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Abstract

We develop a continuation block successive over-relaxation (BSOR)-Lanczos-Galerkin
method for the computation of positive bound states of time-independent, cou-
pled Gross-Pitaevskii equations (CGPEs) which describe a multi-component Bose-
Einstein condensate (BEC). A discretization of the CGPEs leads to a nonlinear
algebraic eigenvalue problem (NAEP). The solution curve with respect to some
parameter of the NAEP is then followed by the proposed method. For a single-
component BEC, we prove that there exists a unique global minimizer (the ground
state) which is represented by an ordinary differential equation with the initial value.
For a multi-component BEC, we prove that m identical ground/bound states will
bifurcate into m different ground/bound states at a finite repulsive inter-component
scattering length. Numerical results show that various positive bound states of a
two/three-component BEC are solved efficiently and reliably by the continuation
BSOR-Lanczos-Galerkin method.
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1 Introduction

In this paper, we mainly propose a continuation block successive over-relaxation
(BSOR)-Lanczos-Galerkin method for the computation of positive bound states
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of a multi-component Bose-Einstein Condensate (BEC). It is well-known (4;
26; 29) that coupled Gross-Pitaevskii equations (CGPEs), also called coupled
nonlinear Schrödinger equations,

ι
∂ψj(x, t)

∂t
= −∇2ψj + Vj(x)ψj + αj|ψj|2ψj +

∑

k 6=j

βkj|ψk|2ψj, (1.1a)

x ∈ Ω ⊆ R
2 or R

3, t > 0, ι =
√
−1, (1.1b)

ψj(x, t) = 0, x ∈ ∂Ω, j = 1, . . . ,m, (1.1c)

can be used as a mathematical model to describe a multi-component BEC inm
different hyperfine spin states on the corresponding condensate wave functions
ψj’s. Here Ω is a bounded smooth domain, Vj(x) ≥ 0, j = 1, . . . ,m are mag-
netic trapping potentials, and the nonnegative constants αj’s and βkj = βjk’s,
k 6= j, k, j = 1, . . . ,m are the intra-component and inter-component (repul-
sive) scattering lengths, respectively, which represent the interactions between
like and unlike particles. In fact, for simplicity, here we choose suitable scales
for Planck constant, atom mass and mean number of atoms in hyperfine states
to make the CGPEs (1.1) consistent with the physical model (4). Furthermore,
CGPEs (1.1) conserve the normalization of each component, i.e.

∫

Ω
|ψj(x, t)|2dx = 1, j = 1, . . . ,m. (1.2)

To find solitary wave solutions of the system (1.1), we set

ψj(x, t) = e−ιλjtφj(x), j = 1, . . . ,m. (1.3)

Plugging (1.3) into (1.1a) and using (1.2) gives a nonlinear eigenvalue problem
(NEP), also called time-independent CGPEs or Hatree-Fock equations (19;
20),

−∇2φj + Vjφj + αj|φj|2φj +
∑

k 6=j

βkj|φk|2φj = λjφj, in Ω, (1.4a)

∫

Ω
|φj(x)|2dx =1, j = 1, . . . ,m. (1.4b)

To investigate ground state solutions of a multi-component BEC, (4) shows
that the ground states can be found by minimizing the energy functional E(φ)
with φ = (φ1, . . . , φm) under conditions (1.4b), i.e.,

Minimize
φ=(φ1,...,φm)

E(φ)

subject to
∫

Ω
|φj(x)|2dx = 1, φj(x) > 0, j = 1, . . . ,m,

(1.5a)
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where

E(φ) =
m∑

j=1

∫

Ω

(
1

2
|∇φj|2 +

1

2
Vj|φj|2 +

αj

4
|φj|4

)
+

1

4

m∑

k,j=1,k 6=j

βkj

∫

Ω
|φk|2|φj|2.

(1.5b)

On the other hand, equations (1.4) can also be regarded as Euler-Lagrange
equations of the optimization problem (1.5). Furthermore, multiplying the j-
th equation in (1.4a) by φj(x), and using (1.4b) and (1.5b) it is easily seen that
any eigenvalue vector λ = (λ1, . . . , λm) and the corresponding eigenfunction
vector φ = (φ1, . . . , φm) of (1.4) satisfy

m∑

j=1

λj = 2E(φ) +
1

2

m∑

k,j=1,k 6=j

βkj

∫

Ω
|φk|2|φj|2 +

1

2

m∑

j=1

αj

∫

Ω
|φj|4. (1.6)

In ultracold dilute Bose gas, m different hyperfine spin states may repel each
other and form separate nodal domains, such a phenomenon, called phase
separation of a multiple mixture of BEC, has been extensively investigated
by experimental and theoretical physicists (13; 26; 29). From (3; 19), a large
repulsive inter-component scattering length may cause spontaneous symmetry
bifurcation which makes phase separation happen. Here a positive and large
inter-component scattering length can be obtained by adjusting the externally
applied magnetic field because of Feshblack resonance (25).

For the study of numerical computation, based on schemes of (5; 6; 7), a
normalized gradient flow (NGF), monotone scheme and a time-splitting sine-
spectral (TSSP) method have been developed by (4) for computing ground
states of a multi-component BEC by solving time-dependent CGPEs (1.1).
The NGF method was proven to preserve energy diminishing property in the
linear case (4; 5). The TSSP method is explicit, unconditionally stable, time
reversible and time transverse invariant (4). Recently, a Gauss-Seidel-type
iteration (GSI) has been proposed by (14) for computing ground states of a
multi-component BEC by solving the time-independent CGPEs (1.4). It was
proven that the GSI method convergent locally and linearly to a fixed point if
and only if the associated minimized energy functional problem has a strictly
local minimum at the feasible fixed point.

The main purpose of this paper is first to discretize the time-independent
CGPEs (1.4) to a nonlinear algebraic eigenvalue problem (NAEP) and to de-
velop a structured continuation method based on the classical continuation
method (2; 27) for the computation of possibly all positive bound states of a
multi-component BEC. Second, in order to utilize the sparsity and the block
structure of the associated NAEP, we propose a continuation method com-
bined with the BSOR iteration (33, p. 594-596) and the Lanczos-Galerkin
projection method (30; 31) for tracing the solution curve of the NAEP. Third,
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we prove that the primal stalk of the solution curve of the NAEP coincides
with the unique global minimizer of a single-component BEC which is rep-
resented by an initial value ODE. Furthermore, we prove that the solution
curve of the NAEP will encounter a first bifurcation point at a finite value of
the repulsive scattering length. For the case of m = 2, we also prove that two
identical ground states will bifurcate into two different ground states which
are symmetric with respect to some suitable axis in Ω.

