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In Satake’s generalized resource budget model of ecology, that was modified from Isagi’s resource budget
model, Satake and Iwasa illustrated, by computing the positive Lyapunov exponent, that if the depletion
coefficient is greater than one, then the system is chaotic. However, a positive Lyapunov exponent implies
only sensitivity in Devaney’s chaos. Therefore, this work presents mathematical viewpoints and numerical
analysis on Satake’s generalized resource budget model to rigorously prove that the generalized resource
budget model is chaotic in Devaney’s sense by using the snapback repeller theory and the topological entropy
theory. Moreover, this work also investigates that there is a significant difference between the behaviors of
positive odd depletion coefficients and positive even depletion coefficients under numerical computations.
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In this paper we present mathematical viewpoints
and numerical analysis on Satake’s generalized re-
source budget model, which describes the growth
of plants in ecology, to rigorously prove that the
model is chaotic in Devaney’s sense by using the
snapback repeller theory and the topological en-
tropy theory. Moreover, this work also inves-
tigates that there is a significant difference be-
tween the behaviors of positive odd depletion co-
efficients and positive even depletion coefficients
under numerical computations.

I. INTRODUCTION

Several explanations of the masting phenomenon have
been proposed1–22. They involve environmental fluc-
tuations, weather conditions, swamping predators, the
weight of young deer, bird populations, the reproductive
success of bears, increased efficiency of wind pollination,
attraction to seed distributions, cue masting, and the dis-
persing of animals. However, most of these hypotheses
explain neither the mechanism of masting nor the mech-
anism by which the timing of reproduction varies among
individuals23.

A. Isagi’s Resource Budget Model

Isagi, Sugimura, Sumida and Ito proposed a simple
model of the mechanism of masting that was based on
the resource budget of an individual tree24. They as-
sumed that a constant amount of photosynthate is pro-
duced by each tree annually, given that the environmen-
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tal conditions are constant from year to year. Photosyn-
thate (PS) is consumed for the growth and the mainte-
nance of the tree; any that is not used by the plant is
stored in a pool within the tree. The amount of PS was
constant from year to year. In one year when the accu-
mulated PS exceeded a threshold (LT ), the amount of
accumulated PS minus LT was used for flowering, and is
regarded as the cost of flowering Cf . Hence, whenever
the amount of photosynthate accumulated in preceding
years was large, the tree was inclined to flower more,
and the amount of flowering in a year also depended on
the amount of photosynthetic products that had accumu-
lated in the previous years. The amount of accumulated
PS was decreased to LT after the flowering. The flowers
were pollinated and bore fruits at a cost of Ca. The ratio
Ca/Cf was assumed to be constant RC . After the fruit-
ing had been completed, the amount accumulated was
LT − Ca = LT − RCCf . In the model, PS accumulates
annually, until the tree flowers again when the amount
exceeds LT .

B. Satake’s Generalized Resource Budget Model

Let S(t) be the amount of energy reserved at the begin-
ning of year t. If the sum S(t)+PS is below the threshold
LT , then the tree does not reproduce and saves all of its
reserved energy for the following year. If the sum ex-
ceeds LT , then the tree uses energy for flowering. Isagi
et al.24 assumed that the energy expenditure for flower-
ing exactly equals the excess, S(t)+PS−LT . Satake and
Iwasa23 generalized Isagi’s model by introducing a non-
dimensionalized variable Y (t) = (S(t)+PS−LT )/PS , and
the resource budget model was rewritten as

Y (t+1) =

{
Y (t) + 1 if Y (t) ≤ 0,
−κY (t) + 1 if Y (t) > 0,

t = 0, 1, . . . , (1)

where Y (0) ∈ R and κ denotes the degree of resource
depletion after a reproductive year divided by the excess
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amount of energy in reserve before that year, and is called
the depletion coefficient. Notably, the quantity Y (t) is
positive if and only if the tree exhibits some reproductive
activity in year t.
The generalized resource budget model (1) includes

only one parameter κ. It is clear that Y (t+1) goes to
infinity eventually at κ < 0. On the other hand, Y (t+1)

belongs in [−κ + 1, 1] as t large enough at κ ≥ 0. Sa-
take and Iwasa23 illustrated trajectories for three differ-
ent values of κ. When κ ∈ [0, 1), Y (t+1) quickly converges
to the stable equilibrium 1/(κ + 1). There are a num-
ber of two-point cycles corresponding to different initial
conditions when κ is exactly equal to 1. When κ > 1,
Y (t+1) keeps fluctuating with a chaotic time series. Fur-
ther, the authors studied the model of the coupling of
trees and found perfectly synchronized periodic repro-
duction, synchronized reproduction with a chaotic time
series, clustering phenomena, and chaotic reproduction
of trees without synchronization over individuals.
Satake and Iwasa23 identified chaos by computing a

positive Lyapunov exponent as the depletion coefficient
κ > 1. It is true25–28 that some investigations regard the
positive Lyapunov exponent as the definition of chaos
because sensitivity is the most important property of
chaotic systems and is easily observed. However, a pos-
itive Lyapunov exponent just implies that the map has
sensitive dependence on initial conditions26,28. The goal
here is to prove chaos by identifying density and transi-
tivity rather than sensitivity as in the chaos of Devaney
(defined in Section IIA).
In this paper we would like to point out that the gen-

eralized resource budget model (1) is chaotic in the sense
of Devaney. This paper is organized as follows. In Sec-
tion II, we first list essential preliminaries. In Section III,
we prove the existence of the snapback repeller of the gen-
eralized resource budget model, whenever the depletion
coefficient κ becomes greater than one. Numerical anal-
ysis of numerical simulations of the generalized resource
budget model are presented in Section IV. Finally, a
conclusion is given in Section V.
Throughout this paper, the composition of two func-

tions is defined as f ◦ g(x) = f(g(x)). The n-fold com-
position of f with itself recurs repeatedly in the sequel,
fn, and it is defined as fn(x) = f ◦ · · · ◦ f(x), where n is
the number of iterations.

