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1 Introduction

In this paper we study numerically time-independent, coupled nonlinear Schrödinger

equations, also called a vector Gross-Pitaevskii equation (VGPE), for the

steady energy states which describe a multi(m)-component Bose-Einstein con-

densate (BEC) in m different hyperfine spin states at zero or very low temper-

ature. Generically, the ultracold dilute Bose gas, two different hyperfine spin

states may repel each other and form separate domains like the mixture of oil

and water. Such a phenomenon called the phase separation of a binary mix-

ture of BEC has been extensively investigated by experimental and theoretical

physicists (13; 21; 26; 31). A large repulsive interactive scattering length may

cause spontaneous symmetry bifurcation which induces the phase separation

(2; 16). Furthermore, due to Feshbach resonance, a positive and large inter-

active scattering length can be obtained by adjusting the externally applied

magnetic field (20).

As for the study of numerical computation, based on the schemes of (4; 5; 7; 8),

Bao (3) recently developed an elegant normalized gradient flow (NGF), mono-

tone scheme and a time-splitting sine-spectral (TSSP) method for comput-

ing ground states of a multi-component BEC by solving the time-dependent

VGPE. The NGF method was proven to preserve energy diminishing prop-

erty in linear case (3; 4). The TSSP is explicit, unconditionally stable, time

reversible and time transverse invariant if the VGPE has good resolution in the

semiclassical regime, and it has a spectral order accuracy in space and second

order accuracy in time (3). Recently, a continuation BSOR Lanczos-Galerkin

method (12) for computing positive bound states of a multi-component BEC

is developed by solving the time-independent VGPE. Furthermore, only a

few numerical simulations on a multi-component BEC (14; 18; 22) have been

studied.

The main purpose of this paper is first to discretize the time-independent
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VGPE into a nonlinear algebraic eigenvalue problem (NAEP), and derive a

discretized version of the associated minimized energy functional problem. Sec-

ond, for the computation of the desired energy states of a multi-component

BEC, we propose a Jacobi-type iteration (JI) and a Gauss-Seidel-type itera-

tion (GSI) by solving m linear eigenvalue problems in each iterative step, and

prove that the GSI method converges locally and linearly to a fixed point if

and only if the associated minimized energy functional problem has a strictly

local minimum at the feasible fixed point. Third, we utilize the GSI to compute

the bifurcation diagram of eigen-states of the NAEP and the corresponding

energies of the time-independent VGPE. From both theoretical and compu-

tational points of view, our proposed iterative methods are distinct from the

NGF and TSSP methods in that ours are inspired by the eigenvalue problem

approach for computing the ground states and the other positive bound states

of a multi-component BEC. Furthermore, our methods can be combined with

the continuation BSOR Lanczos-Galerkin method (12) for solving the time-

independent VGPE efficiently.

This paper is organized as follows. In Section 2 we introduce the VGPE and

the corresponding nonlinear eigenvalue problem. In Section 3 we derive a dis-

cretized version of the VGPE, called NAEP, and the associated minimized

energy functional problem, respectively. In Section 4 we propose JI and GSI

methods for solving the NAEP, and prove necessary and sufficient conditions

for the convergence of the JI and GSI methods. Numerical results for ground

states and positive bound states of two/three-component BECs by solving

the NAEP are presented in Section 5. Finally, a conclusion remark is given in

Section 6.

Throughout this paper, we use the bold face letters or symbols to denote a

matrix or a vector. For u = (u1, . . . , uN)⊤, v = (v1, . . . , vN)⊤ ∈ RN , u ◦
v = (u1v1, . . . , uNvN)⊤ denotes the Hadamard product of u and v, u©r =

u ◦ · · · ◦u denotes the r-time Hadamard product of u, [[u]] := diag(u) denotes
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the diagonal matrix of u, and uH denotes the conjugate transpose of u. For

A ∈ RM×N , A > 0 (≥ 0) denotes a positive (nonnegative) matrix with positive

(nonnegative) entries, A ≻ 0 (with A⊤ = A) denotes a symmetric positive

definite matrix, σ(A) and ρ(A) denote the spectrum and the spectral radius

of A, respectively.

2 VGPE and Nonlinear Eigenvalue Problem (NEP)

It is well known that the VGPE can be used to describe the evolution of the

macroscopic wave functions of a multi-component BEC (19; 27). In order to

extract essential parameters in the original VGPE, a dimensionless VGPE

has been derived in (3) (See (3) for details). In this paper, we consider the

dimensionless VGPE on a d-dimensional ellipsoid D = {x ∈ Rd : ||Γx||2 ≤
1, Γ = diag([γ1, . . . , γd]

⊤) > 0} of the form:

ι
∂ψ(x, t)

∂t
= −1

2
∇2ψ(x, t) + V(x) ◦ ψ(x, t) + B(ψ) ◦ ψ(x, t),

x ∈ D, t > 0, ι =
√
−1,

(2.1a)

ψ(x, t) = 0, x ∈ ∂D, (2.1b)

where

ψ(x, t) = (ψ1(x, t), . . . , ψm(x, t))⊤,

V(x) = (V1(x), . . . , Vm(x))⊤ ≥ 0,

B(ψ) = (B1(ψ), . . . , Bm(ψ))⊤,

Bj(ψ) = βj1|ψ1|2 + · · · + βjm|ψm|2, j = 1, . . . ,m,

in which ψ(x, t) represents the macroscopic vector wave function, V(x) is the

harmonic trap potential, and βjk = β̂jkN
0
k , j, k = 1, . . . ,m, with β̂jk = β̂kj > 0

or < 0 being the repulsive/attractive interactive scattering lengths and N0
k > 0

being the number particles of the k-th component. Furthermore, the VGPE
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of (2.1) conserves the normalization of each component of the vector wave

function, i.e.,

n(ψj) :=
∫

D

|ψj(x, t)|2dx = 1, j = 1, . . . ,m, (2.2)

as well as the energy

E(ψ) =
m∑

j=1

N0
j

N0
Ej(ψ), (2.3)

where N0 = N0
1 + · · · + N0

m and

Ej(ψ) =
∫

D

[
1

2
|∇ψj|2 + Vj(x)|ψj|2 +

1

2

m∑

k=1

βjk|ψj|2|ψk|2
]
dx.

Using the technique of separation of variables for finding the solitary wave

solution of (2.1) we let

ψ(x, t) = e−ιλ(c)t ◦ φ(x), (2.4)

where λ(c) = (λ
(c)
1 , . . . , λ(c)

m )⊤ is referred as the chemical potential vector of the

multi-component BEC and φ(x) = (φ1(x), . . . , φm(x))⊤ is a real-valued vector

function independent of time. Plugging (2.4) into (2.1a) and using (2.2) gives

a nonlinear eigenvalue problem (NEP), also called Hatree-Fock equations (cf.

(16; 17)), for (λ(c),φ):

λ(c) ◦ φ(x) = −1

2
∇2φ(x) + V(x) ◦ φ(x) + B(φ) ◦ φ(x), x ∈ D (2.5)

satisfying the normalization constraints

∫

D

|φj(x)|2dx = 1, j = 1, . . . ,m, (2.6)

where B(φ) = (B1(φ), . . . , Bm(φ))⊤ with Bj(φ) =
m∑

k=1

βjk|φk|2, j = 1, . . . ,m.

