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VERIFICATION OF MIXING PROPERTIES IN

TWO-DIMENSIONAL SHIFTS OF FINITE TYPE

JUNG-CHAO BAN∗, WEN-GUEI HU, SONG-SUN LIN∗∗, AND YIN-HENG LIN

Abstract. This investigation studies topological mixing and strong specifi-
cation of two-dimensional shifts of finite type. Connecting operators are intro-
duced to reduce the order of high-order transition matrices to yield lower-order
transition matrices that are useful in establishing finitely checkable conditions
for the primitivity of all transition matrices. Two kinds of sufficient condition
for the primitivity of transition matrices are provided; (I) invariant diagonal
cycles and (II) primitive commutative cycles. After primitivity is established,
the corner-extendability and crisscross-extendability are introduced to demon-
strate topological mixing. In addition to these sufficient conditions for topo-
logical mixing, the hole-filling condition implies the strong specification. All
mentioned conditions are finitely checkable.

1. Introduction

Multi-dimensional shift is an important and a highly active area of ongoing
research in dynamical system. It is also closely related to lattice models in the sci-
entific modeling of spatial structure. Relevant investigations have been performed
on phase transitions and chemical reactions [4, 6, 7, 11, 18, 22, 26, 27, 28, 29, 30,
36, 37, 38, 39, 40, 50, 51, 52], biology [8, 9] and image processing and pattern
recognition [17, 19, 20, 23, 24, 25, 33]. Lattice models can be better understood if
multi-dimensional shifts of finite type are understood. The most interesting prop-
erties of shifts include entropy and various mixing properties, such as topological
mixing and strong specification (or strong irreducibility). These properties enjoy
many of the important properties of dynamical systems [12, 13, 14, 15, 16, 24, 25,
30, 35, 41, 42, 44, 45, 47, 49, 54]. However, determining whether a given system
exhibits topological mixing or strong specification in multi-dimensions is not easy.
The intrinsic difficulty is related to undecidability of multi-dimensional coloring
problem [10, 21, 23, 32, 34, 46, 48, 53]. Nevertheless, this study provides some
easily checked sufficient conditions for topological mixing and strong specification
of two-dimensional shifts of finite type.

Let Z2 be the two-dimensional planar lattice. Vertex (or corner) coloring is
considered first. For any m,n ≥ 1 and (i, j) ∈ Z2, the m × n rectangular lattice
with the left-bottom vertex (i, j) is denoted by
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Zm×n((i, j)) = {(i+ n1, j + n2) | 0 ≤ n1 ≤ m− 1, 0 ≤ n2 ≤ n− 1} .

In particular,

Zm×n = Zm×n((0, 0)).

Let Sp be a set of p (≥ 2) colors or symbols. For m,n ≥ 1, Σm×n(p) = S
Zm×n
p is

the set of m× n local patterns.
Let B ⊂ Σ2×2(p) be a basic set of allowable local patterns. For any lattice

R ⊂ Z
2

, the set of all B-admissible patterns on R is defined as

ΣR(B) =
{
U ∈ SRp : U |Z2×2((i,j))∈ B if Z2×2((i, j)) ⊂ R

}
.

Denote Σm×n(B) = ΣZm×n
(B) for m,n ≥ 2. Σ(B) = ΣZ2(B) is the set of all global

patterns that can be constructed from the local patterns in B. Notably, any Z2-shift
of finite type can be represented by some B ⊂ Σ2×2(p) for some p ≥ 2 [43]. Hence,
only the case of B ⊂ Σ2×2(p), p ≥ 2, is considered here.

First, topological mixing is introduced. For any shift Σ and any subset R ⊂ Z2,
ΠR(Σ) : Σ→ SRp is the restriction map. Denote by d the Euclidean metric on Z2. A

Z2 shift Σ is topologically mixing (mixing, for short) if for any finite subsets R1 and
R2 of Z2, a constantM(R1, R2) exists such that for all v ∈ Z2 with d(R1, R2+v) ≥
M , and for any two allowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2+v(Σ), there
exists a global pattern W ∈ Σ with ΠR1(W ) = U1 and ΠR2+v(W ) = U2; see [54].

On the other hand, Σ has strong specification if a number M(Σ) ≥ 1 exists
such that for any two allowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with
d(R1, R2) ≥M , where R1, R2 are subsets of Z2, there exists a global patternW ∈ Σ
with ΠR1(W ) = U1 and ΠR2(W ) = U2; see [54]. Clearly, strong specification implies
topological mixing.

Very few results that verify that Σ(B) is mixing or has strong specification are
known [3, 44]. Previously, in studying pattern generation problems [2], the authors
introduced connecting operators to study the entropy of Σ(B). In this paper, con-
necting operators are also used to provide sufficient conditions for the mixing of or
strong specification of Σ(B).

First, topological mixing is considered. Given two patterns U1 and U2 defined on
R1 and R2+v respectively, in general, R1 and R2+v are not located horizontally or
vertically. Typically, the gluing process is decomposed into three steps, as presented
in Fig. 1.1. For clarity, in Fig 1.1, the patterns U ’s are presented and the underlying
lattices R’s are omitted.

Step (1): Extend U2 to Ũ2 such that U1 can connect Ũ2 horizontally. The combined

pattern becomes an L-shaped pattern U1

⋃
Ũ1

⋃
U2

⋃
Ũ2.

Step (2): Extend the L-shaped pattern to a rectangular pattern.
Step (3): Extend the rectangular pattern to a global pattern on Z2.
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Ũ2

(1)

Ũ1

(2)

(3)

(3)

(3)

(3)

Figure 1.1.

To ensure that all processes are executable, the following sufficient conditions
are proposed in each step:

(i) The primitivity of horizontal transition matrices Hn and vertical transition
matrices Vn, for each n ≥ 2.

(ii) The corner-extendability for L-shaped lattices.
(iii) The rectangle-extendability to the Z2-plane.

Notably, a matrix A is primitive (or n0-primitive) if there exists n0 ≥ 1 such that
An > 0 for all n ≥ n0; here, A

n > 0 means that each entry ofAn is positive except in
positions of A where a zero row or zero column is present. To find finitely checkable
sufficient conditions of (i), two kinds of sufficient conditions for the primitivity of
Hn and Vn are introduced.

(I) invariant diagonal cycles,
(II) primitive commutative cycles.

Both of these conditions are applied to construct the primitive diagonal subma-

trices of HM(n)
n for some M(n), n ≥ 2; then, they are used to show that Hn is

primitive. Furthermore, when either condition applies, only finitely many Hn have
to be checked to ensure that Hn is primitive for all n ≥ 2.

After the primitivity of Hn and Vn is established, the corner-extendable condi-
tions C(1) ∼ C(4) and crisscross-extendability are introduced (Definitions 3.2 and
3.11) to extend the L-shaped pattern and the rectangular pattern into a global
pattern, and then to establish that Σ(B) is mixing. The main theorem is given by
Theorem 3.14.

Theorem 1.1. If

(i) B ⊂ Σ2×2(p) is crisscross-extendable,
(ii) B satisfies three of corner-extendable conditions C(i), 1 ≤ i ≤ 4,

then Hn(B) and Vn(B) are primitive for all n ≥ 2 if and only if Σ(B) is mixing.

Next, strong specification is considered. Since strong specification is stronger
than topological mixing. Apart from the processes in Fig. 1.1 which concern the
situation in which regions R1 and R2+v are far away, the case in which one pattern
is enclosed in another pattern, as in Fig. 1.2, must be studied.
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U1

U2

Figure 1.2.

Notably, in studying topological mixing, Fig. 1.2 can be reduced to Fig. 1.1.
However, in studying strong specification, U1 and U2 cannot be removed since the
relative positions of R1 and R2 are fixed. Now, the gluing of U1 and U2 can be
completed by the following two processes.

Step (4): Extend U1 horizontally and vertically to form a crisscross pattern that
touches U2, as presented in Fig. 1.3.

Step (5): Fill the holes that are surrounded by the rectangularly annular lattice to
form a rectangular pattern, as presented in Fig. 1.4.

U1

U2

(4)

(4)

(4)

(4)

(5)

Figure 1.3. Figure 1.4.

Then, repeat Step (3) and extend the rectangular pattern to a global pattern on
Z2.

The hole-filling condition (HFC) in Step (5) is finitely checkable: any hole of
size (M,N) that is surrounded by any admissible annular lattice with width L ≥ 2
can be filled by admissible local patterns and forms an (M + 2L) × (N + 2L)
pattern. Moreover, k hole-filling condition (HFC)k, k ≥ 2, with (HFC)2 = HFC
is introduced (see Definition 5.1), which is weaker than HFC and is also finitely
checkable. (HFC)k is closely related to the extension property called square filling
[41, 42]. The main theorem for strong specification is given by Theorem 5.4.

Theorem 1.2. Given B ⊂ Σ2×2(p), if there exists k ≥ 2 such that

(i) B is k crisscross-extendable,
(ii) B satisfies (HFC)k with size (M,N) for some M,N ≥ 2k − 3,
(iii) Hk is (M − 2k + 5)-primitive and Vk is (N − 2k + 5)-primitive,

then Σ(B) has strong specification.

Theorems 1.1 and 1.2 are very powerful in verifying mixing properties. The
most known results for strong specification and topological mixing in the literature
can be checked successfully by them. Their significance in classification of mixing
properties is discussed as follows. Previously, Boyle et al. [12] discussed various
mixing properties, including strong irreducibility, uniform filling property, corner
gluing, block gluing and topological mixing (see Definition 3.17). The range of
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(HFC)k and these mixing properties for Z2 shifts of finite type are listed in Figure
1.5. For brevity, we use the following notations.

(a) : B satisfies (HFC)k (i.e., condition (ii) of Theorem 1.2) and conditions (i)
and (iii) of Theorem 1.2,

(b) : Σ(B) has strong specification,
(c) : Σ(B) has the UFP,
(d) : Σ(B) is corner gluing,
(e) : Σ(B) is block gluing,
(f) : Σ(B) is topologically mixing.

(a) (b) (c) (d) (e) (f)

Figure 1.5.

Notably, the solid line indicates that the inner property is strictly stronger than
the outer one; the dotted line indicates that inner property is stronger than or
equivalent to the outer one. Example 6.8 in this paper is an example for (b) � (a),
and the examples for (d) � (c) and (e) � (d) were given by Boyle et al. [12]. It
is still unsolved whether or not (b) ⇐ (c); see [12]. Note that strong specification,
periodic specification and strong irreducibility are all equivalent; see Remark 3.18.

In viewing Fig. 1.5, Theorem 1.1 and primitive results in Section 4 ensure the
weakest case–topological mixing–holds. Theorem 1.2 ensures the strongest case–
strong specification–holds.

In studying both topological mixing and strong specification, the transition ma-
trices Hn and Vn and the connecting operator Sm or Cm, introduced in Section
2, are extensively used. Indeed, invariant diagonal cycles, primitive commutative
cycles and (HFC)k can be expressed in terms of transition matrices and connecting
operators as the finitely checkable sufficient conditions. All cases with certain ex-
tendability conditions can be verified by using transition matrices and connecting
operators except strong specification. In conclusion, the mixing properties in Fig.
1.5 with certain extendable conditions can be expressed in terms of transition ma-
trices and connecting operators except strong specification. The related theorems
are listed in Table 1.1.

On he other hand, the extendability problem is known to be undecidable [10,
21, 23, 32, 34, 46, 48, 53]. Presumably, the gluing problem is also undecidable.
Therefore, it is not possible to obtain a necessary and sufficient condition which
are finitely checkable for topological mixing and strong specification. However, the
gluing problems in this paper are decomposed into primitivity problems of transition
matrices of (1) and (4), and the extending problems of (2), (3) and (5). Although
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extending problem (3) is generally undecidable, the proposed finitely checkable
sufficient conditions ensure that is answered affirmatively under our situation.

Mixing propertiesMixing properties

Results

Strong specification

Uniform filling property

Corner gluing

Block gluing

Topological mixing

Expressions in H and S
Finite checkable sufficient

conditions

Theorem A.2

Theorem A.3

Theorem 3.19

Theorem 1.1

Theorem 1.2

Theorem 4.28

Table 1.1.

In many physical problems, edge coloring is very common. The results of vertex
coloring can easily be extended to edge coloring. In particular, the six-vertex and
eight-vertex ice models in statistical physics can be shown to exhibit topological
mixing and strong specification, respectively. The other related cases can be treated
analogously [6, 7].

The rest of this paper is organized as follows. Section 2 introduces ordering
matrices of local patterns, transition matrices and connecting operators. Sec-
tion 3 introduces corner-extendable conditions and crisscross-extendability to study
rectangle-extendability and mixing. Section 4 introduces invariant diagonal cycles
and primitive commutative cycles to establish sufficient conditions for the primi-
tivity of Hn or Vn. Section 5 introduces k hole-filling condition to develop finitely
checkable conditions for strong specification. Section 6 presents the theory of edge
coloring. In Appendix, we present the expressions of (HFC)k, uniform filling prop-
erty and corner gluing with rectangle-extendability by Hn and Sm.

2. Preliminary

This section reviews the essential aspects of the ordering matrices of local
patterns and their associated transition matrices [1]. Then, connecting operators
are introduced. This study depends on more precise properties of connecting op-
erators which were only outlined in the previous paper [2]. Most of the proofs can
be obtained by the arguments similar to those in [1, 2] and are omitted.

As presented elsewhere [1], with p ≥ 2 fixed, the ordering matrices Xn and Yn

are introduced to arrange systematically all local patterns in Σ2×n(p) and Σn×2(p),
respectively.

Since the vertex coloring and face coloring are equivalent on Z2, in the following,
the colors of patterns are drawn on faces instead of on vertices.

For an n-sequence Un = (u1, u2, · · · , un) with uk ∈ Sp, 1 ≤ k ≤ n, Un is assigned
the number by the n-th order counting function ψ ≡ ψn:

(2.1) ψ(Un) = ψ(u1, u2, · · · , un) = 1 +

n∑
k=1

ukp
(n−k).
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The horizontal and vertical ordering matricesX2 = [xi1,j1 ]p2×p2 andY2 = [yi2,j2 ]p2×p2
are defined by

(2.2) xi1,j1 =
u0,1 u1,1

u0,0 u1,0

and yi2,j2 =
u′
0,1 u′

1,1

u′
0,0 u′

1,0

,

where us,t, u
′
s,t ∈ Sp, 0 ≤ s, t ≤ 1, with{

i1 = ψ(u0,0, u0,1)
j1 = ψ(u1,0, u1,1)

and

{
i2 = ψ(u′0,0, u

′
1,0)

j2 = ψ(u′0,1, u
′
1,1).

For instance, when p = 2,
(2.3)

00

0 0

10

0 0

00

0 1

10

0 1

01

0 0

11

0 0

01

0 1

11

0 1

00

1 0

10

1 0

00

1 1

10

1 1

01

1 0

11

1 0

01

1 1

11

1 1

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1

X2 = and

00

0 00 0

0 1

1 0

1 1

0 0 0 1 1 0 1 1

10

0 0

01

0 0

11

0 0

00

0 1

10

0 1

01

0 1

11

0 1

00

1 0

10

1 0

01

1 0

11

1 0

00

1 1

10

1 1

01

1 1

11

1 1

Y2 = .

Now, X2 and Y2 are closely related to each other as follows.

(2.4) X2 =

⎡⎢⎢⎢⎣
X2;1 X2;2 · · · X2;p

X2;p+1 X2;p+2 · · · X2;2p

...
...

. . .
...

X2;p(p−1)+1 X2;p(p−1)+2 · · · X2;p2

⎤⎥⎥⎥⎦ ,
where

(2.5) X2;α =

⎡⎢⎢⎢⎣
yα,1 yα,2 · · · yα,p
yα,p+1 yα,p+2 · · · yα,2p

...
...

. . .
...

yα,p(p−1)+1 yα,p(p−1)+2 · · · yα,p2

⎤⎥⎥⎥⎦ ;

the case for Y2 is similar.
The higher-order ordering matrices Xn = [xn;i,j ]pn×pn of Σ2×n(p), n ≥ 3, are

defined recursively as

(2.6) Xn =

⎡⎢⎢⎢⎣
Xn;1 Xn;2 · · · Xn;p

Xn;p+1 Xn;p+2 · · · Xn;2p

...
...

. . .
...

Xn;p(p−1)+1 Xn;p(p−1)+2 · · · Xn;p2

⎤⎥⎥⎥⎦ ,
where
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(2.7)

Xn;α =

⎡⎢⎢⎢⎣
yα,1Xn−1;1 yα,2Xn−1;2 · · · yα,pXn−1;p

yα,p+1Xn−1;p+1 yα,p+2Xn−1;p+2 · · · yα,2pXn−1;2p

...
...

