(Λδ

i ) =

∫ Λ
1
2
i / log Λi

Λδ
i

f ′(r) dr

≥
∫ Λ

1
2
i / log Λi

Λδ
i

ǫ1r
−1 (log r)−1 dr

= ǫ1 log




log

(
Λ

1

2

i / log Λi

)

log Λδ
i



 → ǫ1 log

(
1

2
/δ

)
≥ 3C2

0 .

However, by Lemma 2.1, we have fΛi
(Λ

1

2

i / log Λi)−fΛi
(Λδ

i ) ≤ 2C2
0 . Hence we

obtain contradiction and complete the proof of (2.27).
By (2.27), we have

∣∣∣∣∣

∫

∂Bri (0)

û ∂n û dS

∣∣∣∣∣ ≤ πǫ1 (log ri)
−1 ,

i.e. ∣∣∣∣∣

∫

∂Bri (0)

û ∂n û dS

∣∣∣∣∣ ≤ K0/ log Λi , (2.28)

where K0 is a positive constant depending only on δ and ǫ1, and ∂n is the
standard normal derivative on the boundary. Now we multiply both sides of
(2.25) by û and integrate over Bri

(0). Then we obtain

∫

Bri (0)

|∇û|2 =

∫

∂Bri (0)

û ∂n û dS − αΛ̃2
i

∫

Bri (0)

û4 (2.29)

− (log Λi)

∫

Bri (0)

û2v̂2 + λ1Λ̃
2
i

∫

Bri (0)

û2 ,

13



where Λ̃i =
√

log Λi/Λi . Hence by (2.28), (2.29) and Lemma 2.1, we have

∫

Bri (0)

|∇û|2 ≤ K1/ log Λi , (2.30)

where K1 is a positive constant depending only on C0 , λ1 , δ , and ǫ1.
From Lemma 2.2, we have

‖∇û‖L∞(Bri (0))
≤ C1

√
log Λi , (2.31)

where C1 is the positive constant defined in Lemma 2.2. Hence by (2.30),
(2.31) and the imbedding theorem of Morrey (cf. Theorem 7.17 of [13]), we
have

osc BR(0) û ≤ C2 Rγ ‖∇û‖Lp(BR(0))

= C2 Rγ

(∫

BR(0)

|∇û|p−2 |∇û|2
)1/p

≤ C2 Rγ
(
C1

√
log Λi

)γ
(∫

BR(0)

|∇û|2
)1/p

( by (2.31))

≤ C2 Rγ
(
C1

√
log Λi

)γ

(K1/ log Λi)
1/p ( by (2.30))

= K2 Rγ (log Λi)
γ∗ ,

for 0 < R ≤ ri , and p > 2 , where γ = 1 − 2
p
, γ∗ = 1

2
− 2

p
, C2 = C2(p) > 0 ,

and K2 is a positive constant independent of Λi. In particular, we set R =
κ
√

log Λi , ǫ1 = 1 , and p = 5/2 , where κ is a positive constant depending
only on η and ǫ0. We may determine κ later. Then we obtain

osc BR(0) û ≤ K2 κ1/5 (log Λi)
−1/5 , for R = κ

√
log Λi . (2.32)

Since uΛi
(0) ≥ 2ǫ0 i.e. û(0) ≥ 2ǫ0, then by (2.32), we have

û(x) ≥ ǫ0 for x ∈ BR(0) , (2.33)

as i ≥ N0 , where N0 is a large constant which depends only on ǫ0 , κ , C0 ,
and the upper bound of λ1.