To compare with the GSI method in (14) we note that the continuation BSOR-
Lanczos-Galerkin method is used to compute possibly all positive bound state
solutions of a multi-component BEC, i.e., possibly all eigensolutions of NAEP,
in spite of that the positive bound state solution is stable for the negative
gradient flow of E(φ) in (1.5), i.e., in spite of that the positive bound state
solution is the ground state solution (the minimal solution) of (1.5). On the
other hand, the GSI method (14) is used to find the ground state solution of
a multi-component BEC.

This paper is organized as follows. In Section 2, we first develop a continuation
BSOR-Lanczos-Galerkin method for solving the NAEP. Then, we propose an
efficient detection for testing the singularity of the solution curve. In Section 3,
we prove the existence of the bifurcation of a multi-component BEC, whenever
the repulsive scattering length becomes sufficiently large. Numerical results of
positive bound state solutions of a two/three-component BEC by solving the
NAEP are presented in Section 4. Finally, a conclusion is given in Section 5.

Throughout this paper, we use the bold face letters or symbols to denote a
matrix or a vector. For u = (u1, . . . , uN)⊤, v = (v1, . . . , vN)⊤ ∈ R

N , u ◦ v =
(u1v1, . . . , uNvN)⊤ denotes the Hadamard product of u and v, u©r = u◦· · ·◦u
denotes the r-time Hadamard product of u, [[u]] := diag(u) denotes the diago-
nal matrix of u. For A ∈ R

M×N , A > 0 (≥ 0) denotes a positive (nonnegative)
matrix with positive (nonnegative) entries, A ≻ 0 (with A⊤ = A) denotes a
symmetric positive definite matrix and σ(A) denotes the spectrum of A.

2 Continuation BSOR-Lanczos-Galerkin algorithm

For convenience, hereafter we assume that Ω in (1.4a) is contained in R
2.

To solve the nonlinear eigenvalue problem (1.4) numerically by continuation
methods (e.g. (2; 27)), it is natural to first discretize the differential equations
in (1.4) by a finite difference method or a finite element method. Suppose that
the Laplacian operator −∇2 in (1.4a) is discretized by the central difference
approximation with the grid size h. Then, due to the Dirichlet boundary con-
dition (1.1c) the discretization matrix, denoted by A ∈ R

N×N corresponding
to the operator −∇2, is an irreducible and symmetric positive definite matrix
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with nonpositive off-diagonal entries (i.e. an irreducible symmetric M-matrix).
By 1

h
uj and Vj ∈ R

N , respectively, are denoted the approximations of the j-th
wave function φj(x) and the j-th trapping potential Vj(x), for j = 1, . . . ,m.
Rewrite αj and βkj in (1.4) by αj := αj/h

2 and βkj := βkj/h
2, respectively,

then the discretization of (1.4), referred to a nonlinear algebraic eigenvalue
problem (NAEP), can be formulated as follows

Auj + Vj ◦ uj + αju
©2
j ◦ uj +

m∑

k 6=j,k=1

βkju
©2
k ◦ uj = λjuj, (2.1a)

u⊤
j uj = 1, j = 1, . . . ,m. (2.1b)

The energy functional E(φ) in (1.5b) becomes

E(u) =
m∑

j=1

(
1

2
u⊤

j Auj +
1

2
V⊤

j u©2
j +

αj

4
u©2 ⊤

j u©2
j

)
+

1

4

m∑

k,j=1,k 6=j

βkju
©2 ⊤
k u©2

j ,

(2.2)

where u = (u1, . . . ,um). The eigenvalue vector λ = (λ1, . . . , λm) and the
associated eigenvectors {u1, . . . ,um} satisfy

m∑

j=1

λj = 2E(u) +
1

2

m∑

k,j=1,k 6=j

βkju
©2 ⊤
k u©2

j +
1

2

m∑

j=1

αju
©2 ⊤
j u©2

j . (2.3)

To study the phase separation of a multi-component BEC, we assume that the
intra- and inter-component scattering lengths αj’s and βkj’s in (2.1a) satisfy

αj = α := α0 + µ0p, j = 1, . . . ,m, (2.4a)

βkj = βjk = β := β0 + ν0p, k 6= j, k, j = 1, . . . ,m, (2.4b)

where α0, µ0, β0 and ν0 are given nonnegative constants, and p is a positive
parameter. Let

x = (u⊤
1 , λ1, . . . ,u

⊤
m, λm)⊤. (2.5)

Then the NAEP of (2.1) can be rewritten by the parameter-dependent form

G(x, p) = 0, (2.6)

where G ≡ (G1, g1, . . . ,Gm, gm) : R
(N+1)m × R → R

(N+1)m is a smooth map-
ping with

Gj(x, p) = Auj + Vj ◦ uj + αu©2
j ◦ uj + β

m∑

k 6=j

u©2
k ◦ uj − λjuj, (2.7a)

gj(x, p) =
1

2
(u⊤

j uj − 1), (2.7b)
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for j = 1, . . . ,m. We denote the Jacobian of G by

DG = [Gx,Gp] = [Gx,Gαµ0 + Gβν0] ∈ R
M×(M+1)

with M = (N + 1)m, and the solution curve C of (2.6) by

C = {y(s) = (x(s)⊤, p(s))⊤| G(y(s)) = 0, s ∈ J ⊆ R}. (2.8)

Here we assume a parametrization via arc lengths is available on C. By differ-
entiating the equation (2.6) with respect to s we obtain

DG(y(s))ẏ(s) = 0,

where ẏ(s) = (ẋ(s)⊤, ṗ(s))⊤ denotes a tangent vector to C at y(s).

Several well-known curve-tracking algorithms have been developed during the
past decades, e.g., the HOMPACK of Watson et al. (34) and the book of nu-
merical methods for bifurcations by Govaerts (23). Recently, Davidson (17)
employed a preconditioned version of the recursive projection method in the
context of continuation method for computing bifurcation scenario of large
scale parameter-dependent problems. In the following, we will trace the solu-
tion curve C in (2.8) by predictor-corrector continuation methods (2; 27) com-
bined with BSOR iteration (33, p. 594-596) and Lanczos-Galerkin projection
method (30; 31), which is referred to a continuation BSOR-Lanczos-Galerkin
method.

