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Abstract

In this paper, we propose a robust hyper-chaotic system that is suitable for

digital secure-communication. The system consists of many coupled robust logistic

maps that form a hyper-chaotic system. It has a higher degree of complexity than

traditional discrete-time secure-communication systems that use only a single map.

Moreover, the system has a very large parameter space which grows along with

system precision. Hence, attacking the system by the method of map re-construction

in current computation technology is not feasible. Statistical analysis shows that

the system achieves very high security level. Finally, two hardware architectures

(multiple-cycle and pipelined) are proposed for area and performance optimization,

respectively.
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1 Introduction

The chaotic orbit generated by a nonlinear system is irregular, aperiodic, unpredictable

and has a sensitive dependence on initial conditions. Together with the development of

chaotic synchronization between two nonlinear systems [Cuomo et al., 1993; Juang et al.,

2000; Lin et al., 1999], chaotic system has been studied for use in secure-communication

[Alvarez & Li, 2006; Fei et al., 2005; Götz et al., 1997].

In chaotic secure-communication, chaotic signals are used as masking streams to carry

information which can be recovered by the chaotic synchronization behavior between the

transmitter and the receiver. Pecora and Carrol showed that a chaotic system (drive

system) can be synchronized with a separate chaotic system (response system), provided

that the conditional Lyapunov exponents of the difference equations between the drive

and response systems are all negative [Pecora & Carroll, 1990].

Previous work [Tao, 2004] in chaotic secure-communication was developed for analog

and digital signals. In this paper, we will focus on chaotic secure-communication for dig-

ital signals. The secure communication of digital signals was widely studied [Chambers,

1999; Frey, 1993; Hu et al., 1996; Li et al., 2006; Li et al., 2007; Lu et al., 2004; Matthews,

1989; Wheeler, 1989]. Among others, Matthews proposed the first secure-communication

system based on a logistic map implemented on the computer [Matthews, 1989]. At

the same time, Wheeler commented that Matthews’ system can indeed generate unpre-

dictable sequences. However, with short precision, the system will have a small number of

total states [Wheeler, 1989]. Hence, it can be easily attacked by enumerating the states.

Later, Fery introduced a system using a left-circulate function and a feed-back loop with

parameters to enhance the strength of the security [Frey, 1993]. Unfortunately, Cham-

bers showed that the system can be readily attacked under the assumption of “chosen

plaintext” [Chambers, 1999].

On the other hand, many researches [Álvarez et al., 2004; Sobhy & Shehata, 2001]

focused on attacking chaotic secure-communication. Sobhy attacked the chaotic secure

system by plotting the map with output sequences [Sobhy & Shehata, 2001]. Because of

the unique map pattern of each single-chaotic system, it is easy to distinguish the chaotic
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systems and to re-construct the equations.

To remedy this weakness, a lot of work focusing on enhancing the complexity of output

sequences were proposed. They can be classified into three major types. First, in order

to have unpredictable initials, another chaotic map is used to generate the initials for

one chaotic map [Heidari-Bateni & McGillem, 1994]. Second, multiple chaotic maps are

used. At any time, the application of a specific map is selected by predefined order [Zhou

& Ling, 1997] or a user defined mechanism [Klomkarn et al., 2004]. The third type is

the combination of two types mentioned above [Fei et al., 2005]. It should be noted that

these three methods essentially still only use a one-dimensional system with one positive

Lyapunov exponent. This feature limits the complexity of the chaotic dynamics.

In order to increase the complexity of chaotic dynamics, methods [Hu et al., 1996; Lu

et al., 2004; Li et al., 2006; Li et al., 2007] with coupled map lattice for multi-dimensional

system were proposed. Hu et al. presented a synchronous chaotic spread-spectrum CDMA

system [Hu et al., 1996]. Lu et al. developed a spatiotemporally chaotic cryptosystem

with one-way-coupled [Lu et al., 2004]. Li et al. generated multiple pseudo-random-bit

sequences (or multiple keystreams) by spatiotemporal chaotic systems, logistic maps and

skew tent maps. Their results showed that the generator based on the coupled map

lattices can be a good candidate for constructing a secure (stream) cipher [Li et al., 2006;

Li et al., 2007].

Yet, one more issue was raised by Álvarez who pointed out that the usable region of

parameter values is a weakness of the discrete-time chaos synchronization system [Álvarez

et al., 2004]. The chaotic behavior of the system is dependent on the parameters. Un-

fortunately, all parameters are not equally strong. Some of them will result in window.

