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Nonlinear Schrödinger equation (NLS) with
focusing power nonlinearity

i∂tψ = −∆ψ − |ψ|p−1ψ, (1)

where ψ(t , x) : R× Rn → C and 1 < p <∞.

Goal �

Motivation �
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Well-posedness in H1(Rn)-norm

The Cauchy (initial value) problem for Eq. (1):

local

1 < p < pmax, where pmax =

{
∞ if n = 1,2,
1 + 4

n−2 if n ≥ 3;

global
1 < p < pc, where pc = 1 + 4

n .

For p ≥ pc, ∃ sol.s whose H1-norms go to ∞ in finite time.
(blow up)
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Solitary waves

ψ(t , x) = Q(x) eit . (2)

Special solutions of the NLS (1) for a certain range of
the power p.

Q(x) in Eq. (2) satisfies the nonlinear elliptic equation

−∆Q − |Q|p−1Q = −Q. (3)
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Non-trivial radial solution Q(x)

For p ∈ (1,pmax) and n ∈ N, ∃ at least one non-trivial
radial solution Q(x) = Q(|x |) of Eq. (3).

∃! pos. sol., ground state, i.e., smooth, decreases
monotonically as a function of |x |, decays
exponentially at ∞, and can be taken to be pos.:
Q(x) > 0.

Return
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Non-radial solutions Qm,κ,p

In Rn, n ≥ 2, Qm,κ,p with non-zero angular momenta,
p ∈ (1,pmax), κ = 0,1,2, . . ., each with exactly κ pos.
zeros as a function of |x |. (those suggested by P. L. Lions)

n = 2, Q = φ(r) eimθ: polar coord.s r , θ;

n = 3, Q = φ(r , x3) eimθ: cylindrical coord.s r , θ, x3,

and similarly defined for n ≥ 4.
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Goal

To study the spectra of the linearized operators which
arise when the NLS (1) is linearized around the solitary
waves.

Case 1: ψ(t , x) = φ(r) eit

with Q(x): non-trivial radial sol..

Case 2: ψ(t , x) = φ(r) eimθ eit

with Q(x): non-radial & non-zero angular
momenta sol..
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Linearized operator L

To study the stability of a solitary wave sol. (2) w.r.t. the
NLS (1):

ψ(t , x) = [Q(x) + h(t , x)] eit . (4)

Therefore, the perturbation h(t , x) satisfies

∂th = Lh + (nonlinear terms), (5)

where L is the linearized operator around Q.
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Case 1: Q(x) = Q0,0,p = φ0,0,p(r) radial

Lh = −i
{

(−∆ + 1−Qp−1)h − p−1
2 Qp−1(h + h̄)

}
. (6)

L as a matrix operator acting on
[

Re h
Im h

]
,

L =

[
0 L−

−L+ 0

]
, (7)

where

L+ = −∆ + 1− pQp−1, L− = −∆ + 1−Qp−1. (8)
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Case 2: Q(x) = Qm,0,p = φm,0,p(r) eimθ non-radial

Lh = i
(

∆h − h +
p + 1

2
|Q|p−1h +

p − 1
2

|Q|p−3Q2h̄
)
.

(9)
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Case 2-1: ρ(L) in 2-dimensional form
Q = φ(r) cos(mθ) + iφ(r) sin(mθ), then

L ∼
[

0 −∆ + 1
∆− 1 0

]
+|φ(r)|p−1

[
−(p − 1) cos sin − cos2−p sin2

p cos2 + sin2 (p − 1) cos sin

]
(mθ).

(10)



Introduction Mathematical model Numerical algorithms and methods Numerical results

By restricting the problem to some invariant subspaces of
L, we reduce the problem to 1-dimension.

Case 2-2: ρ(L) = ∪ ρ(L|Xk ) = ∪ ρ(LXk )

For k = 0, L|X0 has the matrix form

LX0 =

[
0 H0 + V

−H0 + V 0

]
.

For k > 0, L|Xk has the matrix form

LXk =


0 Hk 0 V

−Hk 0 V 0
0 V 0 H−k

V 0 −H−k 0

 .
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The linearized operator acting on [Re h, Im h]> and it is
invariant on subspaces Zk =

{
[a1(r),a2(r)]>eikθ

}
with

integers k .

Case 2-3: ρ(L) = ∪ ρ(L|Zk ) = ∪ ρ(Lm,k)

L∼
[

−2m/r 2∂θ −∆+1+m2/r 2−φp−1

−(−∆+1+m2/r 2−pφp−1) −2m/r 2∂θ

]
.