Let ǔ(x) = û
(√

log Λi x
)

and v̌(x) = v̂
(√

log Λi x
)

for x ∈ Bκ(0) . Then
(2.33) implies

ǔ(x) ≥ ǫ0 for x ∈ Bκ(0) . (2.34)
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Moreover, ǔ and v̌ satisfy

−∆ǔ + α
log2 Λi

Λi

ǔ3 +
(
log2 Λi

)
v̌2 ǔ = λ1

log2 Λi

Λi

ǔ in Bκ(0) , (2.35)

−∆v̌ + β
log2 Λi

Λi

v̌3 +
(
log2 Λi

)
ǔ2 v̌ = λ2

log2 Λi

Λi

v̌ in Bκ(0) . (2.36)

By (2.34) and (2.36), we have

∆v̌ ≥ 1

2
ǫ2
0

(
log2 Λi

)
v̌ in Bκ(0) . (2.37)

Let w be the solution of
{

∆w = 1
2
ǫ2
0

(
log2 Λi

)
w in Bκ(0) ,

w|∂Bκ(0) = sup
Bκ(0)

v̌ ≡ KΛi
.

Then by the maximum principle, we obtain

v̌ ≤ w in Bκ(0) . (2.38)

Since the equation of w is linear, we may write w = KΛi
W , where W is the

solution of {
∆W = 1

2
ǫ2
0

(
log2 Λi

)
W in Bκ(0) ,

W |∂Bκ(0) = 1 .

Hence W (r) = I0(
√

1
2
ǫ0 r log Λi)/I0(

√
1
2
ǫ0 κ log Λi) , where I0 is the modified

Bessel function of order zero. Thus by the monotonic increasing of I0 and
the asymptotic formula I0(r) ∼ er/

√
2πr as r → ∞(cf. [10]), we have

W (r) ≤ I0

(
1

2

√
1

2
ǫ0 κ log Λi

)
/I0

(√
1

2
ǫ0 κ log Λi

)

≤ 2Λ
−ǫ0κ/

√
8

i , ∀ 0 < r ≤ κ/2 .

By Lemma 2.1, KΛi
= sup

Bκ(0)

v̌ ≤ C0. Hence by (2.38), we obtain

v̌ ≤ 2C0 Λ−η
i in Bκ/2(0) ,

for η > 1 , where η = ǫ0κ/
√

8 and the constant κ is determined. Thus

vΛi
(0) = v̌(0) ≤ sup

Bκ/2(0)

v̌ ≤ 2C0 Λ−η
i ,

for η > 1 . Therefore we complete the proof of Proposition 2.1.
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3 Positive Ground States

In this section, we study the energy minimization problem (1.6) and prove
Theorem 1.2 as follows:
To estimate the energy upper bound , we may define comparison functions
by

Uj(x) =

{
wj(x) for x ∈ Ω0

j ,
0 for x ∈ Ω\Ω0

j , j = 1, . . . ,m ,

where Ω0
j ’s are disjoint smooth domains satisfying Ω0

j ⊂ Ω , j = 1, 2 , and

∪m
j=1Ω

0
j = Ω . In addition, each wj is the first eigenfunction of Laplace oper-

ator in the space H1
0

(
Ω0

j

)
. Then it is easy to check that

EΛ(U) ≤ K0 , (3.1)

where U = (U1, . . . , Um) and K0 is a positive constant independent of Λ.
By (3.1) and the standard Direct method, there exists an energy mini-

mizer uΛ = (u1,Λ, . . . , um,Λ) of (1.6) such that each uj,Λ is nonnegative,

uj,Λ ⇀ uj,∞ , in H1
0 (Ω; R) (up to a subsequence) , (3.2)

and
ui,∞ uj,∞ = 0 almost everywhere in Ω ,∀i 6= j . (3.3)

Here we have used the standard inequality
∫

Ω

|∇|u||2 ≤
∫

Ω

|∇u|2 , ∀u ∈ H1(Ω; R) ,

to obtain the nonnegative ground state solution uΛ. The solutions uΛ satisfies
the system (1.2), (1.3) and (1.4). We may multiply both sides of the j-th
component of (1.2) by uj,Λ and integrate it over Ω. Then by (1.3) and (1.4),
we have

∫

Ω

|∇uj,Λ|2 + µj u4
j,Λ + Λ

∑

i6=j

β̃iju
2
i,Λu2

j,Λ = λj , j = 1, . . . ,m . (3.4)