Note that here window is defined as the chaotic orbit of a nonlinear system visualized as

periodic on the computer (see e.g. [Strogatz, 1994, p. 356]). The remaining parameter

space may be easily attacked by a brute-force enumeration method because the parameter

space is too small.

From our review of previous work, we deduce that to effectively use chaotic maps in

digital encryption, a system must meet the following three criteria. First, the length of
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digital precision must be long enough to prevent the system from being attacked by state

enumeration. Second, the parameter space must be large enough for practical use. Finally,

the re-construction of the chaotic system must be infeasible using current computational

technology.

To solve these problems, we propose a Robust Hyper-Chaotic Encryption-Decryption

System (RHCEDS) for secure communication. An RHCEDS consists of two Robust

Hyper-Chaotic Systems (RHCS) for the transmitter and the receiver. An RHCS is con-

structed by coupling robust logistic chaotic maps [Chang et al., 2008], one carrier map

and several hidden maps, so that it has more than one positive Lyapunov exponent.

Thus, the RHCS has a higher degree of complexity than traditional discrete-time secure-

communication systems because the former uses multiple coupled chaotic maps rather

than a single one [Sobhy & Shehata, 2001]. The new proposed system RHCEDS has a large

parameter space which grows along with system precision. Hence, the re-construction of

our system is not feasible by current computational technology. The statistical analysis

of the RHCS shows that the system achieves very high security level.

The rest of this paper is organized as follows. In Section 2, a general secure-communication

scheme is shown. In Section 3, our target system (RHCS) and a Encryption-Decryption

scheme (RHCEDS) will be presented. In Section 4, the cryptanalysis will show that

our system is suitable for secure communication. In Section 5, we present the hardware

implementation to demonstrate our RHCEDS. Finally concluding remarks are given in

Section 6.

2 General Secure-Communication Scheme

A general secure-communication scheme is shown in Figure 2.1. In this scheme, infor-

mation is transmitted by the Transmitter through channels after Source Encoding, En-

cryption and Channel Encoding & Modulation. The Receiver recovers the information

by reversing these steps.

In this research, we will develop a cryptograph for digital data Encryption/Decryption.

The input is from the step of Source Encoding and the output is sent to the step of Channel
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Figure 2.1: General secure-communication scheme.

Encoding & Modulation.

3 Robust Hyper-Chaotic Encryption-Decryption Sys-

tem

The crypto system is defined as the communication between the Encryption layer and the

Decryption layer in a general secure-communication scheme. An architecture of crypto

system is shown in Figure 3.2. Given an initial vector x(0) = [x
(0)
1 , . . . , x

(0)
n ]⊤, parameters

including an n-by-n stochastic matrix C = [cij ] and a chaotic parameter vector r =

[γ1, . . . , γn]
⊤, where x

(0)
i ∈

{

(0, 1)\{1
2
}
}

, γi ≥ 4 for i = 1, . . . , n and 0 < cij < 1 for i, j =

1, . . . , n., the RHCEDS is constructed by two RHCSs, denoted by F and G, respectively.

At the encryption end, a masking sequence z(i) is generated by the system F (r,x) and

used for encrypting the plaintext p(i). At the decryption end, the receiver recovers the

plaintext from the ciphertext c(i) by removing the mask z̃(i) generated by the system

G(r,y).

3.1 Robust Logistic Map

Before introducing the RHCS, we present a robust logistic map which is developed from

a classical logistic map.
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Figure 3.2: The architecture of RHCEDS.

A classical logistic map is defined by

x̄ = γx (1 − x) , x ∈ [0, 1], (3.1)

where γ is a parameter and 0 ≤ γ ≤ 4. In equation (3.1), when 3.57 < γ ≤ 4, it is a

chaos region and the generated sequence is non-periodic. However, the set of parameters

γ that result in windows of equation (3.1) is open and dense. Moreover, the chaotic

attractor is not distributed within the range of 0 to 1 and its length is less than one. In

this case, γ is easily detected by measuring the length of chaotic attractors. For example,

in Figure 3.3(a), when γ = 3.62, the length of attractor is 0.594. The only useful case of

equation (3.1) is when γ = 4 because its chaotic attractor is uniformly distributed in the

range of 0 to 1 as shown in Figure 3.3(b). Therefore, the selection of γ values is limited.