Let

E(φ) =
m∑

j=1

N0
j

N0
Ej(φ) (2.7)
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be the energy functional in φ, where

Ej(φ) =
∫

D

[
1

2
|∇φj|2 + Vj(x)|φj|2 +

1

2

m∑

k=1

βjk|φj|2|φk|2
]
dx, (2.8)

for j = 1, . . . ,m. Multiplying the j-th equation in (2.5) by φj(x), and us-

ing (2.6) and (2.8) it is easily seen that any eigenvalue vector λ(c) and the

corresponding eigenfunction φ of (2.5) satisfy

λ
(c)
j =

∫

D

[
1

2
|∇φj|2 + Vj(x)|φj|2 +

m∑

k=1

βjk|φj|2|φk|2
]
dx

= Ej(φ) +
1

2

∫

D

m∑

k=1

βjk|φj|2|φk|2dx. (2.9)

On the other hand, from (3) the ground state solution φg(x) of the multi-

component BEC can be found by minimizing the energy functional E(φ) under

the conditions (2.6). That is,

Minimize
φ=(φ1,...,φm)⊤

E(φ)

subject to
∫

D

|φj(x)|2dx = 1, j = 1, . . . ,m.

(2.10)

The equation (2.5) can be regarded as the Euler-Lagrange equation of the

optimization problem (2.10).

In a multi-component BEC without an external driven field, the optimization

problem (2.10) has been proven to have a unique nonnegative ground state

solution φg(x) ≥ 0, for x ∈ D (25). From physical point of view the com-

putation of the ground state solution (λg,φg) for (2.5), and thus for (2.10),

is most important for the study of the multi-component BEC. On the other

hand, from theoretical and computational point of view, we are also interested

in knowing the behavior of the other positive bound state solutions for (2.5)

(i.e., the critical points of (2.10)), which can possibly be used as an initial for

the study of the dynamics of various multi-component BECs (3; 14; 18; 22).
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3 Nonlinear Algebraic Eigenvalue Problem (NAEP)

For computational purpose, in this section we shall derive a discretized version

of the nonlinear eigenvalue problem (2.5) and the associated optimization

problem (2.10).

For simplicity, we consider the equation (2.5) on a 2-dimensional unit disk

D and rewrite the Laplacian operator ∇2 on φj(x) in the polar coordinate

system:

−∇2φj(x) = −
(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
φj(r, θ) (3.1)

with 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, j = 1, . . . ,m.

Based on recently proposed, simple and elegant, discretization scheme (23) for

(3.1) we let δr = 2/(2ν + 1) be the radial mesh width and δθ = 2π/ω be the

azimuthal mesh width, for positive integers ν and ω. The grid locations are

then half-integered in radial direction and integered in azimuthal direction,

i.e.,

rl1 = (l1 −
1

2
)δr, θl2 = (l2 − 1)δθ, (3.2)

for l1 = 1, . . . , ν and l2 = 1, . . . , ω.

Now, let N = νω and define l ≡ l(l1, l2) = l1 + ν(l2 − 1): 1 ≤ l ≤ N . Then the

standard central finite difference method discretizes (3.1) into

Âuj = Â[uj1, . . . , ujl, . . . , ujN ]⊤, Â ∈ RN×N , (3.3)

where uj is an approximation of the j-th wave function φj(x) with ujl ≈

φj(rl1 , θl2), for l ≡ l1 + ν(l2 − 1), j = 1, . . . ,m, Â and Â⊤ are irreducible

and diagonal-dominant with positive diagonal and non-positive off-diagonal

elements, respectively. Moreover, Â is symmetrizable to a symmetric positive
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definite matrix A by a positive diagonal matrix D > 0 (See Appendix A), i.e.,

Â = D−1AD, A⊤ = A ≻ 0. (3.4)

Note that D = diag(dl1,l2) is called a symmetric balancing matrix and

d2
l1,l2

= (l1 −
1

2
)δr2δθ

is equal to the area of the (l1 +ν(l2−1))-th sector corresponding to an integer

partition for D by rl1 = l1δr and θl2 = (l2−1)δθ, for l1 = 1 · · · , ν, l2 = 1, . . . , ω.

For the case of 3-dimensional unit ball D, similar Â and Â⊤ as in (3.3) can

also be constructed (See (24), for details).

Applying (3.3) to (2.5) and normalizing each uj with respect D2, the dis-

cretization of NEP in (2.5), referred as a nonlinear algebraic eigenvalue prob-

lem (NAEP), can be formulated as follows

1

2
Âuj + Vj ◦ uj +

m∑

k=1

βjku
©2
k ◦ uj = λ

(c)
j uj, (3.5)

u⊤
j D2uj = 1, j = 1, . . . ,m,

where Vj = [Vj1, . . . , VjN ]⊤, with Vjl = Vj(rl1 , θl2), for l ≡ l1 + ν(l2 − 1) and

1 ≤ l ≤ N .

Let u = (u⊤
1 , . . . ,u⊤

m)⊤. Since the j-th kinetic energy
∫

D

1

2
|∇φj|2dx in (2.8) is

equal to −
∫

D

φj(∇2φj)dx, from (3.4) we approximate it by

1

2
u⊤

j D2Âuj =
1

2
u⊤

j DADuj. (3.6)

Furthermore, the j-th potential energy between the nonlinear terms u©2
k (k =

1, . . . ,m) and u©2
j as well as u©2

j and Vj are with respect to D2. Then the

discretized equation of the j-th energy Ej(φ) in (2.8) becomes

Ej(u) =
1

2
u⊤

j DADuj + V⊤
j (Duj)

©2 +
1

2

m∑

k=1

βjku
©2 ⊤
k (Duj)

©2 , (3.7)
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for j = 1, . . . ,m. Multiplying (3.5) by u⊤
j D2, and from (3.4) and (3.7) it is easy

to verify that any eigenvalue vector λ(c) = (λ
(c)
1 , . . . , λ(c)

m )⊤ and the associated

eigenvectors u = (u⊤
1 , . . . ,u⊤

m)⊤ of (3.5) satisfy the equations

λ
(c)
j =

1

2
u⊤

j DADuj + V⊤
j (Duj)

©2 +
m∑

k=1

βjku
©2 ⊤
k (Duj)

©2

= Ej(u) +
1

2

m∑

k=1

βjku
©2 ⊤
k (Duj)

©2 , j = 1, . . . ,m. (3.8)

From (2.7) follows that,

E(u) =
m∑

j=1

N0
j

N0
Ej(u) =

m∑

j=1

N0
j

N0

(
λ

(c)
j − 1

2

m∑

k=1

βjku
©2 ⊤
k (Duj)

©2

)
. (3.9)

Furthermore, from (3.7) and (3.9) we have

E(u) =
m∑

j=1

N0
j

N0
Ej(u) =

1

2

m∑

j=1

N0
j

N0
u⊤

j DADuj +
m∑

j=1

N0
j

N0
V⊤

j (Duj)
©2

+
1

2

m∑

j=1

N0
j

N0
βjju

©2 ⊤
j (Duj)

©2 +
1

2

m∑

j=1

∑

j 6=k

N0
j

N0
βjku

©2 ⊤
k (Duj)

©2 . (3.10)

The discretization of the optimization problem (2.10) becomes

Minimize
u=(u⊤

1 ,...,u⊤
m)⊤

E(u)

subject to u⊤
j D2uj = 1, j = 1, . . . ,m.