II. PRELIMINARIES

A. Devaney’s Chaos

The chaos of a map has been defined in several ways29.
Although the comment “so many authors, so many def-
initions,” is true, a basic component of all definitions
is the unpredictability of the behavior of the trajectory
which is determined with some certain error. (The asso-
ciated phenomenon is usually described in terms of sen-
sitive dependence on initial conditions.) The definition

of the chaos of Devaney is considered herein because it is
fundamental and widely accepted.

Definition 1 (Devaney’s chaos30). Let X be a metric
space. A continuous map f : X → X is said to be chaotic
on X if

(Sensitivity): f has sensitive dependence on initial con-
ditions, meaning that, there exists δ > 0 such
that, for any x ∈ X and any neighborhood Nx

of x, there exists y ∈ Nx and n ∈ N such that
|fn(x)− fn(y)| > δ;

(Density): periodic points are dense in X;

(Transitivity): f is topologically transitive. That is, for
any pair of nonempty open sets U, V ⊂ X, there
exists k > 0 such that fk(U) ∩ V ̸= ∅.

A chaotic map possesses three ingredients, which are:
unpredictability, an element of regularity, and indecom-
posability. The system is unpredictable because of the
sensitive dependence on initial conditions30. In the midst
of this random behavior, however, is an element of regu-
larity, which is exhibited by the periodic points that are
dense. A chaotic system cannot be broken down or de-
composed into two subsystems (two invariant open sub-
sets) that do not interact under f because of topological
transitivity.

B. Snapback Repellers

Generally, proving that a dynamical system has chaotic
behavior is difficult. Most techniques for making such a
determination involve computer simulations, which apply
the arithmetic of the Lyapunov exponent, find a period
doubling bifurcation, and perform other tasks that are
associated with numerical dynamical systems. However,
obtaining such results by rigorous mathematical proofs
is difficult.

A dynamical system with diffeomorphism has chaotic
behavior that can be proved by using known methods,
such as the existence of Smale horseshoe, transversal
homoclinic orbits, or heteroclinic orbits. Noninvertible
maps have chaotic behavior that can be identified by the
existence of snapback repellers. However, for general fo-
cus problems, applying the above methods without com-
puter assistance is difficult. In most cases, the verifica-
tion must be carried out with the aid of a computer31.

In 1978, Marotto defined the snapback repeller32. The
existence of snapback repellers implies that a system is
chaotic.

Definition 2. 33 Let f : Rn → Rn be differentiable in
Br(x

∗) and x∗ be a fixed point of f with all eigenvalues of
Df(x∗) exceeding 1 in norm, and there exists a constant
s > 1 such that ∥f(x) − f(y)∥ > s∥x − y∥ for all x, y ∈
Br(x

∗). Suppose there exists a point x0 ∈ Br(x
∗) with

x0 ̸= x∗ and some positive integer m such that fm(x0) =
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x∗ and det(Dfm(x0)) ̸= 0. Then x∗ is called a snapback
repeller of f .

Remark

(1): In one-dimensional space R, the Jacobi matrix
Df(x∗) = f ′(x∗) and

det(Dfm(x0)) = (fm)′(x0)

=f ′(fm−1(x0))·f ′(fm−2(x0))· · ·f ′(f(x0))·f ′(x0)

= f ′(xm−1) · f ′(xm−2) · · · f ′(x1) · f ′(x0),

where xj = f j(x0), 1 ≤ j ≤ m− 1.

(2): Let snapback repeller x∗, f , m, and x0 be the same
as Definition 2. x∗ is said to be a nondegenerate
snapback repeller of f if there exist positive con-
stants µ and δ0 such that Bδ0(x0) ⊂ Br0(x

∗) and
∥fm(x)− fm(y)∥ ≥ µ∥x− y∥ for all x, y ∈ Bδ0(x0);
x∗ is called a regular snapback repeller of f if
f(Br0(x

∗)) is open and there exists a positive con-
stant δ∗0 such that Bδ∗0

(x0) ⊂ Br0(x
∗) and x∗ is an

interior point of fm(Bδ(x0)) for any positive con-
stant δ ≤ δ∗0

34,35.

The snapback repeller in Marotto’s theorem is nondegen-
erate and regular.

Theorem 3. 34–38 Let snapback repeller x∗, f , m, and
x0 be the same as Definition 2. If f is C1 in some
neighborhood of xj (xj = f j(x0)), det(Df(xj)) ̸= 0,
0 ≤ j ≤ m − 1, then f is chaotic in the sense of De-
vaney.

