Dynamics in Bose-Einstein Condensates

Shu-Ming Chang (張書銘)

Department of Mathematics National Tsing Hua University Hsinchu 300, Taiwan

July 19, 2007

Outline

- Mathematical Models
- Motivation
- Numerical Simulation
- Numerical Results

1 Mathematical Models

(i) Time-dependent Gross-Pitaevskii equation

$$i u_t = -\Delta u + V_{\epsilon}(x, y) u + \frac{1}{\epsilon^2} (|u|^2 - 1) u, \quad t > 0, \qquad (1.1)$$

with the initial data $u|_{t=0} = u_0(x, y)$ and $(x, y) \in \mathbb{R}^2$.

u: a complex-valued order parameter,

 $\epsilon > 0:$ a small parameter,

 $V_{\epsilon}(x,y) = \alpha_{\epsilon} x^2 + \beta_{\epsilon} y^2$: a harmonic trap potential,

 $\alpha_{\epsilon}, \ \beta_{\epsilon} > 0$: depending on ϵ .

This time-dependent Gross-Pitaevskii equation was introduced as a phenomenological equation for the order parameter in superfluids.

(ii) Coupled Gross-Pitaevskii equations

$$\begin{cases} \boldsymbol{\iota}\hbar\frac{\partial\psi_{1}(\boldsymbol{x},t)}{\partial t} = -\frac{\hbar^{2}}{2m_{a}}\nabla^{2}\psi_{1} + V_{1}\psi_{1} + \mu_{11}|\psi_{1}|^{2}\psi_{1} + \mu_{12}|\psi_{2}|^{2}\psi_{1}, \\ \boldsymbol{\iota}\hbar\frac{\partial\psi_{2}(\boldsymbol{x},t)}{\partial t} = -\frac{\hbar^{2}}{2m_{a}}\nabla^{2}\psi_{2} + V_{2}\psi_{2} + \mu_{22}|\psi_{2}|^{2}\psi_{2} + \mu_{21}|\psi_{1}|^{2}\psi_{2}. \end{cases}$$

$$(1.2)$$

$$\boldsymbol{x} \in \Omega \in \mathbb{R}^{2,3}, \ \psi_j(\boldsymbol{x},t) = 0, \ \boldsymbol{x} \in \partial \Omega, j = 1, 2.$$

 ψ_j : macroscopic wave fts, V_j : trap potential,

 μ_{jj} : intra-comp., μ_{ij} $(i \neq j)$: inter-comp. scattering lengths.

- (i) Time-dependent Gross-Pitaevskii equation: to observe the motion of vortices.
- (ii) Coupled Gross-Pitaevskii equations: to solve Ground state & bound states.

2 Motivation

• Bose-Einstein Condensates (BEC)

Phases of matter

A new form of matter at the coldest temperatures in the universe...

- Theoretical prediction 1924 ...
 - S. Bose: derived Planck's black body radiation law from considering the cavity radiation as an ideal photon gas and worked out Bose statistics for photons.
 - A. Einstein: generalized Bose statistics to other Bosonic particles and atoms (Bose-Einstein statistics) and predicted if the atoms were cold enough, almost all of the particles would congregate in the ground states (BEC).
 - Since 1924, BEC is the Holy Grail in physics.

A. Einstein (1879 ~ 1955) S. Bose (1894 ~ 1974)

 E. A. Cornell & C. E. Wieman (JILA, 1995): first observed BEC of rubidium (⁸⁷Rb) atoms at 20 nK, i.e. 0.000 000 02 K.

C. E. Wieman & E. A. Cornell

BEC at 400, 200, and 50 nK

W. Ketterle (MIT, 1995):
observed BEC of sodium (²³Na) atoms.

Vortices in BEC

- How do vortices happen?
 - Idea 1: rotation (standard way in fluid mechanics).
 - Idea 2: laser beam moving slowly through the condensate (without rotation), by B. Jackson et al. (1998, theoretical);
 K. Staliunas (1999, experiment).

- Idea of K. Staliunas stirred Bose-Einstein Condensates:
 - (1) Create one component BEC.
 - (2) The laser beam enters the condensate spiraling clockwise.
 - (3) Reaching the center of the condensate it is switched off.

3 Numerical Simulation – Vortices in BEC

- Make a study of vortices's behavior in a two-dimensional trapped Bose-Einstein Condensates.
 - PDE: time-dependent Gross-Pitaevskii equation.
 - ODE: asymptotic motion equations of vortices.

Dynamics of vortices in trapped BEC
Suppose u₀ has d vortex centers at q_j(0) = (q_{jx}(0), q_{jy}(0))[⊤].
Under some specific assumptions on u₀, we obtain the asymptotic motion equations of d vortices q_j's in the following: (T. C. Lin done)

$$\dot{q}_{jx} = -\sum_{\substack{k=1\\k\neq j}}^{d} n_k \frac{q_{jy} - q_{ky}}{|q_j - q_k|^2} - \omega_1 q_{jy},$$

$$\dot{q}_{jy} = \sum_{\substack{k=1\\k\neq j}}^{d} n_k \frac{q_{jx} - q_{kx}}{|q_j - q_k|^2} + \omega_2 q_{jx},$$
(3.1)

where $q_j = q_j(t) = (q_{jx}(t), q_{jy}(t)), n_j$: winding numbers and $\omega_1 = -\omega + 2\beta_0, \, \omega_2 = -\omega + 2\alpha_0$. For the stability of the vortex structure in u, we require $n_j \in \{\pm 1\}, j = 1, \ldots, d$. Numerical Study of 3 Vortices in ODE

- Characterize the motion:
 - Lyapunov exponent,
 - Poincaré map,
 - Spectrums of waveforms.
- Indicator for ratio topologically synchronized chaotic regimes (Afraimovich et al. (1999, 2000)):
 - the Poincaré dimension for Poincaré recurrences.

4 Numerical Results – Vortices in BEC

We consider d = 3, then obtain

- the bounded and collisionless trajectories of three vortices form chaotic, quasi 2- or quasi 3-periodic orbits,
- (2) a new phenomenon of 1 : 1-topological synchronization is observed in the chaotic trajectories of vortices with the same sign of winding numbers..

Figure 4.6: The ratio of slopes = $45.0/44.8 \approx 1.006$

Figure 4.9: Quasi 3-periodic second-order Poincaré maps (4 dim.), $t = 41,179 \sim 4,000,000$ sec.

Figure 4.15: Chaotic first-order Poincaré maps (5 dim.), $t=1,000\sim 100,000$ sec.

Figure 4.16: Chaotic spectrum, $t = 2,000 \sim 25,500$ sec.

Figure 4.18: The ratio of slopes = $27.5 : 28.4 : 28.5 \approx 0.97 : 0.996 : 1$.