Let yi = (x⊤
i , pi)

⊤ ∈ R
M+1 be a point that has been accepted as an approxi-

mating point for the solution curve C. Suppose that the Euler predictor, i.e.,

yi+1,1 = yi + hiẏi

is used to predict a new point yi+1,1, where hi > 0 is the step length and ẏi is
the unit tangent vector at yi which is obtained by solving the linear bordered
system



Gx(yi) Gp(yi)

c⊤i


 ẏi =



0̄

1


 (2.9)

with some suitable constant vector ci ∈ R
M+1. The accuracy of the approxi-

mation yi+1,1 to the solution curve C can be improved by a correction process.
Typically, Newton’s method is chosen as a corrector, i.e., the following linear
bordered system



Gx(yi+1,l) Gp(yi+1,l)

ẏ⊤
i


 δl =



−G(yi+1,l)

ρl


 , l = 1, 2, . . . , (2.10)
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with ρl = ẏ⊤
i (yi+1,l − yi+1,1), is solved by setting yi+1,l+1 = yi+1,l + δl, l =

1, 2, . . . . If {yi+1,l} converges until l = l∞, then we accept yi+1 = yi+1,l∞ as a
new approximation to the solution curve C.

In fact, linear systems (2.9) and (2.10) can be rewritten in the form




B f

g⊤ γ






x

σ


 =



q

ρ


 , (2.11)

where B ∈ R
M×M , f ,g and q ∈ R

M . The linear system (2.11) can be easily
solved by the well-known block elimination (BE) algorithm (see e.g., (27))
when B is well-conditioned. However, near turning points or branch points.
B in (2.11) becomes nearly singular, i.e., B is ill-conditioned. Then the linear
system should be solved by the deflated block elimination (DBE) algorithm
by Chan (12), or the more efficient, backward stable, mixed block elimination
(BEM) algorithm proposed by Govaerts (21; 22).

Algorithm 2.1 Mixed Block Elimination (BEM).

(i) Solve ξ⊤B = g⊤,
(ii) Compute δ1 = γ − ξ⊤f , σ = (ρ− ξ⊤q)/δ1,
(iii) Solve Bv = f ,
(iv) Compute δ = γ − g⊤v, q1 = q− fσ, ρ1 = ρ− γσ,
(v) Solve Bw = q1,
(vi) Compute σ1 = (ρ1 − ξ⊤w)/δ,
(vii) Compute x = w − vσ1, σ = σ + σ1.

From Algorithm 2.1, we see that the main step in (2.9) or in (2.10) is to solve
a linear system of the form Gx(y)ξ = g, where y = (x⊤, p)⊤ and x is given in
(2.5). By (2.6) and (2.7) these linear systems can be formulated into the form

Bξ ≡




B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

. . .
...

Bm1 Bm2 · · · Bmm







ξ1

ξ2

...

ξm




=




g1

g2

...

gm




, (2.12)

where

Bjj = D(uj ,λj)



Gj(y)

gj(y)




=



A + [[Vj + 3αu©2

j + β
∑

k 6=j u©2
k ]]− λjI uj

u⊤
j 0


 ≡



Aj uj

u⊤
j 0




(2.13a)
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and

Bkj = D(uk,λk)



Gj(y)

gj(y)


 =




2β[[uk ◦ uj]] 0

0 0


 , k 6= j, k, j = 1, . . . ,m.

(2.13b)

Note that the matrix B in (2.12) is symmetric.

Since only positive bound states of a multi-component BEC are of interest,
the eigenvectors {uj}mj=1 in (2.1) are restricted to be positive. By applying
Perron-Fronbenius Theorem (see e.g., (10, p.27)) to the irreducible symmetric
M-matrix Âj ≡ (A+[[Vj +αu©2

j +β
∑

k 6=j u©2
k ]]), we have that the eigenvalue λj

in (2.1a) is the unique minimal eigenvalue of Âj associated with the positive

eigenvector uj. This implies that the matrix Aj = Âj + 2[[αju
©2
j ]] defined in

(2.13a) is symmetric positive definite, and thus, Bjj in (2.13a) is invertible
and is a bordered matrix as in (2.11), for j = 1, . . . ,m. With this property,
the linear system (2.12) can be simply solved by the block SOR algorithm (33,
p. 594-596).

Algorithm 2.2 Block SOR (BSOR).

(i) Choose a suitable parameter ω ∈ (1, 2) and starting vectors {ξ(0)
j }mj=1,

i = 0;
(ii) Repeat i : until convergence,

For j = 1, . . . ,m,
solve the linear system

Bjjξ
(i+1)
j = ω



fj −
∑

k>j

Bjkξ
(i)
k −

∑

k<j

Bjkξ
(i+1)
k



 + (1− ω)Bjjξ
(i)
j

(2.14)

for ξ
(i+1)
j by using BEM algorithm (algorithm 2.1),

end for j;
(iii) If converges, then ξj ← ξ

(i+1)
j (j = 1, . . . ,m), stop;

else i← i+ 1, Goto Repeat (ii).

We now reduce our problem of (2.11) to solving several symmetric linear
systems of the form

Ajξ
(i) = b(i), i = 1, . . . , r, (2.15)

involving the same N ×N matrix Aj but different right-hand sides b(i). Fur-
thermore, the right-hand sides are not available at the same time, i.e., a given
right-hand side b(i) depends on the solution ξ(l), l = 1, . . . , i−1, of the previous
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linear systems. For this situation, Parlett (30) suggested using the Lanczos al-
gorithm to solve the first system and saving the generated Lanczos vectors for
providing good approximate solutions to the subsequent systems. An approx-
imate solution to the second linear system can then be obtained by using a
Galerkin projection technique onto the Krylov subspace generated when solv-
ing the first linear system. If the approximate solution obtained in this way
is not accurate enough, it can be improved by the restarted Lanczos-Galerkin
procedure (31) which has been shown to be equivalent to the block Lanczos
algorithm (24). By repeating the process described above, we can solve the
subsequent linear systems in (2.15) after the first linear system is solved.

Algorithm 2.3 Lanczos-Galerkin Projection Method.

(i) First pass.
Solve the first linear system Ajξ

(1) = b(1) by q-step Lanczos algorithm
(see e.g., (30));
Let Vq = [v1, . . . ,vq] be the orthogonal Lanczos basis spanning the

Krylov subspace with v1 = (b(1) − Ajξ
(1)
0 )/‖b(1) − Ajξ

(1)
0 ‖ and Tq be

the corresponding q × q tridiagonal matrix;
(ii) Second pass.

For i = 2, . . . , r,
Compute r

(i)
0 = b(i) −Ajξ

(i)
0 with an appropriate initial ξ

(i)
0 ,

Compute ξ(i) = ξ
(i)
0 + VqT

−1
q V⊤

q v
(i)
0 ,

If the accuracy of the approximation ξ(i) is not sufficient, perform a
refinement (restarted or block) Lanczos-Galerkin process (see (31) for
details),

end for i.

Testing for Bifurcation.