. . .
...

yα,p(p−1)+1Xn−1;p(p−1)+1 yα,p(p−1)+2Xn−1;p(p−1)+2 · · · yα,p2Xn−1;p2

⎤⎥⎥⎥⎦
is a pn−1× pn−1 matrix. Notably, the entry xn;i,j is the 2×n local pattern U2×n =
(us,t)0≤s≤1,0≤t≤n−1 with

(2.8) i = ψ(u0,0, u0,1, · · · , u0,n−1) and j = ψ(u1,0, u1,1, · · · , u1,n−1).

Similarly, the higher-order ordering matrix Yn can be defined recursively, as above.
Given a basic set B ⊂ Σ2×2(p), the horizontal and vertical transition matrices

H2 = H2(B) = [hi,j ]p2×p2 and V2 = V2(B) = [vi,j ]p2×p2 are given by

(2.9)

{
hi,j = 1 if xi,j ∈ B,
hi,j = 0 if xi,j /∈ B,

and

{
vi,j = 1 if yi,j ∈ B,
vi,j = 0 if yi,j /∈ B.

According to (2.6) and (2.7), the higher-order transition matrices Hn, n ≥ 3,
can be defined as

(2.10) Hn =

⎡⎢⎢⎢⎣
Hn;1 Hn;2 · · · Hn;p

Hn;p+1 Hn;p+2 · · · Hn;2p

...
...

. . .
...

Hn;p(p−1)+1 Hn;p(p−1)+2 · · · Hn;p2

⎤⎥⎥⎥⎦ ,
where

(2.11)

Hn;α =

⎡⎢⎢⎢⎣
vα,1Hn−1;1 vα,2Hn−1;2 · · · vα,pHn−1;p

vα,p+1Hn−1;p+1 vα,p+2Hn−1;p+2 · · · vα,2pHn−1;2p

...
...

. . .
...

vα,p(p−1)+1Hn−1;p(p−1)+1 vα,p(p−1)+2Hn−1;p(p−1)+2 · · · vα,p2Hn−1;p2

⎤⎥⎥⎥⎦
is a pn−1 × pn−1 zero-one matrix.

Furthermore, for any n ≥ 2 and q ≥ 1, Hn+q are decomposed by applying (2.10)
q + 1 times, as follows. For any q ≥ 1 and 0 ≤ r ≤ q − 1, define

Hn+q;β1;β2;··· ;βr+1

=

⎡⎢⎢⎢⎣
Hn+q;β1;β2;··· ;βr+1;1 Hn+q;β1;β2;··· ;βr+1;2 · · · Hn+q;β1;β2;··· ;βr+1;p

Hn+q;β1;β2;··· ;βr+1;p+1 Hn+q;β1;β2;··· ;βr+1;p+2 · · · Hn+q;β1;β2;··· ;βr+1;2p

...
...

. . .
...

Hn+q;β1;β2;··· ;βr+1;p(p−1)+1 Hn+q;β1;β2;··· ;βr+1;p(p−1)+2 · · · Hn+q;β1;β2;··· ;βr+1;p2

⎤⎥⎥⎥⎦ .
Therefore, for any q ≥ 0, Hn+q can be represented as a pq+1 × pq+1 matrix

(2.12) Hn+q ≡ [Hn+q;i,j ]pq+1×pq+1 =
[
Hn+q;β1;β2;··· ;βq+1

]
.
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In particular, when q = 0,

(2.13) Hn =

⎡⎢⎢⎢⎣
Hn;1,1 Hn;1,2 · · · Hn;1,p

Hn;2,2 Hn;2,2 · · · Hn;2,p

...
...

. . .
...

Hn;p,1 Hn;p,2 · · · Hn;p,p

⎤⎥⎥⎥⎦ .
More precisely, the relation between 1 ≤ β1, β2, · · · , βq+1 ≤ p and 1 ≤ i, j ≤ pq+1

is as follows. Given 1 ≤ i, j ≤ pq+1, choose il, jl ∈ Sp, 1 ≤ l ≤ q + 1, such that

(2.14) i = ψ(i1, i2, · · · , iq+1) and j = ψ(j1, j2, · · · , jq+1).

For 1 ≤ l ≤ q + 1, let

(2.15) βl(i, j) = ψ(il, jl).

Then,

(2.16) Hn+q;i,j = Hn+q;β1(i,j);β2(i,j);··· ;βq+1(i,j).

From (2.11), for q ≥ 1,

(2.17) Hn+q;β1;β2;··· ;βq+1 = vβ1,β2vβ2,β3 · · · vβq,βq+1Hn;βq+1

can be verified. Hence, let Hq+1 = [hq+1;i,j ]pq+1×pq+1 ; by (2.12) and (2.17),

(2.18) Hn+q;i,j = hq+1;i,jHn;βq+1(i,j) = hq+1;i,jHn;i′(i,j),j′(i,j),

where 1 ≤ i′, j′ ≤ p. Actually, we have

(2.19) i′(i, j) = i′(i) and j′(i, j) = j′(j).

Hence, i′ (or j′) depends only on i (or j).
Before showing the formula for reducing Hn+q to Hn, two products of matrices

are introduced as follows. For any two matrices A = [ai,j ] and B = [bk,l], the
Kronecker product (tensor product) of A⊗B is defined by

A⊗B = [ai,jB] .

Next, for any two m×m matrices C = [ci,j ] and D = [di,j ], where ci,j and di,j are
numbers or matrices, the Hadamard product of C ◦D is defined by

C ◦D = [ci,j · di,j ] ,

where the product ci,j ·di,j of ci,j and di,j may be a multiplication between numbers,
between numbers and matrices or between matrices whenever it is well-defined.

Now, from (2.18), high-order transition matrices Hn+q can be reduced to lower
order transition matrices Hn as follows.

Proposition 2.1. For any n ≥ 2 and q ≥ 1,

(2.20) Hn+q = (Hq+1)pq+1×pq+1 ◦
(
Epq×pq ⊗ [Hn;i′,j′ ]p×p

)
,

where Ek×k is the k × k full matrix.
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Notably, the results for Hn are also valid for Vn, as easily determined by ex-
changing the terms Hn and Vn. Therefore, for simplicity, only the results for Hn
are presented herein.

In the following, Hmn+q can be expressed in terms of Hmn and connecting opera-
tor Cm. This result is crucial in establishing finitely checkable conditions for the
primitivity of all Hk, k ≥ 2.

From (2.13), for m ≥ 2, the elementary pattern of Hmn is

Hn;j1,j2Hn;j2,j3 · · ·Hn;jm,jm+1 ,

where 1 ≤ js ≤ p, 1 ≤ s ≤ m+ 1. Let

(2.21) H(k)
m,n;α = Hn;j1,j2Hn;j2,j3 · · ·Hn;jm,jm+1 ,

where

α = ψ(j1 − 1, jm+1 − 1) and k = ψ(j2 − 1, j3 − 1, · · · , jm − 1).

From (2.2) and (2.7), the entry
(
H

(k)
m,n;α

)
i,j

is equal to the cardinal number of the

set of all (m+ 1)× n B-admissible local patterns U(m+1)×n = (us,t)0≤s≤m,0≤t≤n−1

with

(2.22){
α = ψ(u0,0, um,0)
k = ψ(u1,0, u2,0, · · · , um−1,0)

and

{
i = ψ(u0,1, u0,2, · · · , u0,n−1)
j = ψ(um,1, um,2, · · · , um,n−1).

Clearly, 1 ≤ α ≤ p2 and 1 ≤ k ≤ pm−1.
Therefore, for m ≥ 2,

(2.23) Hmn =

⎡⎢⎢⎢⎣
Hm,n;1 Hm,n;2 · · · Hm,n;p

Hm,n;p+1 Hm,n;p+2 · · · Hm,n;2p

...
...

. . .
...

Hm,n;p(p−1)+1 Hm,n;p(p−1)+2 · · · Hm,n;p2

⎤⎥⎥⎥⎦ ,
where

Hm,n;α =

pm−1∑
k=1

H(k)
m,n;α.

Furthermore, denote by

(2.24) Ĥm,n;α =
(
H(k)
m,n;α

)t
1≤k≤pm−1

a pm−1 column-vector that consists of all H
(k)
m,n;α in Hm,n;α, which is very useful in

deriving the reduction formula.
Now, the connecting operator Cm = [Cm;i,j ] that was introduced in [2] is recalled.

First, the connecting ordering matrix Cm = [Cm;i,j ] , a different arrangement for
Σ(m+1)×2(p) from Ym+1, is introduced. Cm = [Cm;i,j ]p2×p2 , where Cm;i,j is a

pm−1 × pm−1 matrix of local patterns, is defined as follows.
With fixed 1 ≤ i, j ≤ p2, for 1 ≤ s, t ≤ pm−1,
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(2.25) (Cm;i,j)s,t =

u0,0 u1,0

· · ·

· · · um,0

u0,1 u1,1 um,1

with i = ψ(u0,0, u0,1), j = ψ(um,0, um,1), s = ψ(u1,0, u2,0, · · · , um−1,0) and t =
ψ(u1,1, u2,1, · · · , um−1,1).

Now, Cm+1;i,j can be obtained in terms of Cm;k,l as follows.

Proposition 2.2. Let X2 = [xi,j ]p2×p2 . For any m ≥ 2 and 1 ≤ i, j ≤ p2,

Cm+1;i,j =

⎡⎢⎢⎢⎣
xi,1Cm;1,j xi,2Cm;2,j · · · xi,pCm;p,j

xi,p+1Cm;p+1,j xi,p+2Cm;p+2,j · · · xi,2pCm;2p,j

...
...

. . .
. . .

xi,p(p−1)+1Cm;p(p−1)+1,j xi,p(p−1)+2Cm;p(p−1)+2,j · · · xi,p2Cm;p2,j

⎤⎥⎥⎥⎦ .
The matrix multiplication of Cm;i,j and Cm;j,k cannot connect local patterns

in the vertical direction. However, Sm;α,β does so. By changing the index of
Cm = [Cm;i,j ]p2×p2 , the ordering matrix Sm = [Sm;α,β ]p2×p2 is defined by

(2.26) Sm;α,β = Cm;ψ(α1,β1),ψ(α2,β2),

where αk, βk ∈ Sp, 1 ≤ k ≤ 2, satisfying α = ψ(α1, α2) and β = ψ(β1, β2). Indeed,
for 1 ≤ s, t ≤ pm−1,

(2.27) (Sm;α,β)s,t =

u0,0 u1,0

· · ·

· · · um,0

u0,1 u1,1 um,1

with α = ψ(u0,0, um,0), β = ψ(u0,1, um,1), s = ψ(u1,0, u2,0, · · · , um−1,0) and t =
ψ(u1,1, u2,1, · · · , um−1,1). From (2.27), the matrix multiplication of Sm;α,β and
Sm;β,γ represents the vertical connection of the patterns on Z(m+1)×2.

Now, given B ⊂ Σ2×2(p), form ≥ 2, the connecting operatorCm = [Cm;i,j ]1≤i,j≤p2

of Cm = [Cm;i,j ]1≤i,j≤p2 is defined as follows. For 1 ≤ s, t ≤ pm−1,{
(Cm;i,j)s,t = 1 if (Cm;i,j)s,t is B-admissible,
(Cm;i,j)s,t = 0 otherwise.

In the following, C2 can be obtained explicitly. For H2 = [hi,j ]p2×p2 , define

(2.28) H̃2 =

⎡⎢⎢⎢⎣
H̃2;1 H̃2;2 · · · H̃2;p

H̃2;p+1 H̃2;p+2 · · · H̃2;2p

...
...

. . .
...

H̃2;p(p−1)+1 H̃2;p(p−1)+2 · · · H̃2;p2

⎤⎥⎥⎥⎦ ,
where
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H̃2;α =

⎡⎢⎢⎢⎣
h1,α h2,α · · · hp,α
hp+1,α hp+2,α · · · h2p,α

...
...

. . .
...

hp(p−1)+1,α hp(p−1)+2,α · · · hp2,α

⎤⎥⎥⎥⎦
for 1 ≤ α ≤ p2. Then, for 1 ≤ i, j ≤ p2,

(2.29) C2;i,j = V2;i ◦ H̃2;j

is a p× p zero-one matrix. By Proposition 2.2, the connecting operator Cm+1 can
also be obtained from Cm. For m ≥ 2, Cm+1 = [Cm+1;i,j ]1≤i,j≤p2 satisfies

(2.30)

Cm+1;i,j =

⎡⎢⎢⎢⎣
hi,1Cm;1,j hi,2Cm;2,j · · · hi,pCm;p,j

hi,p+1Cm;p+1,j hi,p+2Cm;p+2,j · · · hi,2pCm;2p,j

...
...

. . .
...

hi,p(p−1)+1Cm;p(p−1)+1,j hi,p(p−1)+2Cm;p(p−1)+2,j · · · hi,p2Cm;p2,j

⎤⎥⎥⎥⎦ .
From (2.26), Sm = [Sm;α,β ]p2×p2 is defined by

(2.31) Sm;α,β = Cm;ψ(α1,β1),ψ(α2,β2),

where 0 ≤ α1, α2, β1, β2 ≤ p− 1 such that α = ψ(α1, α2) and β = ψ(β1, β2).
Now, the relation between Hmn+1 and Hmn is elucidated as follows. Since the

sizes of H
(k)
m,n+1;α and H

(l)
m,n;β are different, the elementary pattern H

(k)
m,n+1;α can

be reduced further as follows.
Let

(2.32)

H
(k)
m,n+1;α =

⎡⎢⎢⎢⎢⎣
H

(k)
m,n+1;α;1 H

(k)
m,n+1;α;2 · · · H

(k)
m,n+1;α;p

H
(k)
m,n+1;α;p+1 H

(k)
m,n+1;α;p+2 · · · H

(k)
m,n+1;α;2p

...
...

. . .
...

H
(k)
m,n+1;α;p(p−1)+1 H

(k)
m,n+1;α;p(p−1)+2 · · · H

(k)
m,n+1;α;p2

⎤⎥⎥⎥⎥⎦
and

(2.33) Ĥm,n+1;α;β =
(
H

(k)
m,n+1;α;β

)t
1≤k≤pm−1

.

As (2.22), the entry
(
H

(k)
m,n+1;α;β

)
i,j

can be verified to be the number of the set of

all (m+1)× (n+1) B-admissible local patterns U(m+1)×(n+1) = (us,t)0≤s≤m,0≤t≤n
with

(2.34)⎧⎨⎩
α = ψ(u0,0, um,0)
β = ψ(u0,1, um,1)
k = ψ(u1,0, u2,0, · · · , um−1,0)

and

{
i = ψ(u0,2, u0,2, · · · , u0,n)
j = ψ(um,2, um,2, · · · , um,n).
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In the following proposition, Ĥm,n+1;α;β can be obtained as the product of Sm;α,β

and Ĥm,n;β [2], i.e., Sm;α,β reduces Hmn+1 to Hmn .

Proposition 2.3. For any m,n ≥ 2,

(2.35) Ĥm,n+1;α;β = Sm;α,βĤm,n;β.

Furthermore, for n = 1, let

(2.36) H
(k)
m,2;α =

⎡⎢⎢⎢⎢⎣
H

(k)
m,2;α;1 H

(k)
m,2;α;2 · · · H

(k)
m,2;α;p

H
(k)
m,2;α;p+1 H

(k)
m,2;α;p+2 · · · H

(k)
m,2;α;2p

...
...

. . .
...

H
(k)
m,2;α;p(p−1)+1 H

(k)
m,2;α;p(p−1)+2 · · · H

(k)
m,2;α;p2

⎤⎥⎥⎥⎥⎦ ,
then

(2.37) H
(k)
m,2;α;β =

pm−1∑
l=1

(Sm;α,β)k,l .

Furthermore, for q ≥ 2, q-many Sm;α,β can reduce Hmn+q to Hmn as follow.
For any positive integer q ≥ 2, the elementary patterns of Hmn+q can be decom-

posed by applying (2.32) q times. Indeed, for q ≥ 2 and 1 ≤ r ≤ q − 1, define

H
(k)
m,n+q;β1;β2;··· ;βr+1

=

⎡⎢⎢⎢⎢⎣
H

(k)
m,n+q;β1;β2;··· ;βr+1;1

H
(k)
m,n+q;β1;β2;··· ;βr+1;2

· · · H
(k)
m,n+q;β1;β2;··· ;βr+1;p

H
(k)
m,n+q;β1;β2;··· ;βr+1;p+1 H

(k)
m,n+q;β1;β2;··· ;βr+1;p+2 · · · H

(k)
m,n+q;β1;β2;··· ;βr+1;2p

...
...