(3.11)

Applying the optimality condition (10, Chapter 4) to the problem (3.11), a

local minimal solution (λ(L),u) ≡ ((λ
(L)
1 , . . . , λ(L)

m ), (u⊤
1 , . . . ,u⊤

m)⊤) of (3.11)

satisfies the Karush-Kuhn-Tucker (KKT) equations

N0
j

N0

(
A+2[[Vj]]+2βjj[[u

©2
j ]]

)
(Duj)+

∑

k 6=j

(
N0

j

N0
βjk+

N0
k

N0
βkj

)
u©2

k ◦(Duj)=λ
(L)
j (Duj),

(3.12)

for j = 1, . . . ,m, where {λ(L)
j }m

j=1 are referred as Lagrange multipliers. Multi-
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plying (3.12) by N0

2N0
j

gives

1

2
A(Duj) + Vj ◦ (Duj) +

1

2

m∑

k=1

(
βjk +

N0
k

N0
j

βkj

)
u©2

k ◦ (Duj) =
N0

2N0
j

λ
(L)
j (Duj).

(3.13)

Using the assumption that βjk = β̂jkN
0
k and β̂jk = β̂kj the equation (3.13)

becomes

1

2
A(Duj) + Vj ◦ (Duj) +

m∑

k=1

βjku
©2
k ◦ (Duj) =

N0

2N0
j

λ
(L)
j (Duj). (3.14)

We see that by (3.4) the equation (3.14) is equivalent to (3.5) with

λ
(c)
j =

N0

2N0
j

λ
(L)
j , j = 1, . . . ,m. (3.15)

From (3.8)-(3.10) and (3.15) we have the total energy

E(u) =
m∑

j=1

N0
j

N0
Ej(u) =

m∑

j=1

N0
j

N0

(
λ

(c)
j − 1

2

m∑

k=1

βjku
©2 ⊤
k (Duj)

©2

)

=
1

2

m∑

j=1

λ
(L)
j − 1

2

m∑

k=1

N0
j

N0
βjku

©2 ⊤
k (Duj). (3.16)

We now define

Aj := A + 2[[Vj]], λj :=
N0

N0
j

λ
(L)
j , (3.17)

for j = 1, . . . ,m. Then the NAEP (3.14), and thus (3.5), becomes

Aj(Duj) + 2
m∑

k=1

βjku
©2
k ◦ (Duj) = λj(Duj), j = 1, . . . ,m (3.18)

and from the fact that βjk
N0

j

N0 = βkj
N0

k

N0 , j 6= k, the associated optimization

problem (3.11) becomes

Minimize
u=(u⊤

1 ,...,u⊤
m)⊤

E(u)

subject to u⊤
j D2uj = 1, j = 1, . . . ,m,

(3.19)
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where

E(u)≡
m∑

j=1

N0
j

N0

(
1

2
u⊤

j DADuj+V⊤
j (Duj)

©2 +
1

2
βjju

©2 ⊤
j (Duj)

©2

)

+
∑

1≤j<k≤m

(
βjk

N0
j

N0

)
u©2 ⊤

k (Duj)
©2 . (3.20)

Any KKT point (λ,u) = ((λ1, . . . , λm)⊤, (u⊤
1 , . . . ,u⊤

m)⊤) of (3.18) solves a

local minimum or a saddle point of (3.19). In the following sections we shall

develop numerical algorithms for finding the global minimum of (3.19), i.e.,

the ground state solution of (2.5).

4 Iterative Methods for NAEP

Many numerical algorithms, such as normalized gradient flow (NGF) method

(4), the minimizing energy functional method (9), the imaginary time method

(1; 15) and the time-splitting spectral (TSSP) method (6), have been proposed

for computing the ground state of (2.5) for a single-component BEC. Recently,

a generalization of the NGF (4) and the TSSP (5; 7; 8) has been developed

in (3) for computing the ground states of (2.5) for a multi-component BEC.

Furthermore, a continuation BSOR Lanczos-Galerkin method has been pro-

posed by (12) for computing positive bound states of a multi-component BEC.

In this section, we shall propose two iterative methods for finding the KKT

points (λ,u) of (3.18), and thus, the ground states or positive bound states

of (2.5). These methods are designed by solving the smallest eigenvalues and

the associated eigenvectors of m linear eigenvalue problems at each iterative

step.

Define the set

M = {v ∈ RN |v⊤D2v = 1, v ≥ 0},
◦

M= interior of M, (4.1)

where D is given by (3.4). From (3.4) and the property that Â in (3.3) is
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diagonal-dominant with non-positive off-diagonal entries, we see that ADe ¢

0, where e = (1, . . . , 1)⊤. This implies that for any given Vj ≥ 0 and (u1, . . . ,um)

∈ m×
j=1

M, the matrix

Āj ≡ Aj + 2
m∑

k=1

[[βjku
©2
k ]], (4.2)

is an irreducible M -matrix, where Aj = A+2[[Vj]] as in (3.17). Consequently,

Ā−1
j ≥ 0 is an irreducible and nonnegative matrix, for j = 1, . . . ,m. Consider

the equation (3.18) and by Perron-Frobenious Theorem (see e.g., (11, p. 27))

there is a unique positive eigenvector Dūj > 0 with ū⊤
j D2ūj = 1 corresponding

to the maximal eigenvalue µmax
j of Ā−1

j . That is, ūj > 0 is uniquely determined

by a given (u1, . . . ,um) ∈ m×
j=1

M and satisfies

Āj(Dūj) ≡
(
Aj + 2

m∑

k=1

[[βjku
©2
k ]]

)
(Dūj) = λmin

j (Dūj), (4.3)

where λmin
j = 1/µmax

j and ū⊤
j D2ūj = 1, for j = 1, . . . ,m.

We now define a function f :
m
×

j=1
M →

m
×

j=1
M by

f(u1, . . . ,um) ≡ (f1(u1, . . . ,um), . . . , fm(u1, . . . ,um))

= (ū1, . . . , ūm), (4.4)

where ūj > 0 is well-defined by (4.3), for j = 1. · · · ,m. The function f in (4.4)

can then be used to define a Jacobi-type iteration (JI).

Theorem 4.1 The function f given in (4.4) has a fixed point in
m
×

j=1

◦

M. In

other words, there is a point u∗ ≡ (u∗
1, . . . ,u

∗
m) ∈ m×

j=1

◦

M and λ = (λ∗
1, . . . , λ

∗
m)

which solve the NAEP (3.18), that is,

Aj(Du∗
j) + 2

m∑

k=1

βjku
∗©2
k ◦ (Du∗

j) = λ∗
j(Du∗

j), j = 1, . . . ,m. (4.5)

PROOF. From (4.3) and (4.1) it is easily seen, respectively, that f is contin-

uous on
m×

j=1
M and M is homeomorphic to an (N − 1)-dimensional standard
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simplex which is convex and compact. Applying Schauder fixed point theorem

to f there is a point u∗ ≡ (u∗
1, . . . ,u

∗
m) ∈

m
×

j=1
M such that (4.5) holds. The

fixed point u∗ ∈ m×
j=1

◦

M follows from the fact that the function f in (4.4) maps

m×
j=1

M into
m×

j=1

◦

M. ¤

By Theorem 4.1 the NAEP in (3.18) has a solution (λ∗,u∗) ≡ ((λ∗
1, . . . , λ

∗
m),

(u∗
1, . . . ,u

∗
m)). That is, the optimization problem (3.19) has a KKT point u∗

associated with the Lagrangian multipliers λ∗.

We now define the restricted Lagrangian function of (3.19) by

L(u) = E(u) − 1

2

m∑

j=1

λj(u
⊤
j D2uj − 1), (4.6)

where

E(u) ≡ 1

2

m∑

j=1

N0
j

N0
u⊤

j D(Aj + βjj[[u
©2
j ]])Duj +

1

2

∑

1≤j<k≤m

(
βjk

N0
j

N0

)
u©2 ⊤

k (Duj)
©2 .

