Outline

- Introduction of Bose-Einstein Condensates (BEC)
- Introduction of Vortices in BEC
- Mathematical Model
- Numerical Study of Three Vortices
- Conclusion

1 Introduction of BEC

- What is BEC?

Phases of matter

A new form of matter at the coldest temperatures in the universe...

BEC
(a) Cold atom: an atom in the lowest energy level is spread out a little, so it looks like a very small fuzzy ball.
(b) Super atom: at the special incredibly low temperatures needed for BEC that they lose their individual identities and coalesce into a single blob.

- Theoretical prediction 1924 ..
- S. Bose: derived Planck's black body radiation law from considering the cavity radiation as an ideal photon gas and worked out Bose statistics for photons.
- A. Einstein: generalized Bose statistics to other Bosonic particles and atoms (Bose-Einstein statistics) and predicted if the atoms were cold enough, almost all of the particles would congregate in the ground state. (BEC)

- How does BEC happen?

$$
\begin{gathered}
\lambda=\frac{\hbar}{p}, \quad p \propto \sqrt{m_{a} \mathrm{k} T} \\
\lambda \propto \frac{\hbar}{\sqrt{m_{a} \mathrm{~K} T}}
\end{gathered}
$$

Eg: ${ }^{23} \mathrm{Na}$,
$T=300 \mathrm{~K}$,
$\lambda=0.04 \mathrm{~nm}$.
$T=0.0003 \mathrm{~K}$,
$\lambda=40 \mathrm{~nm}$.
Note: $0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$.

- Physical experiments
- Superfluid He^{4} 1938:
P. L. Kapitza, Allen and Misener: discovered the superfluidity of liquid helium.
F. London: proposed that the superfluid fraction consisting of those atoms which have "condensed" to the ground state.

P. L.Kapitza $(1894 \sim 1984) \quad(1900 \sim 1954)$
- E. A. Cornell \& C. E. Wieman (JILA, 1995): first observed BEC of rubidium (${ }^{87} \mathrm{Rb}$) atoms at 20 nK , i.e. 0.00000002 K .

C. E. Wieman \& E. A. Cornell

BEC at 400, 200, and 50 nK

- W. Ketterle (MIT, 1995): observed BEC of sodium $\left({ }^{23} \mathrm{Na}\right)$ atoms.

W. Ketterle

Two-Component BEC

- Experimental implementation
- The BEC named Science Magazine's "Molecule of the Year 1995"!
- Nobel Prize in Physics (2001), E. A. Cornell, C. E. Wieman (JILA), W. Ketterle (MIT):
for the achievement of BEC in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates.
- Applications of BEC: atom laser, quantum computer, MEMS.
- Mathematical model: nonlinear Schrödinger equation, Gross-Pitaevskii equation (GPE), coupled nonlinear Schrödinger equations, vector Gross-Pitaevskii equations (VGPE).
- Numerical simulation: method, guide for experiment etc.

2 Introduction of Vortices in BEC

- How do vortices happen?
- Idea 1: rotation (standard way in fluid mechanics).
- Idea 2: laser beam moving slowly through the condensate (without rotation), by B. Jackson et al. (1998, theoretical); K. Staliunas (1999, experiment).

Idea of K. Staliunas

Stirred Bose-Einstein Condensates:
(1) Create one component BEC.
(2) The laser beam enters the condensate spiraling clockwise.
(3) Reaching the center of the condensate it is switched off.

Moving laser beam

BEC

Trajectory of laser beam

Motivation

- Make a study of vortices's behavior in a two-dimensional trapped Bose-Einstein condensates.
- PDE: time-dependent Gross-Pitaevskii equation.
- ODE: the asymptotic motion equations of vortices.

3 Mathematical Model

- Time-dependent Gross-Pitaevskii equation

$$
\begin{equation*}
i u_{t}=-\Delta u+V_{\epsilon}(x, y) u+\frac{1}{\epsilon^{2}}\left(|u|^{2}-1\right) u, \quad t>0 \tag{3.1}
\end{equation*}
$$

with the initial data $\left.u\right|_{t=0}=u_{0}(x, y)$ and $(x, y) \in \mathbb{R}^{2}$.
u : a complex-valued order parameter,
$\epsilon>0:$ a small parameter,
$V_{\epsilon}(x, y)=\alpha_{\epsilon} x^{2}+\beta_{\epsilon} y^{2}:$ a harmonic trap potential, $\alpha_{\epsilon}, \beta_{\epsilon}>0$: depending on ϵ.

This time-dependent Gross-Pitaevskii equation was introduced as a phenomenological equation for the order parameter in superfluids.

