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1 Introduction of BEC

• What is BEC?

A new form of matter at the coldest
temperatures in the universe...



(a) Cold atom: an atom in the lowest energy level is spread out a

little, so it looks like a very small fuzzy ball.

(b) Super atom: at the special incredibly low temperatures needed

for BEC that they lose their individual identities and coalesce

into a single blob.

(a) (b)



• Theoretical prediction 1924 ...

– S. Bose: derived Planck’s black body radiation law from

considering the cavity radiation as an ideal photon gas and

worked out Bose statistics for photons.

– A. Einstein: generalized Bose statistics to other Bosonic

particles and atoms (Bose-Einstein statistics) and predicted

if the atoms were cold enough, almost all of the particles

would congregate in the ground state. (BEC)

A. Einstein S. Bose

(1879 ∼ 1955) (1894 ∼ 1974)



• How does BEC happen?

T ↓

T = Tc

T < Tc

λ = ~

p
, p ∝

√
makT

λ ∝ ~√
makT

Eg: 23Na,

T = 300K,

λ = 0.04nm.

T = 0.0003K,

λ = 40nm.

Note: 0K = −273.15◦C.



• Physical experiments

– Superfluid He4 1938:

P. L. Kapitza, Allen and Misener: discovered the

superfluidity of liquid helium.

F. London: proposed that the superfluid fraction consisting

of those atoms which have “condensed” to the ground state.

P. L.Kapitza F. London

(1894 ∼ 1984) (1900 ∼ 1954)



– E. A. Cornell & C. E. Wieman (JILA, 1995):

first observed BEC of rubidium (87Rb) atoms at 20 nK, i.e.

0.000 000 02 K.

C. E. Wieman & E. A. Cornell BEC at 400, 200, and 50 nK



– W. Ketterle (MIT, 1995):

observed BEC of sodium (23Na) atoms.

W. Ketterle Two-Component BEC



• Experimental implementation

– The BEC named Science Magazine’s ”Molecule of the Year

1995”!

– Nobel Prize in Physics (2001), E. A. Cornell, C. E. Wieman

(JILA), W. Ketterle (MIT):

for the achievement of BEC in dilute gases of alkali atoms,

and for early fundamental studies of the properties of the

condensates.

• Applications of BEC: atom laser, quantum computer, MEMS.

• Mathematical model: nonlinear Schrödinger equation,

Gross-Pitaevskii equation (GPE), coupled nonlinear

Schrödinger equations, vector Gross-Pitaevskii equations

(VGPE).

• Numerical simulation: method, guide for experiment etc.



2 Introduction of Vortices in BEC

• How do vortices happen?

– Idea 1: rotation (standard way in fluid mechanics).

– Idea 2: laser beam moving slowly through the condensate

(without rotation), by B. Jackson et al. (1998, theoretical);

K. Staliunas (1999, experiment).



Idea of K. Staliunas

Stirred Bose-Einstein Condensates:

(1) Create one component BEC.

(2) The laser beam enters the condensate spiraling clockwise.

(3) Reaching the center of the condensate it is switched off.

BEC

Trajectory of laser beam
Moving laser beam



Motivation

• Make a study of vortices’s behavior in a two-dimensional

trapped Bose-Einstein condensates.

– PDE: time-dependent Gross-Pitaevskii equation.

– ODE: the asymptotic motion equations of vortices.



3 Mathematical Model

• Time-dependent Gross-Pitaevskii equation

i ut = −∆u + Vǫ(x, y) u +
1

ǫ2
(|u|2 − 1) u, t > 0, (3.1)

with the initial data u|t=0 = u0(x, y) and (x, y) ∈ R
2.

u: a complex-valued order parameter,

ǫ > 0: a small parameter,

Vǫ(x, y) = αǫ x2 + βǫ y2: a harmonic trap potential,

αǫ, βǫ > 0: depending on ǫ.

This time-dependent Gross-Pitaevskii equation was introduced as a

phenomenological equation for the order parameter in superfluids.