Hence by (3.4), λj’s are positive constants which may depend on Λ. Since
each uj,Λ is nonnegative, and λj’s are positive constants, then by (1.2), we
have

∆uj,Λ −
(

µju
2
j,Λ + Λ

∑

i6=j

β̃iju
2
i,Λ

)
uj,Λ ≤ 0 , in Ω . (3.5)
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Thus by (3.5) and the strong maximum principle, each uj,Λ must be positive
in Ω. It is easy to check that the multipliers λj’s satisfy

m∑

j=1

λj =
m∑

j=1

∫

Ω

|∇uj,Λ|2 + µju
4
j,Λ + Λ

∑

i6=j

β̃iju
2
i,Λu2

j,Λ

≤ 4EΛ(uΛ) ≤ 4EΛ(U) .

From the energy upper bound (3.1), λj’s must be bounded quantities as
Λ → ∞.

Since uΛ is the energy minimizer, then by (3.3), we have

EΛ(uΛ) ≤ EΛ(u∞) =
m∑

j=1

∫

Ω

1

2
|∇uj,∞|2 +

µj

4
u4

j,∞ , (3.6)

where u∞ = (u1,∞, . . . , um,∞). Hence by (3.2), (3.6) and Fatou’s Lemma, we
obtain

Λ

∫

Ω

∑

i6=j

β̃iju
2
i,Λ u2

j,Λ → 0 , j = 1, . . . ,m , (3.7)

and ∫

Ω

|∇uj,Λ|2 →
∫

Ω

|∇uj,∞|2 , j = 1, . . . ,m . (3.8)

Thus by (3.2) and (3.8), we have the strong convergence as follows:

uj,Λ → uj,∞ in H1
0 (Ω; R) (up to a subsequence) . (3.9)

Now we want to prove the nodal line Γ = {x ∈ Ω : uj,∞(x) = 0 , j = 1, . . . ,m}
having no interior point by contradiction. Suppose the nodal line Γ having
some interior points. Let Ω′

1 be the interior of Ω\∪m
j=2Ωj. Then Ω′

1 ⊃ Ω1 and

|Ω′
1| > |Ω1|. Now we define the comparison functions by Ũ =

(
Ũ1, . . . , Ũm

)
,

Ũ1(x) =

{
ϕ(x) for x ∈ Ω′

1 ,
0 for x ∈ Ω\Ω′

1 ,

and

Ũj(x) =

{
0 for x ∈ Ω\Ωj ,
uj,∞(x) for x ∈ Ωj , j = 2, . . . ,m ,
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where ϕ is the energy minimizer of the following minimization problem:

Minimize

∫

Ω′
1

1

2
|∇ψ|2 +

µ1

4
ψ4 for ψ ∈ H1

0 (Ω′
1; R) ,

∫

Ω′
1

ψ2 = 1 .

Then

EΛ(Ũ) =

∫

Ω′
1

1

2
|∇ϕ|2 +

µ1

4
ϕ4 +

m∑

j=2

∫

Ωj

1

2
|∇uj,∞|2 +

µj

4
u4

j,∞ . (3.10)

Since EΛ(Ũ) ≥ EΛ(uΛ), then by (3.2), (3.10) and Fatou’s Lemma, we have∫

Ω′
1

1

2
|∇ϕ|2 +

µ1

4
ϕ4 ≥

∫

Ω1

1

2
|∇u1,∞|2 +

µ1

4
u4

1,∞ . This may contradict with

Ω′
1 ⊃ Ω1 and the definition of ϕ. Therefore we may complete the proof of

the nodal line {x ∈ Ω : uj,∞(x) = 0 , j = 1, . . . ,m} having no interior point.
Now we claim that Ωj’s are m disjoint domains for µj ≥ 0 , j = 1, . . . ,m.