(4.7)

The following theorem for sufficient and necessary conditions of a local min-

imum of (3.19) follows immediately from the well-known KKT second-order

sufficient condition Theorem of Sec. 4.4 in (10).

Theorem 4.2 ((10)) Let u∗ = (u∗
1, . . . ,u

∗
m) be a KKT point of the op-

timization problem (3.19) associated with the Lagrangian multipliers λ∗ =

(λ∗
1, . . . , λ

∗
m). Denote the Hessian matrix of L(u) in (4.6) at u∗ by ∇2L(u∗) =

[∇2L(u∗)ij]
m

i,j=1, where

∇2L(u∗)jj = ∇uj
(∇uj

L(u∗))

=
N0

j

N0
D


Aj + 6[[βjju

∗©2
j ]] + 2

∑

k 6=j

[[βjku
∗©2
k ]] − λ∗

jIN


 D (4.8)
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and

∇2L(u∗)ij = ∇2L(u∗)ji = ∇ui
(∇uj

L(u∗))

= 4
N0

j

N0
D[[βjiu

∗
i ◦ u∗

j ]]D, j 6= i, (4.9)

for i, j = 1, . . . ,m. Let d = (d⊤
1 , . . . ,d⊤

m)⊤ ∈ RNm. The positivity condition

d⊤(∇2L(u∗))d > 0 (4.10)

holds, for all d with (Du∗
j)

⊤dj = 0, j = 1, . . . ,m, if and only if u∗ is a strictly

local minimum of (3.19).

By Theorem 4.1 there is a locally unique fixed point (λ∗,u∗) = ((λ∗
1, . . . , λ

∗
m),

(u∗
1, . . . ,u

∗
m)) of (4.4) satisfying (4.5). We now prove the necessary condition

for the convergence of the JI method.

Theorem 4.3 Let (λ∗,u∗) = ((λ∗
1, . . . , λ

∗
m), (u∗

1, . . . ,u
∗
m)) be a fixed point of

(4.4) satisfying (4.5). If the JI defined by (4.4) converges to (λ∗,u∗) locally

and linearly starting with an initial in
m×

j=1

◦

M, then u∗ = (u∗
1, . . . ,u

∗
m) is a

strictly local minimum of (3.19).

PROOF. We first compute the Jacobian matrix
[

∂fj
∂ui

(u∗)
]m

i,j=1
of f = (f1, . . . , fm),

where {fj}m
j=1 are given in (4.3) and (4.4). Then we prove u∗ is a strictly local

minimum of (3.19).

By the definition of the JI it holds that

(
Aj + 2

m∑

k=1

[[βjku
©2
k ]]

)
(Dūj) = λ̄jDūj, (4.11)

ū⊤
j D2ūj = 1, ūj = fj(u1, . . . ,um), (4.12)

for j = 1, . . . ,m. We now compute
∂fj
∂ui

, for i, j = 1, . . . ,m, by implicit differ-

entiation. Differentiating (4.11) with respect to ui, and by the second equation

14



of (4.12) we get

4[[βjiui ◦ Dūj]] − (Dūj)∇ui
λ̄j +

(
Aj + 2[[

m∑

k=1

βjku
©2
k ]] − λ̄j

)
D

∂fj
∂ui

= 0.

(4.13)

Multiplying (4.13) by ū⊤
j D from the left and using (4.11) we get

∇ui
λ̄j = 4(Dūj)

©2 ⊤[[βjiui]]. (4.14)

That is,

∂λ̄j

∂uip

= 4βjid
2
puipū

2
jp, p = 1, . . . , N, (4.15)

in which D = diag(d1, . . . , dN), ui = (ui1, . . . , uiN)⊤ and ūj = (ūj1, . . . , ūjN)⊤.

This implies that

∂2λ̄j

∂uip∂uiq

=





8βjid
2
puipūjp

∂ūjp

∂uiq

, p 6= q

4βjid
2
pū

2
jp + 8βjid

2
puipūjp

∂ūjp

∂uip

, p = q,

(4.16)

for p, q = 1, . . . , N . Rewrite (4.16) into the matrix form

∇2
ui

λ̄j = 4βji

(
2[[Dui ◦ Dūj]]

∂fj
∂ui

+ [[Dūj]]
©2

)
. (4.17)

Since the Hessian matrix ∇2
ui

λ̄j and [[(Dūj)
©2 ]] are symmetric, it follows that

[[Dui ◦ Dūj]]
∂fj
∂ui

=

(
∂fj
∂ui

)⊤

[[Dui ◦ Dūj]]. (4.18)

Let z̄jp be the other eigenvectors of

(
Aj + 2

m∑

k=1

[[βjku
©2
k ]]

)
corresponding to

the eigenvalues ζ̄jp 6= λ̄j, for p = 2, . . . , N . Multiplying (4.13) from the left by

z̄⊤jp and using that z̄⊤jp(Dūj) = 0 we get

z̄⊤jpD
∂fj
∂ui

= − 4βji

ζ̄jp − λ̄j

z̄⊤jp[[ui ◦ Dūj]], p = 2, . . . , N. (4.19)
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Plugging (4.14) into (4.13) gives

4βji(I − (Dūj)(Dūj)
⊤)[[ui ◦ Dūj]] +

(
Aj + [[2

m∑

k=1

βjku
©2
k ]] − λ̄j

)
D

∂fj
∂ui

= 0.

(4.20)

Since [[ui ◦ Dūj]] > 0, and thus invertible, the equation (4.18) gives that

D
∂fj
∂ui

[[ui ◦ Dūj]]
−1 is symmetric. From (4.20) follows that (Aj + [[2

m∑

k=1

βjku
©2
k ]] − λ̄j)

and D
∂fj
∂ui

[[ui ◦ Dūj]]
−1 commute mutually, and therefore, they have the same

eigenvectors. We now show that

D
∂fj
∂ui

[[ui ◦ Dūj]]
−1(Dūj) = 0. (4.21)

To this end, we fix i and define a curve {γ(τ) : τ ≥ 0} in RN by

γ(τ) =
(√

τ + u2
i1, . . . ,

√
τ + u2

iN

)⊤

, τ ≥ 0. (4.22)

It is easily seen that the equation (4.11) holds by a shift βjiτ , that is,

(
Aj + [[2

m∑

k=1

βjku
©2
k ]] + 2βjiτIN

)
Dūj = (λ̄j + 2βjiτ)Dūj

=


Aj + 2[[

∑

k 6=i

βjiu
©2
k ]] + 2[[βjkγ(τ)©2 ]]


 Dūj. (4.23)

This implies that

fj(u1, . . . ,

i−th︷ ︸︸ ︷
γ(τ), . . . ,um) = ūj. (4.24)

Since the eigenvector Dūj in (4.23) is independent of the shift 2βjiτ , by dif-

ferentiating (4.24) with respect to τ and setting τ = 0 we get

1

2

∂fj
∂ui

diag


 1

√
τ + u2

i1

, . . . ,
1

√
τ + u2

iN




⊤
∣∣∣∣∣∣∣
τ=0

=
1

2

∂fj
∂ui

[[ui]]
−1 = 0. (4.25)

Therefore, the equation (4.21) holds.