In order to increase the parameter space and to have a uniformly distributed map, we

propose a robust logistic function as follows:

L(γ, x) =







γx(1 − x) (mod 1), x ∈ Iext,

γx(1−x) (mod 1)
γ

4
(mod 1)

, x ∈ Iint,
(3.2)

where Iext ∈ (0, 1) \ Iint, Iint = [η1, η2], η1 = 1
2
−

√

1
4
−

[ γ

4
]

γ
and η2 = 1

2
+

√

1
4
−

[ γ

4
]

γ
in which

[w] is the greatest integer less than or equal w. A robust logistic map is then defined by

x(i+1) = L(γ, x(i)).

By this modification, we extend the γ range to a value more than 4. When L(γ, x) is

greater than 1, the first equation in equation (3.2) is to shift the map value greater than

1 to the range of 0 to 1. Figure 3.4 shows that modular one operation keeps x invariant
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Figure 3.3: Classical logistic maps with γ = 3.62 and 4.
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Figure 3.4: The mapping without normalization of x vs. L(γ, x) with γ = 7 and 31.
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Figure 3.5: The mapping with normalization of x vs. L(γ, x) with γ = 7 and 31.

in [0,1]. However, when x is in the range Iint, the mapping is not uniformly distributed, it

results in window of the map. Therefore, when L(γ, x) is less than 1, the second equation

in equation (3.2) is to scale the value to the range of 0 to 1. With both modular and

scaling operations, Figure 3.5 shows that two maps are uniformly distributed in the range

of 0 to 1 with piecewise nonlinear map when γ = 7 and 31.

To understand if there are windows in our robust logistic map when r ≥ 4, we analyze

the map by numerical methods. First, we compute the Lyapunov exponents by the

method in [Parker & Chua, 1989]. In Figure 3.6, Lyapunov exponents of equation (3.2)

are computed from γ = 0 to 16. It shows when γ ≥ 4, Lyapunov exponents are all

positive. Next, we compute the bifurcation diagram of L(γ, x) from γ = 0 to 16. The

result is shown in Figure 3.7. It shows that, when γ ≥ 4, L(γ, x) is uniformly distributed

in the range of 0 to 1 and there is no window. These numerical results indicate that the

robust logistic map is indeed chaotic with large parameter space when γ ≥ 4.

3.2 Construction of Robust Hyper-Chaotic System

Based on a coupled map lattice [Chiu et al., 2000; Chiu et al., 1998; Chiu et al., 2001;

Hu et al., 1996; Li et al., 2006; Li et al., 2007; Lin et al., 1999; Lu et al., 2004], a robust
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Figure 3.6: Lyapunov exponents vs. γ for γ ∈ [0, 16].
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hyper-chaotic system (RHCS) can be constructed. The system is defined by

x(i) = F (r,x(i−1)) := CL(r,x(i−1)), (3.3)

where x(i) = [x
(i)
1 , . . . , x

(i)
n ]⊤, L(r,x(i−1)) =

[

L(γ1, x
(i−1)
1 ), . . . , L(γn, x

(i−1)
n )

]⊤

, in which L

is the robust logistic map defined in equation (3.2), and

C =

















c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

















is a positive stochastic coupling matrix with all elements 0 < cij < 1 and
∑

j

cij = 1 for

i, j = 1, . . . , n. The masking sequence is defined by

z(i) = x
(i)
1 . (3.4)

The system G is also an RHCS defined by

y(i) = G(r,y(i−1)) := CL(r,y(i−1)), (3.5)

where y(i) = [y
(i)
1 , . . . , y

(i)
n ]⊤ for i > 0. The unmasking sequence is defined by

z̃(i) = y
(i)
1 . (3.6)

Note that F and G are hyper-chaotic systems in x(i) and y(i), respectively, with the same

parameters of C and r.