As µj = 0 ,∀j, it is obvious that Ωj’s are m disjoint domains i.e. each
set Ωj is connected. For general µj’s, we need a crucial assumption that
uj,∞ depend on µj continuously for j = 1, . . . ,m. Now we prove the claim
by contradiction. Suppose Ωj is not a domain for some µj > 0. Then by
the continuity of uj,∞ to µj, we may assume that for some µj > 0, Ωj can
be divided into two subdomains Ω+

j and Ω−
j , where the measure of Ω−

j is

sufficiently small such that λ
(
Ω−

j

)
≥ K∗ , and K∗ > 0 is a large constant

determined later. Hereafter, λ
(
Ω−

j

)
is the first eigenvalue of −∆ on the space

H1
0

(
Ω−

j

)
. Furthermore, we may assume

∫

Ω+
j

u2
j,∞ = 1 − ǫ ,

∫

Ω−
j

u2
j,∞ = ǫ , 0 < ǫ <

1

2
.

Let v+
j = uj,∞/

√
1 − ǫ in Ω+

j , and v−
j = uj,∞/

√
ǫ in Ω−

j . Then

∫

Ω+
j

(
v+

j

)2
= 1 ,

∫

Ω−
j

(
v−

j

)2
= 1 . (3.11)

By (3.1) and (3.2), we obtain

∫

Ω+
j

1

2

∣∣∇v+
j

∣∣2 +
µj

4

(
v+

j

)4 ≤ Kj , (3.12)
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where Kj is a positive constant depending only on the upper bound K0 in
(3.1). Hence we have

∫

Ωj

1

2
|∇uj,∞|2 +

µj

4
u4

j,∞

= (1 − ǫ)

∫

Ω+
j

[
1

2
|∇v+

j |2 + (1 − ǫ)
µj

4

(
v+

j

)4
]

+ ǫ

∫

Ω−
j

[
1

2
|∇v−

j |2 + ǫ
µj

4

(
v−

j

)4
]

≥
∫

Ω+
j

[
1

2
|∇v+

j |2 +
µj

4

(
v+

j

)4
]
− 4ǫKj +

1

2
ǫλ

(
Ω−

j

)
( by (3.11), (3.12))

≥ νj + ǫ

(
1

2
K∗ − 4Kj

)
,

i.e. ∫

Ωj

1

2
|∇uj,∞|2 +

µj

4
u4

j,∞ ≥ νj + ǫ

(
1

2
K∗ − 4Kj

)
, (3.13)

where νj = ξj

(
Ω+

j

)
, and ξj is defined in (1.11). On the other hand, since

uj,∞ is the limit function of the energy minimizers uj,Λ’s, then it is easy to
check that ∫

Ωj

1

2
|∇uj,∞|2 +

µj

4
u4

j,∞ ≤ νj . (3.14)

By (3.13) and (3.14), we may get contradiction and complete the proof of
Theorem 1.2 if we set the constant K∗ satisfying K∗ > 8Kj.

4 Verticillate Structures of m Nodal Domains

In this section we study the numerical behavior of phase separation of gen-
eral m-mixture of BECs for sufficiently large scattering length Λ. Because of
phase separation, as the number of multispecies m becomes larger and larger,
more and more segregated domains may occur. As in Section 1, a natural
question raised here is how these segregated domains distribute when Λ is
sufficiently large. It will be shown later in this section by numerical compu-
tation that multiple verticillate structures of m (2 ≤ m ≤ 33) nodal domains
occur for m-component ground states.

Recently, a generalization of the normalized gradient flow (NGF) method
[4] and the time-splitting spectral method [5] have been developed in [3] for
computing the ground state solutions of (1.2) of a multi-component BEC.

19



Instead, based on the fixed point iteration method [8] we propose a Gauss-
Seidel-type iteration method (GSI), which is inspired by the eigenvalue ap-
proach for computing the ground states and the other bound states of the
multi-component BEC.

Hereafter, we use the bold face letters or symbols to denote a matrix
or a vector. For u = (u1, . . . , uN)⊤, v = (v1, . . . , vN)⊤ ∈ R

N , u ◦ v =
(u1v1, . . . , uNvN)⊤ denotes the Hadamard product u and v, u©r = u ◦ · · · ◦u
denotes the r-time Hadamard product of u, [[u]] := diag(u) the diagonal
matrix of u. For A ∈ R

M×N , A > 0 (≥ 0) denotes a positive (nonnegative)
matrix with positive (nonnegative) entries, A ≻ 0 (with A⊤ = A) denotes a
symmetric positive definitive matrix.