• Dynamics of vortices in trapped BEC

Suppose u0 has d vortex centers at qj(0) = (qjx(0), qjy(0))⊤.

Under some specific assumptions on u0, we obtain the

asymptotic motion equations of d vortices qj ’s in the following:

(T. C. Lin done)































q̇jx = −
d
∑

k = 1

k 6= j

nk
qjy−qky

|qj−qk|2 − ω1 qjy ,

q̇jy =
d
∑

k = 1

k 6= j

nk
qjx−qkx

|qj−qk|2 + ω2 qjx ,

(3.2)

where qj = qj(t) = (qjx(t), qjy(t)), nj : winding numbers and

ω1 = −ω + 2β0, ω2 = −ω + 2α0. For the stability of the vortex

structure in u, we require nj ∈ {±1}, j = 1, . . . , d.



Results

We consider d = 3, then obtain

(1) the bounded and collisionless trajectories of three vortices form

chaotic, quasi 2- or quasi 3-periodic orbits,

(2) a new phenomenon of 1 : 1-topological synchronization is

observed in the chaotic trajectories of vortices with the same

sign of winding numbers..



Let d be the number of vortices.

• Aref 1979: The Kirchhoff equations (3.3) form an integrable

system if d ≤ 3. (Theoretical Proof)

• Aref 1983: The Kirchhoff equations may have chaotic motions

in a bounded region if d > 3. (Numerical Simulation)
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4 Numerical Study of Three Vortices

• Characterize the motion:

– Lyapunov exponent,

– Poincaré map,

– Spectrums of waveforms.

• Indicator for ratio topologically synchronized chaotic regimes

(Afraimovich et al. (1999, 2000), [1, 2]):

– the Poincaré dimension for Poincaré recurrences.



Case (n1, n2, n3) = (1,−1,−1)
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Figure 4.1: The first Lyapunov exponent.
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Figure 4.2: Chaotic trajectories: (ω1, ω2) = (9.88, 2.24), t =

25, 050 ∼ 25, 100 sec.
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Figure 4.3: Chaotic second-Poincaré maps (4 dim.), t = 1, 393 ∼
5, 000, 000 sec.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

5

6

7

8

9

10

11

12

13

frequency

lo
g

(f
ft
)

Figure 4.4: Chaotic spectrum of waveforms, t = 1, 050 ∼ 25, 500 sec.
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(a) (b)

Figure 4.6: The ratio of slopes = 45.0/44.8 ≈ 1.006
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Figure 4.7: Quasi 3-periodic trajectories: (ω1, ω2) = (9, 10), t =

25, 080 ∼ 25, 095 sec.
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Figure 4.8: Quasi 3-periodic spectrum, t = 1, 000 ∼ 25, 500 sec.
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Figure 4.9: Quasi 3-periodic second-order Poincaré maps (4 dim.),

t = 41, 179 ∼ 4, 000, 000 sec.
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Figure 4.10: Quasi 2-periodic trajectories: (ω1, ω2) = (6, 1), t =

25, 155 ∼ 25, 190 sec.
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Figure 4.11: Quasi 2-periodic spectrum, t = 2, 000 ∼ 25, 500 sec.
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Figure 4.12: Quasi 2-periodic first-order Poincaré maps (5 dim.),

t = 37, 193 ∼ 1, 000, 000 sec.



Case (n1, n2, n3) = (1, 1, 1)
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Figure 4.13: The first Lyapunov exponent.
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Figure 4.14: Chaotic trajectories: (ω1, ω2) = (7.4, 0.025), t =

25, 050 ∼ 25, 070 sec.
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Figure 4.15: Chaotic first-order Poincaré maps (5 dim.), t = 1, 000 ∼
100, 000 sec.
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Figure 4.16: Chaotic spectrum, t = 2, 000 ∼ 25, 500 sec.
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Figure 4.18: The ratio of slopes = 27.5 : 28.4 : 28.5 ≈ 0.97 : 0.996 : 1.




