Nonlinear Schrödinger Solitary Waves

Numerical algorithms and methods

Shu-Ming Chang

Department of Mathematics National Tsing Hua University

December 4, 2007

Introduction

Refereed paper

S. M. Chang, S. Gustafson, K. Nakanishi and T. P. Tsai, Spectra of Linearized Operators for NLS Solitary Waves, **SIAM J. Math. Anal.**, Vol. 39, No. 4 (2007), pp. 1070–1111. (published October 24)

Numerical algorithms and methods

Outline

- Introduction
- Mathematical model
- Numerical algorithms and methods
- Numerical results

Nonlinear Schrödinger equation (NLS) with focusing power nonlinearity

$$i\partial_t \psi = -\Delta \psi - |\psi|^{p-1} \psi, \tag{1}$$

Numerical algorithms and methods

where $\psi(t, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$ and 1 .

- Goal
- Motivation

Well-posedness in $H^1(\mathbb{R}^n)$ -norm

The Cauchy (initial value) problem for Eq. (1):

local

$$1$$

Numerical algorithms and methods

global

$$1 , where $p_c = 1 + \frac{4}{n}$.$$

For $p \ge p_c$, \exists sol.s whose H^1 -norms go to ∞ in finite time. (blow up)

Solitary waves

$$\psi(t,x) = Q(x) e^{it}. \tag{2}$$

Numerical algorithms and methods

 Special solutions of the NLS (1) for a certain range of the power p.

Q(x) in Eq. (2) satisfies the nonlinear elliptic equation

$$-\Delta Q - |Q|^{p-1}Q = -Q. \tag{3}$$

Non-trivial radial solution Q(x)

- For $p \in (1, p_{max})$ and $n \in \mathbb{N}$, \exists at least one non-trivial radial solution Q(x) = Q(|x|) of Eq. (3).
- ∃! pos. sol., ground state, i.e., smooth, decreases monotonically as a function of |x|, decays exponentially at ∞ , and can be taken to be pos.: Q(x) > 0.

Non-radial solutions $Q_{m\kappa,n}$

In \mathbb{R}^n , $n \geq 2$, $Q_{m,\kappa,p}$ with non-zero angular momenta, $p \in (1, p_{\text{max}}), \kappa = 0, 1, 2, \dots$, each with exactly κ pos. zeros as a function of |x|. (those suggested by P. L. Lions)

- - n=2, $Q=\phi(r)e^{im\theta}$: polar coord.s r,θ ;
- n = 3, $Q = \phi(r, x_3) e^{im\theta}$: cylindrical coord.s r, θ, x_3 , and similarly defined for n > 4.

Goal

To study the spectra of the *linearized operators* which arise when the NLS (1) is linearized around the solitary waves.

Case 1:
$$\psi(t, x) = \phi(r) e^{it}$$
 with $Q(x)$: non-trivial radial sol..

Case 2:
$$\psi(t, x) = \phi(r) e^{im\theta} e^{it}$$
 with $Q(x)$: non-radial & non-zero angular momenta sol..

Linearized operator \mathcal{L}

To study the stability of a solitary wave sol. (2) w.r.t. the NLS (1):

$$\psi(t,x) = [Q(x) + h(t,x)] e^{it}. \tag{4}$$

Numerical algorithms and methods

Therefore, the perturbation h(t, x) satisfies

$$\partial_t h = \mathcal{L}h + \text{(nonlinear terms)},$$
 (5)

where \mathcal{L} is the linearized operator around Q.

Case 1: $Q(x) = Q_{0,0,p} = \phi_{0,0,p}(r)$ radial

G

$$\mathcal{L}h = -i\left\{(-\Delta + 1 - Q^{p-1})h - \frac{p-1}{2}Q^{p-1}(h+\bar{h})\right\}.$$
 (6)

 \mathcal{L} as a matrix operator acting on $\begin{bmatrix} \operatorname{Re} h \\ \operatorname{Im} h \end{bmatrix}$,

$$\mathcal{L} = \begin{bmatrix} 0 & L_{-} \\ -L_{+} & 0 \end{bmatrix}, \tag{7}$$

where

$$L_{+} = -\Delta + 1 - pQ^{p-1}, \qquad L_{-} = -\Delta + 1 - Q^{p-1}.$$
 (8)

