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Nonlinear dynamics of semiconductor lasers under
repetitive optical pulse injection
Fan-Yi Lin, Shiou-Yuan Tu, Chien-Chih Huang, and Shu-Ming Chang

Abstract—Nonlinear dynamics of semiconductor lasers under
repetitive optical pulse injection are studied numerically. Differ-
ent dynamical states, including pulsation and oscillation states,
are found by varying the intensity and the repetition rate of the
injection pulses. The laser is found to enter the chaotic pulsation
(CP) states and chaotic oscillation (CO) states through individual
period-doubling routes. Mapping and corresponding Lyapunov
exponents of these dynamical states are plotted and examined
in the parameter space. Moreover, the bandwidths of the chaos
states found are investigated, where the bandwidths of the CP
states observed at the strong injection regime are two to four
times broader than the bandwidths of the CO states found at the
weak injection regime. In this paper, frequency-locked states with
different winding numbers, the ratio of the oscillation frequency
and the repetition frequency of the injection pulses, are also
studied. Both the cases for repetition frequency above and below
the relaxation oscillation frequency are examined. The winding
numbers of the frequency-locked states reveal a Devil’s staircase
structure, where a Farey tree showing the relations between the
neighboring states is constructed.

I. I NTRODUCTION

NONLINEAR dynamical characteristics of semiconductor
lasers have been studied intensively in recent years.

Diverse dynamical states found have been proposed to be
utilized in various applications such as radar [1], lidar [2],
[3], radio-over-fiber communications [4], and chaotic com-
munications [5], [6], [7], [8]. For an optically injected laser
with a master-slave configuration, bandwidth enhancement [9],
[10], linewidth reduction [11], [12], and noise suppression [13]
phenomena have been observed. By controlling the injec-
tion strength and the frequency detuning between the mas-
ter and the slave lasers, induced periodic oscillations and
chaotic oscillations have been obtained [14], [15]. Both period-
doubling [16] and break-up of two tori [17] routes to chaos
have been reported. However, although many efforts have
been made to understand the characteristics of an optically
injected semiconductor laser [18], researches are limited to the
condition where the laser is injected with an optical signal of
constant intensity. Few studies have been done on the nonlinear
dynamics of a semiconductor laser subjects to a non-constant
optical injection.

Non-constant optical injection is important when a
transmitter-receiver or a cascaded laser system is considered,
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in which the dynamical output of a transmitter laser can
optically inject into a receiver laser inevitably or even in-
tentionally. With a chaotic optical injection, high-frequency
broad-band signal generation has been demonstrated [19]. By
injecting optical pulses at a subharmonic of the cavity round-
trip frequency, a long cavity multisection semiconductor laser
oscillating at its resonant frequency has been observed [20].
Repetitive pulses with twice the period have been observed
in a Fabry-Perot laser subject to optical pulse injection [21].
Mode locking in broad-area semiconductor lasers by injecting
optical pulses repeated at subharmonics of the lateral mode
separation has been demonstrated [22]. In this paper, we study
the complex dynamics of a semiconductor laser induced by
optical pulses. By injecting a laser with a train of repetitive
pulses, various dynamical states are shown and routes to
chaos are identified. The dynamical mapping of the states is
plotted and the bandwidths of the chaos states are investigated.
Moreover, frequency locking phenomena driven by the pulse
injection are also examined.

II. SIMULATION MODEL

The schematic setup of an optical pulse injected semi-
conductor laser is shown in Fig. 1. The laser is injected by
a train of optical pulses, where the repetition rate and the
intensity of the pulse train are varied as the controllable param-
eters. The dynamics of the injected laser are simulated using
the model described in [23] with the following normalized
dimensionless rate equations:

da

dt
=

1
2
[
γcγn

γsJ̃
ñ− γp(2a + a2)](1 + a)

+ ξi(t)γc cos(Ωt + φ),
dφ

dt
= − b

2
[
γcγn

γsJ̃
ñ− γp(2a + a2)]

− ξi(t)γc

1 + a
sin(Ωt + φ),

dñ

dt
= −γsñ− γn(1 + a)2ñ− γsJ̃(2a + a2)

+
γsγp

γc
J̃(2a + a2)(1 + a)2,

where,a is the normalized field,φ is the optical phase,̃n is
the normalized carrier density,b is the linewidth enhancement
factor, γc is the cavity decay rate,γs is the spontaneous
carrier decay rate,γn is the differential carrier relaxation
rate, γp is the nonlinear carrier relaxation rate, and̃J is
the normalized dimensionless injection current parameter. The
dimensionless injection parameterξi(t) = η|Ai(t)|/(γc|A0|)
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is the normalized strength of the injection field received by
the injected laser whereη is the coupling rate,Ai(t) is
the complex amplitude of the injection field, andA0 is the
complex field amplitude of the injected laser at free-running.
The frequency detuningΩ is the frequency difference between
the pulsed laser and the injected laser at free-running.

