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VERIFICATION OF MIXING PROPERTIES IN
TWO-DIMENSIONAL SHIFTS OF FINITE TYPE

JUNG-CHAO BAN*, WEN-GUEI HU, SONG-SUN LIN**, AND YIN-HENG LIN

ABSTRACT. This investigation studies topological mixing and strong specifi-
cation of two-dimensional shifts of finite type. Connecting operators are intro-
duced to reduce the order of high-order transition matrices to yield lower-order
transition matrices that are useful in establishing finitely checkable conditions
for the primitivity of all transition matrices. Two kinds of sufficient condition
for the primitivity of transition matrices are provided; (I) invariant diagonal
cycles and (II) primitive commutative cycles. After primitivity is established,
the corner-extendability and crisscross-extendability are introduced to demon-
strate topological mixing. In addition to these sufficient conditions for topo-
logical mixing, the hole-filling condition implies the strong specification. All
mentioned conditions are finitely checkable.

1. INTRODUCTION

Multi-dimensional shift is an important and a highly active area of ongoing
research in dynamical system. It is also closely related to lattice models in the sci-
entific modeling of spatial structure. Relevant investigations have been performed
on phase transitions and chemical reactions [4, 6, 7, 11, 18, 22, 26, 27, 28, 29, 30,
36, 37, 38, 39, 40, 50, 51, 52], biology [8, 9] and image processing and pattern
recognition [17, 19, 20, 23, 24, 25, 33]. Lattice models can be better understood if
multi-dimensional shifts of finite type are understood. The most interesting prop-
erties of shifts include entropy and various mixing properties, such as topological
mixing and strong specification (or strong irreducibility). These properties enjoy
many of the important properties of dynamical systems [12, 13, 14, 15, 16, 24, 25,
30, 35, 41, 42, 44, 45, 47, 49, 54]. However, determining whether a given system
exhibits topological mixing or strong specification in multi-dimensions is not easy.
The intrinsic difficulty is related to undecidability of multi-dimensional coloring
problem [10, 21, 23, 32, 34, 46, 48, 53]. Nevertheless, this study provides some
easily checked sufficient conditions for topological mixing and strong specification
of two-dimensional shifts of finite type.

Let Z? be the two-dimensional planar lattice. Vertex (or corner) coloring is
considered first. For any m,n > 1 and (i,j) € Z2, the m x n rectangular lattice
with the left-bottom vertex (4, j) is denoted by
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Znxn((1,7)) ={(+n1,7+n2) |0<n; <m—1,0<ny <n—1}.
In particular,

men = men((07 0))

Let S, be a set of p (> 2) colors or symbols. For m,n > 1, 3, (p) = T
the set of m x n local patterns.
Let B C Yax2(p) be a basic set of allowable local patterns. For any lattice

RC ZQ, the set of all B-admissible patterns on R is defined as

ER(B) = {U S SII,% U |Zg><2((i,j))€ B if ngz((i,j)) C R} .

Denote X, xn(B) = Xz, .., (B) for m,n > 2. X(B) = Xz2(B) is the set of all global
patterns that can be constructed from the local patterns in 3. Notably, any Z2-shift
of finite type can be represented by some B C Xaxa(p) for some p > 2 [43]. Hence,
only the case of B C ¥ax2(p), p > 2, is considered here.

First, topological mixing is introduced. For any shift ¥ and any subset R C Z2,
(X)X — Sf is the restriction map. Denote by d the Euclidean metric on Z2. A
72 shift X is topologically mixing (mixing, for short) if for any finite subsets R; and
Ry of Z?%, a constant M (Ry, Ry) exists such that for all v € Z? with d(Ry, Ro+v) >
M, and for any two allowable patterns Uy € g, (X) and Uy € Tlg,4+ (%), there
exists a global pattern W € ¥ with IIg, (W) = Uy and lg,+v (W) = Us; see [54].

On the other hand, ¥ has strong specification if a number M(X) > 1 exists
such that for any two allowable patterns U; € Ilg,(X) and Uy € Ilg,(X) with
d(R1, Ry) > M, where Ry, Ry are subsets of Z?2, there exists a global pattern W € ¥
with Iz, (W) = Uy and I g, (W) = Us; see [54]. Clearly, strong specification implies
topological mixing.

Very few results that verify that 3(B) is mixing or has strong specification are
known [3, 44]. Previously, in studying pattern generation problems [2], the authors
introduced connecting operators to study the entropy of X(B). In this paper, con-
necting operators are also used to provide sufficient conditions for the mixing of or
strong specification of ¥(B).

First, topological mixing is considered. Given two patterns U; and U, defined on
Ry and Ra+V respectively, in general, Ry and Ro+ Vv are not located horizontally or
vertically. Typically, the gluing process is decomposed into three steps, as presented
in Fig. 1.1. For clarity, in Fig 1.1, the patterns U’s are presented and the underlying
lattices R’s are omitted.

Step (1): Extend Us to ﬁg such that U; can connect (72 horizontally. The combined
pattern becomes an L-shaped pattern U; | [71 JuoU ﬁg.

Step (2): Extend the L-shaped pattern to a rectangular pattern.

Step (3): Extend the rectangular pattern to a global pattern on Z2.
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Figure 1.1.

To ensure that all processes are executable, the following sufficient conditions
are proposed in each step:

(i) The primitivity of horizontal transition matrices H,, and vertical transition
matrices V,,, for each n > 2.
(ii) The corner-extendability for L-shaped lattices.
(iii) The rectangle-extendability to the Z2-plane.

