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Abstract

In this paper, we propose a digitalized chaotic map, Variational Logistic Map

(VLM), modified from classical logistic map to be used in secure communication.

Compared with classical logistic map, VLM has large parameter space without

windows and can be implemented at low hardware cost. Referring to statistical

testing suites SP800-22 and TestU01, VLM with the proposed scrambling method

can significantly improve the output complexity as compared with other logistic-

map based generators and piecewise linear chaotic map. Experiments show that the

throughput of a 32-bit VLM is up to 3,200 Mbps in 0.18µm process. Furthermore, a

chaotic crypto scheme, Multi-VLM (MVLM), constructed by four 32-bit VLMs can

generate an output sequence with a minimal length equal to 2128 − 1 by a 128-bit

external key.

∗Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan.

Email: chensl@cs.nthu.edu.tw
†Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan.

Email: tingting@cs.nthu.edu.tw
‡Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan.

Email: smchang@math.nctu.edu.tw
§Department of Applied Mathematics, National Chiao Tung University, and Division of Mathemat-

ics, National Center for Theoretical Science, National Tsing Hua University, Hsinchu 300, Taiwan.

Email: wwlin@math.nctu.edu.tw

1



Keywords: Chaotic Secure System, Digital Communication, Variational Logistic

Map.

1 Introduction

The chaotic orbit generated by a non-linear system is irregular, aperiodic, unpredictable

and has sensitive dependence on initial conditions. These characteristics coincide with the

confusion and diffusion properties in cryptography. Therefore, in recent years, the chaotic

system has been studied for security system in both analog and digital forms [Addabbo

et al., 2007; Álvarez & Li, 2006; Cermák, 1996; Chen et al., 2008; Frey, 1993; Götz et al.,

1997; Heidari-Bateni & McGillem, 1994; Jakimoski & Kocarev, 2001; Juang et al., 2003;

Juang et al., 2000; Li et al., 2006; Li et al., 2001; Matthews, 1989; Wang et al., 2006].

Because of non-linear property and easy implementation, logistic map, defined as

xi+1 = γxi(1 − xi) for xi ∈ (0, 1), serves as popular map to generate chaotic sequence for

crypto system [Cermák, 1996; Jakimoski & Kocarev, 2001; Li et al., 2006]. Although the

trajectory of a logistic map is complex, a crypto system using digital logistic map directly

has two problems to solve. First, the output cycle length is short. Second, the parameter

space of the map is restricted.

The short output cycle leads to non-uniform output distribution, which is easy to be

analyzed and attacked by enumerating all states of output. In [Wheeler, 1989], authors

suggest that digital chaotic system implemented with more digits can solve the problem of

short output cycle length. In [Li et al., 2001; Wang et al., 2006], authors use coupled map

to construct multi-dimensional system to increase the complexity of chaotic dynamics.

In [Li et al., 2006], authors propose a timing-based method to reseed the map to increase

the output cycle length. Using higher precision and coupled map can increase the output

cycle length and complexity, but can not increase the number of usable parameters.

The chaotic behavior of a logistic map is dependent on the parameter, γ. Unfortu-

nately, all parameters are not equally strong. Some of them will result in windows. Note

that here a window is defined as the chaotic orbit of a non-linear system visualized as

periodic on computers (see e.g. [Strogatz, 1994, p. 356]). The length of orbit generated
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by the parameter in window is fixed no matter how large the precision is increased to

compute the orbit. The remaining parameter space may easily be attacked by brute-force

enumeration method because of smaller parameter space. Previous systems using logistic

maps work only when parameter γ is equal or close to 4 [Li et al., 2006]. This constraint

makes the key space of a security system smaller than applications require.

In [Chen et al., 2008], Chen et al. proposed a modified logistic map to extend the

parameter space for γ > 4 and a coupled hyper-chaotic system to generate more complex

output sequence. Although Chen’s system has large parameter space, it needs up to three

multiply operations to compute the next states. The cost is larger than a classical logistic

map where only two multiplications are used. Moveover, multiply operations are required

to form a coupled system. These extra multiply operations limit the throughput of the

system.

In this paper, we will propose a Variational Logistic Map (VLM) with un-restricted

parameter space, and can be implemented at lower cost as compared with classical logistic

map. First, we show that the raw model of our VLM is a chaotic map by computing the

discrete Lyapunov Exponents [Kocarev et al., 2006] for different parameters. Then, to ver-

ify the chaotic properties of our digitalized VLM, a set of numerical experiments including

return map, output cycle length and output spectrum analysis are conducted. Moreover,

SP800-22 [Rukhin et al., 2001] and the most stringent testing by TestU01 [L’Ecuyer &

Simard, 2007] are applied to verify the statistical properties of the proposed system.

Then, we design a Multi-VLM (MVLM) system constructed by VLMs to have output

sequence with higher degree of complexity and larger key space than a single VLM. An

MVLM constructed by four 32-bit VLMs can generate sequence with cycle length more

than 2128 with a 128-bit external key. We demonstrate that MVLM can generate output

sequence with well quality of randomness in higher throughput and lower hardware cost

as compared to Chen’s system [Chen et al., 2008].

Finally, cryptanalysis is conducted, we show that MVLM has large parameter space,

long output cycle length, and is hard to reconstruct. From statistical point of view,

outputs of MVLM with different keys have small correlations to each other. Moveover,
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MVLM passes all tests in SP800-22 and TestU01 which indicates MVLM is a safe cryp-

tology in secure communication.

The rest of the paper is organized as follows. In Section 2, the Variational Logistic

Map (VLM) is presented. In Section 3, we propose a scrambling method to scramble the

output and parameter of VLM. In Section 4, architecture of MVLM will be shown. In

Section 5, cryptanalysis will demonstrate that our system is suitable in security appli-

cations. In Section 6, we present hardware implementation of MVLM system. Finally

concluding remarks are given in Section 7.

2 Variational Logistic Map (VLM)

A classical logistic map is defined by

L(γ, x) = γx(1 − x), x ∈ (0, 1). (1)

It is well known that Eq. (1) forms a chaotic map for 3.57 < γ ≤ 4. Most of chaotic

behavior indexes such as the invariant set, Lyapunov exponent, topological, metric, and

Renyi specific entropies show that the logistic map has complex behavior. However, these

indexes are computed under real number definition and without direct relationship to

requirements of secure communication. Two facts show that parameters are not equally

strong. The first one is windows in parameter space. In [Barreto et al., 1997], authors

have proved that the parameter space of logistic map has windows which is open and

dense. Namely, a large number of chaotic orbits are unstable, i.e., settle down to a stable

orbit which has short cycle length and can not be improved even the system precision

is increased. Parameters in window are obviously not secure. The second one is limited

precision of digitalized chaotic map. If the difference of two numbers is smaller than the

resolution, two numbers will become identical during computation. Some parameters may

generate short length orbit because two close points on the orbit become identical due

to truncation. Based on the above two observations, a classical logistic map can not be

directly utilized in digital security system.

