▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Applying Snapback Repellers in Ecology

Shu-Ming Chang 張書銘

Department of Applied Mathematics National Chiao Tung University

June 29, 2011

Preliminaries

Mathematical Analysis

Numerical Simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Outline

- Motivation
 - Model
- 2 Preliminaries
 - Technique
 - Chaos
 - Entropy
- 3 Mathematical Analysis
 - Main Result (I)
 - Main Result (II)
 - Numerical Computation
- 4 Numerical Simulation
 - What happen in $Y^{(t)}$?

Motivation	
•0000000	į
Model	

Generalized Resource Budget Model

A. Satake and Y. Iwasa, *Pollen Coupling of Forest Trees: Forming Synchronized and Periodic Reproduction out of Chaos*, J. theor. Biol., Vol. 203 (2000), 63–84.

Resource Budget Model

Y. Isagi, K. Sugimura, A. Sumida and H. Ito, *How does masting happen and synchronize?*, **J. theor. Biol.**, Vol. 187 (1997), 231–239.

Motivation •••••••• Model Preliminaries

Mathematical Analysis

Numerical Simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Isagi's Resource Budget Model

- S^(t): Amount of energy at the beginning of year t.
- P_s: Photosynthate (constant from year to year).
- L_T: Resource threshold.
- C_f: Flowering energy.
- C_a: Fruiting energy.
- R_c: The ratio of C_a/C_f.

Preliminaries

Mathematical Analysis

Numerical Simulation

Satake's Generalized Resource Budget Model

Main problem

$$\mathbf{Y}^{(t+1)} = \begin{cases} \mathbf{Y}^{(t)} + 1, & \text{if } \mathbf{Y}^{(t)} \le 0, \\ -k\mathbf{Y}^{(t)} + 1, & \text{if } \mathbf{Y}^{(t)} > 0, \end{cases}$$

where k: depletion coefficient ($k = a(R_c + 1) - 1$), t = 0, 1, 2, ...

Preliminaries

Mathematical Analysis

Numerical Simulation

Non-dimensionalization

$S^{(t)}$: energy reserved at the *t*-th year

Isagi's Resource Budget Model

$$S^{(t+1)} = \begin{cases} S^{(t)} + P_s, & \text{if } S^{(t)} + P_s \le L_T, \\ S^{(t)} + P_s - C_f - C_a, & \text{if } S^{(t)} + P_s > L_T. \end{cases}$$

Let
$$a > 0$$
, $C_f \equiv a(S^{(t)} + P_s - L_T)$

Satake's Generalized Resource Budget Model

$$S^{(t+1)} = \begin{cases} S^{(t)} + P_s, \\ S^{(t)} + P_s - a(R_c + 1)(S^{(t)} + P_s - L_T). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation 00000000 Model Preliminaries

Mathematical Analysis

Numerical Simulation

Non-dimensionalization

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Preliminaries

Mathematical Analysis

Numerical Simulation

Non-dimensionalization

$$S^{(t+1)} + P_{s} - L_{T} = \begin{cases} (S^{(t)} + P_{s} - L_{T}) + P_{s}, \\ (1 - a(R_{c} + 1)) (S^{(t)} + P_{s} - L_{T}) \\ + L_{T} - L_{T} + P_{s}, \end{cases}$$

$$\left(S^{(t+1)} + P_s - L_T\right) / P_s = \begin{cases} (S^{(t)} + P_s - L_T) / P_s + 1, \\ (1 - a(R_c + 1)) (S^{(t)} + P_s - L_T) / P_s + 1. \end{cases}$$

Let $Y^{(t)} = (S^{(t)} + P_s - L_T)/P_s$, $k \equiv a(R_c + 1) - 1$.

wh

Preliminaries

Mathematical Analysis

Numerical Simulation

Coupled Systems

$$Y_{i}^{(t+1)} = \begin{cases} Y_{i}^{(t)} + 1 & \text{if } Y_{i}^{(t)} \leq 0, \\ -\kappa P_{i}^{(t)} Y_{i}^{(t)} + 1 & \text{if } Y_{i}^{(t)} > 0, \end{cases}$$

Here
$$P_{i}^{(t)} = \left\{ \frac{1}{N-1} \sum_{j \neq i}^{N} [Y_{j}^{(t)}]_{+} \right\}^{\beta}.$$

Preliminaries

- Satake and Iwasa proved by computing the positive Lyapunov exponent that if the depletion coefficient k is greater than one, then the generalized budget resource model is chaotic. However, a positive Lyapunov exponent means only sensitivity in Devaney's chaos.
- When the depletion coefficient k is a positive integer, Satake and Iwasa proved that the generalized budget resource model is periodic.