Let C be the path defined in (2.8). As was described in (2; 23; 27) a point
y(s) ∈ C is said to be a regular point if rank(DG(y(s))) = M , and is a singular
point if rank(DG(y(s))) ≤M−1. For a regular point y(s), the tangent vector
ẏ(s) is uniquely determined by the linear system (2.9). We now consider that
the path C undergoes a singular point (x(s0), p(s0)) and give methods to jump
over such a point. In Theorem 3.2 (See Section 3 later!) we shall prove that
dimN (Gx(s0)) ≥ m− 1.

(I) Case m = 2.
One can see that in (27, p. 97) a point (x(s0), p(s0)) ∈ C is a simple
singular point if and only if either

(a) dimN (Gx(s0)) = 1, Gp(s0) ∈ R(Gx(s0)) or (2.16)

(b) dimN (Gx(s0)) = 2, Gp(s0) 6∈ R(Gx(s0)). (2.17)
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Here N and R denote the null and range spaces of Gx(s0), respectively.
However, the case (b) of (2.17) rarely happens because in generic sys-

tems it has codimension 4, i.e., it can only be expected in systems with
four free parameters. However, it cannot be expected in a situation of the
NAEP (2.1) with equivariant parameters. (see (23) for details).

(II) Case m ≥ 3.
As in (I), for simplicity, here we only consider the case

dimN (Gx(s0)) = m− 1, Gp(s0) ∈ R(Gx(s0)).

Algorithm 2.4 Tangent Vectors at Singularity.

(I) For m = 2 (27, p. 88-99):
(i) Compute the unit right and left null vectors φ and ψ of Gx(s0),

respectively, and solve Gx(s0)φ0 = −Gp(s0) with φ⊤φ0 = 0, by
using sparse SVDPACK (11);

(ii) Form φ1 =



φ

0


 and φ2 =



φ0

1


;

(iii) Solve the real vector roots {(µ̂k, ν̂k)}2k=1 of a11µ
2 + 2a12µν + a22ν

2

with

a11 = ψ⊤Gxx(s0)φφ, a12 = ψ⊤[Gxx(s0)φ0 + Gxp]φ,

a22 = ψ⊤[Gxx(s0)φ0φ0 + 2Gxp(s0)φ0 + Gpp(s0)];

(iv) Form tangent vectors ẏk(s0) = µ̂kφ1 + ν̂kφ2, k = 1, 2.

(II) For m ≥ 3:
(i) Compute the unit right null vectors φ(1), . . . ,φ(m−1) of Gx(s0), and

solve Gx(s0)φ0 = −Gp(s0) with φ(k)⊤φ0 = 0, k = 1, . . . ,m − 1, by
using sparse SVDPACK (11);

(ii) Form φk =



φ(k)

0


, k = 1, . . . ,m− 1 and φm =



φ0

1


;

(iii) Form trial tangent vectors ẏk(s0) = φk, k = 1, . . . ,m − 1 and
ẏm(s0) = φm.

Now our task is to design algorithms to detect singular points of the solution
curve C and to compute φk’s in Algorithm 2.4 for tangent vectors. In practice,
in step (iii) of the case of m ≥ 3 we usually choose any one trial tangent vector
ẏk(s0), k ∈ {1, . . . ,m− 1}, for following the branch of the solution curve.

In fact, by the path following process (2.9), Algorithm 2.2 combined with
Algorithm 2.3 can also be used to compute the smallest eigenvalue in modulo
of Gx(si), say µ(si), and further to detect the singularity of C. It leads to the
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following algorithm, which is referred to as an inverse power method.

Algorithm 2.5 Inverse Power Method.

(i) Given a unit vector ζ0 = (ζ
(0)⊤
1 , . . . , ζ(0)⊤

m )⊤ ∈ R
(M+1)m, and let l = 1,

(ii) Repeat l: until convergence,
Call Algorithm 2.2 and Algorithm 2.3 to solve Bζ̂l = ζl−1, where B is
given in (2.12). Set

ζl = ζ̂l/‖ζ̂l‖2, µ(l) = ζ⊤l Bζl;

(iii) If converges, then µ(s)← µ(l); else l← l + 1, Goto Repeat (ii).

Let µ(s1) and µ(s2) be the smallest eigenvalues in modulus of Gx(y(s1)) and
Gx(y(s2)), respectively, where s1 < s2 are two consecutive parameters. If
µ(s1) > 0 and µ(s2) < 0, then there is a s∗ ∈ (s1, s2) such that Gx(y(s∗)) is
singular. We propose the following algorithm to detect the singular point of
C.

Algorithm 2.6 Detection of Singularity of C.

(i) Given µ(si) the smallest eigenvalue in modulus of Gx(y(si)), i = 1, 2,
where µ(s1) > 0, µ(s2) < 0, e.g., |µ(s1)| ≈ |µ(s2)| ≈ 10−4.

(ii) Do Secant Method: until convergence,

(a) Compute y1(s
∗) := y(s∗) = y(s1) +

t∗µ(s1)

µ(s2)− µ(s1)
,

where t∗ = y(s1)− y(s2),
(b) Perform Newton Correction (2.10): until convergence (i.e., ℓ = ℓ∞),

Solve



Gx(yℓ(s

∗)) Gp(yℓ(s
∗))

t∗


 δℓ =



−G(yℓ(s

∗))

ρℓ




with ρℓ = t∗⊤(yℓ(s
∗)− y1(s

∗)),
set yℓ+1(s

∗) = yℓ(s
∗) + δℓ, ℓ← ℓ+ 1, Goto (b).

(c) Compute µ(s∗) of Gx(yℓ∞(s∗)) using Algorithm 2.5,
(d) If |µ(s∗)| <Tol, then perform (iii), else
(e) If µ(s∗) > 0, s1 ← s∗, else s2 ← s∗, Goto (ii);

(iii) Call Algorithm 2.4 to compute the desired tangent vectors
with y(s0) = yℓ∞(s∗).

By combining Algorithm 2.1−2.6, it leads to our continuation BSOR-Lanczos-
Galerkin algorithm which can be used to compute possibly all positive bound
states of a multi-component BEC.
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3 Bifurcation of a Multi-Component BEC

For a multi-component BEC, it is well-known (3; 19) that a large repulsive
inter-component scattering length may set in spontaneous symmetry breaking
inducing phase separation. It was shown in (14) that m components of positive
bound states may repel each other and form segregated nodal domains as the
repulsive scattering lengths go to infinity. In fact, the NAEP of (2.1) always
has identical bound state solutions, i.e., u1 = · · · = um, provided that Vj = V,
αj = α, βkj = β (k 6= j), for k, j = 1, . . . ,m. For this situation, we shall prove
that the solution curve C of (2.8) with α = α0 fixed will undergo a bifurcation
point at a finite value β = β∗ > 0. For m = 2, we further prove that two
identical ground states will bifurcate into two different ground states which
are symmetric with respect to some suitable axis in Ω. To this end, we first
study the ground states of a single-component BEC (i.e. m = 1) described by
the NAEP

Au + V ◦ u + αu©2 ◦ u = λu, (3.1a)

u⊤u = 1. (3.1b)

The ground state solutions can naturally be solved by the continuation method.
From (2.2) we see that the associated energy functional of (3.1) becomes

Eα(u) =
1

2
u⊤Au +

1

2
V⊤u©2 +

α

4
u©2 ⊤u©2 . (3.2)

The next theorem proves that the unique global minimizer of Eα(u) exists
and satisfies an initial value problem (IVP).