C. Topological Entropy

Topological entropy was defined by Adler, Konhein,
and McAndrew for topologically conjugate invariance in
196539. If the space is compact metric, then the following
definition is equivalent to the definition of Adler, Kon-
hein, and McAndrew40, and it is more useful41.

Definition 4. 26,40,42 Let f : X → X be a continuous
map on the space X with metric d. A set S ⊂ X is called
(n, ϵ)-separated for f for n a positive integer and ϵ > 0
provided that for every pair of distinct points x, y ∈ S,
x ̸= y, there is at least one k with 0 ≤ k < n such that
d(fk(x), fk(y)) > ϵ. The number of different orbits of
length n (as measured by ϵ) is defined by

r(n,ϵ,f)=max{#(S) :S⊂X is a (n,ϵ)-separated set for f },

where #(S) is the cardinality of elements in S. Let

htop(ϵ, f) = lim sup
n→∞

log(r(n, ϵ, f))

n
,

and define the topological entropy of f as

htop(f) = lim
ϵ→0,ϵ>0

htop(ϵ, f).

Consider the continuous map on the compact inter-
val, the relationship between positive topological entropy
(htop(f) > 0) and Devaney’s chaos is equivalent.

Theorem 5. 43–46 Let f be a continuous map of a com-
pact interval I to itself. f has positive topological entropy
if and only if f is chaotic in the sense of Devaney.

The basic result following that is used to help calculate
the entropy, and relates the entropy of a map f to a n-fold
composition of f , fn.

Theorem 6. 26 Assume f : X → X is uniformly con-
tinuous or X is compact, and n is an integer with n ≥ 1.
Then htop(f

n) = n · htop(f).

III. MATHEMATICAL ANALYSIS

In this section we will prove that the generalized re-
source budget model is chaotic in the sense of Devaney
(defined in Definition 1) by using the preliminaries, the
snapback repeller theory and the topological entropy the-
ory (mentioned in Definition 2 and Definition 4).

Theorem 7. The generalized resource budget model (1)
is chaotic in the sense of Devaney when the depletion
coefficient κ is greater than 1.00026.

Proof. The generalized resource budget model (1) can be
represented as a map g,

g(x) =

{
x+ 1 if x ≤ 0,
−κx+ 1 if x > 0,

(2)

where κ is the depletion coefficient. Then we would like
to prove that the map g is chaotic in the sense of De-
vaney when κ > κ11 ≈ 1.0002538. In this proof there are
three stages. First, try to find a snapback repeller of g.
There exists the snapback repeller of g when κ > κ0 with

κ0 =
1 +

√
5

2
≈ 1.6180. Therefore, a result will be re-

vealed that the map g is chaotic in the sense of Devaney
as κ > κ0 by Theorem 3. Second, improve the result
in the first stage to calculate snapback repellers of g2.
There exists a snapback repeller of g2 when κ > κ1 with

κ1 =

(
1

2
+

√
23

108

)1/3

+

(
1

2
−
√

23

108

)1/3

≈ 1.3247.

It implies that g2 is chaotic in the sense of Devaney
as κ > κ1 by Theorem 3. Then, according to Theo-
rem 5 and 6, the map g2 has positive topological entropy,
htop(g

2) > 0, and htop(g
2) = 2 · htop(g), meaning that,

htop(g) > 0. Therefore, the map g is chaotic in the sense
of Devaney as κ > κ1 by Theorem 5 again. Finally, ap-
ply the technique in the second stage to the map g2

p

with
p ∈ N. Here, it is not easy to find the snapback repellers
of g2

p

. We make a recurrent formula (3) for representing
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the map g2
p

partially in a specific interval.

g2
p

(x) =


L2p(x), x ∈

[
αp−3

(
1

κ

)
, αp−2

(
1

κ

)]
,

R2p(x), x ∈
[
αp−2

(
1

κ

)
, 1

]
,

(3)

where

L2p(x) =


−κR2p(x) + κ+ 1, p is odd,

−R2p(x) + κ+ 1

k
, p is even,

R2p(x) = L2p−1 ◦R2p−1(x),

R1(x) = −κx+ 1,

L1(x) = x+ 1,

and j ∈ N,

αj(z) =

{
αj−1 ◦ γ ◦ γ ◦ αj−1(z), j is odd,

αj−1 ◦ β ◦ αj−1(z), j is even

with α0(z) = α−1 ◦ β ◦ α−1(z), where α−1(z) = z,

α−2(z) = 0, β(z) =
1

κ
(2 − z), and γ(z) =

1

κ
(1 − z).

Then, for different p, the snapback repeller of g2
p

can be
found from the formula (3) when the depletion coefficient
κ > κp, where κp is computed by determining the roots
of a polynomial with degree 2p+1 and listed in Table I.
Hence, the result shows that the map g can possess De-
vaney’s chaos for the depletion coefficient κ > 1.00026.
The details of the proof are in Appendix A.
In the proof of Theorem 7, we consider that the itera-

tive number of the map g is only two to the power of any
natural number to obtain the lower κp. As 1 < κ ≤ κ0 for
any positive odd iterative number n the map gn has only

one fixed point,
1

1 + κ
, but it is not a snapback repeller

of the map gn. At the same time, as 1 < κ ≤ κ1 the map

gm has only two fixed points,
1

1 + κ
and

2

1 + κ
, for any

positive even iterative number m but two to the power.
However, these two fixed points both are not snapback
repellers of the map gm as m is even but not two to the
power. Hence, it is a unique way to obtain lower κp by

finding the snapback repeller of the map g2
p

with p ∈ N.
It is fortunate for p = 0 or 1 that κ0 and κ1 can be

solved exactly by determining roots of the polynomial
with degree 2 and 4, respectively. However, there is no
general formula to solve the roots of a polynomial with
degree 2p+1 with p ≥ 2. Therefore, we use numerical
computations to obtain κp in Table I by the software
Maple 12 with the representation extended to 100 dig-
its. The computations have to be done at a higher or-
der of precision by extending the number of the digits
of the representation since the degree 2p+1 of the poly-
nomial is very large, even when p is small (for exam-