Combining (4.19) with (4.21) and evaluating
∂fj
∂ui

at the fixed point u∗, we
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have that

∂fj
∂ui

(u∗) = −4βjiD
−1Z̃∗

jΩ̃
∗+

j Z̃∗⊤
j D−1[[Du∗

i ◦ Du∗
j ]], (4.26)

where

Z̃∗
j =

[
Du∗

j , z
∗
j2, . . . , z

∗
jN

]
≡

[
Du∗

j ,Z
∗
j

]
, Z̃∗⊤

j Z̃∗
j = IN (4.27)

and

Ω̃
∗+

j = diag

{
0,

1

ζ∗
j2 − λ∗

j

, . . . ,
1

ζ∗
jN − λ∗

j

}
(4.28)

≡ diag
{
0,Ω∗

j
−1

}
.

Let

Z = diag{Z∗
1, . . . ,Z

∗
m} ∈ RmN×m(N−1), (4.29)

D = diag{D, . . . ,D} and Jf =

[
∂fj
∂ui

(u∗)

]m

i,j=1

, (4.30)

where Jf is the Jacobian matrix of f . By assumption the JI of (4.4) con-

verges locally and linearly to (λ∗,u∗). This implies that |λ(Jf )| < 1, for all

λ(Jf ) ∈ σ(Jf ). Using (4.26) the zero eigenvalues of Jf can be deflated by the

transformation

J∗
f ≡ Z⊤DJfD

−1Z = −4[J∗
f ,ji]

m
j,i=1, (4.31)

where

J∗
f ,ji = βjiΩ

∗−1
j Z∗⊤

j [[u∗
j ◦ u∗

i ]]Z
∗
i , i, j = 1, . . . ,m. (4.32)

This implies that |λ(J∗
f )| < 1, for all λ(J∗

f ) ∈ σ(J∗
f ).

Transforming the matrix J∗
f in (4.31) into a matrix J∗

s by the similarity trans-
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formation Ω∗ 1
2 = diag{Ω∗ 1

2
1 , . . . ,Ω

∗ 1
2

m } we get

J∗
s = Ω∗ 1

2J∗
fΩ

∗− 1
2

= −4
[
βjiΩ

∗−
1
2

j Z∗⊤
j [[u∗

j ◦ u∗
i ]]Z

∗
i Ω

∗−
1
2

i

]m

j,i=1

= −4

[
N0

i

N0
β̂jiΩ

∗−
1
2

j Z∗⊤
j [[u∗

j ◦ u∗
i ]]Z

∗
i Ω

∗−
1
2

i

]m

j,i=1

≡ Ĵ∗
sN , (4.33)

where N = diag{N0
1

N0 IN , . . . , N0
m

N0 IN} ≻ 0 and

Ĵ∗
s = −4

[
β̂jiΩ

∗−
1
2

j Z∗⊤
j [[u∗

j ◦ u∗
i ]]Z

∗
i Ω

∗−
1
2

i

]m

j,i=1

is symmetric. From (4.33) follows that the eigenvalues λ(J∗
s) ∈ σ(J∗

s) are all

real with |λ(J∗
s)| < 1 and it also holds

(Im(N−1) − J∗
s) = (I − Ĵ∗

sN )
s.∼ (I − N

1
2 Ĵ∗

sN
1
2 )

c.∼ Ω∗
1
2 (N − N Ĵ∗

sN )Ω∗
1
2 ≻ 0. (4.34)

Here
s.∼ and

c.∼ denote the similarity and congruence transformations, respec-

tively.

On the other hand, from (4.8) and (4.9) we have that

Z∗⊤
j D−1∇2L(u∗)jjD

−1Z∗
j

=
N0

j

N0
Z∗⊤

j

[
(Aj + 2

m∑

k=1

βjku
∗©2
j − λ∗

jIN) + 4[[βjju
∗©2
j ]]

]
Z∗

j

=
N0

j

N0

(
diag{ζ∗

j2 − λ∗
j , . . . , ζ

∗
jN − λ∗

j} + Z∗⊤
j [[4βjju

∗©2
j ]]Z∗

j

)

=

(
N0

j

N0

)
Ω∗

j

(
N0

j

N0

)
+

N0
j

N0
Z∗⊤

j [[4β̂jju
∗©2
j ]]Z∗

j

N0
j

N0
, j = 1, . . . ,m, (4.35)
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and

Z∗⊤
j D−1∇2L(u∗)jiZ

∗
i =

N0
j

N0
Z∗⊤

j [[4βjiu
∗
j ◦ u∗

i ]]Z
∗
i

=
N0

j

N0
Z∗⊤

j [[4β̂jiu
∗
j ◦ u∗

j ]]Z
∗
i

N0
i

N0

=
N0

i

N0
Z∗⊤

j [[4β̂iju
∗
i ◦ u∗

j ]]Z
∗
j

N0
j

N0

= Z∗⊤
i D⊤∇2L(u∗)ijZ

∗
j , i 6= j, (4.36)

for i, j = 1, . . . ,m. Therefore, from (4.34)-(4.36) we get

Ω∗ 1
2 (N − N Ĵ∗

sN )Ω∗ 1
2 = N

1
2Ω∗N

1
2 − NΩ∗ 1

2 Ĵ∗
sΩ

∗ 1
2 N

= N
1
2Ω∗N

1
2 + N

[
Z∗⊤

j [[4β̂jiu
∗
j ◦ u∗

i ]]Z
∗
i

]m

j,i=1
N

= Z⊤D−1∇2L(u∗)D−1Z ≻ 0, (4.37)

where D and Z are given in (4.29) and (4.30), respectively. The positivity

condition of (4.10) follows from (4.37) immediately. Therefore, by Theorem 4.2

the fixed point u∗ = (u∗
1, . . . ,u

∗
m) is a strictly local minimum of (3.19). ¤

We now define a Gauss-Seidel-type function g :
m×

j=1
M → m×

j=1
M by

g(u1, . . . ,um) = (ū1, . . . , ūm), (4.38)

where

ū1 = g1(u1, . . . ,um) = f1(u1,u2, . . . ,um),

ū2 = g2(u1, . . . ,um) = f2(ū1,u2,u3, . . . ,um),

...
...

ūm = gm(u1, . . . ,um) = fm(ū1, ū2, . . . , ūm−1,um),

(4.39)

in which {fj}m
j=1 are given in (4.4). The function g in (4.38) can then be used

to define a Gauss-Seidel-type iteration (GSI).
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Theorem 4.4 Let (λ∗,u∗) = ((λ∗
1, . . . ,λ

∗
m), (u∗

1, . . . ,u
∗
m)) be a fixed point

of (4.4) satisfying (4.5). Suppose the matrix Z⊤D−1∇2L(u∗)D−1Z given in

(4.37) is nonsingular. If the GSI defined by (4.38) converges to (λ∗,u∗) locally

and linearly starting with an initial in
m×

j=1

◦

M, then u∗ = (u∗
1, . . . ,u

∗
m) is a

strictly local minimum of (3.19).

PROOF. From the definition of g in (4.38) the Jacobian matrix Jg =

[
∂gj

∂ui

(u∗)

]m

i,j=1

of g at u∗ can be recursively evaluated by

∂g1

∂u1

(u∗) =
∂f1
∂u1

(u∗), (4.40)

∂gj

∂ui

(u∗) =





j−1∑

k=1

∂fj
∂uk

(u∗)
∂gk

∂ui

(u∗) +
∂fj
∂ui

(u∗), j < i,

i∑

k=1

∂fj
∂uk

(u∗)
∂gk

∂ui

(u∗), i ≤ j,

(4.41)

for i, j = 1, . . . ,m.