Theorem 3.1 The optimization problem

min{Eα(u)| u⊤u = 1, u > 0 ∈ R
N} (3.3)

has a unique global minimizer u(α) which satisfies the initial value problem
(IVP):

u̇(α) = −Ā−1(α)u©3 (α) + Ā−1(α)
u⊤(α)Ā−1(α)u©3 (α)

u⊤(α)Ā−1(α)u(α)
u(α) (3.4)

with u(0) being the eigenvector of A + [[V]] to the minimal eigenvalue, where
Ā(α) ≡ A + [[V + 3αu©2 (α)]] − λ(α)IN and λ(α) is the minimal eigenvalue
of A + [[V + αu©2 (α)]]. Furthermore, u(α) → 1√

N
e, as α → ∞, where e =

(1, . . . , 1)⊤.
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PROOF. We first prove that u(α) satisfies (3.4) by continuation method.
Differentiating the equation in (3.1) with respect to α formally, we obtain



Ā(α) u

u⊤ 0







u̇

−λ̇


 ≡



A + [[V + 3αu©2 ]]− λI u

u⊤ 0







u̇

−λ̇


 =



−u©3

0


 . (3.5)

It is easily seen that the matrix A + [[V]] has a positive eigenvector u(0) > 0
corresponding to the positive minimal eigenvalue λ(0), whenever α = 0. By
Implicit Function Theorem and the positivity of u(0), there exists an α1 > 0
such that (u(α), λ(α)) satisfies

(A + [[V + αu©2 (α)]])u(α) = λ(α)u(α) (3.6a)

u(α)⊤u(α) = 1, u(α) > 0, (3.6b)

for all α ∈ [0, α1). By Perron-Fronbenius Theorem (10, p.27) we see that the
eigenvalue λ(α) in (3.6a) is the minimal eigenvalue of (A + [[V + αu©2 (α)]])
associated with the eigenvector u(α) > 0. Hence, the matrix Ā(α) ≡ A +
[[V + 3αu©3 (α)]]− λ(α)IN is symmetric positive definitive, for all α ∈ [0, α1).

Consequently, the matrix



Ā(α) u

u⊤ 0


 in (3.5) is nonsingular. By block elimi-

nation in Algorithm 2.1, the representation of u(α) in (3.4) is easily obtained,
for α ∈ [0, α1). Let (u(α1), λ(α1)) be the limiting point of (u(α), λ(α)), as
α → α1. The point (u(α1), λ(α1)) must satisfy (3.6a) with u(α1)

⊤u(α1) = 1
and u(α1) ≥ 0. From Perron-Fronbenius Theorem again follows that u(α1) >
0. By continuation method the IVP in (3.4) holds for all α ≥ 0.

It is easily seen that equations of (3.1) also form KKT (Karush-Kuhn-Tucker)
equations of the optimization problem (3.3). Since the KKT point (u(α), λ(α))
exists for all α ≥ 0 andEα(u) is pseudoconvex, by the KKT sufficient condition
(9, p.164) follows that u(α) is a global minimizer of (3.3). The uniqueness of
the global minimizer of (3.3) follows immediately from the uniqueness of the
IVP in (3.4).

Furthermore, it is easy to show that 1√
N
e is the unique global minimizer of

1
4
u©2 ⊤u©2 . On the other hand, since

Eα

α
=

1

2α
(u⊤Au + V⊤u©2 ) +

1

4
u©2 ⊤u©2 → 1

4
u©2 ⊤u©2 , as α→∞,

this implies that the minimizer u(α) converges to 1√
N
e, as α→∞.

Remark 3.1 Recently, there have been extensive numerical and theoretical
studies of the time independent GPE for ground states (8; 16; 18; 28; 32)
and time-dependent GPE for dynamics (1; 5; 7; 15; 20) of a single-component
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BEC. Especially, in (28) the optimization problem (1.5a) for m = 1 has been
proven to have a unique global minimizer which converges to some limiting
function, as α → ∞. Here in Theorem 3.1 we proved that the discretized
optimization problem (3.3) has a unique global minimizer satisfying the IVP
(3.4) and has a limit 1√

N
e, as n → ∞. Based on the result of (3.4), the

solution curve of (3.1) can be parametrized by the natural parameter α and
represented by (3.5). Thus, the continuation BSOR-Lanczos-Galerkin method
developed in Section 2 can be used to compute all desired positive bound states
of a single-component BEC.

Corollary 3.1 Let Πθ be a permutation such that

(H): Π⊤
θ AΠθ = A, Π⊤

θ [[V]]Πθ = [[V]].

Then the global minimizer u(α) of (3.3) satisfies Πθ(u(α)) = u(α), for α ≥ 0.
Moreover, it also holds Πθ(u̇(α)) = u̇(α).

PROOF. By definition of Πθ, it holds that

Πθu(α)©r = (Πθu(α))©r , Πθ[[u(α)©r ]]Π⊤
θ = [[(Πθu(α))©r ]]. (3.7)

From Theorem 3.1, assumptions (H) and (3.7) follows that Πθ(u(α)) satisfies
IVP in (3.4). Since the eigenvector u(0) (the ground state of (3.1) for α = 0)
corresponding to the minimal eigenvalue of A is invariant under Πθ, i.e.,
Πθ(u(0)) = u(0). By the uniqueness of IVP it follows that Πθ(u(α)) = u(α),
for α ≥ 0. Then last equation for the derivative of u(α) holds by differentiating
the equation Πθ(u(α)) = u(α) with respect to α, directly.

We now consider the NAEP of (2.1) for a multi-component BEC with Vj =
V ≥ 0, αj = α0 ≥ 0 (fixed) and βjk = βkj = β > 0 (a parameter), k 6= j,
k, j = 1, . . . ,m, i.e.,

A + [[V + α0u
©2
j + β

∑

k 6=j

u©2
k ]]uj = λjuj, (3.8a)

u⊤
j uj = 1, j = 1, . . . ,m. (3.8b)

The solution curve C as in (2.8) corresponding to the NAEP (3.8) can be
rewritten by

C = {y(s) = (x⊤(s), β(s))⊤| G(y(β(s))) = 0}, (3.9)

where x = (u⊤
1 , λ1, . . . ,u

⊤
m, λm)⊤.