- 1. Snapback repeller method \Rightarrow Devaney's chaos.
- Investigate the difference between odd depletion coefficients and even depletion coefficients.

Technique

References

- F. R. Marotto, Snap-Back Repellers Imply Chaos in ℝⁿ, Math. Anal. Appl., Vol. 63 (1978), 199–223.
- F. R. Marotto, On Redefining a Snap-Back Repeller, Chaos, Solitons and Fractals, Vol. 25 (2005), 25–28.

expanding fixed point

Let
$$p^* \in \mathbb{R}^n$$
, suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ be diff. in $B_r(p^*)$, if $f(p^*) = p^*$ and $|\sigma(Df(x))| > 1 \quad \forall x \in B_r(p^*)$.

snapback repeller

Suppose p^* is an *expanding fixed point* of f in $B_r(p^*)$ for some r > 0 and \exists const. s > 0 s.t. $||f(x) - f(y)|| > s||x - y|| \forall$ $x, y \in B_r(p^*)$, if $\exists x_0 \in B_r(p^*)$ with $x_0 \neq p^*$ and $m \in \mathbb{N}$ s.t. $f^m(x_0) = p^*$ and $\det(Df^m(x_0)) \neq 0$.

Motivation
Technique

Preliminaries ○●○○○○○○○ Mathematical Analysis

Numerical Simulation

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Technique

Theorem

Let snapback repeller p^* , f, m, and x_0 be the same as above. If f is C^1 in some neighborhood of x_j , $det(Df(x_j)) \neq 0$, $0 \leq j \leq m - 1$, and f has a snapback repeller p^* , then f is chaotic in the sense of Devaney.

- Y. Shi and G. Chen. Chaos of discrete dynamical systems in complete metric spaces. Chaos, Solitons and Fractals, 22:555-571, 2004.
- Y. Shi and G. Chen. Discrete chaos in Banach spaces. Science in China Ser. A Mathematics, 48(2):222-238, 2005.
- Y. Shi, P. Yu, and G. Chen. Chaotification of discrete dynamical systems in Banach spaces. Internat. J. Bifur. Chaos, 16:2615-2636, 2006.
- Chen-Chang Peng. Numerical Computation of Orbits and Rigorous Verification of Existence of Snapback Repellers. Chaos, 17:013107, 2007.
- M. C. Li, M. J. Lyu and P. Zgliczyński. Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps. Nonlinearity, 21:2555-2567, 2008.
- Y. Shi and P. Yu. Chaos induced by regular snap-back repellers. J. Math. Anal. Appl., 337:1480-1494, 2008.
- M. C. Li and M. J. Lyu. A simple proof for persistence of snap-back repellers. Journal of Mathematical Analysis and Applications, 352:669-671, 2009.
- Z. Li, Y. Shi, and W. Liang. Discrete chaos induced by heteroclinic cycles connecting repellers in Banach spaces. Nonlinear Analysis, 72(2):757-770, 2010.

Chaos

Preliminaries

Mathematical Analysis

Numerical Simulation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Devaney's Chaos

Let X be a metric space, $f: X \to X$ conti. sensitivity $\exists \delta > 0$ st. $\forall x \in X$, any nbd(x), $\exists y \in nbd(x)$ and $n \in \mathbb{N}$ such that $|f^n(x) - f^n(y)| > \delta$; transitivity for any pair of nonempty open sets $U, V \subset X, \exists k > 0$ st. $f^k(U) \cap V \neq \emptyset$;

density of periodic points

Motivation	Preliminaries ○○○○●○○○○	Mathematical Analysis	Numerical Simulation
Chaos			

Li & Yorke's Chaos

Let I be an interval, $f: I \rightarrow I$ conti., if f has an uncountable scrambled set $S \subset I$ which satisfies the following conditions: (i) $\forall p, q \in S$ with $p \neq q$,