Case 2:
$$Q(x) = Q_{m,0,p} = \phi_{m,0,p}(r) e^{im\theta}$$
 non-radial

$$\mathcal{L}h = i\left(\Delta h - h + \frac{p+1}{2}|Q|^{p-1}h + \frac{p-1}{2}|Q|^{p-3}Q^2\bar{h}\right). \tag{9}$$

Case 2-1: $\rho(\mathcal{L})$ in 2-dimensional form

$$Q = \phi(r)\cos(m\theta) + i\phi(r)\sin(m\theta)$$
, then

$$\mathcal{L} \sim \begin{bmatrix} 0 & -\Delta + 1 \\ \Delta - 1 & 0 \end{bmatrix} + |\phi(r)|^{p-1} \begin{bmatrix} -(p-1)\cos\sin & -\cos^2 - p\sin^2 \\ p\cos^2 + \sin^2 & (p-1)\cos\sin \end{bmatrix} (m\theta).$$
(10)

By restricting the problem to some invariant subspaces of \mathcal{L} , we reduce the problem to 1-dimension.

Numerical algorithms and methods

Case 2-2:
$$ho(\mathcal{L}) = \cup \,
ho(\mathcal{L}|_{X_k}) = \cup \,
ho(L_{X_k})$$

For k = 0, $\mathcal{L}|_{X_0}$ has the matrix form

$$L_{X_0} = \begin{bmatrix} 0 & H_0 + V \\ -H_0 + V & 0 \end{bmatrix}.$$

For k > 0, $\mathcal{L}|_{X_k}$ has the matrix form

$$L_{X_k} = egin{bmatrix} 0 & H_k & 0 & V \ -H_k & 0 & V & 0 \ 0 & V & 0 & H_{-k} \ V & 0 & -H_{-k} & 0 \ \end{bmatrix}.$$

The linearized operator acting on $[\operatorname{Re} h, \operatorname{Im} h]^{\top}$ and it is invariant on subspaces $Z_k = \{ [a_1(r), a_2(r)]^{\top} e^{ik\theta} \}$ with integers k.

Case 2-3:
$$ho(\mathcal{L}) = \cup \,
ho(\mathcal{L}|_{\mathcal{Z}_k}) = \cup \,
ho(\mathcal{L}_{m,k})$$

$$\mathcal{L} \sim \begin{bmatrix} -2m/r^2\partial_\theta & -\Delta + 1 + m^2/r^2 - \phi^{p-1} \\ -(-\Delta + 1 + m^2/r^2 - p\phi^{p-1}) & -2m/r^2\partial_\theta \end{bmatrix}.$$

$$L_{m,k} := \begin{bmatrix} -\frac{2imk}{r^2} & -\Delta_r + 1 + \frac{m^2 + k^2}{r^2} - \phi^{p-1} \\ -(-\Delta_r + 1 + \frac{m^2 + k^2}{r^2} - p\phi^{p-1}) & -\frac{2imk}{r^2} \end{bmatrix},$$

$$k = 0, \pm 1, \pm 2, \dots$$

Aim

To get a more detailed understanding of the spectrum of \mathcal{L} , using both analytical and numerical techniques.

- Determine (or estimate) the number and locations of the ew.s of the linearized operator \mathcal{L} .
- Bifurcations, as p varies, of pairs of purely imaginary ew.s into pairs of ew.s with non-zero real part (a stability/instability transition).

The spectrum of \mathcal{L}

Step I. Compute $\phi(r) = \phi_{m,0,p}(r)$.

Case 1:
$$-\Delta Q - |Q|^{p-1}Q = -Q$$
,
where $Q = \phi_{0,0,p}(r)$.

Case 2:
$$-\phi'' - \frac{1}{r}\phi' + \frac{m^2}{r^2}\phi - |\phi|^{p-1}\phi = -\phi$$
.

Step II. Compute the spectra of the linearized operator $\mathcal{L}(L_{X_k}, L_{m,k})$.