In order to remove the window generated by Eq. (1) and to preserve the advantage
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of fully distribution in (0,1) for γ = 4, in [Chang et al., 2009] and [Chen et al., 2008],

the authors proposed a Modified Logistic Map (MLM) to extend the parameter space to

γ > 4. MLM is fully distributed in (0,1) and has no window when γ > 4. MLM is given

by

xi+1 =







γxi(1 − xi) (mod 1), xi ∈ Iext,

γxi(1−xi) (mod 1)
γ

4
(mod 1)

, xi ∈ Iint,
(2)

where Iext ∈ (0, 1) \ Iint, Iint = [η1, η2], η1 = 1
2
−

√

1
4
−

[ γ

4
]g

γ
and η2 = 1

2
+

√

1
4
−

[ γ

4
]g

γ
in

which [w]g is the greatest integer less than or equal w.

Although MLM extends the parameter space and presents chaos when γ > 4, to

compute the next state of MLM, it needs up to three multiplications while only two

multiplications are used in classical logistic map. More precisely, the first multiplication

is used to compute (γxi) and the second multiplication is used to multiply (1 − xi). The

third multiplication is needed to multiply (γ

4
(mod 1))−1 if xi is in Iint.

Since we focus on digital secure communication, we will propose a Variational Logistic

Map (VLM) which is based on MLM in digitalized implementation. When compared to

MLM, VLM also extends parameter space to γ > 4 and needs only two multiplication

operations to compute the next state.

To construct VLM, first, we propose a raw model,

Lp(α, γ, x) = {α [(αγx) (mod 1)] (1 − x)} (mod 1) (3)

which is equivalent to

Lp(α, γ, x) = [α (αγx − [αγx]g) (1 − x)] (mod 1). (4)

In fact, Eq. (4) can be rewritten by

Lp(α, γ, x) =











f(α, γ, x) − g(α, γ, x) if f ≥ g,

f(α, γ, x) − g(α, γ, x) + 1 if f < g,

where

f(α, γ, x) = [α2γx(1 − x)] (mod 1)

5



and

g(α, γ, x) = {α[αγx]g(1 − x)} (mod 1)

with α, γ > 0, and x ∈ (0, 1).

Let γ̂ = α2γ = 4k, k ∈ N, function f can be rewritten as f = [γ̂x(1− x)] (mod 1). By

the definition of Eq. (2), the interval, Iint, of function f is equal to

Iint = [η1 , η2]

= [ 1
2
−

√

1
4
−

[ 4k
4

]g
4k

, 1
2

+

√

1
4
−

[ 4k
4

]g
4k

]

= [1
2

, 1
2
]

which means there is no x in Iint. Therefore, when γ̂ is a multiple of four, function f is

a subset of MLM and also a chaotic map. Hence, Lp is constructed by a MLM, f , and

function g which is a scrambling function with respect to function f .

Then, a q-bit VLM will be defined by a digitalized Lp in q-bit precision. First of all,

we define the value of coefficients α because the value of α will affect the truncation result

during successive multiplications and modular operations.

To define the value of α, we start from the point of implementing the multiplication

in finite-precision arithmetic. Because the multiplication is defined in finite precision,

to store product in the same number of bits, truncation is needed after multiplying two

numbers. For example, in Fig. 1(a), let a, b and c be 4-bit binary numbers and c = a× b.

The result of a × b will be truncated from 8-bit to 4-bit and assigned to c. Suppose

the least significant bits be truncated. We find that cH is directly determined by only 6

partial products, which are a3b1, a3b2, a2b2, a3b3, a2b3 and a1b3, and indirectly determined

by the carry-outs generated by other partial products. That means, the change of inputs

may not cause the change of outputs. Hence, with different x, a sub-operation γ × x in

a logistic map may lead to the same next value during sequence generation because the

difference in the least significant bits is eliminated by truncation. That different xs can

not generate different orbits result in short length cycles.

On the contrary, in Fig. 1(b), the value of cM depends on the largest number of partial

products. That means, when any bit of input is changed, cM has higher probability to
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change its value than cH .

The purpose of α in equation c = (αab)(mod 1) is to make the output of the equation

depend as many input bits as possible. We construct an experiment to see the output

distribution versus different values of α in equation c = (αab)(mod 1), where α = 2k and

k = 0, 4, 8. Let a, b and c be 8-bit binary numbers in (0,1) and 0.p1p2p3 · · · p16 denotes

16-bit product of a× b. For example, when α = 24, the result of (αab)(mod 1) is equal to

0.p5p6 · · · p16. Because c is 8-bit, p13, p14, p15, and p16 are dropped. Three results, cL, cM ,

and cH are computed with α=28, α=24, and α=20, respectively. More specifically, cL is

equal to 0.p9p10 · · · p16, cM is equal to 0.p5p6 · · · p12, and cH is equal to 0.p1p2 · · · p8.

Let a and b be selected in uniformly distributed. The Probability Mass Function

(PMF) of cL, cM and cH are shown in Fig. 2(a)–(c), respectively, where the x-axis denotes

the value of c. The results show that, for truncated result cH and cL, c results in higher

probability in some values. On the contrary, cM has even probability distribution. The

values of standard deviation for cL, cM , and cH are 0.26, 0.05 and 0.39, respectively. The

uniform distribution is an important property when a function is applied to a crypto

system.

Fig. 1 is near here.

Fig. 2 is near here.

In Eq. (3), to make the output of map uniformly distributed, α should be close to half

length of x. Since x is in q-bit precision, α is set for 2⌈
q
2
⌉, where ⌈x⌉ rounds the element

of x to the nearest integer greater than or equal to x. Here, our digitalized VLM in q-bit

precision is shown in Eq. (5). Before the presentation of VLM, we define a binary floor

function, ⌊x⌋q, which preserves the most significant q bits of x and sets other bits to be

zero. The VLM is defined as

V LM(γ, x) = ⌊[α ⌊(αγx) (mod 1) ⌋q (1 − x) ] (mod 1) ⌋q, (5)

where x and γ are q-bit binary numbers in (0,1). Let x[i] be the ith bit of variable x. x

and γ can be represented by x =
∑

2−ix[i] and γ =
∑

2−iγ[i] for i = 1 to q, respectively.