TABLE I. κp is computed by determining the roots of a poly-
nomial with degree 2p+1 in Maple 12 with the representation
extended to 100 digits. κ0 and κ1 are solved exactly by the
formulas of solving roots in polynomials with the degree 2 and
4, respectively. However, there is no formula to solve exactly
a polynomial with the degree 2p+1 for p ≥ 2.

p κp

0 1.61803398874989484820458683436563811772030917980576
1 1.32471795724474602596090885447809734073440405690173
2 1.13472413840151949260544605450647284027966722638280
3 1.06829718892084127636942958832387828209363101692083
4 1.03277096644104290932949288833474485665205837114040
5 1.01644386405941707209228020194178727791066232145413
6 1.00814003202116634233667531140811820889364490896404
7 1.00407366638869274027495235413584575421112130983612
8 1.00203177633341699708889327197114297264791893748917
9 1.00101611635023998785395963563019367524570627032394
10 1.00050774307450011494818934717772385917913582101851
11 1.00025388579930649764694803800094131925950701465139

ple, p = 10 and then the degree is 211 = 2, 048). Fur-
ther, it can be observed that the sequence {κp} con-
verges linearly to κ∞ = 1 at a rate of convergence of

lim
p→∞

κp+1 − κ∞

κp − κ∞
=

1

2
. Hence, from a numerical com-

putation point of view the generalized resource budget
model (1) is chaotic in the sense of Devaney when the
depletion coefficient κ is greater than 1.

This section mathematically interprets that the gener-
alized resource budget model (1) is chaotic in the sense
of Devaney in Theorem 7. The next section will ana-
lyze the generalized resource budget model in numerical
simulations under a computer.

IV. NUMERICAL SIMULATIONS

The bifurcation diagram (Fig. 1) of the generalized
resource budget model (1) with iterations given by the
same random initial condition for the different depletion
coefficient κ from 1 to 5 that Theorem 7 yielded rigorous
mathematical results to show that the model is chaotic in
the sense of Devaney. However, it eventually converges to
a period cycle in Fig. 1 when the depletion coefficient κ
is a positive even number. This is a strange result. From
the derivative of the map (2) we know that the period
cycle is unstable. In fact, this instability is true, and we
will prove it later in Theorem 9.

Theorem 8. For any initial value Y (0) ∈ Q and the
depletion coefficient κ ∈ N, then the behavior of the gen-
eralized resource budget model (1) is a period cycle even-
tually.

Proof. Without loss of generality, the initial value Y (0) ∈
Q ∩ [−κ + 1, 1] and let Y (0) =

n

m
∈ Q with m ∈ N
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FIG. 1. The bifurcation diagram of an individual tree. The
horizontal axis represents the depletion coefficient κ, and the
vertical axis represents Y (t) for t > 1, 000.

and n ∈ Z. Let S =

{
j

m
∈ [−κ+ 1, 1] : j ∈ Z

}
, then we

have Y (0) ∈ S and

Y (1) =


j

m
+ 1 =

j +m

m
, if Y (0) ∈ [−κ+ 1, 0],

(−κ)j

m
+ 1 =

(−κ)j +m

m
, if Y (0) ∈ (0, 1].

It also implies that Y (1) ∈ S. Therefore, for t =
2, 3, . . . Y (t) ∈ S, too. Next, Let S1 be the set,
{Y (0), Y (1) Y (2), . . . , Y (κm+1)}, then S1 ⊆ S. The car-
dinality of S is denoted by |S|, and

|S| =
∣∣∣∣{ j

m
∈ [−κ+ 1, 1] : j ∈ Z

}∣∣∣∣ = κm+ 1.

Since S1 ⊆ S and |S| = κm + 1, |S1| ≤ |S| and there
exists Y (i) ∈ S for some i such that Y (i) = Y (κm+1)

derived from the Pigeonhole Principle. It implies that
Y (t) always is a period cycle of period at most κm+1− i
for any rational initial value and the depletion coefficient
κ ∈ N.

Further, there is no doubt that Y (0) can only be ex-
pressed using finite digits in binary representation in a
computer. Therefore, for any simulation in the computer,
the initial value is always a rational number such that the
behavior of the generalized resource budget model (1)
eventually goes a period cycle when the depletion coeffi-
cient κ ∈ N. In fact, when the depletion coefficients κ are
2 and 4, these behaviors only converge to period cycles of
period 3 and period 5 (see in Fig. 1), respectively. Satake
and Iwasa explained these phenomena23 as follows, if κ
is exactly the same as an integer, after a long transient
the trajectory suddenly becomes a period cycle of period
κ + 1; this pathological behavior would not be realized in
real forest because there is always some noise.
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FIG. 2. For the depletion coefficient κ is a positive even num-
ber ((a) κ = 2 and (c) κ = 4) or not ((b) κ = 3 and (d) κ = 5),

the generalized resource budget model Y (t) converges to a
lower period cycle of period κ+ 1 or not.