. . .
...

H
(k)
m,n+q;β1;β2;··· ;βr+1;p(p−1)+1 H

(k)
m,n+q;β1;β2;··· ;βr+1;p(p−1)+2 · · · H

(k)
m,n+q;β1;β2;··· ;βr+1;p2

⎤⎥⎥⎥⎥⎦ .
Therefore, for any q ≥ 1, Hmn+q can be represented as a pq+1 × pq+1 matrix

(2.38) Hmn+q ≡ [Hm,n+q;i,j ]pq+1×pq+1 =
[
Hm,n+q;β1;β2;··· ;βq+1

]
where

Hm,n+q;β1;β2;··· ;βq+1 =

pm−1∑
k=1

H
(k)
m,n+q;β1;β2;··· ;βq+1

is a pn−1 × pn−1 matrix. Notably, the relation between 1 ≤ β1, β2, · · · , βq+1 ≤ p

and 1 ≤ i, j ≤ pq+1 is the same as (2.14) and (2.15). Define

Ĥm,n+q;β1;β2;··· ;βq+1 =
(
H

(k)
m,n+q;β1;β2;··· ;βq+1

)t
1≤k≤pm−1

.

As in Proposition 2.3, the elementary patterns of Hmn+q can be expressed as the
product of q-many Sm;α,β and the elementary patterns of Hmn .
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Proposition 2.4. For any m,n ≥ 2 and q ≥ 1,

(2.39) Ĥm,n+q;β1;β2;··· ;βq+1 = Sm;β1,β2Sm;β2,β3 · · ·Sm;βq,βq+1Ĥm,n;βq+1 ,

where 1 ≤ βi ≤ p2, 1 ≤ i ≤ q + 1. Moreover,

(2.40) Hm,n+q;β1;β2;··· ;βq+1 =

pm−1∑
k,l=1

(Sm;β1,β2Sm;β2,β3 · · ·Sm;βq,βq+1)k,lH
(l)
m,n;βq+1

.

Similarly, for V2, the connecting operators are denoted by Um = [Um;i,j] (cor-
responding to Cm = [Cm;i,j ] for H2) and Wm = [Wm;α,β ] (corresponding to Sm =
[Sm;α,β] for H2). The arguments that hold for Hn are also valid for Vn.

3. Extendability and topological mixing

This section investigates extendability and mixing of Σ(B).
It is clear that primitivity of Hn and Vn for all n ≥ 2 can be interpreted as

topological mixing in horizontal and vertical directions respectively. In general,
the relative position of lattices R1 and R2 + v are not located horizontally or
vertically. Accordingly, mixing in the directions other than horizontal and vertical
directions need to be studied. To treat these situations, rectangle-extendability,
corner-extendable conditions and crisscross-extendability are introduced.

First, the rectangle-extendability of B is defined as follows.

Definition 3.1. For B ⊂ Σ2×2(p), B is called rectangle-extendable if for every
pattern Um×n ∈ Σm×n(B), m,n ≥ 2, there exists W ∈ Σ(B) such that W |Zm×n

=
Um×n.

Previously, the importance of corners of lattices has been noticed [12, 44]. Indeed,
in studying mixing properties, the concept of corner gluing was introduced by Boyle
et al. [12]. Similarly, for studying rectangle-extendability and mixing, the corners
of the rectangular lattice need to be studied closely. Indeed, let the L-shaped
lattices L1 = Z3×3 \ {(2, 2)}, L2 = Z3×3 \ {(0, 2)}, L3 = Z3×3 \ {(0, 0)} and L4 =
Z3×3 \ {(2, 0)}, that is,

L1 =
,

L2 =
,

L3 =
,

L4 = .

Figure 3.1.

Definition 3.2. Let B ⊂ Σ2×2(p). For 1 ≤ i ≤ 4, B satisfies corner-extendable
condition C(i) if for any U ∈ ΣLi

(B), there exists U ′ ∈ Σ3×3(B) such that U ′ |Li
=

U .

Whether or not H2(B) or V2(B) contains a zero row or a zero column are very
much different in studying mixing problem. We begin with the study when there
is no zero row and column. We need the following notation.

Definition 3.3. A matrix A = [ai,j ]n×n is called compressible if contains a zero
row or a zero column. A matrix is non-compressible if it is not compressible. An
H2 (or V2) is degenerated if H2;α (or V2;α) is compressible for some 1 ≤ α ≤ p2.
An H2 (or V2) is non-degenerated if it is not degenerated.
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First, consider the case for B ⊂ Σ2×2(p) when H2(B) and V2(B) are non-
degenerated.

Clearly, if both A and B are non-negative and non-compressible matrices, then
AB is non-compressible. From (2.10), (2.11), (2.13) and (2.21), the following result
is easily obtained, and the similar result for V2 also holds.

Proposition 3.4. If H2 is non-degenerated, then Hn;α are non-compressible for
n ≥ 2 and 1 ≤ α ≤ p2. In particular, Hn is non-compressible for all n ≥ 2.

Moreover, H
(k)
m,n;α are also non-compressible for m,n ≥ 2, 1 ≤ α ≤ p2 and 1 ≤ k ≤

pm−1.

The following lemma is easily proven and the proof is omitted.

Lemma 3.5. Given B ⊂ Σ2×2(p), if Hn(B) and Vn(B) are non-compressible for
all n ≥ 2, then B is rectangle-extendable.

The non-degeneracy of H2(B) and V2(B) implies rectangle-extendability and,
moreover, three of the corner-extendable conditions, as follows.

Theorem 3.6. Given B ⊂ Σ2×2(p), if H2(B) and V2(B) are non-degenerated, then

(i) B is rectangle-extendable,
(ii) B satisfies C(1), C(2) and C(4).

Proof. (i) is obtained directly from Proposition 3.4 and Lemma 3.5.
(ii) Since H2(B) is non-degenerated. From (2.2), for any u0,0, u1,0, u0,1, u1,1 ∈ Sp,

there exist a, b ∈ Sp such that

au0,1

u0,0 u1,0
and

b u1,1

u0,0 u1,0

Figure 3.2.

are in B, which implies that conditions C(1) and C(2) are satisfied. Similarly, that
V2(B) is non-degenerated implies that B satisfies conditions C(1) and C(4).

The proof is complete. �

Now, Σ(B) is mixing follows from the non-degeneracy of H2(B) and V2(B) and
primitivity of Hn and Vn, n ≥ 2.

Theorem 3.7. Given B ⊂ Σ2×2(p), if H2(B) and V2(B) are non-degenerated, then
the following statements are equivalent.

(i) Hn(B) and Vn(B) are primitive for all n ≥ 2.
(ii) Σ(B) is mixing.

Proof. (i)⇒(ii). Let R1 and R2 be finite sublattices of Z2. Then, there exist N ≥ 2
and (i1, j1),(i2, j2) ∈ Z2 such that Rl ⊂ ZN×N ((il, jl)), l = 1, 2. From (i), there
exists K ≥ 1 such that HKN (B) > 0 and VKN (B) > 0.

Then, take M = M(R1, R2) =
√
2(2N + K − 2). Let v = (v1, v2) ∈ Z2 with

d(R1, R2 + v) ≥ M and any two allowable patterns U1 ∈ ΠR1(Σ(B)) and U2 ∈
ΠR2+v(Σ(B)). Clearly, U1 and U2 can be extended as U ′1 on ZN×N ((i1, j1)) and U

′
2

on ZN×N ((i2 + v1, j2 + v2)) by using the local patterns in B, respectively.
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It is not difficult to prove that U ′1 and U ′2 can be connected as the L-shaped
pattern UL by using the local patterns in B, as follows.

N

N

UL

or

N

N UL

Figure 3.3.

Notably, the L-shaped lattices may degenerate into rectangular lattices.
Since H2(B) and V2(B) are non-degenerated, by Theorem 3.6, B satisfies condi-

tions C(1) and C(2). Then, UL can be extended as Ur on the rectangular lattice by
using the local patterns in B, which is obtained by filling the corner of the L-shaped
lattices.

From Theorem 3.6, B is rectangle-extendable. Then, Ur can be extended as
W ∈ Σ(B) with ΠR1(W ) = U1 and ΠR2+v(W ) = U2. Therefore, Σ(B) is mixing.

(ii)⇒(i). From Proposition 3.4, Hn and Vn are non-compressible for all n ≥ 2.
Then, for n ≥ 2, any pattern in Σ1×n(p) or Σn×1(p) can be extended to Z2 by
using the local patterns in B. It can be easily verified that (ii)⇒(i); the details are
omitted. The proof is complete.

�

Next, consider the case for B ⊂ Σ2×2(p) when H2(B) or V2(B) is degenerated.
Theorems 3.6 and 3.7 are to be generalized when B satisfies corner-extendable con-
ditions and crisscross-extendability, which is introduced as follows. The crisscross
lattice Z+ is defined by

(3.1) Z+ =
⋃

0≤|i|+|j|≤1

Z2×2((i, j)),

Indeed,

O
Z+ = ,

Figure 3.4.

where O = (0, 0) is the origin of Z2. For B ⊂ Σ2×2(p), denote by

Σ+(B) = ΣZ+(B).

Later, the extendability ofB ∈ B on Z2 will be reduced to study the extendability
on Z+. First, the subset Bc of B, which is the collection of all crisscross-extendable
patterns in B, is introduced.

Definition 3.8. For B ⊂ Σ2×2(p), Bc = Bc(B) is the maximal subset of B such
that if B ∈ Bc, there exists U+ ∈ Σ+(B) with U+ |Z2×2= B.

Clearly, Bc can be obtained through the following finite processes.
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Proposition 3.9. For B ⊂ Σ2×2(p),

(3.2) Bc = B \
(
Nh(B)

⋃
Nv(B)

)
,

where

(3.3) Nh(B) =

⎧⎨⎩xi,j ∈ B |
p2∑
k=1

hk,i = 0 or

p2∑
k=1

hj,k = 0

⎫⎬⎭
and

(3.4) Nv(B) =

⎧⎨⎩yi,j ∈ B |
p2∑
k=1

vk,i = 0 or

p2∑
k=1

vj,k = 0

⎫⎬⎭ .

That the shift spaces Σ(B) and Σ(Bc) are equal is proven as follows.

Proposition 3.10. For B ⊂ Σ2×2(p),

(3.5) Σ(Bc) = Σ(B).

In particular, Σ(Bc) is mixing if and only if Σ(B) is mixing.

Proof. Clearly, Σ(Bc) ⊆ Σ(B).
Suppose that Σ(Bc) � Σ(B). Then, there exists U ∈ Σ(B) but U /∈ Σ(Bc),

that is, U |Z2×2((i′,j′))∈ (B \ Bc) for some (i′, j′) ∈ Z2. Since U ∈ Σ(B), from the
definition of Bc, we have U |Z2×2((i′,j′))∈ Bc . This leads a contradiction. Thus,
Σ(Bc) ⊇ Σ(B).

The proof is complete. �

The following notation is important in studying rectangle-extendability and mix-
ing for Σ(B) when H2(B) or V2(B) is degenerated.

Definition 3.11. A basic set B ⊂ Σ2×2(p) is called crisscross-extendable if Bc(B) =
B, that is, for every B ∈ B, there exists U+ ∈ Σ+(B) with U+ |Z2×2= B.

When B ⊂ Σ2×2(p) is not crisscross-extendable, the maximal crisscross-extendable
subset B∗ of B can be obtained as follows. Indeed, let B0 = B and Bn = Bc(Bn−1)
for all n ≥ 1. Clearly, Bn ⊆ Bn−1 for all n ≥ 1. We have that the size of H2(B)
and V2(B) is p2 × p2. Define

(3.6) B∗ = B∗(B) ≡
∞⋂
n=0

Bn =

2p2⋂
n=0

Bn.

From the construction of B∗, by Proposition 3.10, the following result can be ob-
tained easily and the proof is omitted.

Proposition 3.12. For B ⊂ Σ2×2(p),
(i) B∗ is crisscross-extendable,
(ii) Σ(B∗) = Σ(B).
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Therefore, if B ⊂ Σ2×2(p) is not crisscross-extendable, then the discussion con-
cerning rectangle-extendability and mixing of Σ(B) is the same as that of Σ(B∗).
Hereafter, B ⊂ Σ2×2(p) is always assumed to be crisscross-extendable when H2(B)
or V2(B) is degenerated.

Proposition 3.13. If B satisfies either C(1) and C(3) or C(2) and C(4), then the
following statements are equivalent.

(i) B is rectangle-extendable.
(ii) B is crisscross-extendable.

Proof. Clearly, (i) implies (ii).
(ii)⇒(i). Assume that B satisfies C(1) and C(3). The case in which it satisfies

C(2) and C(4) is similar. Let Um×n ∈ Σm×n(B), m,n ≥ 2. Since B satisfies
C(1) and C(3), from (ii), Um×n can be extended in both positive and and negative
vertical directions by using the local patterns in B, as follows.

nn

m

m

n+ 2
.

Figure 3.5.

Similarly, the above pattern can be extended in both positive horizontal and nega-
tive horizontal directions by using the local patterns in B. Therefore, by the above
method, Um×n can be extended to Z2 by using the local patterns in B. The proof
is complete. �

Theorem 3.7 can now be generalized. Indeed, the following theorem shows that
primitivity and mixing are equivalent when B is crisscross-extendable and satisfies
the corner-extendable conditions.

Theorem 3.14. If

(i) B ⊂ Σ2×2(p) is crisscross-extendable,
(ii) B satisfies three of corner-extendable conditions C(i), 1 ≤ i ≤ 4,

then Hn(B) and Vn(B) are primitive for all n ≥ 2 if and only if Σ(B) is mixing.

Proof. (⇒). From (ii), without loss of generality, assume that B satisfies conditions
C(1), C(2) and C(3).

Let R1 and R2 be finite sublattices of Z2. Since B satisfies C(1) and C(2), as in
the proof of Theorem 3.7, there existsM(R1, R2) ≥ 1 such that for all v = (v1, v2) ∈
Z2 with d(R1, R2 + v) ≥ M and any two allowable patterns U1 ∈ ΠR1(Σ(B)) and
U2 ∈ ΠR2+v(Σ(B)), U1 and U2 can be extended as Ur on the rectangular lattice by
using the local patterns in B.

Since B is crisscross-extendable and satisfies conditions C(1) and C(3), by Propo-
sition 3.13, B is rectangle-extendable. Then, Ur can be extended asW ∈ Σ(B) with
ΠR1(W ) = U1 and ΠR2+v(W ) = U2. Therefore, Σ(B) is mixing.

(⇐). From (i) and (ii), by Proposition 3.13, B is rectangle-extendable. Then, for
n ≥ 2, any pattern in Σ2×n(B) can be extended to Z2 by using the local patterns
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in B. Therefore, that Σ(B) is mixing implies that Hn(B) is primitive for all n ≥ 2.
Similarly, Vn(B) is primitive for all n ≥ 2.

The proof is complete. �

The following example demonstrates that the corner-extendable conditions of
Theorem 3.14 are crucial: if corner-extendable conditions fail, then crisscross-
extendability (or rectangle-extendability) and primitivity may not imply mixing.

Example 3.15. Let

Bπ/4 =

{
u2
u3u1

u4 : u4 ≥ u1 and u1, u2, u3, u4 ∈ {0, 1}

}
.

Clearly,

H2(Bπ/4) = V2(Bπ/4) =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
0 1 0 1
0 1 0 1

⎤⎥⎥⎦ .
From (2.10) and (2.11), it can be verified that Hn is non-compressible for all n ≥ 2.
Since V2 = H2, Vn is also non-compressible for all n ≥ 2. By Lemma 3.5, Bπ/4 is
rectangle-extendable. In particular, Bπ/4 is crisscross-extendable.

For n ≥ 2, any two 1 × n local patterns U1×n = (u0,j)0≤j≤n−1 = (uj)0≤j≤n−1

and U ′1×n = (u′0,j)0≤j≤n−1 = (u′j)0≤j≤n−1, uj, u
′
j ∈ {0, 1}, 0 ≤ j ≤ n − 1, can be

connected in the horizontal direction by using the local patterns in Bπ/4, as follows.

u0

u0

u0

u0

u0

u1

u1

u1

u2

un−4

un−3

un−3

un−2

un−2

un−1

u′0

u′1

u′1

u′2

u′2

u′2

u′3

u′3u′4

u′n−2

u′n−2

u′n−1

u′n−1

u′n−1

u′n−1

.

n− 1

Figure 3.6.