The detail of computation is as follows.
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We take a 32-bit VLM as an example to describe the calculation of V LM(γ, x). At the

beginning, (216γx)(mod 1) will be computed first. The result of γx will be computed and

modulated to keep the value between (0,1), and then truncated to 32-bit by truncation

operation. More specifically, the integer part of 216γx is the most significant 16 bits of

216γx since x and γ are between (0,1). The (mod 1) operation will drop the most significant

16 bits of 216γx, and ⌊(216γx) (mod 1) ⌋32 operation will drop the least 16 significant bits

of 216γx. Hence, the most and least significant 16 bits of γx are both truncated, and then

the result is passed to the next step.

Let ⌊(216γx) (mod 1) ⌋32 be p. p is a 32-bit binary number and will be multiplied by

1 − x. Since p(1 − x) is a 64-bit binary number, p(1 − x) will be truncated to 32-bit by

the same way we truncate γx. Finally, V LM(γ, x) is a 32-bit number and between (0,1).

One last constraint is for the value of γ. γ is in q-bit and between (0,1). When

2−q ≤ γ ≤ 2−(q−1), the result of α2γ in Eq. (4) is smaller than 4. However, as studied

in [Chang et al., 2009], α2γ is required to be a multiple of 4 for Eq. (4) to generate a

chaotic map. In order to keep α2γ a multiple of four, we let the least significant two bits,

γ[q − 1] and γ[q], be equal to 0. That means the smallest γ is 2−(q−2) and the smallest

value of α2γ is 2
q

2 × 2
q

2 × 2−(q−2) which is equal to 22. Hence, we guarantee α2γ to be

greater than 4 and a multiple of 4.

In Fig. 3, we plot the return map of VLM with γ = 2−16. Even with a small value of

γ, VLM becomes a nonlinear map with plenty of discontinuity.

Fig. 3 is near here.

The truncation operation during V LM(γ, x) computation makes V LM(γ, x) not con-

tinuously differentiable, but the truncation error can be treated as a scrambling function

of Eq. (3). Because of the discontinuity of the function, it is difficult to theoretically prove

the chaotic property of the proposed digitalized VLM. Hence, numerical experiments to

verify the chaotic properties of VLM including the discrete Lyapunov Exponent [Kocarev

et al., 2006], the bifurcation graph, output spectrum analysis, and output cycle length are

conducted.
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1). The discrete Lyapunov Exponent and bifurcation graph.

Previous work [Kocarev et al., 2006] was proposed to use numerical experiments to verify

chaotic property of digitalized chaotic system by the Discrete Lyapunov Exponent (DLE).

Let mi be the subset of trajectory of a digitalized map F in length M and d(mi, mj) be

the distance between mi and mj. In [Kocarev et al., 2006], the basic expression of DLE

is defined as

λF =
1

M

M−1
∑

i=0

ln
d(F (mi+1), F (mi))

d(mi+1, mi)
.

Map F is a discrete chaotic map if it’s DLE (λF ) tends to a positive number when

M → ∞. For example, let γ = 4, DLE of a 32-bit classical logistic map is 0.69 when

M = 10000.

We compute DLEs for 32-bit VLM when 2−30 ≤ γ ≤ 2−20. For each γ, DLEs are

calculated with three different Ms, 100, 1000, and 10000 to understand the trends of DLEs

when M is increased. For each M , DLEs for 1000 different trajectories are computed and

the average value is shown in Fig. 4. The results show that DLEs are all positive when

γ > 0. Moreover, DLEs are increased when M is increased. Hence, we know VLM is

discrete chaos as defined in [Kocarev et al., 2006].

Fig. 4 is near here.

Moreover, to understand if there are windows in VLM. We compute the bifurcation

diagram of VLM for γ = 2−30 to 2−1. The result is shown in Fig. 6. It reveals that the

output data of VLM has no window for γ = 2−30 to 2−1. As a result, from theoretical

and numerical point of view, we know that VLM is a chaotic map.

2). The output spectrum analysis.

To analyze the auto-correlation and spectrum of output sequences generated by Eq. (6),

we randomly select the values of γ and x0. Fig. 7 shows the results when γ = 0.609375

and x0 = 0.21875. First, in Fig. 7(a) we plot 10,000 output data. The result shows

that the output sequence is visualized randomly. In Fig. 7(b), the spectrum analysis by

FFT signifies that the output sequence is a chaotic sequence [Parker & Chua, 1989]. In
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Fig. 7(c), the auto-correlation of the output sequence indicates that the output data are

quite independent.

3). The output cycle length.

This experiment is conducted to compare the cycle number of an output sequence gener-

ated by

xi+1 := V LM(γ, xi), i = 0, 1, . . . (6)

with that by a classical logistic map in 32-bit precision.

With random initial values, the cycle lengths of 10,000 output sequences are generated

by 10,000 γs chosen evenly from interval 2−30 ≤ γ ≤ 2−1 for our VLM shown in Eq. (6)

and from interval 3.57 < γ ≤ 4 for a classical logistic map.

In Fig. 5, we observe that in 10,000 output sequences generated by logistic map, over

10% of the output sequences form periodic orbits with a period less than 100, and only

9% of the output sequences form chaotic orbits with cycle lengths more than 50, 000. On

the contrary, the result by VLM shows that there is only 0.2% of output sequences with

cycle lengths smaller than 100 and 31.8% larger than 50,000.

Fig. 5 is near here.

Fig. 6 is near here.

Fig. 7 is near here.

As to hardware cost, the modular arithmetic and truncation operation in Eq. (5) can

be easily implemented by bit-selection, i.e., by signals routing. Implementation of VLM

will not increase circuit area as compared with classical logistic map. From application

point of view, our VLM is more efficient and reliable than the classical logistic map under

the same implementation hardware cost. Thus, based on the above properties of VLM, in

the next two sections, we will develop a scalable Multi-VLM (MVLM) system to increase

key space and complexity by scrambling and coupling methods.
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3 Scrambling Method for VLM

Although VLM has no window in parameter space, similar to other digitalized chaotic

map, the output cycle length is far below the number of states. As shown in Fig. 5, 68.2%

of 10,000 γs generate an output cycle with length small than 50,000. The cycle length

is relatively smaller than the number of states of a 32-bit VLM. To increase the output

cycle length and complexity, in this section, we will introduce our scrambling method and

in the next section, coupled multiple system.

A scrambling method is useful and widely used in digital chaotic system. In [Cermák,

1996], scrambling is applied not only to the output but also the parameter to increase

the output length. In [Li et al., 2001], linear feed back shift registers (LFSR) which

has uniformly distributed output is used as a noise to scramble the output of chaotic

system. These methods show that scrambling method can improve the uniformity of

output distribution and increase cycle length.