The RHCS (F or G) is constructed by n-coupled robust logistic maps and each robust

logistic map in the system has its own positive Lyapunov exponent. To understand if the

dimension of the whole system in terms of the number of positive Lyapunov exponents is

indeed increased, we analyze the RHCS by numerically. Since the higher dimension of the

system, the more positive Lyapunov exponents the RHCS has. Hence, we expect that the

behavior of the output masking sequence (z(i)) is more complex. The number of coupled

robust logistic maps being set to 2 (i.e., n = 2) is taken as our example. In this case, there

are two parameters γ1 and γ2 for two robust logistic maps. In Figure 3.8(a), two Lyapunov
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Figure 3.8: Lyapunov exponents vs. γ for n = 2, 3, 4 and 10.

exponents of 2-coupled robust logistic map are plotted for γ1 = 0 to 16 with the scale of

1
30

, and a fixed γ2 = 29.6668. The result shows when γ1 ≥ 4, two Lyapunov exponents are

both positive, that is, the system is hyper-chaotic without window. Similarly, the number

of Lyapunov exponents for n = 3, 4 and 10, where values of γi, 1 < i ≤ n are fixed, and

the range of γ1 is from 0 to 16, are shown in Figure 3.8(b)(c)(d), respectively. We can

see that the number of positive Lyapunov exponents of the system are increasing without

window as n increased, provided that all γi in the system are larger than 4.

In order to encrypt and decrypt information correctly, the masking sequence z(i) must

be identically synchronized to the unmasking sequence z̃(i). We first randomly create an
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initial vector x(0) of the transmitter, and then send it to the receiver by replacing its

initial vector y(0) by x(0). After this step, it holds that z(i) = z̃(i) for i > 0. Then the

RHCEDS is ready for information transmission. On the other hand, if the bandwidth of

the channel is just one component of x(0), then n steps are required to send n elements

of the initial vector to the receiver. Therefore, after n steps, the vector y(0) will be equal

to x(0).

3.3 Encryption & Decryption

In our secure communication system, RHCEDS, the masking sequence of system F will

be used as a mask to encrypt plaintext. In other words, the cryptograph system is similar

to an one-time-pad block cipher. In this case, the randomness of the masking sequence

directly affects the security level of the system. To enhance the randomness of the masking

sequence, the ℓ most significant digits are hidden in the communication, that is, these ℓ

digits are dropped and not used in the encryption. The more hidden digits are used, the

more difficult to analyze the encrypted information. However, the increased security is at

the expense of more computing resource. In our experimental results, hiding two-digits is

found to have good randomness, which is examined by a random number testing package,

NIST SP 800-22 [Rukhin et al., 2001].

In summary, our secure communication system, RHCEDS, is implemented as follows.

In Transmitter:

We use m digits to represent all real numbers in the system F including parameters r

and C, and the initial vector x(0). Given d = m − ℓ ∈ N, for i ≥ 1, the plaintext p is

decomposed into a sequence of {p(i)} with the length of each p(i) equal to d digits. The

encryption process is as follow:

z(i) =
⌊

x
(i)
1

⌋

ℓ
,

c(i) = z(i) ⊕ p(i),

where ⊕ is an XOR operation, and ⌊x⌋ℓ means dropping the first ℓ digits from x.

In Receiver:
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In receiver, the decrypted sequence, p̃, is as follow:

z̃(i) =
⌊

y
(i)
1

⌋

ℓ
,

p̃(i) = z̃(i) ⊕ c(i).

Since systems F and G have the same initial vector and z(i) = z̃(i), we can correctly

decode ciphertext, that is, p̃ = p.

From the above descriptions, the properties of the RHCEDS can be summarized as

follows:

• There are n2 selections of parameters to form r and C. The large parameter space

makes the attacking by brute-force enumeration infeasible.

• For the same plaintext, the crypto system can generate different ciphertexts with

different initial vectors.

• Incomplete carrier map is transmitted in the public channel. Therefore, it is hard

to re-construct the map even under the assumption of “chosen plaintext” attack.

4 Cryptanalysis of RHCDES

The cryptanalysis of our system will be based on an example where the precision of the

system is m = 8, and the number of coupled robust maps is 2. With n = 2, the masking

stream generator F is shown in equation (4.7).







x
(i)
1 = c11L(γ1, x

(i−1)
1 ) + (1 − c11)L(γ2, x

(i−1)
2 ),

x
(i)
2 = (1 − c22)L(γ1, x

(i−1)
1 ) + c22L(γ2, x

(i−1)
2 ).

(4.7)

4.1 Parameter Space

Attackers may construct a chaotic map by identifying its unique orbit if the key space is

small. Therefore, the parameter space must be large enough for practical use.