Theorem 3.2 The solution curve C as in (3.9) undergoes at least N − m
(N ≫ m) bifurcation points at finite values β = β∗

q > 0, q = 1, . . . , N −m,
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Moreover, the dimension of null space of Gx(y(β∗
q )) is at least m − 1, q =

1, . . . , N −m.

PROOF. Since (3.8) has positive identical solutions u1(β) = · · · = um(β),
for β sufficiently small, the Jacobian matrix of (3.8) with respect to x is of
the form

Gx(y(β)) =




B1 E1 · · · E1

E1 B1
. . .

...
...

. . . . . . E1

E1 · · · E1 B1




, (3.10a)

where

B1 =



A + [[V + 3α0u

©2
1 + (m− 1)βu©2

1 ]]− λ1I u1

u⊤
1 0


 ≡



A1 u1

u⊤
1 0


 (3.10b)

and

E1 =




2β[[u©2
1 ]] 0

0 0


 . (3.10c)

For this situation, equations of (3.8) become one NAEP for (u1, λ1):

Au1 + [[V + (α0 + (m− 1)β)u©2
1 ]]u1 = λ1u1, u⊤

1 u1 = 1. (3.11)

From (3.11) follows that the matrix A1 in (3.10b) is symmetric positive defin-
itive, for β sufficiently small. Hence the matrix B1 in (3.10b) has N positive
eigenvalues and one negative eigenvalue, and therefore, Gx(y(β)) has Nm
positive eigenvalues and m negative eigenvalues, for β sufficiently small.

From (3.10a), it is easily seen that

Gx(y(β)) = Im ⊗B1 + C⊗ E1, with C =




0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1

1 · · · 1 0




.

Here “⊗” denotes the Kronecker product of two matrices. Using the fact that
C has a simple eigenvalue m − 1 and m − 1 eigenvalues −1, there exist an
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orthogonal matrix Q such that

Q⊤CQ = diag{m− 1,−1, . . . ,−1}.

Multiplying Gx(y(β)) in (3.10a) by Q⊗IN from the right and by its transpose
from the left, respectively, we obtain that

(Q⊤ ⊗ IN)Gx(y(β))(Q⊗ IN) = diag{B1+(m− 1)E1,B1 − E1, . . . ,B1 − E1}.
(3.12)

From (3.10b), (3.10c) and (3.11) follow that the matrix B1 +(m − 1)E1 is
nonsingular.

If we can show that B1 − E1 has at least N negative eigenvalues (N ≫ m),
then it must exist at least N−m finite β∗

q > 0 such that Gx(y(β∗
q )) is singular.

By Theorem 3.1 we also see that x can be parametrized by β, for all identical
solutions u1(β) = · · · = um(β). That is, the solution curve C can not have a
turning point at β = β∗

q . Hence, the solution curve C must have bifurcation
points at β = β∗

q > 0, q = 1, . . . , N −m.

From Theorem 3.1 and (3.11) we have that lim
β→∞

[[u1(β)©2 ]] =
1

N
IN , i.e., for any

ǫ > 0, there is a β > 0 such that for all β > β,

1

N
IN − ǫ < [[u1(β)©2 ]] <

1

N
IN + ǫ. (3.13)

Let r be the maximal row sum of the off-diagonal elements of A, ā and a be
the maximum and minimum of the diagonal elements of A+[[V]], respectively.
By (3.13) and Gershgorin Theorem we have that

a− r + (α0 + (m− 1)β)(
1

N
− ǫ) < µi < ā+ r + (α0 + (m− 1)β)(

1

N
+ ǫ),

(3.14)

where µi is the eigenvalue of A+[[V+α0u
©2
1 +(m−1)βu©2

1 ]], for i = 1, . . . , N ,
with µ1 = λ1. This implies that

µi − λ1 < ā− a+ 2r + 2ǫ(α0 + (m− 1)β). (3.15)

Rewrite A1 − 2β[[u©2
1 ]] as in (3.10b) by

A1 − 2β[[u©2
1 ]] = A + [[V + α0u

©2
1 + (m− 1)βu©2

1 ]]− λ1I + 2(α0 − β)[[u©2
1 ]].
(3.16)

By (3.15) and Gershgorin Theorem again we show that all eigenvalues of
A1 − 2β[[u©2

1 ]] must be bounded by

b ≡ ā− a+ 3r + 2ǫ(α0 + (m− 1)β) + 2(α0 − β)(
1

N
− ǫ). (3.17)
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Since we can choose ǫ > 0 sufficiently small and β > 0 sufficiently large so that
the quantity b in (3.17) becomes negative, the N eigenvalues of A1− 2β[[u©2

1 ]],
and thus of B1 − E1, become negative. This shows that the determinant of
Gx(y(β)) change signs at least N −m times.

Finally, since B1−E1 becomes singular at β = β∗
q , from equation (3.12) follows

that dimN (Gx(y(β∗
q ))) ≥ m− 1. We complete the proof.

Theorem 3.3 Let Πθ be a permutation satisfy (H) in Corollary 3.1 with
Π⊤

θ = Πθ. Then two identical bound states of NAEP (3.8) for a two-component
BEC (m = 2) will bifurcate into two different positive bound states u1 and u2

at β = β∗ > 0 with Πθ(u1) = u2.

Note that for the case m ≥ 3, a theoretical proof is still open here. Numerical
experiment shows that a symmetry breaking of m ground/bound states will
occur at a finite value β = β∗.

PROOF. Let G(x, β) = 0 be defined in (2.6) and (2.7) corresponding to
(3.8), and let u1(β) = u2(β) be the identical solutions, for β sufficiently small.
From (3.10) and (3.5) by replacing u(α0 + β) by u1(β), we have

[
Gx Gβ

]




u̇1(β)

−λ̇1(β)

u̇1(β)

−λ̇1(β)

1




=




B1 E1

u©3
1

0

E1 B1

u©3
1

0







u̇1(β)

−λ̇1(β)

u̇1(β)

−λ̇1(β)

1




= 0. (3.18)

Then ū1 ≡ (u̇⊤
1 (β),−λ̇1(β), u̇⊤

1 (β),−λ̇1(β), 1)⊤ is a natural tangent vector of
the solution curve C of (3.9) for the identical solutions. Since by Corollary 3.1
and assumption (H) we have ΠθAΠθ = A and Πθu1 = u1 for β sufficiently
small, the matrix Â1 ≡ A1 − 2β[[u©2