However, pathological behaviors are totally different in
positive even depletion coefficients and positive odd de-
pletion coefficients. In Fig. 1, Y (t) indeed converges to
a period cycle of period κ + 1 and the period cycle is
{−κ+ 1, . . . , 0, 1} when κ is a positive even number (see
Fig. 2 (a) & (c)). But, the behavior of Y (t) is not like
“lower” periodic when κ is a positive odd number (also
see Fig. 2 (b) & (d)). Next, we will propose good expla-
nations in Theorem 9 and Theorem 10 for κ as a positive
even number and a positive odd number, respectively.

Theorem 9. Under a binary representation of finite dig-
its, if the depletion coefficient κ is a positive even number,
then the behavior of the generalized resource budget model
converges to a period cycle {−κ + 1,−κ + 2, . . . , 0, 1} of
period κ+ 1.

Proof. According to the result in Theorem 8, the behav-
ior of the generalized resource budget model always con-
verges to a period cycle of period at most κm + 1 with
Y (t) = n

m ∈ [0, 1] for some t and n,m ∈ N. Here, n
m is

represented in the binary representation of ℓ finite digits.
It implies that m has to be 2i for i ∈ {0, 1, 2, . . . , ℓ} and
the period is at most κ2i + 1. Since κ is a positive even
number, Y (t+1) = −κY (t) + 1 should be n1

m1
with n1 ∈ Z

andm1 = 2i−1 such that the behavior of Y (t+1) converges
to a period cycle of period at most κ2i−1+1. Again, the
period κ2i−1 + 1 will be reduced to κ+ 1 in finite itera-
tions. Hence, we completely understand that the behav-
ior of the generalized resource budget model eventually
converges to the period cycle {−κ + 1,−κ + 2, . . . , 0, 1}
of period κ + 1 under a binary representation of finite
digits when the depletion coefficient κ is a positive even
number. The details of the proof is in Appendix B.

It is a key point that under a binary representation a
number can be represented in finite digits or not. For
example, under the binary representation 0.2 = 0.0011
cannot be represented in finite digits. In fact, the behav-
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ior of Y (t) is a period cycle {0.2, 0.6,−0.2, 0.8,−0.6, 0.4}
of period 6 when Y (0) = 0.2 and κ = 2, not {−1, 0, 1}.
However, when the depletion coefficient κ is a posi-

tive odd number, the following theorem explains that the
behavior of Y (t) is totally different to the positive even
depletion coefficient.

Theorem 10. Under a binary representation of finite
digits, if the depletion coefficient κ is a positive odd num-
ber, then the behavior of the generalized resource budget
model cannot converge to the period cycle {−κ+1,−κ+
2, . . . , 0, 1} for any initial value but integer.

Proof. Although the behavior of the generalized resource
budget model converges to a period cycle of period at
most κµ + 1 with Y (τ) = ν

µ ∈ [0, 1] for some τ and

ν, µ ∈ N by the result in Theorem 8, under the binary
representation of finite digits the behaviors of Y (t) are
very different in an even κ and an odd κ. There is no
chance to reduce the period κµ+1 as κ is a positive odd
number for almost all the initial values. The details of
the proof is in Appendix C.

V. CONCLUSIONS

Satake and Iwasa proved that the generalized budget
resource model is chaotic when κ > 1 by computing the
Lyapunov exponent23. A map possesses a positive Lya-
punov exponent that implies only sensitive dependence
on initial conditions. Although this result is very impor-
tant and useful (it enables a single quantity to be com-
puted to determine whether the process is highly sensitive
to initial conditions26,28), it is just one of the necessary
conditions in the definition of Devaney’s chaos. In this
paper we clearly point out that the generalized resource
budget model is chaotic in the sense of Devaney as the
depletion coefficient κ > 1 by the relationship between
Devaney’s chaos, the topological entropy and the snap-
back repeller.
At the same time, it is completely understood that

computational simulations cause a lower period-(κ + 1)
cycle when the depletion coefficient κ is a positive even
number. Further, all the trajectories will converge to
periodic cycles when the initial value is a rational number
and the depletion coefficient is a natural number. Based
on these results of the generalized resource budget model
for describing the growth of an individual tree, we will
continue studying the model of the coupling of trees in
future.
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Appendix A. THE PROOF OF THEOREM 7

Suppose κ > 1. First, x∗ =
1

1 + κ
is a fixed point of the

map g in (2) with |g′(x∗)| = κ exceeding 1 (|g′(x)| = κ as
x ∈ (0, 1)). Try to find x0 ∈ (0, 1) such that g2(x0) = x∗.

Then, x0 =
2κ+ 1

κ2 + κ
and x0 < 1, thus,

2κ+ 1

κ2 + κ
< 1 is a

necessary condition. It implies that as κ >
1 +

√
5

2
there

exists a positive integerm = 2 such that gm(x0) = x∗ and
det
(
Dg2(x0)

)
= g′(x1) · g′(x0) ̸= 0, where x1 = g(x0).