Then, Hnn > 0 for all n ≥ 2. Since V2 = H2, Vnn = Hnn > 0 for all n ≥ 2.

Let R1 = R2 = Z2×2. Consider U0 = {0}Z
2

and U1 = {1}Z
2

. Clearly, U0, U1 ∈
Σ(Bπ/4), but ΠR1(U1) cannot connect with ΠR2+(i,i)(U0) = ΠZ2×2((i,i))(U0) by using
the local patterns in Bπ/4 for all i ≥ 2. Therefore, Σ(Bπ/4) is not mixing. This
claim does not contradict Theorem 3.14 since Bπ/4 does not satisfy conditions C(2)
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and C(4): neither

00
00
000

1 ∈ ΣL2(Bπ/4)
nor

00
000

0

0 1
∈ ΣL4(Bπ/4)

can be extended to Z3×3 by using the local patterns in Bπ/4.

The following corollary follows directly from the proof of Theorem 3.14 and is
useful for checking that Σ(B) is not mixing.

Corollary 3.16. Given B ⊂ Σ2×2(p), assume that B is rectangle-extendable. If
there exists N ≥ 2 such that HN (B) or VN (B) is not primitive, then Σ(B) is not
mixing.

At the end of this section, we recall and compare various mixing properties which
are described in the introduction.

Definition 3.17. Suppose Σ is a Z2 shift.
(i) Σ has the uniform filling property (UFP) if a number M(Σ) ≥ 1 exists such that
for any two allowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with d(R1, R2) ≥M ,
where R1 = Zm×n((i, j)), m,n ≥ 1 and (i, j) ∈ Z2, and R2 ⊂ Z2, there exists a
global pattern W ∈ Σ with ΠR1(W ) = U1 and ΠR2(W ) = U2.

(ii) Σ is strongly irreducible if a number M(Σ) ≥ 1 exists such that for any two
allowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with d(R1, R2) ≥ M , where
R1 ⊂ Z2 is finite and R2 ⊂ Z2, there exists a global pattern W ∈ Σ with ΠR1(W ) =
U1 and ΠR2(W ) = U2.

(iii) Σ is corner gluing if a number M(Σ) ≥ 1 exists such that for any two al-
lowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with d(R1, R2) ≥ M , where
R1 = Zm×n((i, j)), m,n ≥ 1 and (i, j) ∈ Z2, and R2 = Zm1×n1((i+m−m1, j+n−
n1)) \Zm2×n2((i+m−m2, j+n−n2)), m1 > m2 ≥ m+M and n1 > n2 ≥ n+M ,
there exists a global pattern W ∈ Σ with ΠR1(W ) = U1 and ΠR2(W ) = U2.

(iv) Σ is block gluing if a number M(Σ) ≥ 1 exists such that for any two allow-
able patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with d(R1, R2) ≥ M , where R1 =
Zm1×n1((i1, j1)) and R2 = Zm2×n2((i2, j2)), ml, nl ≥ 1 and (il, jl) ∈ Z2, l ∈ {1, 2},
there exists a global pattern W ∈ Σ with ΠR1(W ) = U1 and ΠR2(W ) = U2.

(v) Σ has periodic specification if a number M(Σ) ≥ 1 exists such that for any two
allowable patterns U1 ∈ ΠR1(Σ) and U2 ∈ ΠR2(Σ) with d(R1, R2) ≥ M , where
R1, R2 ⊂ Z2 are finite, there exists a periodic pattern W ∈ Pm×n(Σ), m,n ≥ 1,
with ΠR1(W ) = U1 and ΠR2(W ) = U2, where Pm×n(Σ) is the set of all periodic
patterns in Σ with period m in horizontal direction and period n in vertical direction.

Notably, (i)∼(iv) are introduced in Boyle et al. [12] and (iv) is newly introduced.

Remark 3.18. Boyle et al. [12] showed that the strong irreducibility for both R1

and R2 are finite is equivalent to R1 is finite and R2 is arbitrary. Hence, it is clear
that periodic specification implies strong irreducibility. By a similar argument as
in Ward [54] in which Σ(B) with strong specification has dense periodic patterns,
it can be shown that strong specification for Σ(B) implies periodic specification for
Σ(B). Recently, Ceccherini-Silberstein and Coornaert [15, 16] proved that strong
specification is equivalent to strong irreducibility. Therefore, strong specification,
periodic specification and strong irreducibility for Σ(B) are all equivalent.
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As Theorem 3.14, it can be proven that N -primitivity and block gluing are
equivalent when B is rectangle-extendable. For brevity, the proof is omitted

Theorem 3.19. If B ⊂ Σ2×2(p) is rectangle-extendable, then the following state-
ments are equivalent.

(i) there exists N ≥ 1 such that Hn and Vn are N -primitive for all n ≥ 2
(ii) Σ(B) is block gluing.

4. Invariant diagonal cycles and primitive commutative cycles

This section introduces invariant diagonal cycles and primitive commutative
cycles to provide finitely checkable conditions for the primitivity of Hn or Vn for
n ≥ 2. For brevity, the discussion for Hn is more addressed. The discussion for Vn
is similar to that for Hn.

4.1. Invariant diagonal cycles. This subsection introduces invariant diagonal
cycles to provide finitely checkable conditions for the primitivity of Hn or Vn.

First, the diagonal index set is defined by

Dp = {1 + j(p+ 1)|j ∈ Sp} .

Clearly, if β1, β2, · · · , βq+1 ∈ Dp, then Hm,n+q;β1;β2;··· ;βq+1 lies on the diagonal of
Hmn+q in (2.38).

Definition 4.1.

(i) For q ≥ 1, a finite sequence βq = β1β2 · · ·βqβ1 is called a diagonal cycle with
length q if βj ∈ Dp for 1 ≤ j ≤ q.

(ii) A diagonal cycle βq = β1β2 · · ·βqβ1 is called an S-invariant diagonal cycle of

order (m, q) if there exist m ≥ 2 and an invariant index set K ⊆
{
1, 2, · · · , pm−1

}
such that

(4.1)
∑
k∈K

(
Sm;β1,β2Sm;β2,β3 · · ·Sm;βq,β1

)
k,l
≥ 1

for all l ∈ K.
(iii) A diagonal cycle βq = β1β2 · · ·βqβ1 is called a W -invariant diagonal cycle of

order (m, q) if there exist m ≥ 2 and an invariant index set K ⊆
{
1, 2, · · · , pm−1

}
such that

(4.2)
∑
k∈K

(
Wm;β1,β2Wm;β2,β3 · · ·Wm;βq,β1

)
k,l
≥ 1

for all l ∈ K.

Notably, it is easy to show that for any n ≥ 1,

(4.3)
∑
k∈K

(
(Sm;β1,β2Sm;β2,β3 · · ·Sm;βq,β1)

n
)
k,l
≥ 1

for all l ∈ K if (4.1) holds. The case for W -invariant diagonal cycles is similar.
In the case of non-degeneracy, the following simpler sufficient condition for prim-

itivity holds. The proof is postponed until after Theorem 4.12 which treats more
general situation.
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Theorem 4.2. Given B ⊂ Σ2×2(p), if

(i) H2(B) is non-degenerated,

(ii) there exists an S-invariant diagonal cycle βq̄ = β̄1β̄2 · · · β̄q̄β̄1 of order (m̄, q̄)
with its invariant index set K,

(iii)
∑
l∈K

H
(l)

m̄,n;β̄1
is primitive for 2 ≤ n ≤ q̄ + 1,

then Hn is primitive for all n ≥ 2. Similarly, if

(i)’ V2(B) is non-degenerated,
(ii)’ there exists a W -invariant diagonal cycle βq̄ = β̄1β̄2 · · · β̄q̄β̄1 of order (m̄, q̄)

with its invariant index set K,

(iii)’
∑
l∈K

V
(l)

m̄,n;β̄1
is primitive for 2 ≤ n ≤ q̄ + 1,

then Vn is primitive for all n ≥ 2. Furthermore, if (i)∼(iii) and (i)’∼(iii)’ hold,
then Σ(B) is mixing.

The following example illustrates the application of Theorem 4.2.

Example 4.3. Consider

H2(B) =

⎡⎢⎢⎣
1 0 0 1
1 1 1 0
1 0 0 1
0 1 1 0

⎤⎥⎥⎦ .
Clearly, H2 is non-degenerated. From (2.30),

S3;1,1 = C3;1,1 =

⎡⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ .
Let β1 = 11 and K = {3, 4}. Since∑

k∈K

(S3;1,1)k,l ≥ 1

for l ∈ K, β1 is an S-invariant diagonal cycle of order (3, 1) with index set K.
Clearly, ∑

l∈K

H
(l)
3,2;1 = H2;1,2H2;2,1H2;1,1 +H2;1,2H2;22H2;21 =

[
2 1
1 1

]
is primitive. By using Theorem 4.2, Hn is primitive for all n ≥ 2. Mixing of Σ(B)
will be proven in Example 4.29.

To study the general cases, which includes degenerated case, more notation and
lemmas are required. First, the crisscross lattice Z+ is decomposed into four rect-
angular lattices:

Z+ =

4⋃
i=1

R(i),

where {
R(1) = Z3×2((0, 0)),
R(2) = Z2×3((0, 0)),

and

{
R(3) = Z3×2((−1, 0)),
R(4) = Z2×3((0,−1)).
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Definition 4.4. For 1 ≤ i ≤ 4, a basic set B ⊂ Σ2×2(p) is called R(i)-extendable
if for any B ∈ B, there exists U ∈ ΣR(i)(B) such that U |Z2×2= B.

Clearly, a basic set B ⊂ Σ2×2(p) is crisscross-extendable if and only if B is
R(i)-extendable for all 1 ≤ i ≤ 4.

Let A = [ai,j ]n×n be a non-negative matrix; the index set of non-zero rows of A
and the index set of non-zero columns of A are denoted by

(4.4) r(A) =

{
i |

n∑
j=1

ai,j > 0

}
and c(A) =

{
j |

n∑
i=1

ai,j > 0

}
,

respectively. From (2.9), it is easy to show that

(4.5)

⎧⎪⎪⎨⎪⎪⎩
B is R(1)-extendable if and only if r(H2(B)) ⊇ c(H2(B));
B is R(2)-extendable if and only if r(V2(B)) ⊇ c(V2(B));
B is R(3)-extendable if and only if c(H2(B)) ⊇ r(H2(B));
B is R(4)-extendable if and only if c(H2(B)) ⊇ r(H2(B)).

Now, the following lemma is obtained.

Lemma 4.5. Assume that B ⊂ Σ2×2(p) is R(2)-extendable. For n ≥ 2 and q ≥ 1,
denote Hn+q = [Hn+q;i,j ]pq+1×pq+1 and Hq+1 = [hq+1;i,j ]pq+1×pq+1 . If hq+1;i,j = 1,
then Hn+q;i,j is not a zero matrix.

Proof. Since B is R(2)-extendable, any pattern in Σ2×(q+1)(B) can be extended to
Z2×(n+q) by using the local patterns in B. From (2.17), the result follows. �

In degenerated case, the weak non-degeneracy of H2(B) (or V2(B)) is introduced
and is useful in establishing the primitivity of Hn(B) (or Vn(B)).

Definition 4.6. Given B ⊂ Σ2×2(p), H2(B) = [H2;i,j ]p×p is weakly non-degenerated
if

(i) when both H2;i,j1 and H2;i,j2 are not zero matrices, 1 ≤ i, j1, j2 ≤ p,

r(H2;i,j1 ) = r(H2;i,j2 );

(ii) when both H2;i1,j and H2;i2,j are not zero matrices, 1 ≤ i1, i2, j ≤ p,

c(H2;i1,j) = c(H2;i2,j).

Weak non-degeneracy of V2(B) is defined analogously.

Clearly, if H2(B) (or V2(B)) is non-degenerated, then H2(B) (or V2(B)) is weakly
non-degenerated.

The following lemma can be proven straightforwardly from Lemma 4.5 and the
proof is omitted.

Lemma 4.7. Given B ⊂ Σ2×2(p), if B is R(2)-extendable and H2(B) is weakly
non-degenerated, then

(i) when both H2;i,j1 and H2;i,j2 are not zero matrices, 1 ≤ i, j1, j2 ≤ p,

r(Hn;i,j1 ) = r(Hn;i,j2 ) for all n ≥ 2;

(ii) when both H2;i1,j and H2;i2,j are not zero matrices, 1 ≤ i1, i2, j ≤ p,

c(Hn;i1,j) = c(Hn;i2,j) for all n ≥ 2.
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In the following lemma, the corner-extendable conditions C(i) can be obtained
from the R(i)-extendability and weak non-degeneracy.

Lemma 4.8. Given B ⊂ Σ2×2(p), assume H2(B) is weakly non-degenerated, then

(i) if B is R(1)- and R(2)-extendable, then B satisfies C(1);
(ii) if B is R(2)- and R(3)-extendable, then B satisfies C(2).

Similarly, assume V2(B) is weakly non-degenerated, then

(iii) if B is R(1)- and R(2)-extendable, then B satisfies C(1);
(iv) if B is R(1)- and R(4)-extendable, then B satisfies C(4).

Proof. For simplicity, only (i) is proven. The other are proven similarly.
For any UL1 = (ui,j)(i,j)∈L1

∈ ΣL1(B), let i1 = u1,1 + 1, i2 = u2,1 + 1 and
i3 = u1,2 + 1. The R(2)-extendability of B implies that H2;i1,i2 is not a zero
matrix. From the R(1)-extendability of B, there exist 1 ≤ i4, i5 ≤ p such that
(H2;i1,i4)i3,i5 = 1. Since H2(B) is weakly non-degenerated, there exists 1 ≤ i6 ≤ p

such that (H2;i1,i2)i3,i6 = 1, that is,

u1,2 a

u1,1 u2,1

∈ B,

where a = i6 − 1. Therefore, UL1 can be extended to Z3×3 by using the local
patterns in B, which implies B satisfies C(1). The proof is complete.

�

For easily expressing the primitivity of compressible matrices, the following def-
inition is introduced.

Definition 4.9. If A = [ai,j ]n×n is a matrix with ai,j ∈ {0, 1}, the associated
saturated matrix E(A) = [ei,j ]n×n of A is defined by

(4.6)

⎧⎪⎪⎨⎪⎪⎩
ei,j = 0 if

n∑
k=1

ai,k = 0 or
n∑
k=1

ak,j = 0,

ei,j = 1 otherwise.

Clearly, given A = [ai,j ]n×n with ai,j ∈ {0, 1}, if there exists n0 ≥ 1 such
that An0 ≥ E(A), then A is primitive (n0-primitive); here, if B = [bi,j ]n×n and
C = [ci,j ]n×n are two matrices, B ≥ C means bi,j ≥ ci,j for all 1 ≤ i, j ≤ n.

For n ≥ 2 and q ≥ 0, as (2.12), let

Hn+q = [Hn+q;i,j ]pq+1×pq+1 =
[
Hn+q;β1;β2;··· ;βq+1

]
.

For convenience, E(Hn+q) is denoted by

(4.7) E(Hn+q) = [En+q;i,j ]pq+1×pq+1 =
[
En+q;β1;β2;··· ;βq+1

]
.

From (2.20), it is easy to verify that

(4.8) E(Hn+q) ≤ (E(Hq+1))pq+1×pq+1 ◦
[
Epq×pq ⊗ [En;i′,j′ ]p×p

]
.

Lemmas 4.7 and 4.8 yield the following lemma.
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Lemma 4.10. Given B ⊂ Σ2×2(p), for n ≥ 2, let Hn(B) = [Hn;i,j ]p×p and
E(Hn) = [En;i,j ]p×p. Assume that B is R(q)-extendable, q ∈ {1, 2, 3}, and H2(B) is
weakly non-degenerated. Then, for n ≥ 2 and 1 ≤ i1, i2, i3 ≤ p,

(4.9) Hn;i1,i2En;i2,i3 ≥ En;i1,i3

when H2;i1,i2 is not a zero matrix;

(4.10) En;i1,i2Hn;i2,i3 ≥ En;i1,i3

when H2;i2,i3 is not a zero matrix.

Proof. By Lemma 4.8, we have that B satisfies C(1) and C(2).
From the R(1)-extendability of B and C(1), for n ≥ 2, every pattern U2×n ∈

Σ2×n(B) can be extended to Z3×n by using the local patterns in B. Therefore, by
Lemma 4.7, it can be verified that (4.9) holds; the details of the proof are omitted.
Similarly, (4.10) can be shown to hold.

�

We also need following notation in proving the theorem for the primitivity of
Hn.