> $\limsup_{n \to \infty} |f^n(p) - f^n(q)| > 0,$ $\liminf_{n \to \infty} |f^n(p) - f^n(q)| = 0;$

(ii) $\forall p \in S$ and periodic point $q \in I$,

 $\limsup_{n\to\infty}|f^n(p)-f^n(q)|>0.$

Preliminaries

Mathematical Analysis

Numerical Simulation

Topological Entropy

 $f: X \to X$ conti. with metric d. $S \subset X$: (n, ϵ) -separated for f with $n \in \mathbb{Z}^+$ and $\epsilon > 0$ provided that for every pair of distinct points $x, y \in S$, $x \neq y$, there is at least one k with $0 \leq k < n$ st. $d(f^k(x), f^k(y)) > \epsilon$. The number of different orbits of length n (as measured by ϵ) is defined by

 $\textit{r}(\textit{n}, \epsilon, \textit{f}) = \{\#(\textit{S}) : \textit{S} \subset \textit{X} \text{ is a } (\textit{n}, \epsilon) \text{-separated set for f } \},$

where #(S) is the cardinality of elements in S. Let

$$h_{\mathrm{top}}(\epsilon, f) = \limsup_{n \to \infty} \frac{\log(r(n, \epsilon, f))}{n},$$

and define the topological entropy of f as

$$h_{\rm top}(f) = \lim_{\epsilon \to 0, \epsilon > 0} h_{\rm top}(\epsilon, f).$$

Motivation	Preliminaries	Mathematical Analysis
	000000000	
Entropy		

Theorem

Assume $f: X \to X$ is uniformly continuous or X is compact and $n \in \mathbb{N}$. Then $h_{top}(f^n) = n \cdot h_{top}(f)$.

C. Robinson

Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd Ed., CRC, Boca Raton, Florida, 1998.

Preliminaries

Mathematical Analysis

Numerical Simulation

(日)

Lyapunov Exponent

Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function. For each point x_0 , define the **Lyapunov exponent** of x_0 , $\lambda(x_0)$, as follows:

$$\begin{aligned} \lambda(x_0) &= \limsup_{n \to \infty} \frac{1}{n} \log(|(f^n)'(x_0)|) \\ &= \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log(|f'(x_k)|), \end{aligned}$$

where $x_{j} = f^{j}(x_{0})$.

Preliminaries

Mathematical Analysis

Numerical Simulation

Important relations

Preliminaries

Mathematical Analysis

Numerical Simulation

$$\mathbf{Y}^{(t+1)} = \begin{cases} \mathbf{Y}^{(t)} + 1, & \text{if } \mathbf{Y}^{(t)} \le 0, \\ -k\mathbf{Y}^{(t)} + 1, & \text{if } \mathbf{Y}^{(t)} > 0. \end{cases}$$

Preliminaries

Mathematical Analysis

Numerical Simulation

Main results

Preliminaries

Mathematical Analysis

Numerical Simulation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$Y^n(x) = (Y \circ \cdots \circ Y)(x)$$

$\boldsymbol{p} \in \mathbb{N} \cup \{0\}$

$$Y^{2^{p}}(x) = \begin{cases} L_{2^{p}}(x), & x \in \left[C_{p-3}\left(\frac{1}{k}\right), C_{p-2}\left(\frac{1}{k}\right)\right], \\ R_{2^{p}}(x), & x \in \left[C_{p-2}\left(\frac{1}{k}\right), 1\right], \end{cases}$$

$$L_1(x) = x + 1$$
, $R_1(x) = -kx + 1$,

$$\begin{aligned} R_{2^{p}}(x) &= (L_{2^{p-1}} \circ R_{2^{p-1}})(x), \\ L_{2^{p}}(x) &= \begin{cases} -kR_{2^{p}}(x) + k + 1, & p \in \text{odd}, \\ \frac{-R_{2^{p}}(x) + k + 1}{k}, & p \in \text{even}. \end{cases} \end{aligned}$$