Lm,k :=

[
−2imk

r2 −∆r +1+ m2+k2

r2 −φp−1

−(−∆r +1+ m2+k2

r2 −pφp−1) −2imk
r2

]
,

k = 0,±1,±2, . . . .
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Aim

To get a more detailed understanding of the spectrum of
L, using both analytical and numerical techniques.

Determine (or estimate) the number and locations of
the ew.s of the linearized operator L.

Bifurcations, as p varies, of pairs of purely imaginary
ew.s into pairs of ew.s with non-zero real part (a
stability/instability transition).
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The spectrum of L

Step I. Compute φ(r) = φm,0,p(r).

Case 1: −∆Q − |Q|p−1Q = −Q,
where Q = φ0,0,p(r).

Case 2: −φ′′ − 1
r φ

′ + m2

r2 φ− |φ|p−1φ = −φ.

Step II. Compute the spectra of the linearized
operator L (LXk , Lm,k ).
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Discretization

Ω = {x ∈ Rn : |x | ≤ R,R ∈ R}
Polar coordinate system.

Dirichlet boundary condition.

Standard central finite difference method.
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Numerical methods

A ∈ RN×N , q = (q1, . . . ,qN)> ∈ RN , q©p = q ◦ · · · ◦ q: p-time
Hadamard product of q.

Step I. Compute the nonlinear ground state by
iteration and renormalization:
after discretizing, we obtain the following
nonlinear algebraic equation,

Aq + q− q©p = 0. (11)

Aq̃j+1 + q̃j+1 = q©pj . (12)

�
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[[q]] := diag(q), the diagonal matrix of q.

Step II. Compute the spectra of L:
after discretizing L, we obtain the following
large-scale linear algebraic eigenvalue
problem,

L
[

u
w

]
= λ

[
u
w

]
. (13)

For Case 1

L =

[
0 A + I− [[q©γ ]]

−A− I + [[p q©γ ]] 0

]
,

γ = p − 1, and q from Step I, and satisfies
in (11). To use implicitly restarted Arnoldi
method to deal with this problem.
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For Case 2

We develop 3 algorithms for computing the spectrum of L
in Case 2-1, 2-2 & 2-3.

Alg. 1: 2-dim. mesh, r = 0 : δr : R, θ = 0 : δθ : 2π.
The discretized matrix has size NT by NT
with N = R/δr and T = 2π/δθ, where R = 15,
δr = 0.04, and T = 160.
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For Case 2

Alg. 2: To discretize the operator, we use the 1-dim.
mesh, r = 0 : δr : R, N = R/δr .

The matrix corresponding to X0 has size
2N by 2N. The matrix for Xk with k > 0
has size 4N by 4N.
Counting multiplicity, the ew.s of L is the
union of ew.s of L|Xk with k = 0,1,2, . . ..

Alg. 3: Similar to Alg. 2 but the matrix size is only
half.
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Properties of these algorithms

1 Equivalence of Algorithms 2 and 3.
2 Numerical efficiency: Alg. 3 ' Alg. 2 � Alg. 1. �
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Case 1: radial
n = 1
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Case 1: radial
n = 2
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Case 1: radial
n = 3
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Case 2: non-radial
n = 2, m = 1 by Alg. 1
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Case 2: non-radial
n = 2, m = 1 by Alg. 1
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Case 2: non-radial
n = 2, m = 1 by Alg. 1
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Case 2: non-radial
n = 2, m = 2 by Alg. 1
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Case 2: non-radial
n = 2, m = 2 by Alg. 1
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Case 2: non-radial
n = 2, m = 2 by Alg. 1
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Case 2: non-radial
n = 2, m = 1 comparison between Alg. 1 and Alg. 2,3
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Case 2: non-radial
n = 2, m = 1 comparison between Alg. 1 and Alg. 2,3
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Case 2: non-radial
n = 2, m = 2 comparison between Alg. 1 and Alg. 2,3
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Case 2: non-radial
n = 2, m = 2 comparison between Alg. 1 and Alg. 2,3
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Case 2: non-radial
n = 2, m = 1 bifurcation
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Case 2: non-radial
n = 2, m = 1 bifurcation
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Case 2: non-radial
n = 2, m = 2 bifurcation
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Case 2: non-radial
n = 2, m = 2 bifurcation
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Case 2: non-radial
n = 2, m = 2 bifurcation
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Thank you for your attention!
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Goal

To study the spectra of the linearized operators which
arise when the NLS (1) is linearized around solitary
waves. Return



Motivation

Properties of these spectra are intimately related to the
problem of the stability (orbital and asymptotic) of these
solitary waves, and to the long-time dynamics of solutions
of NLS. Return



Reference

Existence
S. I. Pohozaev, Eigenfunctions of the equation
∆u + λf (u) = 0, Sov. Math. Doklady 5 (1965),
1408–1411.
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Ground state

See Sulem for the various existence & uniqueness results
and various nonlinearities.

min J[u]

For all n ≥ 1 and p ∈ (1,pmax), the ground state minimizes
the Gagliardo-Nirenberg quotient

J[u] :=

(∫
|∇u|2

)a (∫
u2

)b∫
up+1

among nonzero H1(Rn) radial functions.