We now discretize the VGPEs of (1.2) into a nonlinear algebraic eigen-
value problem and derive the discretized version of the associated minimized
energy functional problem. We consider the equation (1.2) on a 2-dimensional
unit disk Ω = D and rewrite the Laplacian operator −∇2 on uj(x) in the po-
lar coordinate system. Based on the recently proposed discretization scheme
[20] the standard central finite difference method discretizes −∆uj(x) into

Âuj = Â[uj1, . . . , ujl, . . . , ujN ]⊤, Â ∈ R
N×N , (4.1)

where uj is an approximation of the j-th wave function uj(x) for j = 1, . . . ,m.

The matrix Â is irreducible and diagonally-dominant with positive diagonal
and nonpositive off-diagonal entries. Moreover, Â is symmetrizable to a
symmetric positive definitive matrix A by a positive diagonal matrix D > 0,
i.e.,

Â = D−1AD, A⊤ = A ≻ 0. (4.2)

It can be shown [8] that the square of the l-th diagonal element of D is equal
to the area of the l-th sector corresponding to an integrated partition for
D. Applying (4.1) to (1.2) and normalizing each uj with respect to D2, the
discretization of VGPEs in (1.2), referred as a nonlinear algebraic eigenvalue
problem (NAEP), can be formulated as

Aj(Duj) + Λ
∑

i6=j

β̃iju
©2
i ◦ (Dui) = λj(Duj), (4.3a)

where

u⊤
j D2uj = 1, Aj := A + 2[[Vj + µju

©2
j ]], (4.3b)
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for j = 1, . . . ,m. Furthermore, the associated optimization problem of (4.3)
becomes

Minimize
u=(u1,...,um)

E(u)

subject to u⊤
j D2uj = 1, j = 1, . . . ,m.

(4.4a)

where

E(u) ≡
m∑

j=1

(
1

2
u⊤

j DADuj + (Vj + µju
©2
j )⊤(Duj)

©2
)

+
1

2
Λ

∑

1≤j≤i≤m

β̃iju
©2 T
i (Duj)

©2 .

(4.4b)

The derivation of (4.3) and (4.4) can be found in [8].
Define the set

M = {v ∈ R
N |v⊤D2v = 1, v ≥ 0},

◦
M= interior of M. (4.5)

For convenience, we now suppose that

β̃ji = β̃ij > 0 (j 6= i), j, i = 1, . . . ,m. (4.6)

For any given Vj ≥ 0 and (u1, . . . ,um) ∈
m
×

j=1
M, the matrix

Āj ≡ Aj + 2[[Vj]] + Λ
∑

i6=j

[[β̃iju
©2
i ]] (4.7)

is an irreducible M -matrix. By the Perron-Frobenius Theorem (see e.g., [6])
there is a unique positive eigenvector Dūj > 0 with ū⊤

j D2ūj = 1 correspond-

ing to the maximal eigenvalue ωmax
j of Ā−1

j which satisfies

Āj(Dūj) =

(
Aj + Λ

∑

i6=j

[[β̃iju
©2
i ]]

)
(Dūj) = λmin

j (Dūj), (4.8)

where λmin
j = 1/ωmax, j = 1, . . . ,m.

Define a function f :
m
×

j=1
M →

m
×

j=1
M by

f(u1, . . . ,um) ≡ (f1(u1, . . . ,um), . . . , fm(u1, . . . ,um))

= (ū1, . . . , ūm), (4.9)
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where ūj > 0 is well-defined by (4.8) for j = 1, . . . ,m. We now construct a

Gauss-Seidel-type mapping g :
m
×

j=1
M →

m
×

j=1
M by

g(u1, . . . ,um) = (ū1, . . . , ūm), (4.10a)

where

ū1 = g1(u1, . . . ,um) = f1(u1,u2, . . . ,um),
ū2 = g2(u1, . . . ,um) = f2(ū1,u2,u3, . . . ,um),

...
...