The scrambling strategy for VLM is shown in Fig. 8. A q-bit LFSR, Lx is used to

scramble xi.

Fig. 8 is near here.

The LFSR, Lx, generates a pseudo random number sequence ni which is defined as

ni = Lx(ni−1), i = 0, 1, . . . . (7)

Then, ni is xor-ed with xi to scramble output. Lx should be primitive to have a

maximum cycle length output and uniform scrambled outputs. From Eq. (7) the sequence

generated by VLM after scrambling is defined as follows.

x̄i+1 = V LM(γ, x̄i) ⊕ ni, i = 0, 1, . . . .

By the proposed scrambling method, a deterministic bound of cycle length is calculated

as follows. In [Sang et al., 1998], the low bound of cycle length of a scrambling system is

given by

∆ · (2m − 1),
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where ∆ and m are the scrambling period and the length of LFSR used to scramble the

system, respectively.

The main idea to scramble a chaotic system is to scramble the trajectory before it

enters a loop. Hence, the output cycle length is increased. For example, Li’s [Li et al.,

2006] scrambles outputs of a logistic map by a fixed pattern with ∆ = 700. By this

method, the cycle extension is small because the ∆ and m are small. Moveover, the

method needs a counter to count the scrambling period. In our proposed scrambling

method, ∆ and m are equal to 1 and q, respectively. Then, for a q-bit VLM, the low

bound of cycle length will be 2q − 1. The hardware cost is a q-bit LFSR which is smaller

than a counter used to count the period.

In order to generate uniformly distributed outputs with maximum cycle length, a

primitive LFSR is used in our scrambling system. After scrambling, the output as well

as the next input of VLM tends to be more uniformly distributed. An experiment is

conducted to show that the proposed scrambling can improve the output distribution

by measuring the 1’s probability of the output sequence generated by a scrambled 32-

bit VLM. In this experiment, γ is equal to (0.10001000)H and Lx is defined by Lx(x) =

x32 +x31 +x30 +x29 +x28 +x22 +1. For each scrambling period, 106 outputs are generated.

In Fig. 9, when the scrambling period is decreased, the probabilities of 1 in outputs are

close to 0.5.

Fig. 9 is near here.

We will verify the statistical property of VLM with scrambling method by statistical

test suite in Section 5.4. It will show that VLM with scrambling can significantly increase

output complexity when compared with classical logistic map. In next section, we will

construct MVLM by coupling VLMs to improve output complexity and enlarge key space.

4 Coupling Multi-VLM

Based on VLM and scrambling functions, a scalable Multi-VLM (MVLM), is proposed to

increase the number of keys and complexity of output sequence.
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4.1 Structure of Multi-VLM

An MVLM is constructed by m VLMs denoted by V LMi for i = 1 to m. For each V LMi,

the output is scrambled by a noise sequence, n(j), generated by a global (q×m)-bit LFSR,

Lx.

Let the output of V LMi at jth iteration be x
(j)
i and x

(j)
i be scrambled by a segment

of (q × m)-bit noise sequence, n(j)[1 : qm]. The scrambling function is defined by

x̄
(j+1)
i = x

(j)
i ⊕ n(j)[q(i − 1) + 1 : qi], j = 0, 1, . . . ,

where n(j) is generated by Lx, and n(j+1) = Lx(n
(j)).

The scrambled result of V LMi, x̄
(j+1)
i , is fed to V LM(i+1), except x̄

(j+1)
m which is

generated by the last VLM and fed to V LM0. The whole system forms a cascaded chain

and can be defined by

x
(j)
i =







V LM(γ
(j)
1 , x̄

(j)
m ), i = 1,

V LM(γ
(j)
i , x̄

(j)
i−1), 1 < i ≤ m.

Finally, the output sequence of MVLM is generated by an output function T . Output

function will be discussed in Section 4.3. The output sequence Seq is given by

Seqj = T (x̄(j+1)
m ), j = 0, 1, . . . . (8)

For example, a MVLM constructed by 4 VLMs is shown in Fig. 10. In this system,

m is equal to 4 and all VLMs are in 32-bit precision. The 32-bit output x
(j)
1 of VLM 1

will be xor-ed by n(j)[1 : 32] to generate x̄
(j)
1 , which is fed to VLM 2. Similar connections

are constructed for VLM 2 and VLM 3. Finally, the last x
(j)
4 is xor-ed by n(j)[97 : 128] to

produce x̄
(j)
4 which is fed to VLM 1.

The last problem to be solved is the initial states, x
(0)
i for i = 1 to 4, and n0 for Lx.

With different initial states, outputs of MVLM will be different. In next section, key

initialization process is used to generate initial states. After key initialization, MVLM is

ready for generating Seq.

Fig. 10 is near here.
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4.2 Key Initialization

In Section 2, we have shown the chaotic properties of the VLM, where with small differ-

ences in x and in γ, the generated output sequences will be very different. In MVLM,

this chaotic properties are not only used in generating the output sequence but also used

in key initialization. Key initialization generates values of γi, x
(0)
i , and n(0) for i = 1

to m, called internal keys. The purpose of key initialization is to generate internal keys

that have minimal relations to the user specified KEY. With different internal keys, each

MVLM can generate different output sequence.

Without loss of generality, we take the MVLM shown in Fig. 10 as an example of key

initialization process. The process can be easily extended to a MVLM constructed by m

q-bit VLMs.

The input of key initialization procedure is an 128-bit KEY and the outputs are

internal keys. There are two steps in key initialization. The first step uses KEY and

default value to generate intermediate internal keys. Then, the second step will use the

intermediate internal keys to create internal keys.

The purpose of the first step is to allow bit changes in KEY to have influence on

internal keys. In the first step, the configuration is shown in Fig. 11. The initial value of

each VLM i for i = 1 to 4 will be given by following equations. First, each γi is assigned

by KEY [1:64] with

γi[k] =



















1, k = i,

KEY [16i + k − 32], 17 ≤ k ≤ 32,

0, others,

where 1 ≤ k ≤ 32. Then, KEY [65:128] is loaded to x
(0)
i by

x
(0)
i [k] =







KEY [16i + k + 48], 1 ≤ k ≤ 16,

0, 17 ≤ k ≤ 32.

Fig. 11 is near here.

Finally, KEY also becomes the initial value of noise n(0) by equation defined as follows.
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n(0)[k] = KEY.

Moveover, in order to reduce the correlation between KEY and γi, the least significant

bit of x
(j)
i is fed back to generate γi in the first step of key initialization. We will shift γi

right one bit per cycle and replace the most significant bit of γi by the last significant bit

of x
(j)
i where the updating function of γi is given by

γi = (γi ≫ 1) ⊕ (0x00||x
(j)
i [32] & 0x01) ),

where i = 1 to 4.