By assumption the GSI in (4.38) converges locally and linearly. This implies

that |λ(Jg)| < 1, for all λ(Jg) ∈ σ(Jg). Using (4.26), (4.40) and (4.41) we

decompose Jg into

Jg =




I · · · · · · 0

− ∂f2
∂u1

(u∗) I
...

...
. . . . . .

...

−∂fm
∂u1

(u∗) · · · − ∂fm
∂um−1

(u∗) I




−1 


∂f1
∂u1

(u∗) ∂f1
∂u2

(u∗) · · · ∂f1
∂um

(u∗)

... ∂f2
∂u2

(u∗)
. . .

...

...
. . . ∂fm−1

∂um
(u∗)

0 · · · · · · ∂fm
∂um

(u∗)




.

(4.42)

By a similar transformation as in (4.31) and (4.33) we deflate the zero eigen-
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values of Jg, and from (4.42) we get

J∗
g = Ω∗ 1

2 Z⊤DJgD
−1ZΩ∗− 1

2

= Ω∗ 1
2 Z⊤D




I · · · 0

...
. . .

...

− ∂fj
∂ui

(u∗) (j > i) I




−1 


∂f1
∂u1

(u∗) · · · ∂fj
∂ui

(u∗)

...
. . . (j < i)

0 · · · ∂fm
∂um

(u∗)




D−1ZΩ∗− 1
2

= −




I · · · · · · 0

P21 I
...

...
. . .

...

Pm1 · · · Pm,m−1 I




−1 


P⊤
11 P⊤

21 · · · P⊤
m1

... P⊤
ii

. . .
...

...
. . . P⊤

m,m−1

0 · · · · · · P⊤
mm




, (4.43)

where

Pji = 4βjiΩ
∗− 1

2
j Z∗⊤

j [[u∗
j ◦ u∗

i ]]Z
∗
i Ω

∗− 1
2

j , 1 ≤ i ≤ j ≤ m. (4.44)

Let

P⊤ :=




0 P⊤
21 · · · P⊤

m1

... 0
. . .

...

...
. . . P⊤

m,m−1

0 · · · · · · 0




∈ R(N−1)m×(N−1)m, (4.45)

P
⊤

:= diag{P⊤
11, . . . ,P

⊤
mm} + P⊤ ≡ Π + P⊤ (4.46)

and

G := −(I(N−1)m + P)−1P
⊤
. (4.47)
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Then from (4.43) and the assumption of convergence of the GSI follows that

|ρ(G)| < 1.

We now prove that the matrix Q := I+P+P
⊤

is symmetric positive definite.

By (4.47) we have that

Q − G⊤QG = Q − P(I + P)−⊤Q(I + P)−1P
⊤

= Q − (I − Q(I + P)−⊤)Q(I − (I + P)−1Q)

= Q(I + P)−⊤Q + Q(I + P)−1Q − Q(I + P)−⊤Q(I + P)−1Q

= Q[(I + P)−⊤ + (I + P)−1 − (I + P)−⊤(I + P + P⊤)(I + P)−1]Q

= Q(I + P)−⊤[(I + P) + (I + P)⊤ − (I + P + P⊤)](I + P)−1Q

= Q(I + P)−⊤(I + P)−1Q := H ≻ 0. (4.48)

The positive definiteness of H in the last equation of (4.48) follows from the

non-singularity assumption of Q. Because |λ(G)| < 1, for all λ(G) ∈ σ(G),

for any η0 ∈ R(N−1)m, the sequence defined by ηn = Gnη0 converges to zero.

Therefore, the sequence {η⊤
n Qηn}∞n=1 also converges to zero. On the other

hand, by (4.48) we have that

η⊤
n+1Qηn+1 = η⊤

n G⊤QGηn

= η⊤
n Qηn − η⊤

n Hηn < η⊤
n Qηn, (4.49)

because H ≻ 0 is symmetric positive definitive. If Q is not positive definitive,

then there is a η0 ∈ R(N−1)m\{0} with η⊤
0 Qη0 ≤ 0. This is a contradiction to

that {η⊤
n Qηn} → 0 as n → ∞ and (4.49). Thus, the matrix Q = I + P + P

⊤

is positive definitive. Furthermore, from (4.44) and (4.45) we have that

Ω∗ 1
2QΩ∗ 1

2 = Z⊤D−1∇2L(u∗)D−1Z ≻ 0. (4.50)

Therefore, by Theorem 4.2 the fixed point u∗ = (u∗
1, . . . ,u

∗
m) is a strictly local

minimum of (3.19). ¤

In the following theorem we shall prove the necessary part of the statement
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of Theorem 4.4.

Theorem 4.5 Let (λ∗,u∗) = ((λ∗
1, . . . ,λ

∗
m), (u∗

1, . . . ,u
∗
m)) be a fixed point of

(4.4) satisfying (4.5). Suppose that the intra-component scattering length βjj

(j = 1, . . . ,m) in (3.18) are sufficiently small. If u∗ ≡ (u∗
1, . . . ,u

∗
m) is a strictly

local minimum of (3.19), then the GSI defined by (4.38) converges to (λ∗,u∗)

locally and linearly.

PROOF. We claim that each eigenvalue of Jg =

[
∂gj

∂ui

(u∗)

]m

i,j=1

in (4.40) has

magnitude less than one, i.e., ρ(Jg) < 1. From (4.43)-(4.47) it suffices to show

that

ρ(−(I + P)−1P
⊤
) = ρ(G) < 1. (4.51)

Let λ ∈ σ(G). There is an eigenvector x ∈ C(N−1)m with ‖x‖2 = 1 satisfying

λ(I + P)x = −P
⊤
x. (4.52)

It holds obviously

2λ(I + P) = λ(I + Q + P − P
⊤
) (4.53)

where Q ≡ I + P + P
⊤

and

−2P
⊤

= I − Q + (P − P
⊤
). (4.54)

Multiplying (4.52) by xH, from (4.53) and (4.54) we get

λ[1 + xHQx + xH(P − P
⊤
)x] = 1 − xHQx + xH(P − P

⊤
)x. (4.55)

Since Π in (4.46) is symmetric positive definite, we can compute −p1 + p2ι :=

xH(P − P
⊤
)x = xH(P − Π − PH)x, where p1, p2 ∈ R with p1 > 0. By setting

q := xHQx, we then have that

λ(1 + q − p1 + p2ι) = (1 − q − p1 + p2ι). (4.56)
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Since βjj is sufficiently small, j = 1, . . . ,m, from (4.46) and (4.44) follows

that 1− p1 + p2ι is in the right half plane, the distance from q to 1− p1 + p2ι

is smaller than that from −q. So we have |λ| =

∣∣∣∣∣
1 − p1 + p2ι − q

1 − p1 + p2ι + q

∣∣∣∣∣ < 1. The

assertion of (4.51) holds. ¤

Remark. The assumption of small intra-component scattering lengths βjj

(j = 1, . . . ,m) in Theorem 4.5 is necessary for the proof of convergence of GSI

method to a strictly local minimum of the energy functional (3.19). In practice,

if we choose the inter-component scattering lengths β := βjk (j 6= k) with β

being a parameter varying from zero to infinity and the equal intra-component

scattering lengths βjj, then the solution curve {u∗
j(β)}m

j=1 of (4.5) will undergo

m multi-bifurcations at some finite values β = β∗
i , i = 1, . . . , N/2. (See (12; 13)

for details). For the case β < β∗
1 , the solution curve has only identical ground

states u∗
1(β) = · · · = u∗

m(β) and for the case β∗
1 < β, the solution curve

will bifurcate into m different ground states {u∗
j(β)}m

j=1. In our numerical

experience, for β 6≈ β∗
1 , and for some suitable fixed βjj (j = 1, . . . ,m), the GSI

method always converges very well to the ground state solutions of (3.19). The

GSI method converges very slow or does not converge only when β is close or

equal to the bifurcation point. Conversely, Theorem 4.4 shows that if the GSI

method converges to some point, then it must be a strictly local minimum of

the energy functional (3.19).