Definition 4.11. Let M = [Mi,j]N×N , where Mi,j is an M × M non-negative

matrix for 1 ≤ i, j ≤ N . The indicator matrix Λ(M) = [mi,j ]N×N of M is defined
by {

mi,j = 1 if |Mi,j| > 0,
mi,j = 0 otherwise,

where |Mi,j | is the sum of all entries in Mi,j.

The following theorem provides a sufficient condition for the primitivity of Hn
when H2 is weakly non-degenerated with some R(i)-extendability.

Theorem 4.12. Given B ⊂ Σ2×2(p), if

(i) H2(B) is weakly non-degenerated,
(ii) B is R(i)-extendable, i ∈ {1, 2, 3},
(iii) there exists an S-invariant diagonal cycle βq̄ = β̄1β̄2 · · · β̄q̄β̄1 of order (m̄, q̄)

with its invariant index set K,
(iv) for 2 ≤ n ≤ q̄ + 1, there exists ā = ā(n) ≥ 1 such that(∑

l∈K

H
(l)

m̄,n;β̄1

)ā

≥ En;β̄1
,

(v) Hn is primitive for 2 ≤ n ≤ q̄ + 1,

then Hn is primitive for all n ≥ 2.

Proof. The result that Hn is primitive for n ≥ 2 is proven by induction, as follows.
For s ≥ 0, the statement P (s) means thatHn is primitive for sq̄+2 ≤ n ≤ (s+1)q̄+1.

From (v), P (0) is true. Assume that P (t) follows for some t ≥ 0, that is, Hn is
primitive for tq̄ + 2 ≤ n ≤ (t+ 1)q̄ + 1.

For (t+1)q̄+2 ≤ n ≤ (t+2)q̄+1, let n = (t+1)q̄+ r, where 2 ≤ r ≤ q̄+1. Let

N = (t+1)q̄+1, define βN−1 = β(t+1)q̄ =
(
β̄1β̄2 · · · β̄q̄

)t+1
β̄1. From (4.3), βN−1 is

an S-invariant diagonal cycle of order (m̄,N − 1) with invariant index set K.
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From (2.38), let Hn = [Hn;iN ,jN ]pN×pN and Hmn = [Hm,n;iN ,jN ]pN×pN for m ≥ 1.
Then, from (2.20),

Hn = [Hn;iN ,jN ] = (HN)pN×pN ◦
[
EpN−1×pN−1 ⊗ [Hr;i,j]p×p

]
.

By Lemma 4.5, HN is the indicative matrix of Hn = [Hn;iN ,jN ]. By the assump-

tion for P (t), HN is primitive; then suppose Hm
′

N ≥ E(HN ) for some m′ ≥ 1.
Therefore, for any 1 ≤ iN , jN ≤ pN with (E(HN ))iN ,jN = 1, there exist 1 ≤

l0(iN , jN ), l1(iN , jN ), · · · , lm′(iN , jN ) ≤ p such that

Hm′,n;iN ,jN ≥ Hr;l0,l1Hr;l1,l2 · · ·Hr;lm′−1,lm′
,

where Hr;lq,lq+1 is not a zero matrix for all 0 ≤ q ≤ m′ − 1.
From (2.40),

Hm̄,n;βN−1
≡ Hm̄,n;β̄1;β̄2;··· ;β̄q̄;··· ;β̄1;β̄2;··· ;β̄q̄;β̄1︸ ︷︷ ︸

(t+1) times

=
pm̄−1∑
k,l=1

((Sm̄;β̄1,β̄2
Sm̄;β̄2,β̄3

· · ·Sm̄;β̄q,β̄1
)t+1)k,lH

(l)

m̄,r;β̄1

≥
∑
l∈K

H
(l)

m̄,r;β̄1
.

Notably, Hm̄,n;βN−1
is on the diagonal of Hm̄n ; then let Hm̄,n;k̄,k̄ = Hm̄,n;βN−1

for

some 1 ≤ k̄ ≤ pN . Hence, form (iv), Hām̄,n;βN−1
≥ Er;β̄1

. Since β̄1 ∈ Dp, Er;β̄1
=

Er;k′,k′ for some 1 ≤ k′ ≤ p.

Let N̄ = ām̄ + 2m′ and HN̄n =
[
HN̄,n;iN ,jN

]
pN×pN

. For 1 ≤ iN , jN ≤ pN with

(E(HN ))iN ,jN = 1, from (4.9) and (4.10),

HN̄,n;iN ,jN ≥ Hm′,n;iN ,k̄Hām̄,n;k̄,k̄Hm′,n;k̄,jN

≥ Hr;l0(iN ,k̄),l1(iN ,k̄) · · ·Hr;lm′−1(iN ,k̄),k
′Er;k′,k′Hr;k′,l1(k̄,jN ) · · ·Hr;lm′−1(k̄,jN ),lm′(k̄,jN )

≥ Er;l0(iN ,k̄),lm′(k̄,jN ).

Hence, from (4.8),

HN̄n ≥ (E(HN ))pN×pN ◦
[
EpN−1×pN−1 ⊗ [Er;i,j ]p×p

]
≥ E(Hn).

Then, Hn is primitive for (t+ 1)q̄ + 2 ≤ n ≤ (t+ 2)q̄ + 1, that is, P (t+ 1) holds.
Therefore, P (s) is true for all s ≥ 0, implying that Hn is primitive for all n ≥ 2.

The proof is complete.
�

Now, the proof of Theorem 4.2 is given as follows.

Proof of Theorem 4.2. From (2.4), (2.5) and (4.5), clearly, B is R(i)-extendable for
i ∈ {1, 2, 3}. From (iii), by Proposition 3.4, it can be verified that Hn is primitive
for 2 ≤ n ≤ q̄+1 and the detail is omitted for brevity. Therefore, by Theorem 4.12,
Hn is primitive for all n ≥ 2. �
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For n ≥ 2, let Vn(B) = [Vn;α]1≤α≤p2 and E(Vn) = [E′n;α]1≤α≤p2 . Like Theorem
4.12, the following theorem provides a sufficient condition for the primitivity of Vn.

Theorem 4.13. Given B ⊂ Σ2×2(p), if

(i) V2(B) is weakly non-degenerated,
(ii) B is R(i)-extendable, i ∈ {1, 2, 4},
(iii) there exists a W -invariant diagonal cycle βq̄ = β̄1β̄2 · · · β̄q̄β̄1 of order (m̄, q̄)

with its invariant index set K,
(iv) for 2 ≤ n ≤ q̄ + 1, there exists b̄ = b̄(n) ≥ 1 such that(∑

l∈K

V
(l)

m̄,n;β̄1

)b̄

≥ E′
n;β̄1

,

(v) Vn is primitive for 2 ≤ n ≤ q̄ + 1,

then Vn is primitive for all n ≥ 2.

In viewing the primitive properties in Theorem 4.12 and Theorem 4.13, we intro-
duce the H(1)- and V (1)-primitive conditions for B has invariant diagonal cycles
as follows. Later, H(2)- and V (2)-primitive conditions are introduced for B has
primitive commutative cycles; see Definition 4.26.

Definition 4.14. Let B ⊂ Σ2×2(p).
(i) B satisfies H(1)-primitive condition if the conditions (iii)∼(v) of Theorem 4.12
are satisfied.

(ii) B satisfies V (1)-primitive condition if the condition (iii)∼(v) of Theorem 4.13
are satisfied.

Remark 4.15. From the proof of Theorem 4.2, if H2(B) is non-degenerated and
the conditions (ii)∼(iii) of Theorem 4.2 are satisfied, then B satisfies the H(1)-
primitive condition. A similar result holds when V2(B) is non-degenerated.

From Lemma 4.8 and Theorems 3.14, 4.12 and 4.13, mixing of Σ(B) follows.

Theorem 4.16. Given B ⊂ Σ2×2(p), if

(i) H2(B) and V2(B) are weakly non-degenerated,
(ii) B is crisscross-extendable,
(iii) B satisfies H(1)- and V (1)-primitive conditions,

then Σ(B) is mixing.

The following well-known examples illustrate Theorem 4.16. The first example
is the Golden-Mean shift (or the hard square model).

Example 4.17. The rule of the Golden-Mean shift Σ(BG), BG ⊂ Σ2×2(2), is that
there is no two 1’s next to each other in horizontal or vertical direction. From (2.3),

H2(BG) =

⎡⎢⎢⎣
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

⎤⎥⎥⎦ =

[
H2;1,1 H2;1,2

H2;2,1 H2;2,2

]

and
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E2(H2) =

⎡⎢⎢⎣
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

⎤⎥⎥⎦ =

[
E2;1,1 E2;1,2

E2;2,1 E2;2,2

]
.

Clearly, V2(BG) = H2(BG). From (4.5), BG is crisscross-extendable. That H2(BG)
and V2(BG) are weakly non-degenerated are easily seen.

Now,

S2;1,1 = C2;1,1 =

[
1 1
1 0

]
.

Then, β1 = 11 is an S-invariant diagonal cycle of order (2, 1) with index set K =
{1, 2}. Clearly,

∑
l∈K

H
(l)
2,2;1 = H2;1,1H2;1,1 +H2;1,2H2;2,1 =

[
3 2
2 2

]
≥ E2;1,1 = E2;1.

Since H2
2 ≥ E(H2), H2 is primitive. Therefore, BG satisfies the H(1)-primitive

condition.
Since V2 = H2, BG also satisfies V (1)-primitive condition. Hence, by Theorem

4.16, the Golden-Mean shift Σ(BG) is mixing. In fact, that the Golden-Mean shift
has strong specification will be shown in Example 5.6.

The next example concerns the three-coloring of the square lattice, which is
closely related to the six-vertex ice model in statistical physics [7], see also Example
6.7 of this paper.

Example 4.18. The three-coloring of the square lattice is the coloring of the square
lattice Z2 with three colors such that no two adjacent vertices have the same color.

Let BT ⊂ Σ2×2(3) be the basic set of the three-colouring of the square lattice. We
have that

H2(BT ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0
0 1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ H2;1,1 H2;1,2 H2;1,3

H2;2,1 H2;2,2 H2;2,3

H2;3,1 H2;3,2 H2;3,3

⎤⎦ .

Clearly, V2 = H2. It is easy to verify that BT is crisscross-extendable and H2 = V2

is weakly non-degenerated. We have that

S2;1,5 = C2;2,2 =

⎡⎣ 0 0 0
1 0 1
1 0 0

⎤⎦ and S2;5,1 = C2;4,4 =

⎡⎣ 0 1 1
0 0 0
0 1 0

⎤⎦ .



VERIFICATION OF MIXING PROPERTIES IN TWO-DIMENSIONAL SHIFTS OF FINITE TYPE29

Since S2;1,5S2;5,1 =

⎡⎣ 0 0 0
0 2 1
0 1 1

⎤⎦, β2 ≡ 151 is an S-invariant diagonal cycle of

order (2, 2) with its invariant index set K = {2, 3}.
That the conditions (iv) and (v) of Theorem 4.12 are satisfied can be checked

straightforwardly; the details are omitted for brevity. Hence, BT satisfies the H(1)-
primitive condition. Since V2 = H2, BT satisfies the V (1)-primitive condition.
Therefore, by Theorem 4.16, Σ(BT ) is mixing. It can be proved that Σ(BT ) does
not have strong specification; the detail is omitted.

4.2. Primitive commutative cycles. This subsection introduces primitive com-
mutative cycles in order to obtain another finitely checkable sufficient condition for
the primitivity of Hn or Vn when invariant diagonal cycles are unavailable.

For q, q′ ≥ 1, let Iq = i1i2 · · · iqi1 and Jq′ = j1j2 · · · jq′j1 are two cycles, where
ik, jl ∈ {1, 2, · · · , p} for 1 ≤ k ≤ q and 1 ≤ l ≤ q′.

Definition 4.19. If j1 = i1, let (IqJq′ ) = i1i2 · · · iqi1j2 · · · jq′ i1 and (Jq′Iq) =
i1j2 · · · jq′ i1i2 · · · iqi1. The pair (IqJq′ ) and (Jq′Iq) is called a commutative cycle
pair.

Given a commutative cycle pair (IqJq′ ) and (Jq′Iq), denote the index of (IqJq′)
and (Jq′Iq) by 〈m, ᾱ;K,L〉, where

(4.11)

⎧⎪⎪⎨⎪⎪⎩
m = q + q′

ᾱ = ψ(i1 − 1, i1 − 1)
K = ψ(i2 − 1, · · · , iq − 1, i1 − 1, j2 − 1, · · · , jq′ − 1)
L = ψ(j2 − 1, · · · , jq′ − 1, i1 − 1, i2 − 1, · · · , iq − 1).

From (2.21), it is easy to check that

(4.12)

⎧⎪⎨⎪⎩
Hn;i1,i2Hn;i2,i3 · · ·Hn;iq ,i1Hn;i1,j2Hn;j2,j3 · · ·Hn;jq′ ,i1 = H

(K)
m,n;ᾱ

Hn;i1,j2Hn;j2,j3 · · ·Hn;jq′ ,i1Hn;i1,i2Hn;i2,i3 · · ·Hn;iq ,i1 = H
(L)
m,n;ᾱ.

Moreover, the number ᾱ is a member of the diagonal index set Dp, and then Hm,n;ᾱ

lies on the diagonal of Hmn .

Definition 4.20. A commutative cycle pair (IqJq′) and (Jq′Iq) with index 〈m, ᾱ;K,L〉
is called an H-primitive commutative cycle pair if there exists N ≥ 1 such that

(4.13) either
(
H

(K)
m,2;ᾱ

)N
≥ E2;ᾱ or

(
H

(L)
m,2;ᾱ

)N
≥ E2;ᾱ.

A V -primitive commutative cycle pair is similarly specified, and the details are
omitted.

The following theorem provides a sufficient condition for the primitivity of Hn
when H2 is weakly non-degenerated.

Theorem 4.21. Given B ⊂ Σ2×2(p), if

(i) H2 is weakly non-degenerated,
(ii) B is R(i)-extendable, i ∈ {1, 2, 3},
(iii) there exists an H-primitive commutative cycle pair (IqJq′) and (Jq′Iq) with

index 〈m, ᾱ;K,L〉 such that (Sm;ᾱ,ᾱ)K,L = 1 or (Sm;ᾱ,ᾱ)L,K = 1,
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(iv) H2 is primitive,

then Hn is primitive for all n ≥ 2.

Proof. By Lemma 4.8, B satisfies C(1) and C(2). Suppose (Sm;ᾱ,ᾱ)K,L = 1. The
case for (Sm;ᾱ,ᾱ)L,K = 1 is similar. From (i) and (ii), by Lemma 4.10, (4.9) and
(4.10) follow.

First, we show that for n ≥ 2, there exists N(n) ≥ 1 such that

(4.14)
(
H

(K)
m,n;ᾱ

)N(n)

≥ En;ᾱ and
(
H

(L)
m,n;ᾱ

)N(n)

≥ En;ᾱ

by induction. From (4.9), (4.10) and (4.13), it is clear that (4.14) holds for n = 2.

Assume that the case for n = t is true, t ≥ 2. Let H
(K)
m,2;ᾱ =

[
h∗i,j

]
p×p

=[
H

(K)
m,2;ᾱ;α

]
1≤α≤p2

, from (2.37), it is clear that

h∗i,j = h∗i(α),j(α) = H
(K)
m,2;ᾱ;α =

pm−1∑
l=1

(Sm;ᾱ,α)K,l

for all 1 ≤ i, j ≤ p. Let Λ
(
H

(K)
m,2;ᾱ

)
be the indicator matrix of H

(K)
m,2;ᾱ =

[
h∗i,j

]
p×p

.

Since
(
H

(K)
m,2;ᾱ

)N(2)

≥ E2;ᾱ, we have
(
Λ
(
H

(K)
m,2;ᾱ

))N(2)

≥ E2;ᾱ.

Let H
(K)
m,t+1;ᾱ =

[
H

(K)
m,t+1;ᾱ;i,j

]
p×p

=
[
H

(K)
m,t+1;ᾱ;α

]
1≤α≤p2

, by Proposition 2.3,

H
(K)
m,t+1;ᾱ;i,j = H

(K)
m,t+1;ᾱ;α =

pm−1∑
l=1

(Sm;ᾱ,α)K,lH
(l)
m,t;α

for all 1 ≤ i, j ≤ p. Since B is R(2)-extendable and satisfies condition C(1), for
m ≥ 2, every pattern Um×2 ∈ Σm×2(B) can be extended to Zm×3 by using the

local patterns in B. Thus, if (Sm;ᾱ,α)K,l = 1, then H
(l)
m,t;α is not a zero matrix for

1 ≤ α ≤ p2 and 1 ≤ l ≤ pm−1. Hence, Λ
(
H

(K)
m,2;ᾱ

)
is also the indicator matrix of

H
(K)
m,t+1;ᾱ =

[
H

(K)
m,t+1;ᾱ;i,j

]
p×p

.