1 ]] satisfies ΠθÂ1Πθ = Â1, where A1 is
defined in (3.10b). Hence, the eigenvectors, say ξ1 of Â1 corresponding to the
eigenvalues in increasing order are alternating symmetric (i.e., Πθξ1 = ξ1)
and anti-symmetric (i.e., Πθξ1 = −ξ1). In fact, by the definition of Â1 one
can show that Â1u1 = 0 for β = α0, but B1 − E1 is nonsingular for β = α0.
Therefore, there is a β∗ > α0 and an anti-symmetric null vector ξ1 ∈ R

N of
Â1 at β = β∗ as in Theorem 3.2. That is,

(B1 − E1)



ξ1

0


 = 0, for β = β∗ > 0. (3.19)
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Consequently, it holds

[
Gx Gβ

]




ξ1

0

−ξ1

0

0




= 0. (3.20)

Furthermore, from Corollary 3.1 it holds that u̇⊤
1 ξ1 = 0 because u̇1 is symmet-

ric, therefore, the vector ξ̄1 ≡ (ξ⊤1 , 0,−ξ⊤1 , 0, 0)⊤ and ū1 are mutually perpen-
dicular at the bifurcation point β = β∗. This coincides with case (I) of (2.16).
Hence the vector ξ̄ forms another tangent vector of C. Since Πθξ1 = −ξ1, we
let

y1 =




u1 + ǫξ1

λ1

u1 − ǫξ1

λ1

β




≡




v1

λ1

Πθv1

λ1

β




(3.21)

be the prediction vector for the Newton correction (2.10), where ǫ is sufficiently
small and β ≈ β∗. From (3.7) the linear bordered system of (2.10) becomes




B̄1 Ē1

v1 ◦ (Πθv1)
©2

0

Ē1 Π̄θB̄1Π̄θ

(Πθv1) ◦ v©2
1

0

ξ⊤1 , 0 −ξ⊤1 , 0 0







δ1

δ̂1

κ




=




−G(y1)

0

−ΠθG(y1)

0

0




, (3.22)

where Π̄θ =



Πθ 0

0 1


, δ, δ̂1 ∈ R

N+1,

B̄1 =



A + [[V + 3α0v

©2
1 ]] + βΠθ[[v

©2
1 ]]Πθ − λ1I v1

v⊤ 0


 , (3.23a)

Ē1 =




[[2βv1 ◦Πθv1]] 0

0⊤ 0


 (3.23b)
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and

G(y1) = Av1 + V ◦ v1 + α0v
©3
1 + β(Πθv1)

©2 ◦ v1 − λ1v1. (3.23c)

Expanding (3.22), we get equations

B̄1δ1 + Ē1δ̂1 = g1, (3.24a)

Ē1δ1 + Π̄θB̄1Π̄θδ̂1 = Π̄θg1, (3.24b)

where

g1 =



−G(y1)

0


− κ



v1 ◦ (Πθv1)

©2

0


 .

Multiplying (3.24b) by Π̄θ from the left and using the fact that Π̄θĒ1 = Ē1Π̄θ

we obtain

(B̄1 − Ē1Π̄θ)(δ1 − Π̄θδ̂1) = 0. (3.25)

Since the Jacobian matrix in (3.22) is nonsingular for some β ≈ β∗ and β 6= β∗,
the matrix (B̄1 − Ē1Π̄θ) is nonsingular for β ≈ β∗. From (3.25) follows that
δ̂1 = Π̄θδ1. This implies that starting with y1 given in (3.21) we always have
a symmetric correction by each Newton step in (3.22), i.e.,

yl+1 = yl +




δ1

Π̄θδ1

κ



, l = 1, 2, . . . . (3.26)

If ǫ in (3.21) is chosen sufficiently small, then the Newton correction (3.26)

will converge to positive bound state solutions



u1

λ1


 and



u2

λ1


 lying on the

solution curve C of (3.8) (m = 2) with u2 = Πθ(u1).

Remark 3.2 The equation (3.19) in the proof of Theorem 3.3 shows that if
the β∗ is the first singular point which we undergo by the path following, then
two identical ground states will bifurcate into two different ground states u1

and u2 with u2 = Πθ(u1).

4 Numerical Examples

In Section 2 we developed a continuation BSOR-Lanczos-Galerkin method
which can be utilized to compute possibly all positive bound states of a multi-
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component BEC. The solution curve of (2.6) is traced by the proposed con-
tinuation method implemented by a MATLAB V6.5 (16 digits) on an Intel
Pentium 4 Processor. The tolerance of each step in Newton correction (2.10)
is chosen to be Tol = 10−8.

In physical applications and numerical simulations we first study the bifurca-
tion of the NAEP (2.1) under assumptions (2.4) in the following four cases for
m = 2.

Case 1: α1 = α2 ≡ α0 (i.e., µ0 = 0) fixed, β12 = β21 := β > 0 (parameter),
Case 2: β12 = β21 ≡ β0 (i.e., ν0 = 0) fixed, α1 = α2 := α > 0 (parameter),
Case 3: α1 =α2 :=α0+µ0p, β12 = β21 := β0 + ν0p, µ0 < ν0, p > 0 (parameter),
Case 4: α1 =α2 :=α0+µ0p, β12 = β21 := β0 + ν0p, µ0 > ν0, p > 0 (parameter).

Example 4.1 Let m = 2, Ω = [−5, 5] × [−4.8, 4.8], V1 = V2 = x2 + y2.
The uniform mesh size h of the grid domain Ωh is chosen by h = 0.1. Let Πθ

denote the symmetric reflection of Ωh with respect to y-axis, i.e., Πθ(Ωh) = Ωh.
Furthermore, it holds that Π⊤

θ AΠθ = A and Π⊤
θ [[V1]]Πθ = [[V1]], where A is

the discretized approximation of −∇2 by the standard central finite difference.

In Figure 4.0 we plot the bifurcation curves of the NAEP (2.1) for α ∈ (0, 28)
and β ∈ (0, 15) in solid lines. Then along the 4 different dot line we compute
the bifurcation diagrams of (2.1) of the following 4 cases.

Case 1. For α0 = 2, β12 = β21 = β > 0: In Figures 4.1(a)(b) we plot the
bifurcation diagrams of positive bound states of NAEP (2.1) versus the
repulsive scattering length β, for β ∈ (0, 28) and β ∈ (93, 125), respectively.
Here the nodal domains of positive bound state solutions are attached near
the solution curves. The NAEP undergoes the bifurcation at singular points
β∗

1 = 6.56, β∗
2 = 11.55, β∗

3 = 14.34, β∗
4 = 24.53, β∗

5 = 95.48, β∗
6 = 96.84,

β∗
7 = 98.43, β∗

8 = 113.66, β∗
9 = 117.27, respectively. Two new born positive

bound solutions u1 and u2 satisfy Πθ(u1) = u2.
Furthermore, in Figures 4.1(c) and 4.1(d) we plot the solution curves

of eigenvalues and the associated solution curves of energy versus β, for
β ∈ (0, 28) and β ∈ (93, 125), respectively. In addition, the level sets of two
bound state solutions are attached near the solution curves of energy.