The architecture of cascaded VLMs we use in the first stage is shown in Fig. 12. Let

one output be generated in one cycle with initial values described in Fig. 11. The system

runs 128 cycles to generate x
(128)
i and γi, where x

(128)
i and γi are called the intermediate

internal keys and will be used to generate internal keys. The reason why 128 cycles are

required is that LFSR will shift one bit to left each cycle and the length of Lx is 128 bits.

It needs 128 cycles to shift the first bit to the last bit.

Fig. 12 is near here.

In the first step, value of n(0) is directly assigned from KEY and generated by Lx

which is linear and predictable. In the second step, we use the intermediate internal keys

to generate n(0) non-linearly and chaotically.

In the second step, x
(j)
i is fed to V LMi+1 for i = 1 to 3 without scrambling and the

last x
(j)
4 is fed to V LM0. The configuration is shown in Fig. 13. Moreover, the first bit of

x
(j)
4 , i.e., x

(j)
4 [1], is fed to a 128-bit register, nreg. With x

(128)
i and γi generated in the first

step, the system will run the next 128 cycles to generate nreg which can be defined by

nreg[k − 128] = x
(k)
4 [1], 129 ≤ k ≤ 256. (9)

Fig. 13 is near here.

One bit of nreg is generated one cycle by cascaded VLMs. After that, the value of nreg

will be used as initial values of Lx, n(0).
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Key initialization procedure totally needs 256 cycles. The first 128 cycles is used to

propagate the influence of each bit in KEY to intermediate internal keys. In the second

128 cycles, intermediate internal keys are used to generate nreg (i.e. n(0)) and reduce the

correlation between n(0) and KEY . After 256 cycles, the values of x
(256)
i become x

(0)
i .

Then, x
(0)
i , γi and n(0) which are internal keys are ready for MVLM to generate Seq.

4.3 Output Function

The x̄
(j)
m generated by MVLM is a good random source for security applications. The

output function is used to further increase the complexity and prevent the whole trajectory

from attacking. With small amount of implementation cost, bit-selection is the most

common method to perform output function where several bits of trajectory are selected

to be the output. At one extreme, only one bit is selected. In this case, reconstructing

the trajectory from the output is impossible but the system is not efficient since only one

bit is generated in one cycle. The number of selected bits can be decided by the secure

level that application needs. For example, if 8-bit output data for application usage is

required, the output function can be defined by selecting the middle 8 bits from a 32-bit

x̄
(j)
m [1 : 32], and Seq[1 : 8] will be equal to x̄

(j)
m [13 : 20]. The selection provides a trade-off

between output efficiency and information security.

5 Cryptanalysis of MVLM

In this section, we consider some security properties and general attacks against a MVLM.

5.1 Key Space

The key length of MVLM is (q×m) bits where m is the number of coupled VLMs in MVLM

and q is the precision of VLM. In Section 4.2, 128-bit KEY is used to generate internal

keys which are values of four 32-bit x
(0)
i , four 32-bit γi and one 128-bit n0. There are two

properties we want to ensure in key initialization stage when we map KEY to internal
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keys. One is being a one-to-one mapping and the other is to reduce the correlations

between both.

Since segments of KEY are separated and assigned as initial states of primitive LFSR

which are Lx, the LFSR will generate different sequence with different KEY s. That means

the map is a one-to-one mapping. Moreover, the second property that the correlations

between KEY and internal keys should be reduced is also achieved because internal keys

is generated after 256 chaotic-system iterations staring with KEY . The key space of the

MVLM is 2128.

5.2 Cycle Length

To avoid short length of a single VLM, we use a q-bit noise ni to scramble each output, xi,

periodically. The cycle length of xi is not predictable but the cycle length of ni depends

on the length of LFSR, Lx, which is 2q − 1. Since the scrambled output is computed by

xi ⊕ ni, 2q − 1 is the low bound of the cycle length of scrambled output. In a MVLM

which is constructed by m VLMs, the scrambling noise is a (q × m)-bit ni. The minimal

cycle length of Seq will be 2qm − 1. In Section 4, the cycle length of the MVLM coupled

by four 32-bit VLMs will be at least 2128 − 1.

5.3 Correlation

The cross-correlations between the output sequences generated by different KEY s is

considered. To check this properties, two Seqs are generated by selecting all 32-bit of

MVLM’s output described in Section 4, i.e., Seqj = x
(j)
m when KEY = 0 and KEY = 1.

Note that, only one bit is different between these two input KEY s. In Fig. 14, it shows

that the cross-correlations between two sequences generated by two KEY s are very weak.

Fig. 14 is near here.
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5.4 Statistical Analysis

The randomness of the our system is tested by two test suites, SP800-22 developed by

NIST [Rukhin et al., 2001] and TestU01 proposed by L’Ecuyer [L’Ecuyer & Simard, 2007].

The SP800-22 test suite has been the standard reference for randomness testing. Hence,

we use SP800-22 as our first randomness test. Then, to further compare the randomness

of the proposed system and other digital chaotic generator, TestU01 is used.

The parameters for SP800-22 tests include α = 0.01, T = 120, and others as shown in

Table 1. For each test, 120 sequences will be generated by systems with the length of 106.

For each sequence, each test produces a P-value, where P-value should be in range, [0.01,

1.00], to pass the test. For each test, the minimum passing rate of a well random source is

0.9627 out of 120 binary sequences. The distribution measurement of collected P-values

denoted by U-value are also reported. If U-value is greater than 10−4, the sequence can

be considered to be a good random-sequence.

Table 1 is near here.

As to tests by TestU01, three test suites, SmallCrush, Crush, and BigCrush are ap-

plied. Recommended by TestU01, SmallCrush is used first to take a fast test to check the

basic requirement of randomness and followed by Crush, and BigCrush which is the most

stringent statistical testing suite in TestU01. For each test, a p-value is calculated. If p-

value is out of the range, [0.001, 0.9990], the system fails the test. Crush needs 235 output

sequences of tested system to perform 144 statistical tests, whereas BigCrush needs 238

output sequences to perform 160 statistical tests. In the following, we will illustrate the

quality of randomness of the proposed system in terms of statistical testing results.

1). Randomness improvement by the scrambling function.

The first experiment is conducted to understand the efficiency of the scrambling func-

tion described in Section 3. A 32-bit VLM with/without scrambling function is tested

by SP800-22. The initial values of γ is 0.05079f23 and polynomials of Lx are chosen as

Lx(x) = x32 +x31 +x30 +x29 +x28 +x22 +1. All 32 bits of system output are selected and
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fed to testing package directly. As shown in Table 2, without the scrambling function, the

VLM fails some tests because the short output length. On the contrary, with scrambling

function, the scrambled VLM passes all tests and has uniformly distributed p-values for

all tests in SP800-22 test suite.