According to the bifurcation diagram in Figure 3.7 and Lyaponov exponents in Fig-

ure 3.6, we found that our robust logistic map has no windows when γ ≥ 4.
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Therefore, we can judiciously choose a stochastic matrix C and r to create an n-

dimensional system with at least two positive Lyapunov exponents. That is, the system

(3.3) has no window, which guarantees that there is no scruple by picking the parameters

to construct a hyper-chaotic system. Furthermore, the parameter space of the system

(3.3) is large enough for any practical application. For example, in equation (4.7), there

are four parameters c11, c22, γ1 and γ2 and the total number of parameters that can be

selected is 24×32 = 2128. This parameter space is much larger than 2100 which is the

suggested size for parameter selection in [Alvarez & Li, 2006; Álvarez et al., 2004].

Moreover, one important property of the parameter is worth noticing. The generated

masking sequence has a very sensitive dependence on the parameters. Without this prop-

erty, attackers can easily find the relationship between parameters and their corresponding

masking sequences.

To show this property, an experiment is conducted [Alvarez & Li, 2006]. First, the

masking stream generator F shown in equation (4.7) is taken as an example. Next, a set

of C and r parameters are selected as base to generate a base masking sequence Sbase.

Then, 200 γ1 are generated by varying the least significant bits of base γ1. With different

γ1 and the same γ2 and C, 200 masking sequences are generated where Sbase±d×2−32 ,

d = 1, . . . , 100 denote the masking sequences. Finally, we compute bit error rate (BER)

between Sbase and Sbase±d×2−32 . The result is shown in Figure 4.9. It can be seen that

the generated sequences are indeed different even with a small change by 2−32 in one

parameter.

4.2 Re-construction

Attackers may plot the map by analyzing output sequences of a chaotic map. Unrolling

a system is a method to compute the values of unknown parameters. In our system, for

example, when i = 1, equation (4.7) has five unknown variables, γ1, γ2, c11, c22 and x
(1)
2 .

Unrolling the system to i = 4, attackers will have eight equations with additional three

unknown variables, x
(2)
2 , x

(3)
2 and x

(4)
2 . Totally, eight equations are given to solve eight

unknown variables. However, in RHCS, it is infeasible for an attacker to re-construct the
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Figure 4.9: BER between Sbase and Sbase±d×2−32 .

map by unrolling because of the following two features of our system. First, the masking

sequence z(i) is an incomplete output sequence of the system F . The most significant

ℓ digits are dropped, that is, z(i) 6= x
(i)
1 . If there are four x

(i)
1 in the equations, each

of z(i) drops j bits, the possible combinations of four x
(i)
1 are (2j)4. Second, mapping

function is computed using the modular one operation in our robust logistic map. The

piecewise non-linear map is not a one-to-one mapping. Given an output of L map, there

are ⌈γ

4
⌉ × 2 possible inputs. There are eight L maps needed to be solved in this example.

The combination of solutions are (⌈γ

4
⌉ × 2)8. Assuming that γ is less than 2,048, and j

is 8, the attackers in total need to try (28)4 × 1, 0248 possible combinations of equations

to solve the unknown variables taking the above two features into account. If we use a

computer with 1 THz (Tera Hertz) CPU to run 1012 cases per second, then for the above

example, it requires near one million years to re-construct the system F . It is obvious

that re-construction of RHCS is infeasible using current computation technology.

4.3 Statistical Analysis

To understand how precision affects randomness, we conduct randomness test for m = 4

to m = 12. SP800-22 testing package [Rukhin et al., 2001] is used in our analysis process

to check the randomness of our system. The masking sequence of the system F is
⌊

x
(i)
1

⌋

2

where the most significant 2 digits of the x1
(i) are dropped. Each test will produce a
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“p-value” from SP800-22 testing package. The higher p-value (a minimal default value

is recommended by 0.01), the more random the test case. For each precision we choose

three different γ1 in the RHCS system while keeping the other parameters, γ2, c11 and c22,

unchanged. For each γ1, 100 sequences generated by RHCS with the length of 106 bits are

fed to the testing package. Table 4.1 shows the result. As suggested in SP800-22, for each

statistical test, the minimum pass rate of a well random source is 0.97 out of 100 binary

sequences. With this standard, we can see that when m is less than 8, the randomness

is obviously alleviated. As m is larger than 8, the generated output sequences are indeed

random.