Therefore, x∗ is a snapback repeller of g as κ > κ0 =
1 +

√
5

2
. Hence, the map g is chaotic in the sense of

Devaney as κ > κ0 by Theorem 3.

Second, x∗∗ =
2

1 + κ
is a fixed point of g2 with

|Dg2(x∗∗)| = κ exceeding 1. Here, |Dg2(x)| = κ as

x ∈
(
1

κ
, 1

)
. Let h = g2 and be restricted in the do-

main [0, 1]. It means that

h(x) =


κ2x− κ+ 1, x ∈

[
0,

1

κ

]
,

−κx+ 2, x ∈
[
1

κ
, 1

]
,

Try to find x0 ∈
(
1
κ , 1
)
such that h2(x0) = x∗∗. Then,

x0 =
2κ3 + κ2 − 1

κ3(1 + κ)
and x0 < 1, thus,

2κ3 + κ2 − 1

κ3(1 + κ)
<

1 is a necessary condition. It implies that as κ >(
1

2
+

√
23

108

)1/3

+

(
1

2
−
√

23

108

)1/3

there exists a pos-

itive integer m = 2 such that hm(x0) = x∗∗ and
det
(
Dh2(x0)

)
= h′(x1) · h′(x0) ̸= 0, where x1 = h(x0).

Therefore, x∗∗ is a snapback repeller of g2 as κ > κ1 =(
1

2
+

√
23

108

)1/3

+

(
1

2
−
√

23

108

)1/3

. It shows that g2

is chaotic in the sense of Devaney as κ > κ1 by Theo-
rem 3. Then, according to Theorem 5 and 6, the map
g2 has positive topological entropy, htop(g

2) > 0, and
htop(g

2) = 2 · htop(g), meaning that, htop(g) > 0. Hence,
the map g is chaotic in the sense of Devaney as κ > κ1

by Theorem 5 again.
Finally, we focus on the map g2

p

restricted in the do-
main Ip = [δ(κ), 1] with 0 < δ(κ) < 1 for p ∈ N. For
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different p, the map g2
p

defined in Ip is represented in (3).

g2
p

(x) =


L2p(x), x ∈

[
αp−3

(
1

κ

)
, αp−2

(
1

κ

)]
,

R2p(x), x ∈
[
αp−2

(
1

κ

)
, 1

]
,

where

L2p(x) =


−κR2p(x) + κ+ 1, p is odd,

−R2p(x) + κ+ 1

k
, p is even,

R2p(x) = L2p−1 ◦R2p−1(x),

R1(x) = −κx+ 1,

L1(x) = x+ 1,

and j ∈ N,

αj(z) =

{
αj−1 ◦ γ ◦ γ ◦ αj−1(z), j is odd,

αj−1 ◦ β ◦ αj−1(z), j is even

with α0(z) = α−1 ◦ β ◦ α−1(z), where α−1(z) = z,

α−2(z) = 0, β(z) =
1

κ
(2 − z), and γ(z) =

1

κ
(1 − z).

Then, Ip =

[
αp−3

(
1

κ

)
, 1

]
, and we can obtain a fixed

point xp of g2
p

in

(
αp−2

(
1

κ

)
, 1

)
⊂ Ip and check

|Dg2
p

(x)| > 1 as x ∈
(
αp−2

(
1

κ

)
, 1

)
. Try to find

x0 ∈
(
αp−2

(
1

κ

)
, 1

)
such that g2

p ◦ g2
p

(x0) = xp.

Thus, there exists x0 under a necessary condition κ >
κp, where κp is determined by a root of a polynomial

with degree 2p+1. Let x1 = Dg2
p

(x0), then x1 ∈(
αp−3

(
1

κ

)
, αp−2

(
1

κ

))
. At the same time, the deriva-

tives of L2p(x) and R2p(x) are not equal to zeros on the

domain

(
αp−3

(
1

κ

)
, αp−2

(
1

κ

))
and

(
αp−2

(
1

κ

)
, 1

)
,

respectively. Hence, det
(
D(g2

p ◦ g2p)(x0)
)
= Dg2

p

(x1) ·
Dg2

p

(x0) ̸= 0. It implies that xp is a snapback repeller of
g2

p

as κ > κp and g2
p

is chaotic in the sense of Devaney as
κ > κp by Theorem 3. According to Theorem 5 and 6, the

map g2
p

has positive topological entropy, htop(g
2p) > 0,

and htop(g
2p) = 2p · htop(g), meaning that, htop(g) > 0.

It shows that the map g is chaotic in the sense of Devaney
as κ > κp by Theorem 5 again. In Table I we use nu-
merical computations to obtain κp, and in this paper we
arrive at κ11 ≈ 1.0002538. Hence, the map g can possess
Devaney’s chaos for the depletion coefficient κ > 1.00026.
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Under a binary representation with ℓ valid digits (ℓ ∈
N), for any non-integer number y > 0, it can be repre-
sented in 0.e1e2 · · · eαd1d2 · · · dβ or e1e2 · · · eα.d1d2 · · · dβ
for some positive integers α, β, with α + β ≥ ℓ, where
ei ∈ {0, 1}, i = 1, . . . , α and dj ∈ {0, 1}, j = 1, . . . , β.