����
��

���	
�
�	
�
�����

���
�����
������
�	�����
���
��
�
�	
�

�

�����

 

Fig. 1. Schematic setup of a semiconductor laser under repetitive optical
pulse injection. The variable attenuator is used to adjust the injection strength
and the optical isolator is used to prevent the unwanted feedback.
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Fig. 2. Time series, phase portraits, and power spectra of different oscillation
states with (ξp, frep) = (a) P1O (0.01, 3.0), (b) P2O (0.02, 3.5), (c) P4O
(0.03, 3.8), and (d) CO (0.04, 4.0). The dashed curves in the time series are
the corresponding waveforms of the injected pulses showing the timing of
injection, which are scaled for clarity.

For the repetitive injection pulse train, a Gaussian shape of
ξi(t) with a peak injection strengthξp, a repetition frequency
frep, and a pulsewidth of 75 ps are considered. Follow-
ing experimentally measured intrinsic dynamical parameters
of a high-speed semiconductor laser [24] are used in the
simulation: γc = 2.4 × 1011s−1, γs = 1.458 × 109s−1,
γn = 3J̃ × 109s−1, γp = 3.6J̃ × 109s−1, b = 4, while
zero detuning (Ω = 0) is assumed. The lasers are biased at
a value ofJ̃ = 1/3 and the relaxation oscillation frequency
(fr = (γcγn + γsγp)1/2/2π) of the laser is about2.5 GHz
with the aforementioned parameters. Second-order Runge-
Kutta method with a sampling time of 2.38 ps is used to solve
the coupled rate equations.

III. R ESULTS

A. Nonlinear dynamical states

When a laser is injected by a single optical pulse, induced
oscillations in the laser output field are expected and the
laser tends to relax back to its free-running state gradually
if no successive pulse is further injected. However, if a train
of optical pulses are injected into the laser with the time
separation between each successive pulse being shorter than
the relaxation time of the laser, the relaxed oscillation will
be interrupted while the injected pulses perturb the optical
field and phase abruptly. Hence, the nonlinear dynamics of
an optical pulse injection system is expected to be strongly
influenced by the intensity and the repetition frequency of the
injected pulses.
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Fig. 3. Time series, phase portraits, and power spectra of different pulsation
states with (ξp, frep) = (a) P1P (0.13, 3.0), (b) P2P (0.15, 2.8), (c) P4P
(0.16, 2.7), and (d) CP (0.17, 2.3). The dashed curves in the time series are
the corresponding waveforms of the injected pulses showing the timing of
injection, which are scaled for clarity.

Figure 2 shows the time series, phase portraits, and power
spectra of the dynamical states found in the optical pulse
injection system. The dashed curves in the time series are the
corresponding waveforms of the injected pulses showing the
timing of injection, which are scaled for clarity. The phase
diagrams in the second column are constructed by plotting
the peak values of intensities of the N-th peak (P(N)) to the
(N+1)-th peak (P(N+1)) taken from the time series shown in
the first column, which reveals the complex attractors of the
states as time evolves. As can be seen in Fig. 2(a), for peak
injection strengthξp and repetition frequencyfrep (in GHz)
of (ξp, frep) = (0.01, 3.0), a period-1 oscillation (P1O) state
is found and a single dot is shown in the phase diagram.
The laser oscillates at the same frequency (3 GHz) as the
repetition frequencyfrep of the injected pulses. Compared to
the oscillation frequencies of the similar P1O states found in
a laser with constant CW injection that increases along as the
injection strength increases, the oscillation frequencies of the
P1O states found in our study are not affected by the injection
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strength (before the laser enters into another state) but are
locked to the repetition frequency of the pulse injected. When
ξp and frep are both increased to(ξp, frep) = (0.02, 3.5),
as shown in Fig. 2(b), a period-2 oscillation (P2O) state is
obtained and two dots are observed in the phase diagram. As
can be seen, the laser now oscillates at about 2.33 GHz and
an envelope in the time series with a subharmonic frequency
of the oscillation frequency is found. Further increases inξp

andfrep drive the laser into a period-4 oscillation (P4O) and
chaotic oscillation (CO) states as shown in Figs. 2(c) and
(d), respectively. Clearly, the laser follows a period-doubling
route into chaos when the parameters of the injected pulses
are varied.