Preliminaries

Mathematical Analysis

,

Numerical Simulation

$$j \in \mathbb{N},$$

$$C_j = \begin{cases} C_{j-1} \circ A \circ A \circ C_{j-1}, & j \in \text{odd}, \\ C_{j-1} \circ B \circ C_{j-1}, & j \in \text{even} \end{cases}$$

with

$$C_0(x) = B(x),$$

 $C_{-1}(x) = x, C_{-2} = 0, C_{-3} = -k + 1$

where

$$A(x) = \frac{1}{k}(1-x), \quad B(x) = \frac{1}{k}(2-x)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Motivation	Preliminaries	Mathematical Analysis	Numerical Simulation
Main Result (I)			

$$p = 0, 1$$

$$k_0 = \frac{1 + \sqrt{5}}{2} \approx 1.6180$$

$$Y(x) = \begin{cases} x+1, & x \in [-k+1, 0], \\ -kx+1, & x \in [0, 1]; \end{cases}$$

$k_1 \approx 1.3247$

$$Y^{2}(x) = \begin{cases} k^{2}x - k + 1, & x \in \left[0, \frac{1}{k}\right], \\ -kx + 2, & x \in \left[\frac{1}{k}, 1\right]. \end{cases}$$

Preliminaries

Mathematical Analysis

1 /0

Numerical Simulation

Main Result (I)

Proof:

Part I:
$$k > \left(\frac{1}{2} + \sqrt{\frac{23}{108}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{23}{108}}\right)^{1/3} \approx 1.3247.$$

1 /0

Let
$$p^* = rac{1}{1+k}$$
, $g = Y^{-1}$

Preliminaries

Mathematical Analysis

Numerical Simulation

Main Result (I)

Since $|g'(p^*)| < 1$, there exists r > 0 with $U = (p^* - r, p^* + r), U \subset (0, 1)$ such that $\lim_{m\to\infty} g^m(x) = p^*$ if $x \in U$. Choose

$$g(p^*) = \frac{-k}{1+k} < 0$$
 and $g^2(p^*) = \frac{2k+1}{k^2+k} > 0.$

Solve $g(p^*) > -k+1$ and $g^2(p^*) < 1$, choosing $k > \frac{1+\sqrt{5}}{2}$ allows j to be found such that

$$g^j(p^*) > 0$$
 for all $j \ge 3$

by the definition of Y. Computing $|g^{j}(p^{*}) - p^{*}|$, yield $|g^{j}(p^{*}) - p^{*}| = \frac{1}{\mu^{j-1}} \to 0$ as $j \to \infty$. That is, for this *r*, there exists a natural number $\hat{J} > 0$ such that

$$g^j(p^*) \in U$$
 as $j \ge J$.

Fix J and let $x_0 = g^J(p^*)$, then $x_0 \in U$ and $Y^J(x_0) = p^*$. Since |Y'(p)| = k > 1 for all $p \in U$, and $(Y')'(x_0) \neq 0$, p^* is a snapback repeller of Y.

Motivation 00000000 Main Result (I) Preliminaries

Mathematical Analysis

Numerical Simulation

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Let $p^{**} = \frac{2}{1+k}$, $h = (Y^2)^{-1}$

Motivation	Preliminaries	Mathematical Analysis	Numerical Simulation
		000000000000	
Main Result (I)			

Since
$$|h'(p^{**})| < 1$$
, there exists $r > 0$ with $V = (p^{**} - r, p^{**} + r)$, $V \subset (\frac{1}{k}, 1)$ such that $\lim_{m \to \infty} h^m(x) = p^{**}$ if $x \in V$. Choose

$$h(p^{**}) < \frac{1}{k}$$
 and $h^2(p^{**}) > \frac{1}{k}$.

Solve $h(p^{**}) > -k+2$ and $h^2(p^{**}) < 1$, choosing $k > \left(\frac{1}{2} + \sqrt{\frac{23}{108}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{23}{108}}\right)^{1/3}$ allows j to be found such that

$$h^j(p^{**}) > \frac{1}{k}$$
 for all $j \ge 3$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

by the definition of Y^2 .

Computing $|g^{j}(p^{*}) - p^{*}|$, yield $|h^{j}(p^{**}) - p^{**}| = \frac{\kappa}{k^{j+1}} \to 0$ as $j \to \infty$. That is, for this *r*, there exists a natural number J' > 0 such that

$$h^j(p^{**}) \in V$$
 as $j \ge J'$.