Table 2 is near here.

2). Quality of randomness versus system precisions.

To understand quality of randomness of a scrambled VLM when system precision is in-

creased, testing results of systems in 16-bit, 20-bit, and 24-bit are shown in Table 3.

The results show that when system precision is 16-bit, the scrambled VLM fails 7 tests

because of the non-normally distributed P -values shown in column 3. However, when

system precision is larger than 24, the scrambled VLM passes all tests in SP800-22 and

has uniformly distributed P -values.

Table 3 is near here.

3). Comparison with previous work.

We will compare the proposed system to several digitalized chaotic map based generators

with respect to quality of randomness. The first system is Li’s system [Li et al., 2006]

based on classical logistic map. To increase the output cycle of digitalized logistic map, Li

used a timing-based reseeding method which disturbed the last five least significant bits

of the output sequence by a fixed pattern when a period of time is reached. The second

system is Chen’s system [Chen et al., 2008] which is a hyper-chaotic system based on

modified logistic map to extend the parameter space and output complexity. The third

system is Addabbo’s system [Addabbo et al., 2007] based on piecewise-linear chaotic map.

By utilizing the nonlinear property during truncation, Addabbo’s system extended the

period of Rényi chaotic map with length up to 2n − 1. Authors also provided a method

to combine two subsystems to form a system that has maximum global cycle length and

well quality of randomness.
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The comparison results are divided into two groups according to bits of output per

cycle. The first group contains classical logistic map, Li’s and Addabbo’s systems, where

one bit is generated per cycle. In order to compare ours to systems in group one, the

16th bit of x̄i is selected as the output of VLM. The second group contains Chen’s system

which generates 24-bit output per cycle. All systems are operated in 32-bit precision or

the closet precision reported by the literatures. In Table 4, test results for scrambled

VLM are compared with those for Classical Logistic Map, Li’s [Li et al., 2006] system,

Chen’s [Chen et al., 2008] system and Addabbo’s [Addabbo et al., 2007] system in terms

of the number of failed tests. The test suites and the number of tests are shown in the

first row. The columns, Precision and Output Width shows the precision of system and

number of bits of one output, respectively.

With the scrambling function described in Section 3, VLM has least number of failure

counts both in single bit output and multiple bits output. It shows that the scrambled

VLM has good quality of randomness. In row 4, Li’s system can improve the randomness

when compared with classical logistic map showed in row 3 but still fail the Crush and

BigCrush tests. The results of Addabbo’s system are shown in row 5. Although a single

Addabbo’s system has less implementation cost and passes most tests in SP800-22, it fails

lots of tests in TestU01 testing suites. In row 6, the results for combined Addabbo’s

system of 17-bit and 15-bit sub-systems are also included. In row 7, Chen’s hyper-chaotic

system passes tests in SP800-22 but fails several tests in Testu01. Finally, to verify the

statistical properties of MVLM, results for MVLMs coupled by two 32-bit VLMs (labeled

MVLM(2)) and three (labeled MVLM(3)) are presented. As presented in rows 8 and 9,

MVLMs can pass all tests in all test suites when the number of coupled systems is more

than 2. This statistical testing result shows that both scrambled VLM and combined

Addabbo’s systems have well statistical properties.

Table 4 is near here.

4). Scrambling function for different systems.

The total numbers of states in each testing system are different. For example, a 32-bit
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VLM with scrambling function has 64-bit (32+32-bit LFSRs) registers and Li’s has 42-bit

(32+10-bit counter) registers. In order to provide each system has comparable number

of registers, the scrambling function is applied to each system. In Table 5, testing results

show that classical logistic map and Li’s system have a lot of statistical weak points even

when the output and parameter are scrambled. Moreover, Li’s system is worse than its

non-scrambling version. Similar to VLM, Addabbo’s system can improve the quality of

randomness by scrambling. The table also shows that scrambled VLM performs slightly

better than scrambled Addabbo’s system in terms of failure count.

The proposed scrambling function is to scramble the output as well as the input of the

scrambled system. When inputs are uniformly distributed in (0,1), outputs of VLM and

Addabbo’s system tend to uniformly distribute in (0,1). Hence, the scrambling function

we proposed is suitable for VLM and Addabbo’s system to increase the output complexity

and keep output sequence uniformly distributed. However, the output value distribution

of classical logistic map and Li’s system tend to be non-uniformly distributed. When the

scrambling function is used, it results in worse statistical properties.

Table 5 is near here.

5.5 Reconstruction complexity

Since Adddabbo’s system shows the best statistical property among all previous work,

we will compare VLM and Addabbo’s [Addabbo et al., 2007] system in reconstruction

complexity. Addabbo’s system is based on Rényi map which is a linear chaotic map.

Addabbo’s system is a good pseudo random number generator because the system gener-

ates output sequence with well quality of randomness and maximum cycle length at low

hardware cost. However, the system may be not suitable to apply in secure communication

directly.

The first reason is a small set of parameter space. With particular parameters,

Addabbo’s system generates output sequence with maximum cycle length. The restricted

parameter space reduce the complexity of cryptoanalysis. The second reason is the linear-

ity of Rényi map. Since the piecewise-linear map has the same slope everywhere in each
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subinterval, the Lyapunov Exponent, topological, metric, and Rényi specific entropies are

all equal. On the contrary, VLM is based on a piecewise and non-linear map which is

different from piecewise-linear map in non-linear senses. These linearity properties can

be understood by autocorrelation analysis. For example, the autocorrelation function is

calculated for 10,000 sequential states on trajectories of a 31-bit Addabbo’s system and a

32-bit VLM, respectively. As shown in Fig. 15(a), Addabbo’s system has relative high cor-

relations between sequential states when −25 < Lag < 25. On the contrary, in Fig. 15(b),

VLM has no peak value except Lag = 0. The high correlation among sequential states

will become a flaw which can be utilized to reconstruct the system when sequential states

are used as system outputs directly. The correlations can be reduced by avoiding using

sequential states (skipping several states). Then, the system will suffer from short the

length of output cycle.

Fig. 15 is near here.

6 Hardware Architecture of MVLM

In this section, we show implementation of MVLM in hardware. We describe our designs

in hardware description language (HDL), and then synthesize them by commercial tools.

To be more specific, designs are written in Verilog and synthesised by Synopsys Design

Compiler (Version X-2005.09-SP4) with TSMC .18µm technology library. Area and tim-

ing information is obtained in gate-level netlist. Fig. 16 shows the block diagram of the

core to compute a single V LM(γ, x). The block, zero detector computes two functions.