Since (Sm;ᾱ,ᾱ)K,L = 1 and
(
H

(L)
m,t;ᾱ

)N(t)

≥ Et;ᾱ,
(
H

(K)
m,t+1;ᾱ;ᾱ

)N(t)

≥ Et;ᾱ. No-

tably, H
(K)
m,t+1;ᾱ;ᾱ lies on the diagonal of H

(K)
m,t+1;ᾱ. Let N ′ = N(t) + 2N(2). Since(

Λ
(
H

(K)
m,2;ᾱ

))N(2)

≥ E2;ᾱ and
(
H

(K)
m,t+1;ᾱ;ᾱ

)N(t)

≥ Et;ᾱ, from (4.8)∼(4.10),(
H

(K)
m,t+1;ᾱ

)N ′
≥ (E2;ᾱ)p×p ◦

[
[Et;α]1≤α≤p2

]
≥ Et+1;ᾱ.

From (4.9) and (4.10),
(
H

(L)
m,t+1;ᾱ

)N ′+1

≥ Et+1;ᾱ. Hence, the case for n = t + 1

holds. Indeed, N(t+ 1) = N ′ + 1. Therefore, (4.14) follows.
Now, we want to show that Hn is primitive for all n ≥ 2. First, the case for

n = 2 directly follows from (iv).
For n ≥ 3, from (2.20),

Hn = [Hn;i,j ]p2×p2 = (H2)p2×p2 ◦
[
Ep×p ⊗ [Hn−1;α]1≤α≤p2

]
.
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From (ii), by Lemma 4.5, if (H2)i,j = 1, Hn;i,j is not a zero matrix. Hence, H2

is the indicator matrix of Hn = [Hn;i,j ]p2×p2 .

Let Hmn = [Hm,n;i,j ]p2×p2 = [Hm,n;β1;β2 ]. Since (Sm;ᾱ,ᾱ)K,L = 1,

Hm,n;ᾱ;ᾱ =

pm−1∑
k,l=1

(Sm;ᾱ;ᾱ)k,lH
(l)
m,n−1;ᾱ ≥ H

(L)
m,n−1;ᾱ.

From (4.14), clearly, (Hm,n;ᾱ;ᾱ)
N(n−1) ≥ En−1;ᾱ. Notably, Hm,n;ᾱ;ᾱ is on the

diagonal of Hmn . Therefore, from (iv) and (4.8)∼(4.10), it can be verified that there
exists N̄ ≥ 1 such that

HN̄n ≥ (E(H2))p2×p2 ◦
[
Ep×p ⊗ [En−1;i,j ]p×p

]
≥ E(Hn).

Therefore, Hn is primitive for all n ≥ 2. The proof is complete. �

Similarly, the following theorem provides a sufficient condition for the primitivity
of Vn, and the proof is omitted.

Theorem 4.22. Given B ⊂ Σ2×2(p), if

(i) V2 is weakly non-degenerated,
(ii) B is R(i)-extendable, i ∈ {1, 2, 4},
(iii) there exists a V -primitive commutative cycle pair (IqJq′) and (Jq′Iq) with

index 〈m, ᾱ;K,L〉 such that (Wm;ᾱ,ᾱ)K,L = 1 or (Wm;ᾱ,ᾱ)L,K = 1,
(iv) V2 is primitive,

then Vn is primitive for all n ≥ 2.

Remark 4.23. In practice, to find an invariant diagonal cycle is easier than to
find a primitive commutative cycle pair. However, it may be more convenient to
verify primitivity of Hn or Vn by using the method of primitive commutative cycle
pair; see Example 4.24 and 4.29.

The following example illustrates Theorem 4.21.

Example 4.24. Consider

H2(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, H2 is weakly non-degenerated. It can be verified that B is R(i)-extendable,
i ∈ {1, 2, 3}. We also have that H2 is primitive.

Let I3 = 1311 and J4 = 13331; the following is easily computed.

H
(513)
7,2;1 = H2;1,3H2;3,1H2;1,1H2;1,3H2;3,3H2;3,3H2;3,1 =

⎡⎣ 1 0 1
0 0 0
1 0 0

⎤⎦
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and

H
(709)
7,2;1 = H2;1,3H2;3,3H2;3,3H2;3,1H2;1,3H2;3,1H2;1,1 =

⎡⎣ 0 0 1
0 0 0
1 0 1

⎤⎦ .
We have that

E2;1 = E2;1,1 =

⎡⎣ 1 0 1
0 0 0
1 0 1

⎤⎦ .
Then, (

H
(513)
7,2;1

)2

≥ E2;1 and
(
H

(709)
7,2;1

)2

≥ E2;1.

Hence, (I3J4) and (J4I3) is an H-primitive commutative cycle pair with index
〈7, 1; 513, 709〉. Moreover,

(S7;1,1)513,709 = 1.

Therefore, by Theorem 4.21, Hn is primitive for all n ≥ 2.

As Theorem 4.2, Theorem 4.21 can be made simpler whenH2(B) is non-degenerated.
The proof is similar to that of Theorem 4.2 and is omitted here. The result for V2

is also valid.

Theorem 4.25. Given B ⊂ Σ2×2(p), if

(i) H2 is non-degenerated,
(ii) there exists an H-primitive commutative cycle pair (IqJq′) and (Jq′Iq) with

index 〈m, ᾱ;K,L〉 such that (Sm;ᾱ,ᾱ)K,L = 1 or (Sm;ᾱ,ᾱ)L,K = 1,

then Hn is primitive for all n ≥ 2.

As the primitive conditions in Definition 4.14 for invariant diagonal cycles, the
primitive conditions for primitive commutative cycles in Theorem 4.21 and 4.22 are
introduced as follows.

Definition 4.26. Let B ⊂ Σ2×2(p).
(i) B satisfies H(2)-primitive condition if the conditions (iii) and (iv) of Theorem
4.21 are satisfied.

(ii) B satisfies V (2)-primitive condition if the conditions (iii) and (iv) of Theorem
4.22 are satisfied.

Remark 4.27. If H2(B) is non-degenerated and condition (ii) of Theorem 4.25 is
satisfied, then B satisfies the H(2)-primitive condition. A similar result holds when
V2(B) is non-degenerated.

Since it may happen that H (or V) has invariant diagonal cycle and V (or H)
has primitive commutative cycles. Therefore, combining the primitive conditions
for invariant diagonal cycles and primitive commutative cycles, Theorem 4.16 is
generalized, yielding a finitely checkable condition for mixing of Σ(B).

Theorem 4.28. Given B ⊂ Σ2×2(p), if

(i) H2(B) and V2(B) are weakly non-degenerated,
(ii) B is crisscross-extendable,
(iii) B satisfies H(i)- and V (j)-primitive conditions for some i, j ∈ {1, 2},
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then Σ(B) is mixing.

Notably, when both H2(B) and V2(B) are non-degenerated, the condition (ii) of
Theorem 4.28 automatically holds.

The following example illustrates the application of Theorem 4.28.

Example 4.29. (continued)
In Example 4.3,

V2(B) =

⎡⎢⎢⎣
1 0 1 1
0 1 1 0
1 0 0 1
0 1 1 0

⎤⎥⎥⎦ .
Clearly, V2(B) is non-degenerated.

Let I5 = 211212 and J2 = 222. That

V
(12)
7,2;4 = V2;2,1V2;1,1V2;1,2V2;2,1V2;1,2V2;2,2V2;2,2 =

[
2 1
1 1

]
and

V
(51)
7,2;4 = V2;2,2V2;2,2V2;2,1V2;1,1V2;1,2V2;2,1V2;1,2 =

[
2 1
1 1

]
are primitive can be easily verified. Hence, (I5J2) and (J2I5) form a V -primitive
commutative cycle pair with index 〈7, 4; 12, 51〉. Moreover,

(W7;4,4)12,51 = 1.

Therefore, B satisfies the V (2)-primitive condition.
From the result in Example 4.3, B satisfies the H(1)-primitive condition. There-

fore, by Theorem 4.28, Σ(B) is mixing.

The following example demonstrates that the weakly non-degenerated condition
is crucial in order to have topological mixing.

Example 4.30. (continued) In Example 3.15, clearly, H2(Bπ/4) = V2(Bπ/4) is not
weakly non-degenerated. From (2.29),

S2;1,1 = C2;1,1 =

[
1 0
0 0

]
.

Hence, β1 = 11 is an S-invariant diagonal cycle of order (2, 1) with index set
K = {1}, and

H
(1)
2,2;1 = H2;1,1H2;1,1 =

[
2 2
2 2

]
is primitive. Therefore, Bπ/4 satisfies the H(1)-primitive condition. Since H2(Bπ/4) =
V2(Bπ/4), Bπ/4 also satisfies the V (1)-primitive condition.

From Example 3.15, Bπ/4 is crisscross-extendable. Thus, Bπ/4 satisfies condi-
tions (ii) and (iii) of Theorem 4.28. However, Σ(Bπ/4) is not mixing. Therefore,
the importance of the weakly non-degenerated condition is established.

Remark 4.31. When invariant diagonal cycles and primitive commutative cycles
are unavailable, some examples can also be shown to be mixing.

For example, consider
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B′L =

{
u2
u3u1

u4 : u2 + u3 + u4 ≡ 0 (mod 2) and u1, u2, u3, u4 ∈ {0, 1}

}
.

This shift space Σ(B′L) is related to the shift space Σ(BL) that is given by

BL =

{
u2
u3u1

u4 : u1 + u2 + u3 ≡ 0 (mod 2) and u1, u2, u3, u4 ∈ {0, 1}

}
,

which was first investigated by Ledrappier [35] who showed that Σ(BL) was mixing
with zero entropy. Clearly,

H2(B
′
L) = V2(B

′
L) =

⎡⎢⎢⎣
1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

⎤⎥⎥⎦
is non-degenerated. Hn = Vn can be shown to be primitive for all n ≥ 2. Then,
Σ(B′L) is mixing.

A systematic method for solving this type of problem is being developed.

Remark 4.32. For studying mixing problem, the ideas in this work can be applied
to higher-dimensional shifts of finite type; see [5, 31].

5. Strong specification

This section introduces the k hole-filling condition as in Step (5) in the
introduction, and provides finitely checkable conditions for the strong specification
of Σ(B).

First, forM,N ≥ 1 and i, j ∈ Z, the rectangularly annular lattice AM×N ;d((i, j))
with hole ZM×N ((i, j)) and width d (called the annular lattice for short) is defined
by

(5.1) AM×N ;d((i, j)) = Z(M+2d)×(N+2d)((i − d, j − d)) \ ZM×N ((i, j)).

In particular,

(5.2) AM×N ;2((i, j)) = AM×N ((i, j)) and AM×N = AM×N ;2((0, 0)).

Hole-filling condition is defined as follows.

Definition 5.1. For B ⊂ Σ2×2(p) and k ≥ 2, B satisfies k hole-filling ((HFC)k)
with size (M,N),M,N ≥ 2k−3, if for any U ∈ ΣA(M+4−2k)×(N+4−2k);k((k−2,k−2))(B),

there exists U ′ ∈ ΣZ(M+4)×(N+4)((−2,−2))(B) such that U ′ |AM×N
= U |AM×N

. In

particular, (HFC)2 is also called hole-filling condition (HFC).
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A(M+4−2k)×(N+4−2k);k((k − 2, k − 2))

AM×N

k

k

M

N

Figure 5.1.

(HFC)k can be expressed in terms of the horizontal transition matrices Hn and
the connecting operators Sm;α,β andWm;α,β. Therefore, the condition can be easily
checked, especially using computer programs. The following theorem presents only
the case in which B satisfies hole-filling; for brevity, the general case in which B
satisfies (HFC)k, k ≥ 2, is presented in Theorem A.1

Theorem 5.2. Given B ⊂ Σ2×2(p), for M,N ≥ 1, B satisfies HFC with size
(M,N) if and only if for 1 ≤ i, j ≤ pM and 1 ≤ αl ≤ p2, 1 ≤ l ≤ N + 4, if

(i)
pM∑
k=1

(SM+1;α1,α2)k,i ≥ 1, (ii)
pM∑
k=1

(
SM+1;αN+3,αN+4

)
j,k
≥ 1,

(iii)
pN+4∑
k=1

(HN+4)k,s ≥ 1, (iv)
pN+4∑
k=1

(HN+4)t,k ≥ 1,

where

(5.3)

{
s = ψ (α1,1, α2,1, · · · , αN+4,1) and t = ψ (α1,2, α2,2, · · · , αN+4,2) ,
αl,1, αl,2 ∈ Sp such that ψ (αl,1, αl,2) = αl, 1 ≤ l ≤ N + 4,

then

(5.4)
(
SM+1;α2,α3SM+1;α3,α4 , · · · , SM+1;αN+2,αN+3

)
i,j
≥ 1.

Proof. For 1 ≤ i, j ≤ pM , choose il, jl ∈ Sp, 1 ≤ l ≤M , such that i = ψ (i1, i2, · · · , iM )
and j = ψ (j1, j2, · · · , jM ). Let N1 = N + 3 and N2 = N + 4. Clearly, conditions
(i), (ii), (iii) and (iv) imply that the empty places in the patterns Ub, Ut, Ul and
Ur can can be filled with some colors in Sp, such that the patterns Ub, Ut, Ul and
Ur are B-admissible, respectively. Furthermore, the following annular pattern is
B-admissible.
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α1,1α1,1 α1,2

α2,1 α2,2

α3,1 α3,2

αN1,1 αN1,2

αN2,1 αN2,2

M

N

i1 iM

j1 jM· · ·

· · ·

...
...

Ul

Ut

Ur

Ub

Figure 5.2.

Therefore, by the construction of connecting operators, (5.4) is equivalent to the
hole-filling condition with size (M,N). The proof is complete. �

Before showing the main theorem, the following notation is needed..

Definition 5.3. For k ≥ 2, B ⊂ Σ2×2(p) is called k crisscross-extendable if
r (Hk(B)) = c (Hk(B)) and r (Vk(B)) = c (Vk(B)). In particular, 2 crisscross-
extendability is the crisscross-extendability.

In the following, the k crisscross-extendability, (HFC)k and primitivity of Hk
and Vk are shown to provide sufficient conditions for strong specification of Σ(B).
Since all conditions are finitely checkable, the theorem provides a finitely checkable
sufficient condition for the strong specification of Σ(B).

Theorem 5.4. Given B ⊂ Σ2×2(p), if there exists k ≥ 2 such that

(i) B is k crisscross-extendable,
(ii) B satisfies (HFC)k with size (M,N) for some M,N ≥ 2k − 3,
(iii) Hk is (M − 2k + 5)-primitive and Vk is (N − 2k + 5)-primitive,

then Σ(B) has strong specification.

Proof. Let M ′ = M − k + 4 and N ′ = N − k + 4. First, define the lattice Lg;k =
Lg;k(M,N), which is like the grid on a checkerboard with line width k and (M +
4− 2k)× (N + 4− 2k) blank spaces, as

Lg;k =
⋃
i,j∈Z

A(M+4−2k)×(N+4−2k);k((iM
′ + k − 2, jN ′ + k − 2)).

Denote the lattice of blank spaces on the checkerboard by

Lb;k = Z2 \ Lg;k.
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· · ·· · ·· · ·· · ·

...

...

...

...

(0, 0)

(a) The shadowed lattice is Lg;3. (b) The white lattice is Lb;3.
for M = N = 4. for M = N = 4.

Figure 5.3.

For i, j ∈ Z, define⎧⎨⎩
L(i, j) = Lk;M,N (i, j) = ZM ′×N ′ ((iM

′ − 2, jN ′ − 2))

L̂(i, j) = L̂k;M,N (i, j) = Z(M+4)×(N+4) ((iM
′ − 2, jN ′ − 2)) .

(5i− 2, 5j − 2)

(5i− 2, 5j − 2)

L3;4,4(i, j) = L̂3;4,4(i, j) =

Figure 5.4. The lattices L3;4,4(i, j) and L̂3;4,4(i, j).

Clearly, L̂(i, j) ⊃ L(i, j) and L(i1, j1)
⋂
L(i2, j2) = ∅ if (i1, j1) �= (i2, j2). Then,

Z2 lattice can be decomposed into disjoint sublattices:

Z2 =
⋃
i,j∈Z

L(i, j).