Fix this *J*', let $y_0 = h^{J'}(p^{**})$, then $y_0 \in V$ and $(Y^2)^{J'}(y_0) = p^{**}$. Since $|(Y^2)'(p)| = k > 1$ for all $p \in V$, and $[(Y^2)^{J'}]'(y_0) \neq 0$, p^{**} is a snapback repeller of Y^2 .

• Y^2 is chaotic in the Devaney sense $\Leftrightarrow h_{top}(Y^2) > 0$.

•
$$h_{top}(Y^2) = 2 \cdot h_{top}(Y) > 0 \Leftrightarrow h_{top}(Y) > 0.$$

*h*_{top}(Y) > 0 ⇔ Y is chaotic in Devaney's sense as

$$k > \left(\frac{1}{2} + \sqrt{\frac{23}{108}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{23}{108}}\right)^{1/3}$$

Motivation	Preliminaries	Mathematical Analysis	Numerical Simulation
Main Result (II)			
p=2			

$$Y^{2^{2}}(x) = \begin{cases} k^{2}x - 2k + 2, & x \in \left[\frac{1}{k}, B\left(\frac{1}{k}\right)\right], \\ -k^{3}x + 2k^{2} - k + 1, & x \in \left[B\left(\frac{1}{k}\right), 1\right]. \end{cases}$$

Motivation	Preliminaries	Mathematical Analysis	Numerical Simulatio
Main Result (II)			
p = 3			

$$\mathcal{P}^{3}(x) = \begin{cases} k^{6}x - 2k^{5} + k^{4} - k^{3} + 2k^{2} - k + 1, \\ x \in \left[B\left(\frac{1}{k}\right), \underbrace{BAAB}_{C_{1}}\left(\frac{1}{k}\right)\right], \\ -k^{5}x + 2k^{4} - k^{3} + k^{2} - 2k + 2, \end{cases}$$

$$x \in \left[C_1\left(\frac{1}{k}\right), 1\right].$$

2,

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Preliminaries

Mathematical Analysis

Numerical Simulation

Numerical Computation

MatLab

р	k _p
0	1.618033988749895
1	<u>1.3247</u> 17957244745
2	1.134724138401520
3	<u>1.0682</u> 97188920740
4	<u>1.0327</u> 70966453956
5	<u>1.0164</u> 43864419055
6	<u>1.0081</u> 40050503278
7	<u>1.0041</u> 60992268882
8	1.003664292317828
9	<u>1.0037</u> 95792338565

Preliminaries

Mathematical Analysis ○○○○○○○○○● Numerical Simulation

Numerical Computation

Maple

р	k _p
0	1.6180339887498948482
1	1.3247179572447460259
2	<u>1.1347</u> 241384015194926
3	1.0682971889208412763
4	1.0327709664410429093
5	1.0164438640594170720
6	1.0081400320211663423
7	1.0040736663886927402
8	1.0020317763334169970
9	<u>1.0010</u> 161163502399878
10	1.0005077430745001149
11	1.0002538857993064976

Preliminaries

Mathematical Analysis

Numerical Simulation

$$Y^{(t+1)} = -kY^{(t)} + 1, Y^{(t)} > 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Preliminaries

Mathematical Analysis

Numerical Simulation

$$Y^{(t+1)} = -kY^{(t)} + 1, Y^{(t)} > 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Preliminaries

Mathematical Analysis

Numerical Simulation

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

What happen in $Y^{(t)}$?

For any initial value $x \in \mathbb{Q}$

$k \in \mathbb{N}$

 $Y^{(t)}(x)$ is periodic **eventually**.

Preliminaries

Mathematical Analysis

Numerical Simulation

What happen in $Y^{(t)}$?

Binary representation with finite digits

 $\textit{k} \in \mathbb{N} \setminus \{1\}$

$k \in \operatorname{even}$

$$Y^{(t)}$$
 always converges to the periodic cycle
 $S \equiv \{-k+1, -k+2, \dots, 0, 1\}$

with period k + 1 for any initial value.

$k\in \mathrm{odd}$

 $Y^{(t)}$ can not converge to the periodic cycle $S \equiv \{-k+1, -k+2, \dots, 0, 1\}$ as the initial value $x \notin S$.

Preliminaries

Mathematical Analysis

Numerical Simulation

Thank you for your attention!