While these oscillation states have also been observed in
an injected laser subject to constant injection, pulsation states
are also found in this pulse injected laser system. Figure 3
shows the time series, phase portraits, and power spectra of
the pulsation states observed. The dashed curves in the time
series are the corresponding waveforms of the injected pulses
showing the timing of injection, which are scaled for clarity.
With (ξp, frep) = (0.13, 3.0), Fig. 3(a) shows the regular
pulsing (P1P) state, in which the laser pulses repetitively
at the frequency offrep. When frep decreases, a period-2
pulsation state (P2P) that has a subharmonic envelope in the
time series is observed. Further reducingfrep drives the laser
pulses with the fourth harmonic frequency (P4P), and goes
into chaotic pulsing state (CP) eventually through a similar
period-doubling route as in the oscillation counterpart. These
pulsation states are clearly distinguishable from the oscillation
states such that the peak intensity of the pulsation states is
higher and it drops to zero between each subsequent pulse.
Note that with repetitive pulse injection, these states shown in
Figs. 2 and 3 are not transient states but states with dynamical
stability. Moreover, while all the spectral harmonics of the
injected pulses inevitably affect the laser dynamics implicitly,
the lower harmonics, especially the1st harmonic frequency
frep, predominate due to both their larger amplitudes and
higher responses near the relaxation oscillation frequency of
the laser.

To show the regions of different dynamical states (as those
shown in Figs. 2 and 3) occupied in the parameter space,
a mapping is plotted in Fig. 4(a). As can be seen, regions
of different dynamical states are identified, while the period-
doubling routes for the oscillation states and the pulsation
states can be traced. As shown in the mapping, the oscilla-
tion states are generally found in the weak injection regime
(ξp < 0.1) while the pulsation states are observed in the
stronger injection regime (ξp > 0.1). As ξp increases, the laser
output gradually transforms from oscillations into pulsations
as the duty-cycle of the waveforms decrease. Note that a belt
of complex dynamical states, namely the CO and the CP
states, is found stretching from the regime of weak injection-
high repetition rate (> 2.5 GHz) to the regime of strong
injection-low repetition rate (< 2.5 GHz). Within the belt,
the CO states gradually transform into the CP states asξp

increases. To quantify the complexity of these states, Fig. 4(b)
plots the corresponding largest Lyapunov exponents. As can
be seen, while the P1P states in the upper right corner have
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Fig. 4. (a) Mapping and corresponding (b) Lyapunov exponents of the
dynamical states in the parameter space. P1O: period-1 oscillation; P2O:
period-2 oscillation; P4O: period-4 oscillation; CO: chaotic oscillation; P1P:
regular pulsation; P2P: period-2 pulsation; P4P: period-4 pulsation; and CP:
chaotic pulsation.

negative Lyapunov exponents, positive Lyapunov exponents
are found for those states showing complex dynamics seen in
Fig. 4(a). Within the belt, CO states found in the upper left
corner have the largest Lyapunov exponents and thus reveal
their high complexities. While the behaviors and nonlinear
dynamical characteristics for different frequency detunings are
generally different, for simplicity, we only show the dynamical
states and the corresponding mapping obtained with a single
frequency detuningΩ = 0 and emphasize the effects of the
repetition frequency and the injection strength of the injected
pulses. In all aspects, however, frequency detuning is no doubt
a significant parameter affecting the laser dynamics as one
would expect as in a CW optical injection case. Detailed
investigation on the effect of frequency detuning in a pulse
injected laser will be reported separately.

While some applications utilize chaos states to take the
advantages of their high complexities for security reasons [5],
[6], other applications, such as CLIDAR [2] and CRADAR [1],
solely demand large-amplitude random signals with contin-
uous broad bandwidths. As can be seen in Figs. 2(d) and
3(d), chaotic signals with continuous broad bandwidths can
be induced through optical pulse injection. The bandwidths
of those chaos states, CO and CP, found in the dynamical
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Fig. 5. Bandwidths of the chaotic oscillation (CO) states and chaotic pulsation
(CP) states.

mapping are therefore examined. Figure 5 plots the bandwidths
of the chaos states with different parameters of the injected
pulses. Due to the noise-like nature of the chaos states, the
bandwidth of a chaos state is defined as the frequency span
such that80% of the energy is contained within. As can
be seen, the bandwidths of the chaos states increase asξp

increases. Compared with the CO states found at the weak
injection regime, the bandwidths of the CP states observed
at the strong injection regime have bandwidths that are two
to four times broader. Forξp = 0.3, chaos states with
bandwidths as high as 14 GHz can be obtained for the laser
with fr = 2.5 GHz.