ūm = gm(u1, . . . ,um) = fm(ū1, ū2, . . . , ūm−1,um),

(4.10b)

with {fj}m
j=1 as given by (4.9). The mapping g in (4.10) can be used to

naturally define a Gauss-Seidel-type iteration (GSI). The following Theorem
from [8] gives a necessary and sufficient condition for the convergence of the
above GSI.

Theorem 4.1 ([8]) Suppose that µj(j = 1, . . . ,m) in (4.3) are sufficiently
small positive numbers. Let (λ∗,u∗) = ((λ∗

1, . . . ,λ
∗
m), (u∗

1, . . . ,u
∗
m)) be a fixed

point of (4.3) satisfying (4.6). The GSI method defined by (4.10) converges
to (λ∗,u∗) locally and linearly if and only if u∗ = (u∗

1, . . . ,u
∗
m) is a strictly

local minimum of (4.4).

We simulate the multi-component BECs from m = 2 to m = 33 by using
GSI method in (4.10). By Theorem 4.1 the GSI method can converge to a
bound state or a ground state solution of (4.3) which depends on whether
the associated energy is the smallest one.

It is well-known that when the scattering length Λ = 0 in (4.3) the NAEP
of (4.3) is decoupled and have m identical ground state solutions. On the
other hand, by Theorem 1.1 when Λ → ∞ the VGPEs have m disjoint ground
state solutions. We now compute the energy state solutions of (4.3) by GSI
method, taking Λ as a parameter varying from 0 to 106.

In the numerical simulation, we first show that for a fixed m there is a
Λ1(m) > 0 (dependent on m) such that the NAEP (4.3) have only identical
ground state solutions for 0 ≤ Λ < Λ1(m), and a bifurcation occurs at
Λ = Λ1(m), so that some ground state solutions begin to separate and some
ground state solutions are still identical, for Λ > Λ1(m). Since Λ > 0 is
a repulsive scattering length, it is expected that the ground state solutions
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of (4.3) should be mutually separated when Λ is continually increased. We
continue this process and observe that there is a second bifurcation point
Λ2(m) (Λ2(m) > Λ1(m)) so that more ground state solutions separate. We
finally reach a bifurcation point Λ∗(m) so that the ground state solutions of
(4.3) have a phase separation, for Λ > Λ∗(m). As we continue increasing Λ
beyond Λ∗(m), the structure of the phase separation will stay unchanged and
reach a stage of totally disjoint phases, when Λ approaches to 106 (a value
common to all m). In the above general bifurcation process, it is helpful to
point out that the final stage is reached via a sequence of transition intervals
such as [0, Λ1(m)], [Λ1(m), Λk(m)], [Λk(m), Λ∗(m)] and so on. The number k
may take on one, two and so on.

We observe that at the final stage the disjoint phases have a verticillate
or multiple verticillate structure which depends on m, the number of com-
ponents in BECs. We now elaborate on the verticillate structures using the
following parameters. For a given positive integer n1 > 0 with n1 ≤ m, we
use the index (n1) to denote the verticillate structure of the unit disk that
is partitioned uniformly by the n1 supports of the ground state solutions. In
general, for a given sequence of positive integers 0 < n1 < n2 < · · · < nr with∑r

i=1 ni ≤ m and a sequence of concentric disks D1 ⊂ D2 ⊂ · · · ⊂ Dr := D,
we define the index (n1, . . . , nr) to describe the multiple verticillate structure
of the unit disk in which the ni supports of the bound state solutions uni-
formly partition the ring Di\Di−1, 1 ≤ i ≤ r with D0 being the empty set.
In short,

(n1) := an n1-verticillate structure of the phase separation,

(n1, . . . , nr) := an (n1, . . . , nr)–multiple verticillate structure of the

phase separation.