Discretization

$$\Omega = \{ x \in \mathbb{R}^n : |x| \le R, R \in \mathbb{R} \}$$

- Polar coordinate system.
- Dirichlet boundary condition.
- Standard central finite difference method.

Numerical methods

 $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{q} = (q_1, \dots, q_N)^{\top} \in \mathbb{R}^N$, $\mathbf{q}^{\odot} = \mathbf{q} \circ \dots \circ \mathbf{q}$: p-time Hadamard product of **q**.

Step I. Compute the nonlinear ground state by iteration and renormalization: after discretizing, we obtain the following nonlinear algebraic equation,

$$\mathbf{A}\mathbf{q} + \mathbf{q} - \mathbf{q}^{\odot} = 0. \tag{11}$$

$$\mathbf{A}\widetilde{\mathbf{q}}_{j+1} + \widetilde{\mathbf{q}}_{j+1} = \mathbf{q}_j^{\textcircled{o}}. \qquad \qquad (12)$$

Introduction

Step II. Compute the spectra of L: after discretizing \mathcal{L} , we obtain the following large-scale linear algebraic eigenvalue problem.

$$\mathbf{L} \begin{bmatrix} \mathbf{u} \\ \mathbf{w} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{u} \\ \mathbf{w} \end{bmatrix}. \tag{13}$$

Numerical results

For Case 1

$$\boldsymbol{\mathsf{L}} = \left[\begin{array}{cc} \boldsymbol{\mathsf{0}} & \boldsymbol{\mathsf{A}} + \boldsymbol{\mathsf{I}} - [\![\boldsymbol{\mathsf{q}}^{\odot}]\!] \\ -\boldsymbol{\mathsf{A}} - \boldsymbol{\mathsf{I}} + [\![\boldsymbol{\rho}\,\boldsymbol{\mathsf{q}}^{\odot}]\!] & \boldsymbol{\mathsf{0}} \end{array} \right],$$

 $\gamma=p-1$, and **q** from Step I, and satisfies in (11). To use implicitly restarted Arnoldi method to deal with this problem.

For Case 2

We develop 3 algorithms for computing the spectrum of \mathcal{L} in Case 2-1, 2-2 & 2-3.

Numerical algorithms and methods

Alg. 1: 2-dim. mesh, $r = 0 : \delta_r : R, \theta = 0 : \delta_\theta : 2\pi$. The discretized matrix has size NT by NT with $N = R/\delta_r$ and $T = 2\pi/\delta_\theta$, where R = 15, $\delta_r = 0.04$, and T = 160.

For Case 2

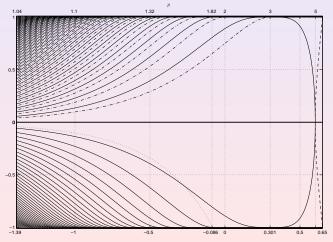
- Alg. 2: To discretize the operator, we use the 1-dim. mesh, r = 0: δ_r : R, $N = R/\delta_r$.
 - The matrix corresponding to X_0 has size 2N by 2N. The matrix for X_k with k > 0has size 4N by 4N.

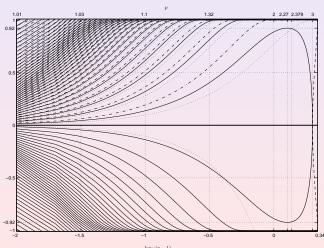
- Counting multiplicity, the ew.s of \mathcal{L} is the union of ew.s of $\mathcal{L}|_{X_k}$ with $k=0,1,2,\ldots$
- Alg. 3: Similar to Alg. 2 but the matrix size is only half.