Return



Reference

Existence and uniqueness
C. Sulem and P. L. Sulem, The nonlinear Schrödinger
equations: self-focusing and wave collapse, Springer,
1999.
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Non-zero angular momenta

In Rn, n ≥ 2 and let κ = [n/2]. For x = (x1, . . . , xn) ∈ Rn,
use polar coord.s rj and θj for each pair x2j−1 and x2j ,
j = 1, . . . , κ. P. L. Lions considers sol.s of the form

Q(x) = φ(r1, r2, . . . , rκ, xn) ei(m1θ1+···+mκθκ), mj ∈ Z

and proves that ∃ energy minimizing sol.s.

Reference
P. L. Lions, Solutions complexes d’équations elliptiques
semilinéaires dans RN , C. R. Acad. Sci. Paris Sér. I Math.
302 (1986), No. 19, 673–676.
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L− and L+

Play a central role in the stability theory.

Self-adjoint Schrödinger operators with continuous
spectrum [1,∞), and with finitely many ew.s below 1.

L− is a nonnegative operator, L+ has exactly one
negative ew when Q is the ground state.
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Case 1: the spectra of L

1 ∀ p ∈ (1,pmax), 0 is an ew of L.
2 Σc := {ir : r ∈ R, |r | ≥ 1} is the continuous spectrum

of L.
3 p = pc is critical for stability of the ground state

solitary wave.
p < pc the ground state is orbitally stable.
p ≥ pc it is unstable.

4 p ∈ (1,pc]: all ew.s of L are purely imaginary.
5 p ∈ (pc,pmax): L has at least one ew with pos. real

part.
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Reference
Stable and unstable

M. Grillakis, J. Shatah and W. Strauss, Stability
theory of solitary waves in the presence of symmetry
I, J. Funct. Anal. 74 (1987), No. 1, 160–197.

M. I. Weinstein, Lyapunov stability of ground states of
nonlinear dispersive evolution equations, Comm.
Pure Appl. Math. 39 (1986), 51–68.
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Case 2-2

Define

V =
p − 1

2
φp−1, Hk = −∆r + 1 +

(m + k)2

r 2 − p + 1
2

φp−1.
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Solitary waves

For the simplest case n = 2, let

ψ(t , x) = φ(r) eimθ eit ,

then from NLS (1), φ(r) satisfies the nonlinear elliptic
equation

−φ′′ − 1
r
φ′ +

m2

r 2 φ+ φ− |φ|p−1φ = 0.
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Reference

Discretization scheme
M. C. Lai, A note on finite difference discretizations for
poisson equation on a disk, Numerical Methods for
Partial Differential Equations 17 (2001), No. 3, 199–203.
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Reference

Iterative algorithm
T. M. Hwang and W. Wang, Analyzing and visualizing a
discretized semilinear elliptic problem with Neumann
boundary conditions, Numerical Methods for Partial
Differential Equations 18 (2002), 261–279.
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Iterative algorithm

Step 0 Let j = 0.
Choose an initial solution q̃0 > 0 and let q0 =

eq0
‖eq0‖2

.

Step 1 Solve the equation (12), then obtain q̃j+1.
Step 2 Let αj+1 = 1

‖eqj+1‖2
and normalize q̃j+1 to obtain

qj+1 = αj+1q̃j+1.
Step 3 If (convergent) then

Output the scaled solution (αj+1)
1

p−1 qj+1. Stop.
else

Let j := j + 1.
Goto Step 1.

end

Return



Numerical efficiency

Alg. 1 is 2-dim., and thus more expensive to compute
and less accurate. Both Alg. 2 and 3 are 1-dim. and
more accurate.

The benefit of Alg. 3 than Alg. 2 is that it further
decomposes the subspace of L2(R2,C4)

corresponding to Xk to two subspaces.

Although the matrix size of Alg. 3 is only half that of
Alg. 2, its components are complex. It implies that
Alg. 3 requires more storage space. Numerically
these two algorithms are not very different.
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