Take

(5.5) d̄ = 3
√
(M ′)2 + (N ′)2.

Let R1, R2 ⊂ Z2 with d(R1, R2) ≥ d̄. For any Ul = ΠRl
(Wl) with Wl ∈ Σ(B),

l = 1, 2, let

R′l =
⋃

Rl

⋂
L(i,j) �=∅

(i′,j′)∈Z2×2((i−1,j−1))

L̂(i′, j′)

for l = 1, 2. Hence, Ul can be extended as U ′l = ΠR′
l
(Wl), l = 1, 2. Clearly, for

l = 1, 2,
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(5.6) if (i, j) ∈ Rl, then Z(2k+1)×(2k+1)((i− k, j − k)) ⊆ R′l.

From (5.5), it can be verified that it never occurs both L̂(i, j)
⋂
R′1 �= ∅ and

L̂(i, j)
⋂
R′2 �= ∅ for all (i, j) ∈ Z2.

Now, from conditions (i) and (iii), there exists a B-admissible pattern U ′′ on
R′1

⋃
R′2

⋃
Lg;k such that U ′′ |R′

l
= U ′l , i = 1, 2. Clearly, Z2 \ (R′1

⋃
R′2

⋃
Lc) is the

union of the discrete (M + 4− 2k)× (N + 4− 2k) rectangular lattices.
Hence, from (5.6) and condition (ii), there existsW ∈ Σ(B) such thatW |Ri

= Ui
for i = 1, 2. Notably, in general, W |R′1

⋃
R′2

⋃
Lc

is not equal to U ′′ since condition

(ii) may change the colors on the boundary of R′1
⋃
R′2

⋃
Lc with width k − 2.

Therefore, Σ(B) has strong specification. The proof is complete.
�

Remark 5.5.

(i) In the proof of Theorem 5.4, the constant M(Σ(B)) of strong specification is less

than or equal to 3
√
(M ′)2 + (N ′)2, which is given by (5.5). It is of interest to know

the optimal (least) value of M(Σ(B)).
(ii) Lightwood [42] showed that if a Z2 shift of finite type Σ is square filling and
topologically mixing, then Σ has the UFP.

The following two well-known examples illustrate Theorem 5.4. The first is the
Golden-Mean shift, which is considered in Example 4.17.

Example 5.6. From Example 4.17,

H2(BG) = V2(BG) =

⎡⎢⎢⎣
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

⎤⎥⎥⎦ .
Clearly, BG is crisscross-extendable and H2 = V2 is 2-primitive.

It can be computed that

S2;1,1 =

[
1 1
1 0

]
, S2;1,2 =

[
1 0
1 0

]
, S2;1,3 =

[
1 0
1 0

]
,

S2;1,4 =

[
1 0
1 0

]
, S2;2,1 =

[
1 1
0 0

]
, S2;2,3 =

[
1 0
0 0

]
,

S2;3,1 =

[
1 1
0 0

]
, S2;3,2 =

[
1 0
0 0

]
, S2;4,1 =

[
1 1
0 0

]
.

The other S2;α,β are zero matrices.
Then, by Theorem 5.2, it is easy to verify that BG satisfies HFC with size (1, 1).

Therefore, by Theorem 5.4, Σ(BG) has strong specification.

Burton and Steif [13, 14] introduced the following example, which is closely
related to the ferromagnetic Ising model in statistical physics.

Example 5.7. Consider the color set S ′4 = {−2,−1, 1, 2}. The rule of XBS ⊆ S ′Z
2

4

is that a negative is disallowed to sit to a positive unless they are both ±1. To fit
S ′4 to the color set S4 = {0, 1, 2, 3} used in this work, −2, −1, 1 and 2 are replaced
with 0, 1, 2 and 3, respectively. Then, the following can be shown;
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H2(BBS) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0
0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, H2 = V2 is 3-primitive and BBS is crisscross-extendable.
That BBS satisfies HFC with size (2, 2) can be proven and the details are omitted.

Therefore, by Theorem 5.4, Σ(BBS) has strong specification.

The size (M,N) of hole-filling condition may be even larger than (2, 2), as in the
following example.

Example 5.8. It can be verified that

H2(B1) =

⎡⎢⎢⎣
1 1 1 1
1 1 0 1
1 0 1 1
1 1 1 0

⎤⎥⎥⎦
satisfies HFC with size (3, 3) and

H2(B2) =

⎡⎢⎢⎣
1 1 1 1
1 0 1 1
1 1 1 1
0 1 1 1

⎤⎥⎥⎦
satisfies HFC with size (4, 4). Both have strong specification. The details are omit-
ted.

The following example concerns the Simplified Golden Mean (SGM), which does
not satisfy HFC but satisfies (HFC)3.

Example 5.9. (Simplified Golden-Mean) Consider S2 = {0, 1} and

H2(Bs) = V2(Bs) =

⎡⎢⎢⎣
1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎤⎥⎥⎦ .
That Σ(Bs) has strong specification can be easily shown. Indeed, for any two pat-
terns U1 ∈ ΠR1(Σ(Bs)) and U2 ∈ ΠR2(Σ(Bs)), R1, R2 ⊆ Z2, with d (R1, R2) ≥ 2,
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coloring the vertices in Z2 \ (R1

⋃
R2) by 0 yields a Bs-admissible global pattern.

Therefore, SGM has strong specification with size M = 2.
However, consider the Bs-admissible pattern U in Fig. 5.5.

00
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00

0

00

0

0

0

00

0

000

000

0

0

0

0

00

00

00

0 0

0 0

0 0

0

1

1

M

N

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.5.

Clearly, U cannot be extended any further on the corner
10

1 since the local patterns
10

1 0 and
10

1 1 are forbidden. Therefore, SGM does not satisfy HFC.
Now, by Theorem A.1, it can be verified that Bs satisfies (HFC)3 with size (3, 3).

Clearly, Bs is 3 crisscross-extendable, and H3 = V3 is 2-primitive. Therefore, by
Theorem 5.4, SGM has strong specification.

The following example demonstrates a genuine failure of the hole-filling con-
dition, which causes the failure of strong specification. Indeed, in [12], Boyle at
el. consider this example to prove that block gluing is strictly weaker than corner
gluing. Hence, this example does not have strong specification.

Example 5.10. Consider BB = S
Z2×2

2 \

{
10

0 0

}
, meaning that

H2 = V2 =

⎡⎢⎢⎣
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ .
Now, Σ(BB) lacks the corner gluing property, as follows. Consider W1 = {0}Z

2

and W2 = {1}Z
2

. Let Ui = Wi |Ri
, i = 1, 2, where R1 is the L-shaped lattice and

R2 is the rectangular lattice; see Fig. 5.6.
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0

0

00
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.

.

.

.

.

Figure 5.6.

Therefore, the following pattern on Am×n, in Fig. 5.7 for all m,n ≥ 1 where

• ∈ {0, 1}, cannot be filled without
10

0 0 , which is forbidden.
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Figure 5.7.

Similarly, the corner gluing property fails in one of the four corners when
00

0 0 ,
11

1 1 ∈
B and B /∈ B for some

B ∈
{

01
0 0 ,

00
1 0 ,

00
0 1 ,

01
1 1 ,

10
1 1 ,

11
0 1 ,

11
1 0

}
,

and then Σ(B) does not have strong specification.

Remark 5.11. The ideas for strong specification in this section can be applied to
higher-dimensional shifts of finite type; see [5, 31].

6. Edge coloring

Edge coloring models are very common in statistical physics and other fields
[6, 7, 36, 37, 38, 39, 40]. For completeness, this section briefly discusses edge
coloring. The ideas of corner coloring in the previous sections apply to edge coloring
with some modifications. For simplicity, only the case of two colors is considered:
S2 = {0, 1}. The results hold for all Sp, p ≥ 2. The unit square lattice is still
denoted by Z2×2. For m,n ≥ 2, denote the set of all local patterns with colored
edges on Zm×n over S2 by Σem×n.

Fist, the ordering matrices Xe
n and Ye

n, n ≥ 2, are introduced to arrange sys-
tematically all local patterns in Σe2×n and Σen×2.

For n = 2, the horizontal ordering matrix Xe
2 =

4∑
j=1

Xe
2;j and vertical ordering

matrix Ye
2 =

4∑
j=1

Ye
2;j are defined as

0 0

0

0

1

1 1

1

0 00

0

1

1 1 1

Xe
2;j = Ye

2;j =

u1u1

u1u1

u1u1

u1u1

u2u2

u2u2

u2u2

u2u2

,
and

where u1, u2 ∈ {0, 1} with j = ψ(u1, u2). For n ≥ 3, the higher order ordering

matrix Xe
n =

4∑
j=1

Xe
n;j can be recursively defined recursively by

(6.1)

⎧⎪⎪⎨⎪⎪⎩
Xe
n;1 =

(
Xe

2;1 ⊗Xe
n−1;1

)
+
(
Xe

2;2 ⊗Xe
n−1;3

)
,

Xe
n;2 =

(
Xe

2;1 ⊗Xe
n−1;2

)
+
(
Xe

2;2 ⊗Xe
n−1;4

)
,

Xe
n;3 =

(
Xe

2;3 ⊗Xe
n−1;1

)
+
(
Xe

2;4 ⊗Xe
n−1;3

)
,

Xe
n;4 =

(
Xe

2;3 ⊗Xe
n−1;2

)
+
(
Xe

2;4 ⊗Xe
n−1;4

)
.
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Similarly, Ye
n =

4∑
j=1

Ye
n;j , n ≥ 3, can be defined recursively as above. Notably,

comparing (6.1) with (2.6), the discussion of edge coloring is very different from
that of corner coloring. Accordingly, the formulae for the transition matrices and
connecting operators must be changed.

Now, for m ≥ 2 and 1 ≤ α ≤ 4, the connecting ordering matrix Sem;α =[(
Sem;α

)
k,l

]
2m×2m

is defined, where
(
Sem;α

)
k,l

is the set of all local patterns of

the form,

k1 k2 km

l1 l2 lm

α1 α2· · ·b1b1 b2
bm−1

with bj ∈ {0, 1}, 1 ≤ j ≤ m − 1, α = ψ(α1, α2), k = ψ(k1, . . . , km) and l =
ψ(l1, . . . , lm). Notably,

(6.2) Sem;α = Ye
m+1;α

for all m ≥ 2, 1 ≤ α ≤ 4.

Now, given a basic set Be ⊂ Σe2×2, the horizontal transition matrix He2 =
4∑
j=1

He2;j

is defined by He2;j =
[
he2;j;s,t

]
2×2

, where

(6.3)

{
he2;j;s,t = 1 if

(
Xe

2;j

)
s,t
∈ Be,

= 0 otherwise.

As in (6.1), for n ≥ 3, Hen =
4∑
j=1

Hen;j can be defined recursively. The vertical

transition matrix Ve2 =
4∑
j=1

Ve2;j is defined analogously.

Given Be ⊂ Σe2×2, for m ≥ 2 and 1 ≤ α ≤ 4, the connecting operator Sem;α =[(
Sem;α

)
k,l

]
2m×2m

can be defined, where
(
Sem;α

)
k,l

is the cardinal number of all

Be-admissible local patterns in
(
Sem;α

)
k,l
. Furthermore, from (6.2),

(6.4) Sem;α = Vem+1;α

for m ≥ 2 and 1 ≤ α ≤ 4. Similarly, for Ve2, the connecting operator is denoted by
W e
m;α, m ≥ 2 and 1 ≤ α ≤ 4.

For m,n ≥ 2, Hem,n+1 ≡
(
Hen+1

)m
can be expressed in terms of Hem,n and Sem;α

as follows. First, for n ≥ 2, let

(6.5) H̄n;1 = Hen;1 +Hen;2 and H̄n;2 = Hen;3 +Hen;4.

Then, for m ≥ 2 and 1 ≤ l ≤ 2m, define

(6.6) H̄(l)
m,n = H̄n;l1H̄n;l2 · · · H̄n;lm ,

where lj ∈ {1, 2}, 1 ≤ j ≤ m, with l = ψ (l1 − 1, l2 − 1, · · · , lm − 1).
For m ≥ 2, let



VERIFICATION OF MIXING PROPERTIES IN TWO-DIMENSIONAL SHIFTS OF FINITE TYPE43

(6.7) Hem,n+1 =
[
He
m,n+1;β

]
1≤β≤4

=

[
He
m,n+1;1 He

m,n+1;2

He
m,n+1;3 He

m,n+1;4

]
.

Then, for 1 ≤ q ≤ n−1, apply (6.7) q times to decomposeHem,n+1 =
[
He
m,n+1;β1;β2;...;βq

]
1≤βj≤4,1≤j≤q

into 4q-many 2n−q × 2n−q submatrices He
m,n+1;β1;β2;...;βq

. The results that hold for

Hen are also valid for Ven.
As in Proposition 2.4, He

m,n+1;β1;β2;...;βq
can be expressed as the product of q-

many Sem;β and H̄
(l)
m,n−q+1.

Theorem 6.1. For any m,n ≥ 2 and 1 ≤ q ≤ n− 1,

(6.8) He
m,n+1;β1;β2;...;βq

=
2m∑
k,l=1

(
Sem;β1

Sem;β2
· · ·Sem;βq

)
k,l
H̄

(l)
m,n−q+1

and

(6.9) V em,n+1;β1;β2;...;βq
=

2m∑
k,l=1

(
W e
m;β1

W e
m;β2

· · ·W e
m;βq

)
k,l
V̄

(l)
m,n−q+1.

Notably, in edge coloring, to color a lattice R ⊂ Z2 is to color the horizonal
and vertical edges that connect the vertices in R. The definitions of rectangle-
extendability, crisscross-extendability and corner-extendable conditions C(1) ∼
C(4) for edge coloring are similar to those for corner coloring. Furthermore, the
following theorem is obtained as Theorem 3.14. The details are omitted for brevity.

Theorem 6.2. If

(i) Be ⊂ Σe2×2 is crisscross-extendable,
(ii) Be satisfies three of corner-extendable conditions C(i), 1 ≤ i ≤ 4,

then Hen(Be) and Ven(Be) are primitive for all n ≥ 2 if and only if Σ(Be) is mixing.

The non-degeneracy of He2 and Ve2 is defined as follows.

Definition 6.3. An He2 (Ve2) is non-degenerated if both H̄2;1 and H̄2;2 (V̄2;1 and
V̄2;2) are non-compressible.

That if both He2(Be) and Ve2(Be) are non-degenerated, then Be is crisscross-
extendable and satisfies corner filling conditions C(1), C(2) and C(4), can be easily
confirmed.

Definition 6.4.

(i) For q ≥ 1, a finite sequence βq = β1β2 · · ·βq is called a diagonal sequence with
length q if βj ∈ {1, 4} for 1 ≤ j ≤ q.

(ii) A diagonal sequence βq = β1β2 · · ·βq is called an Se-invariant diagonal sequence
of order (m, q) if there exist m ≥ 2 and an invariant index set K ⊆ {1, 2, · · · , 2m}
such that

(6.10)
∑
k∈K

(
Sem;β1

Sem;β2
· · ·Sem;βq

)
k,l
≥ 1

for all l ∈ K.
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(iii) A diagonal sequence βq = β1β2 · · ·βq is called a We-invariant diagonal sequence
of order (m, q) if there exist m ≥ 2 and an invariant index set K ⊆ {1, 2, · · · , 2m}
such that

(6.11)
∑
k∈K

(
W e
m;β1

W e
m;β2

· · ·W e
m;βq

)
k,l
≥ 1

for all l ∈ K.

As Theorem 4.2, the following theorem provides a finitely checkable sufficient
condition for the primitivity of Hen (Ven), n ≥ 2, and then for mixing of Σ(Be).

Theorem 6.5. Given Be ⊂ Σe2×2, if

(i) He2 is non-degenerated,
(ii) there exists an Se-invariant diagonal sequence βq̄ = β̄1β̄2 · · · β̄q̄ of order

(m̄, q̄) with its invariant index set K,

(iii)
∑
l∈K

H̄
(l)
m̄,n is primitive for 2 ≤ n ≤ q̄ + 1,

then Hen is primitive for all n ≥ 2. Similarly, if

(i)’ Ve2 is non-degenerated,
(ii)’ there exists a We-invariant diagonal cycle β q̄ = β̄1β̄2 · · · β̄q̄ of order (m̄, q̄)

with its invariant index set K,

(iii)’
∑
l∈K

V̄
(l)
m̄,n is primitive for 2 ≤ n ≤ q̄ + 1,

then Ven is primitive for all n ≥ 2. Furthermore, if (i)∼(iii) and (i)’∼(iii)’ hold,
then Σ(Be) is mixing.