Then, κy will be represented in ẽ1ẽ2 · · · ẽα̃.d̃2d̃3 · · · d̃β or

ẽ1ẽ2 · · · ẽα̃.ê2ê3 · · · êαd̃1d̃2 · · · d̃β for some positive integer
α̃, with α̃ + α + β ≥ ℓ, where ẽi ∈ {0, 1}, i = 1, . . . , α̃,

d̃j ∈ {0, 1}, j = 1, . . . , β and êk ∈ {0, 1}, k = 2, . . . , α,
under the binary representation of ℓ valid digits, since κ
is a positive even number. It means that the number of
nonzero digits at the right hand side of the point will re-
duce at less than one after multiplying κ as κ is a positive
even number. The result is true even if y < 0. Further,
the operation (plus one) does not affect the number of
nonzero digits at the right hand side of the point. There-
fore, in the generalized resource budget model (1) with
the positive even depletion coefficient κ, without loss of
generality, for any initial value Y (0) ∈ (0, 1), the number
of nonzero digits at the right hand side of the point of
κY (0) has to be less than one or more than Y (0). It shows
that nonzero digits at the right hand side of the point of
Y (t) will disappear when t is large enough (after to mul-
tiply κ ℓ times at most), meaning that the behavior of
Y (t) goes to a period cycle {−κ + 1,−κ + 2, . . . , 0, 1} of
period κ+ 1 in finite iterations.
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Under a binary representation with ℓ valid digits (ℓ ∈ N
and ℓ > 3), for y ∈ (0, 1), let y = 0.d1d2 · · · dβ with 1 ≤
β ≤ ℓ/2 and di ∈ {0, 1}, i = 1, . . . , β but not all zeros.
Assume that κ is lower than or equal to 2ℓ/2 and dβ = 1.
Then, Under the binary representation with ℓ valid dig-
its κy will be represented in e1e2 · · · eα.d̃1d̃2 · · · d̃β−1dβ
with 1 ≤ α ≤ ℓ/2 for some positive integer α, where

ei ∈ {0, 1}, i = 1, . . . , α, and d̃j ∈ {0, 1}, j = 1, . . . , β−1.
It means that the number of nonzero digits at the farthest
right of the point will not change after to multiply κ, i.e.,
the β-th digit at the right hand side of the point, dβ , is
still equal to 1. The result is true even if y < 0. Fur-
ther, the operation (plus one) does not effect the num-
ber of nonzero digits at the farthest right of the point.
Therefore, in the generalized resource budget model (1)
with the positive odd depletion coefficient κ, the num-
ber of nonzero digits at the farthest right of the point of
κY (0) will be the same with Y (0)’s for any initial value
Y (0) ∈ (0, 1). It shows that nonzero digits at the far-
thest right of the point of Y (t) will not disappear for all
t, meaning that the behavior of Y (t) cannot go to a pe-
riod cycle {−κ+ 1,−κ+ 2, . . . , 0, 1} for any initial value
but integer.



Applying Snapback Repellers in GRBM 8

1R. B. Allen and H. H. Platt, “Annual seedfall variation in
Nothofagus solandri (Fagaceae), New Zealand,” Oikos 57, 199–
206 (1990).

2S. Appanah, “General flowering in the climax rain forests of
South-east Asia,” J. Trop. Ecol. 1, 225–240 (1985).

3P. S. Ashton, T. J. Givnish, and S. Appanah, “Staggered flow-
ering in the Dipterocarpaceae: new insights into floral induction
and the evolution of mast fruiting in the aseasonal tropics,” Am.
Nat. 132, 44–66 (1988).

4K. M. Christensen and T. G. Whitham, “Indirect herbivore medi-
ation of avian seed dispersal in pinyon pine,” Ecology 72, 534–542
(1991).

5R. T. Corlett, “Flora and reproductive phenology of the rain
forest at Bukit Timah, Singapore,” J. Trop. Ecol. 6, 55–63 (1990).

6K. D. Elowe and W. E. Dodge, “Factors affecting black bear
reproductive success and cub survival,” J. Wildl. Manage. 53,
962–968 (1989).

7G. A. Felhammer, T. P. Kilbane, and D. W. Sharp, “Cumulative
effect of winter on acorn yield and deer body weight,” J. Wildl.
Manage. 53, 292–295 (1989).

8P. P. Feret, R. E. Dreh, S. A. Merkle, and R. G. Oderwald,
“Flower abundance, premature acorn abscission, and acorn pro-
duction in Quercus alba L.” Botanical Gazette 143, 216–218
(1982).

9L. W. Gysel, “A 10-year analysis of beechnut production and use
in Michigan,” J. Wildl. Manag. 35, 516–519 (1971).

10R. A. Ims, “The ecology and evolution of reproductive syn-
chrony,” Trends Ecol. Evol. 5, 135–140 (1990).

11R. A. Ims, “On the adaptive value of reproductive synchrony as
a predator-swamping strategy,” Am. Nat. 136, 485–498 (1990).

12D. H. Janzen, “Seed predation by animals,” Ann. Rev. Ecol. Syst.
2, 465–492 (1971).

13D. H. Janzen, “Why bamboos wait so long to flower,” Ann. Rev.
Ecol. Syst. 7, 347–391 (1976).

14H. Kawada and K. Maruyama, “Effects of seed bearing of a nat-
ural beech (Fagus crenata Blume) forest on amount of litter fall
and its nutrients,” Jpn. J. Ecol. 36, 3–10 (1986).