In Figure 4.1(a)-(e) we plot the energy of ground states or bound states
versus the number m of components in BECs. Here the energies are computed
by (4.4b). We denote by “∗” the minimal energy and by “♦” the excited
energy. A proper index for the verticillate or multiple verticillate structure
of the phase separations is indicated near a “∗” or “♦”. For m = 2, . . . , 5, we
observe that the ground states have (m)-verticillate structures and m equal
nodal domain Ωj’s, where the tops of uj, j = 1, . . . ,m form the vertices of a
m-polygon. Furthermore, two bound states have (1,3)-and (1,4)-verticillate
structures, respectively, for m = 4 and 5. As m = 6, 7, 8, a new structure for
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ground states emerges where one nodal domain Ωj0 occupies the center of Ω
and the rest m − 1 nodal domains equally distribute around the outside of
Ωj0 . For m = 6 (7 or 8), we observe that a double verticillate structure (1,5)
((1,6) or (1,7)) for ground states and the single verticillate structure (6) ((7
or (8))) become bound state solutions. As m = 9, 10, 11, two nodal domains
Ωj1 and Ωj2 locate near the center of Ω and the rest m − 2 nodal domains
equally distribute around the outside of Ωj1 and Ωj2 . As m increases from 12
to 16, three, four, and five nodal domains may occur near the center of Ω and
the rest nodal domains equally distribute the rest of domain Ω. Basically,
for these cases, the tops of uj in the nodal domains are located at vertices
of two eccentric polygons. We term this change of verticillate structures as a
verticillate doubling. It is naturally expected that we should have verticillate
tripling or quadrupling for ground states where m increases. More precisely,
as m = 17, 18, . . . , 21, one nodal domain Ωj0 begin to occupy the center of Ω,
respectively, 6, 5, 5, 7, 7 nodal domains Ωj1 , . . . , Ωjr (say!) equally distribute
around the outside of Ωj0 and, respectively, the rest 10, 12, 13, 12, 13 nodal
domains equally distribute around the outside of Ωj1 , . . . , Ωjr . Similarly,
in Figure 4.1(d) and (e) we observe the triple and quadruple verticillate
structures of nodal domains for 22 ≤ m ≤ 33. Especially, in Figure 4.1(c) and
(e), respectively, we observe that there is a verticillate tripling at m = 17
and a verticillate quadrupling at m = 32.

Furthermore, Theorem 4.1 shows that GSI method can converge to dif-
ferent local minima of the optimization problem (4.4). In Figure 4.1 we see
that there is only one local minimum, i.e., one unique global minimum of
(4.4) for m = 2 or 3, but there exist other local minimums of (4.4) for m ≥ 4
which are denoted by “♦”. In Figure 4.1(b), we even find that there exist
the other two local minimums of (4.4) for m = 9, 10 and 12.

In order to understand the different patterns of multiple verticillate struc-
tures for the ground state and the bound state solutions, in Figure 4.2 and
Figure 4.3 we plot the nodal domains for the ground state and bound state
solutions with associated energies, for m = 5 and m = 6, respectively. We
observe that for m = 5, the ground state has a (5)-verticillate structure with
energy = 15.81 and a bound state has a (1,4)-verticillate structure with en-
ergy = 16.22; however, for m = 6, the ground state has a (1,5)-verticillate
structure with energy = 18.06 and a bound state has a (6)-verticillate struc-
ture with energy = 19.15. A verticillate doubling occurs firstly here at
m = 6. In addition, in our simulation we notice that the number n1 for the
first verticillate structure on D1 cannot be larger than five. We conclude
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from Figure 4.1 that one more verticillate multiplying for the ground state
solutions will occur when a n1 > 5 is experienced.

For the sake of comprehension of the distribution of multiple verticillate
structures of all nodal domains for ground states, in Figure 4.4, we plot the
nodal domains for m = 2, . . . , 33 with sufficiently large and positive repulsive
scattering length Λ ≈ 106. The Figure here shows that m segregated nodal
domains of m nodal domains of m-mixture of BECs are clearly separated
by Λ ≈ 106. We see that as the number m becomes larger and larger, the
distribution of the nodal domains is arranged in whorls more and more, and
then the ringlike levels are getting increasing. In the Figure 4.4, we observe
that a verticillate doubling, tripling and quadrupling occurs at m = 6, 17
and 32, respectively.