The first is to set γ[31] = 0 and γ[32] = 0 to satisfy the constraint that α2γ should be a

multiple of four. The second is to prevent VLM from generating all zero output sequence

by assigning r[30]=1 when γ = 0. Afterwards, the blocks denoted by truncation, are

used to implement the modular and truncation operations to keep the product in 32-bit

precision. Since the truncation operation of VLM drops the most significant 16 bits dur-

ing multiplication, (i.e., the logic circuit for these bits are no longer needed and can be

removed), only 24 × 32 multiplier is required as compared to 32 × 32 multiplier needed
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by classical logistic map. Moreover, a 32-bit subtractor is used to compute (1 − xi).

The components for data-path in a scrambled VLM and other systems are compared

in Table 6. In our VLM, two 24 × 32 multipliers are required. One comparator is used

to check the input x and γ are zero or not, and one LFSR is used for the scrambling

function. After synthesizing logic equation to gate-level netlist, the comparison of area

cost in terms of gate counts for a scrambled VLM and other systems are shown in Table 7.

The area cost of VLM is smaller than classical logistic map because the multipliers used

in V LM is smaller than that used in classical logistic map. From [Li et al., 2006], the

gate-count for Li’s system is calculated by total gate area divided by a two-input NAND

gate which is equal to 9.98 µm2(The same implementation technology as ours). Compared

with Li’s system, V LM is operating at lower frequency, but has smaller area and more

complex output sequence. When compared to a single modified logistic map proposed by

Chen [Chen et al., 2008], VLM has smaller area cost and higher throughput because one

multiplier is removed as described in Section 2. The hardware cost of Addabbo’s system is

not available, but we believed that Addabbo’s system has the smallest area cost since only

one multiplier is required. Compared with Addabbo’s system, VLM has more complex

statistical properties with reasonable area overhead.

Furthermore, for MVLM implementation, Fig. 17 shows the data-path architecture of

a MVLM with m = 4. The data flow of the system is partitioned into 4 stages separated

by registers denoted by black blocks. Table 8 shows the synthesized results including

control circuit for m = 1 to 4. The area and throughput of Chen’s system [Chen et al.,

2008] coupled by two 32-bit modified-logistic maps are also reported. When compared to

Chen’s system, a MVLM with m = 2 has smaller area and higher throughput because

of the proposed VLM reduces the number of multipliers in the data-path. Moverover,

MVLM with m = 2 has better quality of randomness. The experimental results also show

that the area of a MVLM is increased linearly with the number of VLMs. The system

can be easily scaled up to higher degree.

To end this, we know that the statistical test results show that the output sequence

generated by VLM in 32 bits per cycle can pass all tests. Moveover, under 100 Mhz oper-
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ating frequency, VLM achieves 3,200 Mbps throughput, which is the best in all systems.

Fig. 16 is near here.

Table 7 is near here.

Fig. 17 is near here.

Table 8 is near here.

7 Conclusion

A new chaotic map, VLM, has been proposed to have large parameter space without

windows and high throughput in low hardware cost. A 32-bit VLM with the proposed

scrambling method can pass all tests in SP800-22 and the most stringent statistical testing

suite in TestU01. With up to 3,200 Mbps throughput and complex output properties,

VLM is suitable for security applications. We also showed a chaotic cryptographical

scheme, MVLM, constructed by multiple VLMs. In an embodiment, by coupling four

32-bit VLMs, the MVLM generates the output sequence with a minimal length equal to

2128 − 1 by a 128-bit external key.
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[2] Álvarez, G. & Li, S. [2006] “Some basic cryptographic requirements for chaos-based

cryptosystems,” Int. J. Bifurcation and Chaos 16, 2129–2151.

[3] Barreto, E., Hunt, B. R., Grebogi, C. & Yorke, J. A. [1997] “From high dimensional

chaos to stable periodic orbits: the structure of parameter space,” Phys. Rev. Lett.

78, 4561–4564.

[4] Cermák, J. [1996] “Digital generators of chaos,” Phys. Lett. A 214, 151–160.

[5] Chang, S. M., Li, M. C. & Lin, W. W. [2009] “Asymptotic synchronization of modified

logistic hyper-chaotic systems and its applications,” Nonlinear Analysis: Real World

Applications, 10, 869–880.

[6] Chen, S. L., Chang, S. M., Hwang, T. T. & Lin, W. W. [2008] “Digital secure-

communication using robust hyper-chaotic systems,” Int. J. Bifurc. Chaos 18, 3325–

3339.

[7] Frey, D. R. [1993] “Chaotic digital encoding: an approach to secure communication,”

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process 40, 660–666.
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Fig. 1: (a) The least significant 4 bits truncated. (b) Preserving middle significant bits

in truncation operation.
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Fig. 6: The bifurcation diagram of VLM for 2−30 ≤ γ ≤ 2−1.
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36



Lx

V LM1

γ1

V LM2

γ2

V LM3

γ3

V LM4

γ4

nj [1:32]

nj [33:64]

nj [65:96]

nj [97:128]

Seqj

x
(j)
1 x̄

(j+1)
1

x
(j)
2 x̄

(j+1)
2

x
(j)
3 x̄

(j+1)
3

x
(j)
4

x̄
(j+1)
4

T

Fig. 10: The top view of a MVLM coupled by 4 VLMs.

37



Lx

γ1

V LM1

V LM2

V LM3

V LM4

γ2

γ3

γ4

x
(j)
1

x
(j)
2

x
(j)
3

x
(j)
4

KEY [1 : 128]

KEY [1 : 128]

{0x8000‖KEY [1:16]}

{KEY [65:80]‖0x0000}

{0x4000‖KEY [17:32]}

{KEY [81:96]‖0x0000}

{0x2000‖KEY [33:48]}

{KEY [97:112]‖0x0000}

{0x1000‖KEY [49:64]}

{KEY [113:128]‖0x0000}

Fig. 11: The initial values to V LMi from KEY .

38



Lx

V LM1

γ1

V LM2

γ2

V LM3

γ3

V LM4

γ4

n(j)[1:32]

n(j)[33:64]

n(j)[65:96]

n(j)[97:128]

Seqj

x
(j)
1 x̄

(j+1)
1

x
(j)
2 x̄

(j+1)
2

x
(j)
3 x̄

(j+1)
3

x
(j)
4

x̄
(j+1)
4

T

Fig. 12: In the first step of key initialization, γi will be shifted to right one bit per cycle

and the most significant bit of γi will be replaced by x
(j)
i [0].