Remark 6.6.

(i) As above, the method of primitive commutative cycles for corner coloring in
Section 4 is also valid for edge coloring. For brevity, the detailed statements of
primitive commutative cycles for edge coloring are omitted. The results concerning
strong specification in Section 5 apply to the edge coloring problem and detailed
statements are also omitted here.

(ii) It is known edge-coloring problem can convert into corner-coloring problem, but
the number of symbols will become large in general. In practice, many problems
are more convenient to be studied by transforming into edge-coloring problems; see
Examples 6.7 and 6.8. Hence, the methods for edge coloring are discussed in this
section.

The following six-vertex model (or ice-type model) is used to illustrate Theorem
6.5.

Example 6.7. The rule of the six-vertex model is that the number of arrows that
point inwards at each vertex is two, such that

B6 =

{
, , , , ,

}
.

For ease of computing, the rightward and upward arrows in each pattern in B are
replaced by the digit (color) 1 and the leftward and downward arrows in each pattern
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are replaced by the digit (color) 0. Then, the six-vertex model can be transformed
into an edge-coloring problem with the colors in S2 = {0, 1}. Indeed,

Be;6 =
{

0 0
0

0

,
1 1
1

1

,
0 0
1

1

,
1 1
0

0

,
1 0
0

1

,
0 1
1

0
}
.

Clearly,

He2;1 = He2;4 =

[
1 0
0 1

]
, He2;2 =

[
0 0
1 0

]
and He2;3 =

[
0 1
0 0

]
.

Also, Ve2;j = He2;j, 1 ≤ j ≤ 4. From (6.4),

Se2;1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

⎤⎥⎥⎦
is easily verified. Then, β1 = 1 is an Se-invariant diagonal sequence of order (2, 1)

with index set K = {1, 2, 3, 4}. Clearly,
4∑
l=1

H̄
(l)
2,2 is primitive. Hence, by Theorem

6.5, Hen is primitive for all n ≥ 2. Since Ve2;j = He2;j, 1 ≤ j ≤ 4, Ven is also
primitive for all n ≥ 2. Therefore, the six-vertex model is mixing. However, it does
not have strong specification.

The following well-known eight-vertex model is shown to have strong specifica-
tion.

Example 6.8. The rule of the eight-vertex model is that the number of arrows that
point inwards at each vertex is even, such that

B8 =

{
, , , , , , ,

}
.

As in Example 6.7, the basic set B8 of the eight-vertex model can be transformed as
follows;

Be;8 =
{

0 0
0

0

,
1 1
1

1

,
0 0
1

1

,
1 1
0

0

,
1 0
0

1

,
0 1
1

0

,
1
1

0
0
,

1
1

0
0

}
.

Indeed, Be;8 is the set of all tiles in Σe2×2 that have even sums of digits on their
four edges.

It can be verified that for any k ≥ 2, the following admissible pattern U on
AM×N , M,N ≥ 2k − 3 , can be extended to A(M+4−2k)×(N+4−2k);k((k − 2, k − 2))
but U can not extend to Z(M+4)×(N+4)((−2,−2)). Therefore, Be;8 does not satisfy
(HFC)k for all k ≥ 2.

0 0
0

0
0 0
1

1
0 0
0

0
0 0
0

0

0 0
0

0

0 0
0

0

0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0

0 0
0

0

0 0
0

0

· · ·

· · ·

.

.

.
.
.
.

M + 4

N + 4U =
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Figure 6.1.

Before proving strong specification of Be;8, some notation must be defined. A
lattice Rsc =

⋃
(i,j)∈I

Z2×2((i, j)), I ⊂ Z2, is called a simple-curve lattice if each of

its unit square lattices has exactly two shared edges that connect to two other unit
square lattices of Rsc. Clearly, two kinds of simple-curve lattices exist. They are
(i) bounded simple-curve lattices and (ii) unbounded simple-curve lattices.

(i) A bounded simple-curve lattice. (ii) An unbounded simple-curve lattice.

Figure 6.2.

Now, the following facts can be easily verified and the proofs are omitted for
brevity.

Fact 1. Suppose Rsc is unbounded. If the non-shared edges on Rsc are colored with
0 and 1, then there exists exactly one pattern U ∈ ΣRsc

(Be;8) in which
colors on the non-shared edges are as assumed.

Fact 2. Suppose Rsc is bounded and its non-shared edges are colored with 0 and 1.
Let Ei(Rsc) be the set of all interior non-shared edges and Eo(Rsc) be the
set of all exterior non-shared edges.

Given a global pattern W ∈ Σ(Be;8), for any bounded simple-curve lattice
Rsc, both sums of the digits (colors) of W |Rsc

on Ei(Rsc) and Eo(Rsc) are
even.

Conversely, if both sums of digits on Ei(Rsc) and on Eo(Rsc) are even,
then there exists a pattern U ∈ ΣRsc

(Be;8) in which the colors of its non-
shared edges are as assumed.

Let two allowable patterns U1 ∈ ΠR1(W1) and U2 ∈ ΠR2(W2) with d(R1, R2) ≥ 2
where W1,W2 ∈ Σ(Be;8) and R1, R2 ⊂ Z2. The Jordan curve theorem can be used

to verify the existence of R̃i ⊇ Ri, i ∈ {1, 2}, satisfting the following;

(i) R̃1

⋃
R̃2 = Z2 and R̃1

⋂
R̃2 = ∅,

(ii) the union of all Z2×2((i, j)) with Z2×2((i, j))
⋂
R̃1 �= ∅ and Z2×2((i, j))

⋂
R̃2 �=

∅, can be represented as a union of simple-curve lattices that do not overlap
each other.

Then, a global pattern W ∈ Σ(Be;8) with W |R1= U1 and W |R2= U2 can be
constructed by the following steps.

Step 1. If Z2×2((i, j)) ⊂ R̃k, k ∈ {1, 2}, color W |Z2×2((i,j))=Wk |Z2×2((i,j)).
Step 2. From Facts 1 and 2 above, the unit square lattices that remain after Step 1

can be tiled with the tiles in Be;8.

Therefore, Σ(Be;8) has strong specification.

Remark 6.9. By converting edge coloring into corner coloring, Example 6.8 is an
example for strong specification � (HFC)k.
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Appendix A.

In this Appendix, (HFC)k, UFP and corner gluing are expressed in terms of Hn
and Sm, which are very useful in verification by using numerical computation.

First, (HFC)k can be expressed in terms of the horizontal transition matrices
Hn and the connecting operators Sm;α,β and Wm;α,β.

Theorem A.1. Given B ⊂ Σ2×2(p), for k ≥ 2, B satisfies (HFC)k with size (M,N)
if and only if for 1 ≤ i, j ≤ pM and 1 ≤ αl ≤ p2, 1 ≤ l ≤ N + 4, if

(i) (a)
pM∑
q=1

(SM+1;α1,α2)q,i ≥ 1, (b)
pM∑
q=1

(
SM+1;αN+3,αN+4

)
j,q
≥ 1,

(c)
pN+4∑
q=1

(HN+4)q,s ≥ 1, (d)
pN+4∑
q=1

(HN+4)t,q ≥ 1,

where{
s = ψ (α1,1, α2,1, · · · , αN+4,1) and t = ψ (α1,2, α2,2, · · · , αN+4,2)
αn,1, αn,2 ∈ Sp such that ψ (αn,1, αn,2) = αn, 1 ≤ n ≤ N + 4,

(ii) there exist 1 ≤ i′, j′ ≤ pM with i′ = ψ (i′1, i
′
2, · · · , i

′
M ) and j′ = ψ (j′1, j

′
2, · · · , j

′
M )

such that
(a)(

SM+1;α2,α3SM+1;α3,α4 , · · · , SM+1;αk−1,αk

)
i,i′
≥ 1,

(b)(
SM+1;αN1+1,αN1+2SM+1;αN1+2,αN1+3 , · · · , SM+1;αN+2,αN+3

)
j′,j

≥ 1,

(c)

pN2∑
q=1

(
WN2+1;β1,β2WN2+1;β2,β3 , · · · ,WN2+1;βk−2,βk−1

)
s′,q

≥ 1,

(d)

pN2∑
q=1

(
WN2+1;β′1,β

′

2
WN2+1;β′2,β

′

3
, · · · ,WN2+1;β′

k−2
,β′

k−1

)
q,t′
≥ 1,

where⎧⎪⎪⎨⎪⎪⎩
N1 = N + 4− k and N1 = N + 4− 2k,
s′ = ψ (αk+1,1, αk+2,1, · · · , αN1,1) and t′ = ψ (αk+1,2, αk+2,2, · · · , αN1,2)
β1 = ψ(αk,1, αN1+1,1) and βl = ψ(i′l−1, j

′
l−1), l ∈ {2, 3, · · · , k − 1},

β′l = ψ(i′M−k+2+l, j
′
M−k+2+l), l ∈ {1, 2, · · · , k − 2}, and β′k−1 = ψ(αk,2, αN1+1,2),

then (
SM+1;α2,α3SM+1;α3,α4 , · · · , SM+1;αN+2,αN+3

)
i,j
≥ 1.

Notably, conditions (i) (a)∼(d) present that the patterns U on AM×N are B-
admissible as in Theorem 5.2. As in Fig. A.1, conditions (ii) (a)∼(d) present that
U can be extended to A(M+4−2k)×(N+4−2k);k((k − 2, k − 2)).
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A(M+4−2k)×(N+4−2k);k((k − 2, k − 2))

AM×N

k

k

M

N

(ii) (a)

(ii) (b)

(ii) (c)
(ii) (d)

Figure A.1.

Next, UFP with rectangle-extendability can be expressed in terms of the hori-
zontal transition matrices Hn and the connecting operators Sm;α,β.

Theorem A.2. Suppose B ⊂ Σ2×2(p) is rectangle-extendable. Σ(B) has the UFP
if and only if there exist a positive integer g such that for m,n ≥ 2 and 1 ≤ a, b ≤
pm−2, 1 ≤ c, d ≤ pn, 1 ≤ i, j ≤ pm+2g+4 and 1 ≤ s, t ≤ pn+2g+4 with⎧⎪⎪⎨⎪⎪⎩

a = ψ(a1, a2, · · · , am−2) and b = ψ(b1, b2, · · · , bm−2),
c = ψ(c1, c2, · · · , cn) and d = ψ(d1, d2, · · · , dn),
i = ψ(i1, i2, · · · , im+2g+4) and j = ψ(j1, j2, · · · , jm+2g+4),
s = ψ(s1, s2, · · · , sn+2g+4) and t = ψ(t1, t2, · · · , tn+2g+4),

if

(i) (a)
pm̄−4∑
q=1

(Sm̄−3;α1,α2)q,i ≥ 1, (b)
pm̄−4∑
q=1

(
Sm̄−3;αn̄−1,αn̄

)
j,q
≥ 1,

(c)
pn̄∑
q=1

(Hn̄)q,s ≥ 1, (d)
pn̄∑
q=1

(Hn̄)t,q ≥ 1,

(e)
(
Sm̄−3;α2,α3Sm̄−3;α3,α4 , · · · , Sm̄−3;αn̄−2,αn̄−1

)
i,j
≥ 1,

where {
m̄ = m+ 2g + 4 and n̄ = n+ 2g + 4,
αl = ψ (sl, tl) , 1 ≤ l ≤ n̄,

(ii)
(
Sm−1;β1,β2Sm−1;β2,β3 · · ·Sm−1;βn−1,βn

)
a,b
≥ 1,

where βl = ψ(cl, dl), l ∈ {1, 2, · · · , n},

then there exist ξl, ξ
′
l , ηl, η

′
l ∈ Sp, 1 ≤ l ≤ g, such that

(1)
(
Sm̄−3;α2,α3Sm̄−3;α3,α4 · · ·Sm̄−3;αg+2,αg+3

)
i,i′
≥ 1,

(2)
(
Sg+1;γ1,γ2Sg+1;γ2,γ3 · · ·Sg+1;γn−1,γn

)
i(1),i(2)

≥ 1,

(3)
(
Sg+1;γ′1,γ

′

2
Sg+1;γ′2,γ

′

3
· · ·Sg+1;γ′

n−1,γ
′

n

)
i(3),i(4)

≥ 1,
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(4)
(
Sm̄−3;αn+g+2,αn+g+3Sm̄−3;αn+g+3,αn+g+4 · · ·Sm̄−3;αn̄−2,αn̄−3

)
j′,j

≥ 1,

where⎧⎪⎪⎨⎪⎪⎩
i′ = ψ(ξ1, ξ2, · · · , ξg, c1, a1, a2, · · · , am−2, d1, ξ

′
1, ξ

′
2, · · · , ξ

′
g),

j′ = ψ(η1, η2, · · · , ηg, cn, b1, b2, · · · , bm−2, dn, η
′
1, η

′
2, · · · , η

′
g),

i(1) = ψ(ξ1, ξ2, · · · , ξg) and i(2) = ψ(η1, η2, · · · , ηg),
i(3) = ψ(ξ′1, ξ

′
2, · · · , ξ

′
g) and i

(4) = ψ(η′1, η
′
2, · · · , η

′
g).

For example, let m = n = 3 and g = 2; see Fig. A.2.

( )

( ) ( )

( )

s1s1

s2

s3

s10

s11

t1

t2

t3

t10

t11

i1 i2 i7

j1 j2 j7

c1

c2

c3

d1

d2

d3

a1

b1

ξ1 ξ2 ξ′1 ξ′2

η1 η2 η′1 η′2

Figure A.2.

Similarly, corner gluing condition with rectangle-extendability also can be ex-
pressed in terms of the horizontal transition matrices Hn, Vn and the connecting
operators Sm;α,β.

Theorem A.3. Suppose B ⊂ Σ2×2(p) is rectangle-extendable. Σ(B) is corner
gluing if and only if there exist a positive integer g such that for m,n ≥ 2 and
1 ≤ a ≤ pm, 1 ≤ b ≤ pn−1, 1 ≤ s ≤ pn+g+2 and 1 ≤ t ≤ pm+g with{

a = ψ(a1, a2, · · · , am) and b = ψ(b1, b2, · · · , bn−1),
s = ψ(s1, s2, · · · , sn+g+2) and t = ψ(t1, t2, · · · , tm+g),

if

(i) (a)
pn+g+2∑
q=1

(Hn+g+2)q,s ≥ 1, (b)
pm+g∑
q=1

(Vm+g+1;s1+1,s2+1)q,t ≥ 1,

(c) there exist cj ∈ Sp, 1 ≤ j ≤ n+ g, such that

pm+g−1∑
q=1

(
Sm+g;α1,α2Sm+g;α2,α3 , · · · , Sm+g;αn+g,αn+g+1

)
t′,q
≥ 1,

where{
t′ = ψ(t1, t2, · · · , tm+g−1),
α1 = ψ (s2, tm+g) and αl = ψ (sl+1, tl−1) , 2 ≤ l ≤ n+ g + 1,
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(ii) there exist dj ∈ Sp, 1 ≤ j ≤ n− 1, such that

pm−2∑
q=1

(
Sm−1;β1,β2Sm−1;β2,β3 , · · · , Sm−1;βn−1,βn

)
a′,q

≥ 1,

where {
a′ = ψ(a2, a3, · · · , am−1),
α1 = ψ (a1, am) and αl = ψ (bl−1, dl−1) , 2 ≤ l ≤ n,

then there exist ξl, ηl ∈ Sp, 1 ≤ l ≤ g, such that

(1)
(
Sm+g;γ1,γ2Sm+g;γ2,γ3 · · ·Sm+g;γg+1,γg+2

)
t′,η′

≥ 1,

(2)
pg∑
q=1

(
Sg+1;δ1,δ2Sg+1;δ2,δ3 · · ·Sg+1;δn−1,δn

)
η,q
≥ 1,

where⎧⎪⎪⎨⎪⎪⎩
γ1 = ψ (s2, tm+g) and γg+2 = ψ (sg+3, am) ,
γl = ψ (sl+1, ξl−1) , 2 ≤ l ≤ g + 2,
δ1 = ψ (sg+3, a1) and δl = ψ (sg+l+2, bl−1) , 2 ≤ l ≤ n,

η = ψ(η1, η2, · · · , ηg) and η′ = ψ(η1, η2, · · · , ηg, a1, a2, · · · , am−1).

For example, let m = n = 3 and g = 2; see Fig. A.3.

( )

( )

s1s1

s2s2

s3

s4

s5

s6

s7

t1 t2 t3 t4 t5

a1 a2 a3

b1

b2

η1 η2

ξ1

ξ2

Figure A.3.
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