B. Frequency locking phenomenon

Frequency locking can occur in nonlinear systems when a
driving frequency is an integer multiple or submultiple of an
intrinsic frequency. If the two competing frequencies are how-
ever incommensurate, quasiperiodic oscillations are present
instead. For semiconductor lasers, frequency locking has been
found in direct current modulated self-pulsing lasers [25] and
external-cavity lasers [26], where the pulsation frequency and
the resonant frequency of the external cavity are locked to a rf
modulation frequency, respectively. By feeding back the laser
output optoelectronically through the bias current, harmonic
frequency locking phenomenon has also been observed [27].

While these previous studies all involve electronic modula-
tions through the bias current of the lasers, the phenomenon
of semiconductor lasers subject to optical pulse injection is
explored the first time. Instead of locking a laser by sending a
modulation frequency through the bias current electronically,
frequency locking driven by injecting optical pulses is inves-
tigated. Without the limitation of electronic bandwidths, the
region that the repetition frequency of the optical pulses below
and exceed the relaxation oscillation frequency of the laser are
both examined.

Figure 6 shows the time series and power spectra of the
output of a semiconductor laser under repetitive optical pulse
injection with the normalized peak injection strengthξp fixed
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Fig. 6. Time series and power spectra of the frequency-locked states with
ξp = 0.02 and frep = (a) 1 (ρ = 3/1), (b) 1.5 (ρ = 2/1), (c) 1.65
(ρ = 3/2), and (d) 3 GHz (ρ = 1/1), respectively. The dashed curves in
the time series are the injection pulse train, which are scaled for clarity. The
arrows in the power spectra indicatefrep.

at 0.02 while the repetition frequencyfrep is varied from 1 to
3 GHz. Herefo is determined both from the highest peak seen
in the power spectrum and the oscillation time interval shown
in the time series. Forfrep = 1 GHz as shown in Fig. 6(a),
a frequency-locked oscillation with an oscillation frequency
fo = 3 GHz is observed. The winding number, defined as
ρ = fo/frep, has a rational valuep/q = 3/1 meaning that the
oscillation frequency (fo) of the laser output locks to the third-
harmonic of the repetition frequency (3frep) of the injected
pulses. Respectively,p andq are integer numbers defining the
order of harmonics offo and frep in terms of the integer
multiples of the lowest frequency peak seen in the spectrum.
By increasingfrep to 1.5 and 1.65 GHz, frequency-locked
oscillations withρ = 2/1 and 3/2 as shown in Figs. 6(b)
and (c) are found. Further increasingfrep to 3 GHz drives
the laser into a period-1 oscillation state withρ = 1/1 as
shown in Fig. 6(d), in which the laser oscillates sinusoidally at
frep. In this system, the repetition frequency is interacting and
competing with the intrinsic relaxation oscillation frequency
of the laser through the injected pulses. While the repetition
frequency is a hard fixed value determined by the external
injected pulses, the oscillation frequency of the laser is rather
flexible. In a frequency locked condition,fo can be either
pulled or pushed away from the intrinsic relaxation oscillation
frequency fr of the free-running condition and maintains
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Fig. 7. Time series and power spectra of the frequency-locked states with
ξp = 0.02 and frep = (a) 3.5 (ρ = 2/3), (b) 3.85 (ρ = 3/5), (c) 4.4
(ρ = 1/2), and (d) 7 GHz (ρ = 1/3), respectively. The dashed curves in
the time series are the injection pulse train, which are scaled for clarity. The
arrows in the power spectra indicatefrep.

commensurate tofrep with a Farey fraction within a certain
tuning range. Nonetheless, the laser shows the tendency to
oscillate in a frequency nearfr (2.5 GHz in our case). As a
result, for differentfrep, frequency-locked states of different
winding numbers are observed wherefo tends to lock to the
harmonics offrep while staying close tofr at the same time.