39



nreg

V LM1

V LM2

V LM3

V LM4

γ4

x
(j)
1

x
(j)
2

x
(j)
3

x
(j)
4

Lx

γ3

γ2

γ1

Fig. 13: Using cascaded VLMs to generate n(0) in the second step of key initialization.

40



−8000 −4000 0 4000 8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 14: The cross-correlations between KEY = 0 and KEY = 1.

41



−100 −50 0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

(a)

−100 −50 0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

(b)

Fig. 15: Autocorleation functions for (a) a 31-bit Addabbo’s system, and (b) a 32-bit

VLM.

42



γ

24 × 32

V LM(γ, x)

zero detector

1 − x

64

truncation

truncation
64

32

x

24 × 32

Fig. 16: The architecture of the VLM.

43



Table 1: Parameters in SP800-22.

Block freq. m=128 Serial m=16

Longest run M=10000 Apen m=10

Nonoverlap. m=9 Linear Comp. m=500

Overlap. m=9 Universal L=7,Q=1280
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Table 2: The statistical test results of the VLM with/without scrambling function by

SP800-22.

VLM scrambled VLM

Tests Yield U-value Yield U-value

Frequency 0.9917 0.04374 0.9917 0.77276

Block freq. 0.9917 0 0.9833 0.99146

Cumulative∗ 0.9917 0.00347 0.9875 0.72303

Runs 0.9917 0.00038 0.9917 0.42203

Longest run 0.9833 0 0.9917 0.39245

Rank 0.9583 0.40709 0.9917 0.07044

FFT 0.9917 0.96429 0.9833 0.29925

Nonoverlap.∗ 0.9821 0.02469 0.9812 0.51330

Overlap. 0.9917 0.01596 0.9917 0.26445

Universal 0.9417 0 0.9583 0.78872

Apen 0.9917 0.00516 0.9833 0.35048

Random e.∗ 0.9966 0.67224 0.9895 0.69997

Random e.v.∗ 0.9918 0.08338 0.9899 0.09493

Serial∗ 0.9750 0.00054 0.9833 0.81194

Linear Comp. 0.9750 0.23276 0.9750 0.58520

Fail Count 2 3 0 0

∗average result of multiple tests is shown.
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Table 3: The statistical test results of a scrambled VLM in different precisions by SP800-

22.

16-bit 20-bit 24-bit

Tests Yield U-value Yield U-value Yield U-value

Frequency 0.9917 0 0.9917 0.00001 0.9917 0.87553

Block freq. 0.9917 0 0.9917 0.07808 0.9833 0.32418

Cumulative∗ 0.9917 0 0.9833 0.00002 0.9917 0.60582

Runs 0.9917 0 0.9833 0.22286 0.9917 0.06688

Longest run 0.9917 0 0.9833 0.11651 0.9750 0.26445

Rank 0.9667 0.15520 0.9917 0.46859 0.9833 0.84858

FFT 0.9667 0.94960 0.9750 0.08217 0.9750 0.88813

Nonoverlap.∗ 0.9827 0.03304 0.9813 0.43792 0.9827 0.50418

Overlap. 0.9917 0 0.9750 0.37813 0.9750 0.46859

Universal 0.9917 0.01791 0.9833 0.45279 0.9833 0.87553

Apen 0.9917 0 0.9917 0.80433 0.9750 0.99820

Random e.∗ 0.9981 0.23156 0.9983 0.31502 0.9834 0.37574

Random e.v.∗ 0.9924 0.06688 0.9919 0.00348 0.9919 0.03978

Serial∗ 0.9917 0.00232 0.9875 0.43128 0.9833 0.83925

Linear Comp. 0.9833 0.33716 0.9917 0.75647 0.9917 0.98503

Fail Count 0 7 0 2 0 0

∗average result of multiple tests is shown.
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Table 4: Failure counts in statistical tests for different systems.

Prec- Out SP800 Small - Crush Big-

ision -put -22 Crush (144) Crush

Systems Width (15) (15) (160)

scrambled VLM 32 1 0 0 3 8

classical logistic map 32 1 9 15 140 155

Li’s [Li et al., 2006] 32 1 1 15 144 156

Addabbo’s [Addabbo et al., 2007] 31 1 2 14 122 141

Addabbo’s [Addabbo et al., 2007]∗ 32 1 0 0 3 15

scrambled VLM 32 32 0 0 1 5

Chen’s [Chen et al., 2008]† 32 24 0 0 25 59

MVLM(2) 32 32 0 0 0 0

MVLM(3) 32 32 0 0 0 0

∗A combined 32-bit system by a 17-bit and a 15-bit subsystems.

†A hyper-chaotic system coupled by two 32-bit modified logistic maps.
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Table 5: Failure counts in statistical tests with scrambling function.

Num. of SP800-22 Small - Crush Big-

Reg. (15) Crush (144) Crush

System (15) (160)

scrambled 32+32 0 0 1 5

classical logistic Map 32+32 8 14 124 142

Li’s [Li et al., 2006] 42+32 12 23 123 143

Addabbo’s [Addabbo et al., 2007] 31+31 0 1 14 18
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Table 6: The components for data-path in VLM and other systems.

VLM classical logistic map Li’s [Li et al., 2006] Addabbo’s [Addabbo et al., 2007] modified logistic map∗

multiplier 2(24x32) 2(32x32) 1(32x32) 1(31x31) 3(32x32)

counter 0 0 1(10-bit) 0 0

comparator 1(32-bit) 0 1(10-bit)+1(32-bit) 0 2(32-bit)

LFSR 1(32-bit) 0 0 0 0

∗A single modified-logistic map proposed by Chen [Chen et al., 2008].
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Table 7: The synthesis result for VLM and other systems.

VLM classical logistic map Li [Li et al., 2006]

Technology(µm) .18 .18 .18

Area(#gate-count) 15697 20167 20075

Clock Frequency(Mhz) 100 100 200

Bits/Cycle 32 32 1

Bits/Second(Mbps) 3200 3200 200

Area Ratio 1 1.28 1.27

Throughput Ratio 1 1 0.06
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Table 8: The synthesized result of MVLM, and Chen’s system for m = 1 to 4

Number of VLMs(m) 1 2 3 4 Chen’s∗

Techonlogy(µm) .18 .18 .18 .18 .13

Area(#gate-count) 15732 31655 46910 62223 ∼57000

Clock Frequency(Mhz) 100 100 100 100 110

Bits/Cycle 32 32 32 32 24

Bits/Seconds(Mbps) 3200 3200 3200 3200 2840

Area Ratio 1 2.01 2.98 3.96 ∼3.62

∗ A system coupled by two 32-bit modified-logistic maps [Chen et al., 2008].
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