5 Numerical Algorithms and Results

In Section 4 we have developed the JI and the GSI which can be utilized to

compute energy states of a multi-component BEC. According to our numerical

experience, the GSI converges much faster than the JI. In this section, we shall

propose the GSI combining with some extra constraints for the study of the

bifurcation of eigenvalue curves of (3.18) and energy functional curves of (3.20)
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vs. the parameters βjk, respectively. The domain D is chosen to be a unit disk.

We first describe the GSI for a m-component BEC in details.

Gauss-Seidel-type Iteration (GSI(m)):

(i) Given Aj = A + 2[[Vj]]; βjk ≥ 0, j, k = 1, . . . ,m; u
(0)
j > 0 ran-

domly chosen with ‖Du
(0)
j ‖2 = 1, j = 1, . . . ,m; Let n = 0;

(ii) Repeat n: until convergence,

(iii) For j = 1, . . . ,m,

Use e.g., the Shift-Invert Arnoldi algorithm (28; 30) or the Jacobi-

Davidson algorithm (29) to solve the minimal positive eigenvalue

λ
(n+1)
j of A

(n+1)
j and the associated eigenvector Du

(n+1)
j with

‖Du
(n+1)
j ‖2 = 1, where

A
(n+1)
j := Aj +

∑

k<j

[[βjku
(n+1)
j ◦]] +

∑

k≥j

[[βjku
(n)
j ◦]], (5.1)

Endfor j;

Comment: As in (4.39) we denote

u
(n+1)
j =fj(u

(n+1)
1 , . . . ,u

(n+1)
j−1 ,u

(n)
j , . . . ,u(n)

m );

(iv) Compute the residual,

res
(n+1)
j = A

(n+1)
j Du

(n+1)
j − λ

(n+1)
j Du

(n+1)
j , j = 1, . . . ,m, (5.2)

(v) If ‖res(n+1)
j ‖2 < Tol, j = 1, . . . ,m, then stop, else n ← n + 1, go

to Repeat.

Theorem 4.4 and 4.5 ensure that the GSI method can converge to a local min-

imum of (3.19) and thus, of (2.10) for some small suitable βjj ≥ 0. Numerical

experience shows that the GSI converges to the global minimum of (3.19), i.e.,

the ground state of (2.1), efficiently.

For a given uj ∈ M we define an average vector ave(uj) of uj along each

concentric circle in D by
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For l1 = 1, . . . , ν,
ave(uj)j,l1+νl2 :=

1

ω

ω−1∑

l2=0

uj,l1+νl2 , l2 = 0, 1, . . . , ω − 1,

endfor l1,

and define the normalized vector of v > 0 ∈ RN with respect to D2 by

nl(v) := v/‖Dv‖2.

We now propose some variant GSI (m) methods imposed with the average

vector ave(u
(n)
j ) at each iterative step. These variant GSI(m) methods can be

used to compute the positive bound states of (3.19). Note that, in practice,

ave(u
(n)
j ) can be simulated by some external driven fields.

Variant GSI(2)≡ V1-GSI(2):

(i) Given Aj = A + 2[[Vj]], βjk ≥ 0, j, k = 1, 2; u
(0)
j > 0 randomly

chosen with ‖Du
(0)
j ‖2 = 1, j = 1, 2; Let n = 0;

(ii) Repeat n: until convergence,

(iii) Compute u
(n+1)
1 = f1(u

(n)
1 ,u

(n)
2 ), u

(n+1)
1 ← nl(ave(u

(n+1)
1 )),

Compute u
(n+1)
2 = f2(u

(n+1)
1 ,u

(n)
2 ),

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop; else n ← n + 1, go to Repeat (ii).
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Variant GSI(3):

(i) Given Aj := A + 2[[Vj]], βjk ≥ 0, j, k = 1, 2, 3; u
(0)
j > 0 randomly

chosen with ‖Du
(0)
j ‖2 = 1, j = 1, 2, 3; Let n = 0;

(ii) Repeat n: until convergence,

V1-GSI(3):

(iii) Compute u
(n+1)
1 = f1(u

(n+1)
1 ,u

(n)
2 ,u

(n)
3 ), u

(n+1)
1 ← nl(ave(u

(n+1)
1 )),

Compute u
(n+1)
2 = f2(u

(n+1)
1 ,u

(n)
2 ,u

(n)
3 ), u

(n+1)
3 =

f3(u
(n+1)
1 ,u

(n+1)
2 ,u

(n)
3 ),

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop, else n ← n + 1, go to Repeat (ii);

V2-GSI(3):

(iii) Compute u
(n+1)
1 = f1(u

(n)
1 ,u

(n)
2 ,u

(n)
3 ), u

(n+1)
1 ← nl(ave(u

(n+1)
1 )),

Compute u
(n+1)
2 = f2(u

(n+1)
1 ,u

(n)
2 ,u

(n)
3 ), u

(n+1)
2 ← nl(ave(u

(n+1)
2 )),

Compute u
(n+1)
3 = f3(u

(n+1)
1 ,u

(n+1)
2 ,u

(n)
3 ),

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop; else n ← n + 1, go to Repeat (ii).

For the study of numerical results of the bifurcation diagram of energy states

(ground states/positive bound states) of (3.19) we consider the cases of two or

three-component BECs (m =2 or 3) with small intra-component interaction

and the equal inter-component repulsive interaction. In Tables 5.1–5.3 and

Figures 1–4 of following computation, we choose

Vj(x) = 10−3‖x‖2
2, βjj ≈ 2 × 10−2,

β := βjk ≥ 0 (j 6= k) as a parameter,

for j, k = 1, . . . ,m. All programs for our numerical results are coded by

FORTRAN 90 (16 digits) and implemented on a Pentium 4 processor with

Tol = 10−9.

In Figure 1(a) and Figure 2(a) we plot the bifurcation diagram of eigenvalue

curves vs. β, for m-component BECs with m = 2 and 3, respectively. The
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eigenvalue curves λ∗
j(β), j = 1, . . . ,m, in Figure 1(a) and 2(a) are, respectively,

computed by the variant GSI(m)s described in Table 5.1. The nodal domain of

ground and bound states are attached near the eigenvalue curves. Furthermore,

in Figure 1(b) and 2(b) we plot the bifurcation diagram of energy functional

curves vs. β, for two and three-component BECs, respectively. The energy

curves E(u∗(β)) in Figure 1(b) and 2(b) are computed by

E(u∗(β)) =
1

2m

m∑

j=1

u∗
j
⊤D(Aj + βjj[[u

∗©2
j ]])Du∗

j +
β

m

∑

1≤j<k≤m

u∗©2 ⊤
k (Du∗

j)
©2

(5.3)

as in (4.7) with
N0

j

N0
=

1

m
for j = 1, . . . ,m. The level sets of ground and bound

states are attached near the energy functional curves.