Introduction

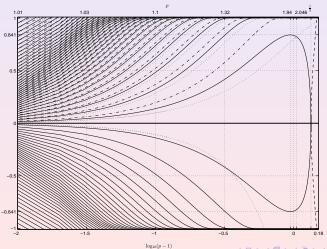
- Equivalence of Algorithms 2 and 3.
- Numerical efficiency: Alg. 3 ≃ Alg. 2 > Alg. 1.

n=1

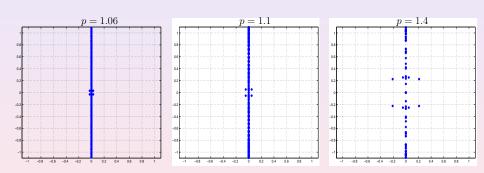




n = 3

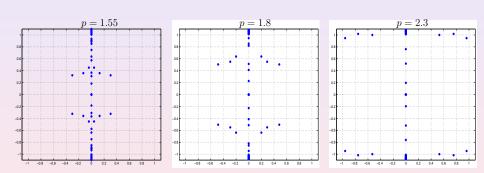


n = 2, m = 1 by Alg. 1

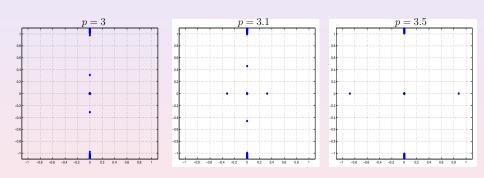


n = 2, m = 1 by Alg. 1

Introduction

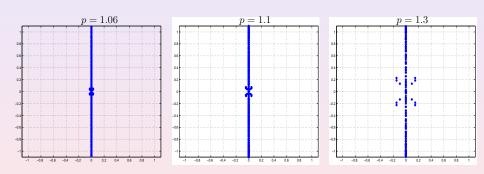


n = 2, m = 1 by Alg. 1

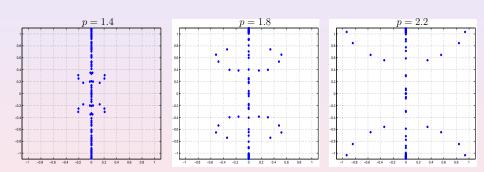


$$n = 2, m = 2$$
 by Alg. 1

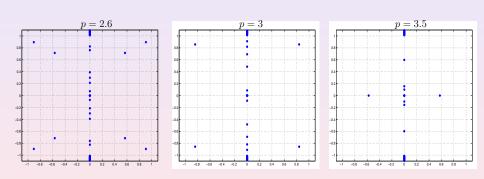
Introduction



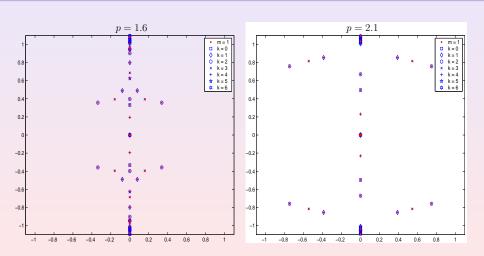
n = 2, m = 2 by Alg. 1



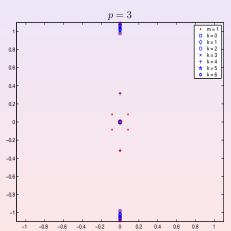
n = 2, m = 2 by Alg. 1

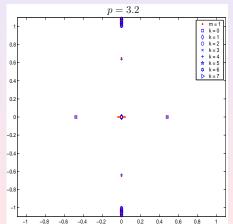


n = 2, m = 1 comparison between Alg. 1 and Alg. 2,3

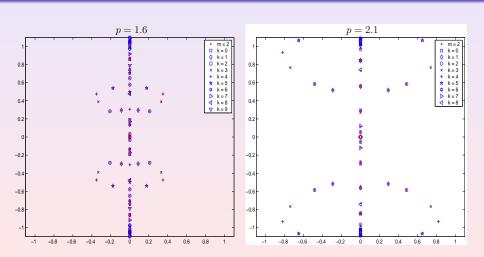


n = 2, m = 1 comparison between Alg. 1 and Alg. 2,3

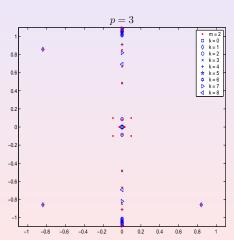


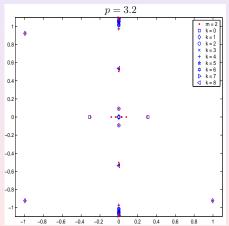


 $\overline{n} = 2, m = 2$ comparison between Alg. 1 and Alg. 2,3

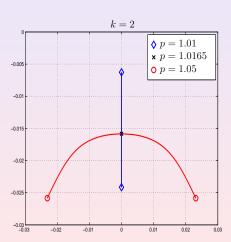


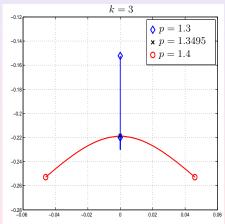
 $\overline{n} = 2, m = 2$ comparison between Alg. 1 and Alg. 2,3

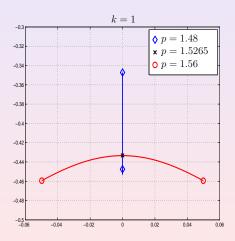


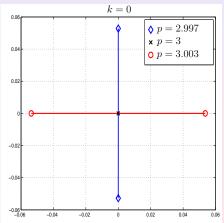


n = 2, m = 1 bifurcation



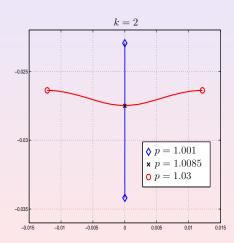


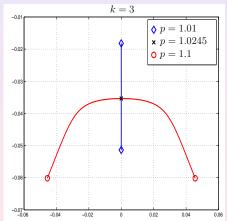




Case 2: non-radial

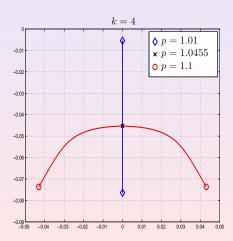
n=2, m=2 bifurcation

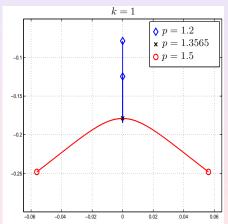




Case 2: non-radial

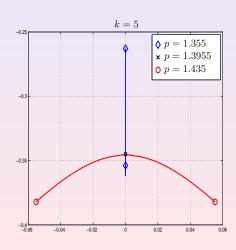
n = 2, m = 2 bifurcation

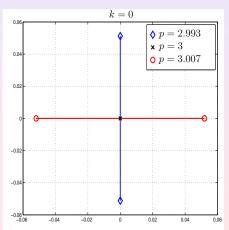




Case 2: non-radial

n = 2, m = 2 bifurcation