From Figures 4.1 and Theorem 3.3 we observe that for 0 ≤ β < β∗
1 ,

the NAEP (2.1) has only identical ground state solutions, and undergoes
a bifurcation point at β = β∗

1 , so that the ground state solutions begin
to separate for β > β∗

1 . Since β > 0 is a repulsive scattering length, it is
expected that the ground state solutions of (2.1) should be little by little
mutually separated when this bifurcation branch is traced with continually
increasing β. The structure of the phase separation will finally reach a stage
of totally disjoint nodal domains, when β approaches to 105. Next, we come
back to the bifurcation point β∗

1 on the primal stalk and trace the solution
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curve with identical bound state solutions for β > β∗
1 . By path following, we

will undergo a sequence of bifurcation points {β∗
i }9i=2 on the primal stalk.

For each bifurcation branch at β∗
i , if we trace the solution curve with β > β∗

i ,
a new structure of positive bound state solutions will be found.

Case 2. For β0 = 15, α1 = α2 = α > 0: In Figure 4.2(a) we plot the
bifurcation diagram of positive bound state solutions of NAEP (2.1) for
α ∈ (0, 15). We see that the NAEP undergoes the bifurcation at singular
points α∗

1 = 10.69, α∗
2 = 5.16, α∗

3 = 2.71. In Figure 4.2(b) we plot the as-
sociated solution curves of eigenvalues and energy versus α, for α ∈ (0, 15).
Note that here we follow the solution curves of NAEP along α decreasingly.

From Figures 4.2 we observe that the NAEP (2.1) has identical ground
state solutions. For α∗

1 < α ≤ 15 and undergoes a bifurcation point at
α = α∗

1 so that the ground state solutions separate into two solutions sym-
metrized with respect to Πθ. Then, we follow the solution curve on the
primal stalk for α < α∗

1 and we will undergo a sequence of bifurcation
points {α∗

i }3i=2. For each bifurcation branch at α∗
i , if we trace the solution

curves with α < α∗
i , a new structure of positive bound state solutions will

be found.
In light of the bifurcation curves in Figures 4.0, Figures 4.1(a) and 4.2(a)

we observe that the bifurcation diagram of case 2 for increasing α is some-
what like a reverse diagram of the bifurcation diagram of case 1 for increas-
ing β.

Case 3. For α0 = 0, β0 = 0, µ0 = 0.1 and ν0 = 1: In Figure 4.3(a) and 4.3(b)
we plot the bifurcation diagram of NAEP (2.1), and the associated solution
curves of eigenvalues as well as energy, respectively, versus p, for p ∈ (0, 28).
The NAEP undergoes the bifurcation at p∗1 = 5.16, p∗2 = 10.48, p∗3 = 13.84,
p∗4 = 25.05.

In light of the bifurcation curves of NAEP in Figure 4.0 we observe that
the bifurcation diagram of case 3 is quite similar to that of case 1. Only
difference is that the bifurcation point of case 3 occurs later then that of
case 1.

Case 4. For α0 = 0, β0 = 0, µ0 = 1 and ν0 = 0.5: In Figure 4.4 we plot the
bifurcation diagram of NAEP (2.1), for p ∈ (0, 15) and show that there is
no bifurcation for this trivial case.

Example 4.2 Let m = 3, Ω = [−5, 5] × [−4.8, 4.8], V1 = V2 = V3 =
x2 + y2. The mesh size is the same as in Example 4.1. We consider the case
of that α1 = α2 = α3 = 0.1, βkj = β > 0 (parameter), for k 6= j, k, j =
1, 2, 3. Solutions and bifurcations of NAEP (2.1) are computed by BSOR-
Lanczos-Galerkin algorithm. Here by path following, we follow the solution
curve at each bifurcation point only along one trial tangent vector obtained
in Algorithm 2.4. Slight different from Example 4.1, for convenience and for
simplicity, we omit the bifurcation diagram but plot the solution curve of
eigenvalues for β ∈ (8.7, 51) and attach the nodal domains of positive bound
state solutions near the corresponding eigenvalues in Figure 4.5. Furthermore,
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we plot the solution curve of energy for β ∈ (8.7, 51) and attach the level sets
of positive bound states near the corresponding energy in Figure 4.6.

5 Conclusions

In this paper, we developed a continuation BSOR-Lanczos-Galerkin method
for the computation of positive bound states of a multi-component BEC.
The bifurcation diagram of positive eigenvectors/eigenvalues of NAEP and
the associated energy functional of the time-independent CGPEs is traced
by the proposed continuation method. Numerical experience shows that our
method performs reliably and efficiently. Different from NGF, TSSP and GSI
methods for the computation of the ground states of a multi-component BEC
only, the continuation method is proposed from the viewpoint of a nonlinear
eigenvalue approach, which can be used for computing all possible positive
bound states of a multi-component BEC. We proved that a phase separation
of m ground/bound states will occur at a finite value of the repulsive scat-
tering length. For a two-component BEC, we also proved that two identical
ground/bound states will bifurcate into different Πθ-symmetry ground/bound
states. In the future, we are interested in proving the existence of the Πθ-
symmetry phase separation for the ground/bound states of a multi-component
BEC (m ≥ 3).
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Figure 4.0. Bifurcation curves of NAEP.
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Figure 4.1(a). Bifurcation diagram of NAEP for α0 = 2, β ∈ (0, 28).
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Figure 4.1(b). Bifurcation diagram of NAEP for α0 = 2, β ∈ (93, 125).
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Figure 4.1(c). Solution curve of eigenvalues and energy for α0 = 2, β ∈ (0, 28).
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Figure 4.1(d). Solution curve of eigenvalues and energy
for α0 = 2, β ∈ (93, 125).
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Figure 4.2(a). Bifurcation diagram of NAEP for β0 = 15, α ∈ (0, 15).
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Figure 4.2(b). Solution curve of eigenvalues and energy
for β0 = 15, α ∈ (0, 15).
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Figure 4.3(a). Bifurcation diagram of NAEP for α0 = 0,
β0 = 0, µ0 = 0.1 and ν0 = 1.
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Figure 4.3(b). Solution curve of eigenvalues and energy
for α0 = 0, β0 = 0, µ0 = 0.1 and ν0 = 1.
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