Table 5.1

(g): ground states, (b): bound states.

m = 2 m = 3

green curves (g) GSI(2) GSI(3)

red curves (b) V1-GSI(2) V1-GSI(3)

blue curves (b) — V2-GSI(3)

For a vector uj ∈ M, let Rθ(uj) denote the rotation of uj with an angle θ,

counterclockwise. Tables 5.2 and 5.3 show the pattern of convergent energy

states and the corresponding eigenvalues computed by Table 5.1, for m = 2

and m = 3, respectively. Next, in Figure 3 and 4 we plot level curves and

energy states of some typical cases shown in Tables 5.2 and 5.3 to illustrate

the distribution of the phase separation for m = 2 and 3, respectively.

In Table 5.2 (m = 2) and Table 5.3 (m = 3), respectively, we see that m iden-

tical ground state solutions bifurcate into θ-symmetry ground state solutions

at β = β1. That is, a θ-symmetry phase separation occurs at β = β1. Note that

here θ-symmetry solutions mean u∗
2 = Rπ(u∗

1), for m = 2, and u∗
2 = R2π/3(u

∗
1)
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Table 5.2

Two-component BEC.

θ = π, m = 2 green red

(0, β1) λ∗
1 = λ∗

2, u
∗
1 = u

∗
2 —

(β1, β2) λ∗
1 = λ∗

2, λ∗
1 = λ∗

2, u
∗
1 = u

∗
2

(β2, β∞) u
∗
2 = Rθ(u

∗
1) λ∗

1 6= λ∗
2,

u
∗
j = ave(u∗

j ), j = 1, 2

Table 5.3

Three-component BEC.

θ = 2π
3 , m = 3 green red blue

(0, β1)
λ∗

1 = λ∗
2 = λ∗

3,

u
∗
1 = u

∗
2 = u

∗
3

— —

(β1, β2) —

(β2, β3)

λ∗
1 = λ∗

2 = λ∗
3,

u
∗
2 = Rθ(u

∗
1),

u
∗
3 = Rθ(u

∗
2)

λ∗
1 = λ∗

2 6= λ∗
3,

u
∗
1 = u

∗
2,

{u∗
j = ave(u∗

j )}3
j=1

(β3, β∞)

λ∗
1 6= λ∗

2 = λ∗
3,

u
∗
1 = Rπ(u∗

1),

u
∗
3 = Rπ(u∗

2)

λ∗
1 6= λ∗

2 6= λ∗
3,

{u∗
j = ave(u∗

j )}3
j=1

and u∗
3 = R2π/3(u

∗
2), for m = 3, respectively. We also observe that θ-symmetry

solutions separate disjointedly when β increases to β∞.

Now we are interested in the study of the bifurcation of the θ-symmetry so-

lutions and the radial-symmetry solutions (16). We fix one (m = 2) and two

(m = 3) repulsive interaction in GSI(m) and V1-GSI(m), respectively, and
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decrease the other repulsive scattering length. Figure 3(b) and 4(b) show that

there are radial-symmetry bound state solutions at β∗ = 1000, for m = 2 and

at β∗ = 1000, for m = 3.

We now fix β12 := β∗ = 1000, and vary β := β21 decreasingly from β∗ to

zero, for m = 2, as well as fix β12 = β21 = β13 = β31 := β∗ = 1000, and vary

β := β23 = β32 decreasingly from β∗ to zero, for m = 3. In Figure 5 and 6 we

plot the eigenvalue curves vs. β computed by GSI(m) (green curve) and by

V1-GSI(m) (red curve). We conclude that for m = 2, 0 < β < β∗∗ = 0.6 and

m = 3, 0 < β < β∗∗ = 7, the GSI(m) converge to a radial-symmetry ground

state solution as in Figure 3(b) and 4(b) without any extra driven field.

6 Conclusions

In this paper, we mainly propose the JI and the GSI methods for the compu-

tation of the bifurcation diagram of energy states and the associated energy

functionals of the time-independent VGPE. The bifurcation diagram can be

used to study the θ-symmetry phase separation of energy states. The iterative

methods are proposed from the viewpoint of an eigenvalue problem approach,

different from the NGF and TSSP methods, for the computation of energy

states of a multi-component BEC. Necessary and sufficient conditions of con-

vergence of the GSI method are proven that the energy functional has a strictly

local minimum at the fixed point. Numerical experiment shows that the GSI

method converges much faster than the JI method, globally and linearly be-

tween 10 to 20 steps.

In the future work, we are interested in proving the existence of the θ-symmetry

phase separation and the radial-symmetry solutions for the ground states of a

multi-component BEC. Furthermore, a global convergence of GSI is still under

investigation.
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Appendix

Let δr =
2

2ν + 1
and δθ =

2π

ω
, for positive integer ν and ω. The grid locations

are half-integer in radial direction and integer in azimuthal direction, i.e.,

ri =
(
i − 1

2

)
δr, θj = (j − 1)δθ,

for i = 1, . . . , ν and j = 1, . . . , ω.

Let N = νω and define l ≡ l(i, j) = i + ν(j − 1) : 1 ≤ l ≤ N . Then the

standard central finite difference method discretizes (3.1) into Â, where

Â =
1

(δr)2




2I + Â1 B̂1 B̂1

B̂1 2I + Â1
. . .

. . . . . . . . .

. . . . . . B̂1

B̂1 B̂1 2I + Â1




(νω)×(νω)

in which

Â1 =




α1 β1 0

γ2
. . . . . .

. . . . . . βν−1

0 γν αν




, B̂1 =




b1 0

. . .

. . .

0 bν




with

αi =
2

(i − 1
2
)2δθ2

, bi =
−1

(i − 1
2
)2δθ2

, i = 1, . . . , ν,

βi = −1 − 1

2(i − 1
2
)
, γi+1 = −1 +

1

2(i + 1
2
)
, i = 1, . . . , ν − 1.
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The symmetric balancing matrix D is given by D = diag(D1, . . . ,D1), where

D = diag(d1, d2, . . . , dν)

with

d1 = δr

√
δθ

2
and di =

√√√√
i−1∏

k=1

(
βk

γk+1

)
d1, i = 2, . . . , ν.

It holds that

DÂD−1 = A,

where A is a symmetric positive definite matrix.

Note that it is easy to verify that

d2
i =

(
i − 1

2

)
δr2δθ, i = 1, . . . , ν,

which is equal to the area of the (i + ν(j − 1))-th sector corresponding to the

integer partition for D by ri = iδr and θj = (j − 1)δθ, for i = 1, . . . , ν and

j = 1, . . . , ω.
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Fig. 1. (a): Eigenvalue curves, (b): energy curves, vs β.
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Fig. 2. (a): Eigenvalue curves, (b): energy curves, vs β.

(a) green: β∗ = 1000, λ∗
1 = λ∗

2 = 7.07, E(u∗) = 7.02

(b) red: β∗ = 1000, λ∗
1 = 10.34, λ∗

2 = 14.54, E(u∗) = 12.43

Fig. 3. Two-component BEC with β∗ = 1000.
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(a) green: β∗ = 1000, λ∗
1 = λ∗

2 = λ∗
3 = 9.57, E(u∗) = 9.52

(b) red: β∗ = 1000, λ∗
1 = λ∗

3 = 18.36, λ∗
2 = 20.85, E(u∗) = 19.09

(c) blue: β∗ = 1000, λ∗
1 = 20.84, λ∗

2 = 24.84, λ∗
3 = 32.14, E(u∗) = 25.85

Fig. 4. Three-Component BEC with β∗ = 1000.
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Fig. 5. Bifurcation of θ- and radial-symmetry (m = 2).
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Fig. 6. Bifurcation of θ- and radial-symmetry (m = 3).
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