Introduction

Numerical algorithms and methods

Authors

Stephen Gustafson & Tai-Peng Tsai

Department of Mathematics, University of British Columbia, Vancouver, Canada.

Kenji Nakanishi

Department of Mathematics, Kyoto University, Kyoto, Japan.

Goal

To study the spectra of the *linearized operators* which arise when the NLS (1) is linearized around *solitary* waves.

Motivation

Properties of these spectra are intimately related to the problem of the stability (orbital and asymptotic) of these solitary waves, and to the long-time dynamics of solutions of NLS.

Existence

S. I. Pohozaev, *Eigenfunctions of the equation* $\Delta u + \lambda f(u) = 0$, Sov. Math. Doklady **5** (1965), 1408–1411.

Ground state

See Sulem for the various existence & uniqueness results and various nonlinearities.

min J[u]

For all $n \ge 1$ and $p \in (1, p_{\max})$, the ground state minimizes the Gagliardo-Nirenberg quotient

$$J[u] := \frac{\left(\int |\nabla u|^2\right)^a \left(\int u^2\right)^b}{\int u^{p+1}}$$

among nonzero $H^1(\mathbb{R}^n)$ radial functions.

Existence and uniqueness

C. Sulem and P. L. Sulem, *The nonlinear Schrödinger equations: self-focusing and wave collapse*, Springer, 1999.

Return

Non-zero angular momenta

In \mathbb{R}^n , $n \ge 2$ and let $\kappa = \lfloor n/2 \rfloor$. For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, use polar coord.s r_j and θ_j for each pair x_{2j-1} and x_{2j} , $j = 1, \ldots, \kappa$. P. L. Lions considers sol.s of the form

$$Q(x) = \phi(r_1, r_2, \dots, r_{\kappa}, x_n) e^{i(m_1\theta_1 + \dots + m_{\kappa}\theta_{\kappa})}, \qquad m_j \in \mathbb{Z}$$

and proves that \exists energy minimizing sol.s.