Table 4.1: The SP800-22 test results with γ2 = 1709.ffd3, c11 = 0.c8, c22 = 0.ce

m = 4 m = 6 m = 8 m = 10 m = 12

γ1(HEX) 100 2d49 7b63 100.802d49.ff7b63.3b100.802d49.ff7b63.3b100.802d49.ff7b63.3b100.802d49.ff7b63.3b

Frequency 0.00 0.00 0.16 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 1.00 1.00 0.99 1.00

Block Frequence 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.98 0.99 0.99 0.98 0.99

Cumulative-sums 0.00 0.00 0.70 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.98 1.00 1.00 0.99 1.00

Run 0.00 0.00 1.00 1.00 0.96 0.85 0.99 0.96 0.99 0.99 0.98 0.99 0.99 0.99 0.99

Long Runs of Ones 0.93 0.00 0.00 0.99 0.98 0.98 0.97 0.98 0.98 1.00 1.00 0.99 1.00 1.00 1.00

Rank 0.99 1.00 0.88 0.99 0.99 1.00 0.98 0.99 0.98 1.00 0.98 0.98 1.00 1.00 1.00

Spectral DFT 0.00 0.00 0.00 0.99 1.00 0.98 0.99 1.00 0.98 0.99 0.98 0.98 1.00 0.99 0.97

Non-overlapping Template 0.79 0.24 0.85 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Overlapping Templates 0.00 0.00 0.00 1.00 1.00 0.99 0.98 1.00 0.98 0.99 0.99 0.97 0.99 0.99 0.98

Universal 0.86 1.00 1.00 0.97 1.00 0.98 0.99 1.00 0.99 0.99 1.00 0.99 0.98 0.98 0.99

Approximate Entropy 0.00 0.00 0.00 1.00 1.00 0.94 0.99 1.00 0.98 0.98 1.00 1.00 0.99 0.99 1.00

Random Excursions 1.00 0.00 0.98 1.00 0.99 0.99 0.97 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98

Random Excursions Variant 1.00 0.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00

Lempel Ziv Complexity 0.97 1.00 1.00 0.98 0.99 0.99 0.97 0.99 0.98 1.00 0.97 1.00 1.00 0.97 0.98

Serial 0.00 0.00 0.00 0.99 0.98 1.00 0.99 0.98 0.99 0.99 0.98 0.98 0.99 1.00 1.00

Num. of “< 0.97” 11 11 9 0 1 2 0 1 0 0 0 0 0 0 0

5 System Demonstration

5.1 Architecture of Encryption System

To demonstrate the effectiveness of the system F , we implement it in hardware. In our

design, the number of coupled robust logistic maps is selected to be 2.

The data flow of system F is shown in Figure 5.10. In this flow, 8 multiplications are

required to generate one mask, z(i). Inputs includes x
(i)
1 , x

(i)
2 , γ1, γ2, c11 and c22 are fed to

16



x
(i)

2

x
(i)

1

x
(i−1)

1

x
(i−1)

1

x
(i−1)

1

r1

r2

x
(i−1)

2

x
(i−1)

1 < ηη  <
1 2

x
(i−1)

2η  < < η3 4

x
(i)

2

x
(i)

1x
(i)

1x
(i)

2

x
(i)

1 x
(i)

2

c11

c22

sca1

sca2

1

1

1

1

Figure 5.10: The data-flow of the mask generator.

the multiplication operations. sca1 and sca2 denotes two scaling factors, 1
γ1
4

(mod 1)
and

1
γ2
4

(mod 1)
, respectively, for normalization operation. The four conditions to determine

if a modular or scaling operation is to be performed are: η1 = 1
2
−

√

1
4
−

[
γ1
4

]

γ1
, η2 =

1
2

+
√

1
4
−

[
γ1
4

]

γ1
, η3 = 1

2
−

√

1
4
−

[
γ2
4

]

γ2
and η3 = 1

2
+

√

1
4
−

[
γ2
4

]

γ2
. Since γ1 and γ2 are given by

the user and remain unchanged during operation, η1, η2, η3, η4, sca1 and sca2 are all input

vectors to the system. When η1 < xi−1
1 < η2 (η3 < xi−1

2 < η4), sca1 (sca2) is selected to

scale the values of maps. Otherwise, constant 1 is multiplied.

To understand the tradeoff between area and performance, we will propose two archi-

tectures to implement system F . The first one is for area and the second for performance.