- Dynamics of vortices in trapped BEC

Suppose u_{0} has d vortex centers at $q_{j}(0)=\left(q_{j x}(0), q_{j y}(0)\right)^{\top}$.
Under some specific assumptions on u_{0}, we obtain the asymptotic motion equations of d vortices q_{j} 's in the following: (T. C. Lin done)

$$
\left\{\begin{array}{l}
\dot{q}_{j x}=-\sum_{\substack{k=1 \\
k \neq j}}^{d} n_{k} \frac{q_{j y}-q_{k y}}{\left|q_{j}-q_{k}\right|^{2}}-\omega_{1} q_{j y} \tag{3.2}\\
\dot{q}_{j y}=\sum_{\substack{k=1 \\
k \neq j}}^{d} n_{k} \frac{q_{j x}-q_{k x}}{\left|q_{j}-q_{k}\right|^{2}}+\omega_{2} q_{j x}
\end{array}\right.
$$

where $q_{j}=q_{j}(t)=\left(q_{j x}(t), q_{j y}(t)\right), n_{j}$: winding numbers and $\omega_{1}=-\omega+2 \beta_{0}, \omega_{2}=-\omega+2 \alpha_{0}$. For the stability of the vortex structure in u, we require $n_{j} \in\{ \pm 1\}, j=1, \ldots, d$.

Results

We consider $d=3$, then obtain
(1) the bounded and collisionless trajectories of three vortices form chaotic, quasi 2- or quasi 3 -periodic orbits,
(2) a new phenomenon of 1: 1-topological synchronization is observed in the chaotic trajectories of vortices with the same sign of winding numbers..

Let d be the number of vortices.

- Aref 1979: The Kirchhoff equations (3.3) form an integrable system if $d \leq 3$. (Theoretical Proof)
- Aref 1983: The Kirchhoff equations may have chaotic motions in a bounded region if $d>3$. (Numerical Simulation)

$$
\left\{\begin{align*}
\dot{q}_{j x}= & -\sum_{\substack{k=1 \\
k \neq j}}^{d} n_{k} \frac{q_{j y}-q_{k y}}{\left|q_{j}-q_{k}\right|^{2}}, \tag{3.3}\\
\dot{q}_{j y}= & \sum_{\substack{k=1 \\
k \neq j}}^{d} n_{k} \frac{q_{j x}-q_{k x}}{\left|q_{j}-q_{k}\right|^{2}} .
\end{align*}\right.
$$

4 Numerical Study of Three Vortices

- Characterize the motion:
- Lyapunov exponent,
- Poincaré map,
- Spectrums of waveforms.
- Indicator for ratio topologically synchronized chaotic regimes (Afraimovich et al. (1999, 2000), [1, 2]):
- the Poincaré dimension for Poincaré recurrences.

Figure 4.1: The first Lyapunov exponent.

Figure 4.2: Chaotic trajectories: $\left(\omega_{1}, \omega_{2}\right)=(9.88,2.24), t=$ $25,050 \sim 25,100 \mathrm{sec}$.

Figure 4.3: Chaotic second-Poincaré maps (4 dim.), $t=1,393 \sim$ $5,000,000 \mathrm{sec}$.

Figure 4.4: Chaotic spectrum of waveforms, $t=1,050 \sim 25,500 \mathrm{sec}$.

Figure 4.6: The ratio of slopes $=45.0 / 44.8 \approx 1.006$

Figure 4.7: Quasi 3-periodic trajectories: $\left(\omega_{1}, \omega_{2}\right)=(9,10), t=$ $25,080 \sim 25,095 \mathrm{sec}$.

Figure 4.8: Quasi 3-periodic spectrum, $t=1,000 \sim 25,500 \mathrm{sec}$.

Figure 4.9: Quasi 3-periodic second-order Poincaré maps (4 dim.), $t=41,179 \sim 4,000,000 \mathrm{sec}$.

Figure 4.10: Quasi 2-periodic trajectories: $\left(\omega_{1}, \omega_{2}\right)=(6,1), t=$ $25,155 \sim 25,190 \mathrm{sec}$.

Figure 4.11: Quasi 2-periodic spectrum, $t=2,000 \sim 25,500 \mathrm{sec}$.

Figure 4.12: Quasi 2-periodic first-order Poincaré maps (5 dim.), $t=37,193 \sim 1,000,000 \mathrm{sec}$.

$$
\text { Case }\left(n_{1}, n_{2}, n_{3}\right)=(1,1,1)
$$

Figure 4.13: The first Lyapunov exponent.

Figure 4.14: Chaotic trajectories: $\left(\omega_{1}, \omega_{2}\right)=(7.4,0.025), t=$ $25,050 \sim 25,070 \mathrm{sec}$.

Figure 4.15: Chaotic first-order Poincaré maps (5 dim.), $t=1,000 \sim$ $100,000 \mathrm{sec}$.

Figure 4.16: Chaotic spectrum, $t=2,000 \sim 25,500 \mathrm{sec}$.

Figure 4.18: The ratio of slopes $=27.5: 28.4: 28.5 \approx 0.97: 0.996: 1$.