Reference

P. L. Lions, *Solutions complexes d'équations elliptiques semilinéaires dans R^N*, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), No. 19, 673–676.

L_{-} and L_{+}

- Play a central role in the stability theory.
- Self-adjoint Schrödinger operators with continuous spectrum $[1, \infty)$, and with finitely many ew.s below 1.
- L₋ is a nonnegative operator, L₊ has exactly one negative ew when Q is the ground state.

Case 1: the spectra of \mathcal{L}

- $\mathbf{0} \quad \forall \ p \in (1, p_{\text{max}}), \ 0 \text{ is an ew of } \mathcal{L}.$
- ② $\Sigma_c := \{ir : r \in \mathbb{R}, |r| \ge 1\}$ is the continuous spectrum of \mathcal{L} .
- 3 $p = p_c$ is critical for stability of the ground state solitary wave.
 - $p < p_c$ the ground state is orbitally stable.
 - $p \ge p_c$ it is unstable.
- \bullet $p \in (1, p_c]$: all ew.s of \mathcal{L} are purely imaginary.
- $p \in (p_c, p_{\text{max}})$: \mathcal{L} has at least one ew with pos. real part.

Stable and unstable

- M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), No. 1, 160–197.
- M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm.
 Pure Appl. Math. 39 (1986), 51–68.

Case 2-2

Define

$$V = \frac{p-1}{2}\phi^{p-1}, \quad H_k = -\Delta_r + 1 + \frac{(m+k)^2}{r^2} - \frac{p+1}{2}\phi^{p-1}.$$

Solitary waves

For the simplest case n = 2, let

$$\psi(t,x)=\phi(r)\,e^{im\theta}\,e^{it},$$

then from NLS (1), $\phi(r)$ satisfies the nonlinear elliptic equation

$$-\phi'' - \frac{1}{r}\phi' + \frac{m^2}{r^2}\phi + \phi - |\phi|^{p-1}\phi = 0.$$

◆ Return

Discretization scheme

M. C. Lai, *A note on finite difference discretizations for poisson equation on a disk*, Numerical Methods for Partial Differential Equations **17** (2001), No. 3, 199–203.

Iterative algorithm

T. M. Hwang and W. Wang, *Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions*, Numerical Methods for Partial Differential Equations **18** (2002), 261–279.

Return

Iterative algorithm

```
Step 0 Let i = 0.
             Choose an initial solution \tilde{\mathbf{q}}_0 > 0 and let \mathbf{q}_0 = \frac{\mathbf{q}_0}{\|\tilde{\mathbf{q}}_0\|_2}.
Step 1 Solve the equation (12), then obtain \widetilde{\mathbf{q}}_{i+1}.
Step 2 Let \alpha_{j+1} = \frac{1}{\|\widetilde{\mathbf{q}}_{j+1}\|_2} and normalize \widetilde{\mathbf{q}}_{j+1} to obtain
             q_{i+1} = \alpha_{i+1} q_{i+1}.
Step 3 If (convergent) then
                   Output the scaled solution (\alpha_{i+1})^{\frac{1}{p-1}} \mathbf{q}_{i+1}. Stop.
             else
                   Let i := i + 1.
                   Goto Step 1.
             end
```

Numerical efficiency

- Alg. 1 is 2-dim., and thus more expensive to compute and less accurate. Both Alg. 2 and 3 are 1-dim. and more accurate.
- The benefit of Alg. 3 than Alg. 2 is that it further decomposes the subspace of $L^2(\mathbb{R}^2, \mathbb{C}^4)$ corresponding to X_k to two subspaces.
- Although the matrix size of Alg. 3 is only half that of Alg. 2, its components are complex. It implies that Alg. 3 requires more storage space. Numerically these two algorithms are not very different.