To study the numerical behavior of the energy versus the repulsive scat-
tering length Λ we consider the case of nine-component BECs (m=9) and plot
its bifurcation diagram in Figure 4.5. In this case that m = 9, we find that
there are four different kinds of verticillate structures for bound states with
various Λ that is enough to illustrate the verticillate structures of a general
m. In our numerical result, we observe that the VGPEs have only identical
ground state solutions, i.e., (1)-verticillate structure for Λ < Λ1(9), and bi-
furcate into the (1, 7)-verticillate structures, for Λ1(9) ≤ Λ, where there are
two identical components on D1 and seven component solutions uniformly
partition the ring D2 \D1. Note that here D1 ⊂ D2 := D are two concentric
disks. The (1, 7)-verticillate ground state solutions of VGPEs again bifurcate
at Λ = Λ2(9) into the (2, 7)-verticillate structure for bound states and the
(1, 8)-verticillate structure for ground states, for Λ ≥ Λ2(9). In fact, both of
these two bound state solutions are the local minimums of the optimization
problem (4.4a). The associated nodal domains of these four kinds of verti-
cillate structures are attached near the energy curve in Figure 4.5. Notice
that the dash line in Figure 4.5 means that the (9)-verticillate structures are
computed by the GSI method with some artificial constraints [8]. Without
these constraints the GSI method always converges to either the (1, 8)- or
the (2, 7)-verticillate structure locally and linearly.

We now consider VGPE of BEC coupled only with equal neighboring
repulsive scattering lengths. The corresponding NAEP as in (4.3) can be
simplified by

Aj(Duj) + Λ[[uj+1]]
©2 (Duj) + Λ[[uj−1]]

©2 (Duj) = λjDuj, (4.11a)
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where

u⊤
j D2uj = 1, Aj = A + 2[[Vj]], (4.11b)

for j = 1, . . . ,m.
Since the local coupled VGPEs are simpler than the globally coupled

VGPEs (4.3), no transition stage occurs by computation. Numerical result
shows that there is a Λ1(m) > 0 such that the NAEP (4.11) have only
identical ground state solutions when 0 ≤ Λ < Λ1(m) and have a phase
separation of the ground state solution when Λ ≥ Λ1(m). Furthermore, if
m is odd, then we have an (m)-verticillate structure of the ground state
solutions; if m is even, then we have a (2)-verticillate structure of the ground
state solutions, i.e., m ground state solutions separate disjointedly into two
groups of m/2 identical solutions when Λ approached to 106. In this case,
the structure changes only once from identical solutions to phase separations
and the convergence of GSI is relatively fast.

5 Conclusions

In this paper, we have studied the distribution of m segregated nodal do-
mains of the m-mixture of BECs under positive and large repulsive scattering
lengths. We showed rigorously that the components of positive bound states
may repel each other and form segregated nodal domains as the repulsive
scattering lengths go to infinity. By numerical computations, we observed
a new phenomenon: verticillate multiplying, i.e., the generation of multiple
verticillate structures, when the number of the first verticillate structure is
larger than five. In addition, we have created new techniques that are quite
different from the existing methods [3], and our proposed Gauss-Seidel-type
iteration method is very effective in that it converges always linearly in just
10 to 20 steps.
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Figure 4.1: Energy vs the number of components.
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(a) (b)

Figure 4.2: m = 5: (a) Ground state solutions with energy = 15.81, (b)
bound state solutions with energy = 16.22.

(a) (b)

Figure 4.3: m = 6: (a) Ground state solutions with energy = 18.06, (b)
bound state solutions with energy = 19.15.
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Figure 4.4: Nodal domains for m = 2, . . . , 33 with Λ ≈ 106.
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Figure 4.5: m = 9: Energy curves vs Λ.
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