Unlike the modulation frequency of a current-modulated
semiconductor laser which is inevitably limited by the modula-
tion bandwidth, the repetition frequency of the injected optical
pulses can exceed the relaxation oscillation frequency of the
laser without the constraint. Figure 7 shows the time series and
power spectra of the frequency-locked oscillations found for
frep varies from 3 to 7 GHz. Forfrep = 3.5 GHz, a frequency-
locked state withρ = 2/3 is observed. Frequency-locked states
of ρ = 3/5, 1/2, and2/6 (1/3) are also shown in Figs. 7(b),
(c), and (d), respectively, wherefo is the subharmonic offrep.
As can be seen in Fig. 7(c), a period-1 oscillation is observed
which fo is exactly one-half offrep for the injected pulses.
For frep as high as 7 GHz, frequency-locked state can still
be found which the oscillation frequency is locked to the
repetition frequency withρ = 2/6 (= 1/3). Different from
a pureρ = 1/3 state, theρ = 2/6 state shown in Fig. 7(d)
has a subharmonic at 1 GHz which doubles the period of
the oscillation cycle. Note that as the repetition frequency
of the injection pulses becomes higher, the behavior of the

injected laser gradually becomes similar to a laser injected by
high-frequency sinusoidal excitation. However, unlike small-
signal modulations, the laser is in fact under a high-frequency
modulation with a very large modulation depth, where the
injection strength goes to almost zero between each successive
pulse. To the best of our knowledge, this is the first study
on frequency locking of semiconductor lasers with an exter-
nal frequency exceeding the relaxation oscillation frequency.
For these states, the laser output still oscillates around the
relaxation oscillation frequency as that is in the low-repetition
frequency cases shown in Fig. 6.
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Fig. 8. (a) Order of harmonics offrep (opened circle) andfo (closed circle)
and (b) winding numbers of the frequency-locked oscillation states found for
different repetition frequencies, respectively, where the widths of the intervals
represent the ranges of locking. The upper right corner of 8(b) shows the Farey
tree constructed by the Farey fractions of the corresponding frequency-locked
states observed.

Fig. 9. Regions of frequency-locked states of differentξp and frep. The
shaded areas are the non-frequency locked regions (CO and CP).

To investigate the relation between each of these frequency-
locked states, Fig. 8(a) plots the order of harmonics offrep

(opened circle) andfo (closed circle) for the frequency-locked
states observed. In the low-repetition frequency regime, the
order offo exceeds the order offrep. As can be seen, when
frep exceeds about 3 GHz, the order offrep exceeds the order
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of fo. Orders as high as 8 forfrep and 5 forfo are obtained
in our study. For frequency-locked states with even higher
orders, the ranges of locking become very narrow. While the
orders offrep and fo do not show a clear trend, their ratio
(winding numberρ) reveals the relation between each of the
neighboring state.

Figure 8(b) plots the winding number of the frequency-
locked states found for different repetition frequencies, where
the widths of the intervals represent the ranges of locking.
As can be seen, the locking states show a Devil’s staircase
structure [28], [29] thatρ decreases monotonically asfrep

increases. A Farey tree containing the observed Farey frac-
tions [26] is also plotted in the upper-right corner showing
the relation between each state. Forfrep below the relaxation
oscillation frequency of the laser,ρ = n + p/q with n = 1,
2, and 3 are found. Forfrep above the relaxation oscillation
frequency, frequency-locked states with pure Farey fractions
(n = 0) are obtained.

Note that while frequency-locked states with various orders
are widely found in the weak injection condition considered
(ξp = 0.02), finding frequency-locked states with higher
order become difficult when the injection is stronger. Figure 9
shows the regions occupied by the frequency-locked states of
different ρ with different ξp and frep for stronger injection
(up to ξp = 0.30). As can be seen, with stronger injection, the
laser tends to lock directly with the injected pulses so that the
locking states ofρ = 1/1 (fo = frep) dominate. High-order
frequency-locked states are hardly seen whenξp > 0.1.

IV. CONCLUSION

We have numerically studied the nonlinear dynamics of a
semiconductor laser under repetitive optical pulse injection.
With the injection of a train of repetitive optical pulses, a
semiconductor laser exhibits complex dynamics and it follows
a period-doubling route to chaos. Both CO states and CP states
are found, among which the CP states have broader band-
widths. Bandwidths as high as 14 GHz have been obtained
for the CP states withξp = 0.30. By varying the repetition
frequency of the injected pulses, frequency-locked states with
different winding numbers have also been investigated. The
winding numbers reveal a Devil’s staircase structure and the
Farey tree constructed by the Farey fractions shows the relation
between each neighboring frequency-locked state. For a wide
range of repetition frequency spanning from 1 to 7 GHz, the
oscillation frequencies of the frequency-locked states are found
to be remained bounded close to the relaxation oscillation
frequency of the laser. In the strong injection region, the
laser tends to synchronize with the injected pulses and the
frequency-locked states ofρ = 1/1 dominate. For the states
found in this pulse injected laser, the chaos states can be
used in applications demanding broad bandwidths such as ultra
wideband communications and precise range finding, while the
periodic oscillation states and the frequency locking states can
be used in applications such as clock generation and recovery,
wavelength conversion, and frequency stabilization.
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