Let us look at the first design. Since it is for area efficiency, multiple-cycle architecture

is adopted where only one multiplier and one adder are used and all multiply and add

operations use the same hardware at different cycle. Figure 5.11 shows the block diagram

of system F in hardware. In this design, a two-stage pipelined multiplier is implemented.

Hence, it requires 8 cycles to generate one mask. Besides the two-stage multiplier, the

system has two registers, “RegA” and “RegB”, for temporary data storage and four
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add/subtracters. Block “NEG” computes NEG(x) = 1−x and block “IntCheck” is used

to check if the input is in Iint or not.

The second design is for performance efficiency. Pipelined architecture is adopted.

The data flow of our system is partitioned into 4 stages separated by registers, and hence

a 4-stage pipelined design. The data flow is shown in Figure 5.12 and the block diagram

in Figure 5.13. In this design, four multipliers are used and run in concurrency. One mask

is generated at every cycle.

We describe our multiple-cycle and pipelined architectures in hardware description

language (HDL), and then synthesize them by commercial tools. To be more specific,

two designs are written in Verilog and synthesised by Synopsys Design Compiler (Version

X-2005.09-SP4) with TSMC .13 um technology library. Area and timing information is

obtained in gate-level netlist.

Moreover, we want to understand the hardware overhead when precision m = 8 is

increased to m = 12. Implementations for m = 8 and m = 12 are performed. That

is, all real numbers in the system is represented by 8 (12) digits. Then, in hexadecimal

representation (one digit is 4 bits), the system operates in 33(49) bits (1 bit for sign bit).

The number of hidden digits, ℓ is selected to be 2. With 2 hidden digits, the length of

one masking stream is 24 (40) bits. Hence, the plaintext sequence will be divided into

segments of length of 24 (40) bits.

Table 5.2 shows the synthesized results. When m = 8, the experimental results show

that the transmitter F of multiple-cycle design achieves an encryption rate of 330M bits

per second with 12K gate count. When implemented in the pipelined architecture, the

system generates mask sequence at a rate of 2.4G bits. That is, our pipelined architecture

is 727% faster than the multiple-cycle one. However, the area of pipelined architecture is

457% larger than that of multiple-cycle one. Moreover, by increasing m = 8 to m = 12,

for multiple-cycle architecture, the system performance is 167% faster with 200% more

area; for pipelined architecture, 183% faster with 209% more area.
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5.2 Example

We use the following parameters to demonstrate the system F with m = 12 and n = 2.

x
(0)
1 = 0.26e7bf70710c

x
(0)
2 = 0.3cebe4e04ecb

γ1 = 15.0000000000

γ2 = 23.0000000000

c11 = 0.fe0000000000

c22 = 0.fa0000000000

Table 5.3 shows the encryption result of the plaintext “The Digital Encryption.” The

plaintext is encoded into ASCII code format, and the data sequence will be encrypted by

a masking sequence which is generated by F with the above parameters. The result also

shows the receiver can recover the plaintext with the same parameters.
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Table 5.2: The synthesized result of encryption system.

m = 8 m = 12

Architecture multiple-cycle pipelined multiple-cycle pipelined

Gate Count(k) 12 57 24 119

Throughput 1/8 1 1/8 1

Mask Length(bits) 24 24 40 40

Clock Frequency(Mhz) 110 110 110 110

Bits Per Second(M bits) 330 2400 550 4400

Area Ratio 1 475% 200% 992%

Performance Ratio 1 727% 167% 1333%

6 Conclusion

We have proposed a Robust Hyper-Chaotic Encryption-Decryption System composed of

two RHCSs that is suitable for digital secure-communication. An RHCS consists of n-

coupled robust logistic maps and has a large parameter space which grows along with

system precision. Because multiple coupled robust chaotic maps rather than a single one

are used, map re-construction of the RHCS system is not feasible by current computation

technology. The result shows that the generated masking sequence has good randomness

for stream cipher. Two hardware architectures (multiple-cycle and pipelined) have been

proposed for area and performance optimization, respectively. The demonstration shows

that RHCS can be easily realized in hardware. In the future, optimization of the hardware

architecture for RHCS and real chip verification will be studied.
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Table 5.3: The encryption example.

Plaintext:

The Digital Encryption.

Plaintext in ASCII Code:

546865004469676974616c00456e6372797074696f6e2e

Ciphertext:

5477bc5de59b7f735bac76c8a022ebaa4a763c2ed41b9d

Decrypted plaintext:

The Digital Encryption.
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