
Fig. 1: Spectra ofL for n,m = 2 and various
p = 1.6, 2.1. “·” denotes the spectra com-
puted by Alg. 1, and the other blue symbols
denote the spectra computed by Alg. 2 and 3.
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Conclusions

We observe a more detailed understand-
ing of the spectrum ofL, using numerical
techniques [2].

•Estimate the number and locations of the
ew.s of the linearized operatorL.
•Bifurcations, asp varies, of pairs of purely

imaginary ew.s into pairs of ew.s with
non-zero real part (a stability/instability
transition, see Fig. 1).
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Mathematical Model

The linearized operators come fromψ(t, x) = [Q(x) + h(t, x)] eit and the NLS (1).

Case 1: Non-trivial radial Lh = −i
{
(−∆ + 1 −Qp−1)h− p−1

2 Qp−1(h + h̄)
}
;

Case 2: Non-radial Lh = i
(
∆h− h + p+1

2 |Q|
p−1h + p−1

2 |Q|
p−3Q2h̄

)
.

The spectra of the linearized operators
around these solitary waves are intimately
connected to stability properties of the
solitary waves, and to the long-time dy-
namics of solutions of (NLS).

Introduction

We consider that nonlinear Schrödinger
(NLS) equations with focusing power non-
linearities have solitary wave solutions [1,
3, 4].

i∂tψ = −∆ψ − |ψ|p−1ψ, (1)

whereψ .= ψ(t, x) is a complex function,
x is a n-dimensional real variable, and
the nonlinearity powerp, 1 < p <∞.

To study the spectra of the “linearized
operators” which arise when the NLS (1)
is linearized around the solitary waves.

Case 1: Non-trivial radial ψ(t, x) = φ(r) eit.
Case 2: Non-radialψ(t, x) = φ(r) eimθ eit

(non-zero angular momenta sol.).
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