15D. Kelly, “The evolutionary ecology of mast seeding,” Trends
Ecol. Evol. 9, 465–471 (1994).

16W. D. Koenig, R. L. Mumme, W. J. Carmen, and M. T. Stan-
back, “Acorn production by oaks in Central Coastal California:
variation within and among years,” Ecology 75, 99–109 (1994).

17D. A. Norton and D. Kelly, “Mast seeding over 33 years by
Dacrydium cupressinum Lamb. (rimu) (podocarpaceae) in New
Zealand: the importance of economies of scale,” Func. Ecol. 2,
399–408 (1988).

18G. E. Rehfeldt, A. R. Stage, and R. T. Bingham, “Strobili de-
velopment in western white pine: productivity, prediction, and
association with water,” For. Sci. 17, 454–461 (1971).

19W. M. Sharp and V. G. Sprague, “Flowering and fruiting in the
white oaks. Pistillate flowering, acorn development, weather, and
yields,” Ecology 48, 243–251 (1967).

20J. W. Silvertown, “The evolutionary ecology of mast seeding in
trees,” Biol. J. Linnean. Soc. 14, 235–250 (1980).

21C. C. Smith, J. L. Hamrick, and C. L. Kramer, “The advan-
tage of mast years for wind pollination,” Am. Nat. 136, 154–166
(1990).

22V. L. Sork, J. Bramble, and O. Sexton, “Ecology of mast-fruiting
in three species of North American deciduous oaks,” Ecology 74,
528–541 (1993).

23A. Satake and Y. Iwasa, “Pollen coupling of forest trees: Forming
synchronized and periodic reproduction out of chaos,” J. theor.
Biol. 203, 63–84 (2000).

24Y. Isagi, K. Sugimura, A. Sumida, and H. Ito, “How does
masting happen and synchronize?” J. theor. Biol. 187, 231–239
(1997).

25H. D. I. Abarbanel, R. Brown, and P. Bryant, “Computing the
Lyapunov spectrum of a dynamical system from an observed time
series,” Physical Review A 43, 2787–2806 (1991).

26C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics,
and Chaos, Second Edition (CRC, Boca Raton, Florida, 1998).

27A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Deter-
mining Lyapunov exponents from a time series,” Physica 16D,
285–317 (1985).

28R. C. L. Wolff, “Local Lyapunov exponents: Looking closely
at chaos,” Journal of the Royal Statistical Society. Series B
(Methodological) 54, 353–371 (1992).

29S. F. Kolyada, “Li-Yorke sensitivity and other concepts of chaos,”
Ukrainian Mathematical Journal 56, 1242–1257 (2004).

30R. L. Devaney, An Introduction to Chaotic Dynamical Systems,
Second Edition (Addison-Wesley, Redwood City, Canada, 1989).

31C. C. Peng, “Numerical computation of orbits and rigorous ver-
ification of existence of snapback repellers,” Chaos 17, 013107
(2007).

32F. R. Marotto, “Snap-back repellers imply chaos in Rn,” J. Math.
Anal. Appl. 63, 199–223 (1978).

33F. R. Marotto, “On redefining a snap-back repeller,” Chaos, Soli-
tons and Fractals 25, 25–28 (2005).

34Y. Shi and G. Chen, “Chaos of discrete dynamical systems in
complete metric spaces,” Chaos, Solitons and Fractals 22, 555–
571 (2004).

35Y. Shi and P. Yu, “Chaos induced by regular snap-back re-
pellers,” J. Math. Anal. Appl. 337, 1480–1494 (2008).

36Z. Li, Y. Shi, and W. Liang, “Discrete chaos induced by hete-
roclinic cycles connecting repellers in Banach spaces,” Nonlinear
Analysis 72, 757–770 (2010).

37Y. Shi and G. Chen, “Discrete chaos in Banach spaces,” Science
in China Ser. A Mathematics 48, 222–238 (2005).

38Y. Shi, P. Yu, and G. Chen, “Chaotification of discrete dynam-
ical systems in Banach spaces,” Internat. J. Bifur. Chaos 16,
2615–2636 (2006).

39R. L. Adler, A. G. Konheim, and M. H. McAndrew, “Topological
entropy,” Transactions of the American Mathematical Society
114, 309–319 (1965).

40R. Bowen, “Entropy for group endomorphisms and homogeneous
spaces,” Transactions of the American Mathematical Society
153, 401–414 (1971).

41L. Alseda, S. L. Kolyada, J. Llibre, and L. Snoha, “Entropy and
periodic points for transitive maps,” Transactions of the Ameri-
can Mathematical Society 351, 1551–1573 (1999).

42M. Brin and G. Stuck, Introduction to dynamical systems (Cam-
bridge University Press, New York, 2002).

43D. Kwietniak and M. Misiurewicz, “Exact devaney chaos and
entropy,” Qualitative Theory Dynamical Systems 6, 169–179
(2005).

44C. Li and G. Chen, “Estimating the Lyapunov exponents of dis-
crete systems,” Chaos: An Interdisciplinary Journal of Nonlinear
Science 14, 343–346 (2004).

45S. Li, “ω-chaos and topological entropy,” Transactions of the
American Mathematical Society 339, 243–249 (1993).

46M. Misiurewicz, “Horseshoes for mappings of the interval,” Bull.
Acad. Polo. Sci. Ser. Sci. Math. 27, 167–169 (1979) .