Notably, a matrix A is primitive (or ng-primitive) if there exists ng > 1 such that
A™ > 0 for all n > ng; here, A™ > 0 means that each entry of A™ is positive except in
positions of A where a zero row or zero column is present. To find finitely checkable
sufficient conditions of (i), two kinds of sufficient conditions for the primitivity of
H,, and V,, are introduced.

(I) invariant diagonal cycles,
(II) primitive commutative cycles.

Both of these conditions are applied to construct the primitive diagonal subma-
trices of Hﬁf(") for some M(n), n > 2; then, they are used to show that H, is
primitive. Furthermore, when either condition applies, only finitely many H,, have
to be checked to ensure that H,, is primitive for all n > 2.

After the primitivity of H,, and V,, is established, the corner-extendable condi-
tions C'(1) ~ C(4) and crisscross-extendability are introduced (Definitions 3.2 and
3.11) to extend the L-shaped pattern and the rectangular pattern into a global
pattern, and then to establish that X(B) is mixing. The main theorem is given by
Theorem 3.14.

Theorem 1.1. If

(i) B C Xaxa(p) is crisscross-extendable,
(ii) B satisfies three of corner-extendable conditions C(i), 1 <1 <4,

then H,,(B) and V,,(B) are primitive for all n > 2 if and only if ¥(B) is mizing.

Next, strong specification is considered. Since strong specification is stronger
than topological mixing. Apart from the processes in Fig. 1.1 which concern the
situation in which regions Ry and R, + v are far away, the case in which one pattern
is enclosed in another pattern, as in Fig. 1.2, must be studied.
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Us

Figure 1.2.

Notably, in studying topological mixing, Fig. 1.2 can be reduced to Fig. 1.1.
However, in studying strong specification, U; and Us cannot be removed since the
relative positions of R; and Ry are fixed. Now, the gluing of U; and Uy can be
completed by the following two processes.

Step (4): Extend U; horizontally and vertically to form a crisscross pattern that
touches Us, as presented in Fig. 1.3.

Step (5): Fill the holes that are surrounded by the rectangularly annular lattice to
form a rectangular pattern, as presented in Fig. 1.4.

Us
'T‘(4) Vv
PONSNION —> (5 <—
JW A

Figure 1.3. Figure 1.4.

Then, repeat Step (3) and extend the rectangular pattern to a global pattern on
7.

The hole-filling condition (HFC) in Step (5) is finitely checkable: any hole of
size (M, N) that is surrounded by any admissible annular lattice with width L > 2
can be filled by admissible local patterns and forms an (M + 2L) x (N + 2L)
pattern. Moreover, k hole-filling condition (HFC)y, k& > 2, with (HFC), = HFC
is introduced (see Definition 5.1), which is weaker than HFC and is also finitely
checkable. (HFC)y, is closely related to the extension property called square filling
[41, 42]. The main theorem for strong specification is given by Theorem 5.4.

Theorem 1.2. Given B C Yax2(p), if there exists k > 2 such that

(i) B is k crisscross-extendable,
(ii) B satisfies (HFC)y, with size (M, N) for some M, N > 2k — 3,
(i) Hy, is (M — 2k + 5)-primitive and Vi, is (N — 2k + 5)-primitive,
then X(B) has strong specification.

Theorems 1.1 and 1.2 are very powerful in verifying mixing properties. The
most known results for strong specification and topological mixing in the literature
can be checked successfully by them. Their significance in classification of mixing
properties is discussed as follows. Previously, Boyle et al. [12] discussed various
mixing properties, including strong irreducibility, uniform filling property, corner
gluing, block gluing and topological mixing (see Definition 3.17). The range of
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(HFC);, and these mixing properties for Z? shifts of finite type are listed in Figure
1.5. For brevity, we use the following notations.

(a) : B satisfies (HFC)y, (i.e., condition (ii) of Theorem 1.2) and conditions (i)
and (iii) of Theorem 1.2,

: X(B) has strong specification,
(B) has the UFP,
(B) is corner gluing,
(B)
(B)

—~
=3

—~ —
o,
NN NE AN N
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is block gluing,

DY
X
by
X is topologically mixing.

—_~

Figure 1.5.

Notably, the solid line indicates that the inner property is strictly stronger than
the outer one; the dotted line indicates that inner property is stronger than or
equivalent to the outer one. Example 6.8 in this paper is an example for (b) = (a),
and the examples for (d) # (¢) and (e) # (d) were given by Boyle et al. [12]. Tt
is still unsolved whether or not (b) < (¢); see [12]. Note that strong specification,
periodic specification and strong irreducibility are all equivalent; see Remark 3.18.

In viewing Fig. 1.5, Theorem 1.1 and primitive results in Section 4 ensure the
weakest case—topological mixing—holds. Theorem 1.2 ensures the strongest case—
strong specification—holds.

In studying both topological mixing and strong specification, the transition ma-
trices H,, and V, and the connecting operator S,, or C,,, introduced in Section
2, are extensively used. Indeed, invariant diagonal cycles, primitive commutative
cycles and (HFC)j, can be expressed in terms of transition matrices and connecting
operators as the finitely checkable sufficient conditions. All cases with certain ex-
tendability conditions can be verified by using transition matrices and connecting
operators except strong specification. In conclusion, the mixing properties in Fig.
1.5 with certain extendable conditions can be expressed in terms of transition ma-
trices and connecting operators except strong specification. The related theorems
are listed in Table 1.1.

On he other hand, the extendability problem is known to be undecidable [10,
21, 23, 32, 34, 46, 48, 53]. Presumably, the gluing problem is also undecidable.
Therefore, it is not possible to obtain a necessary and sufficient condition which
are finitely checkable for topological mixing and strong specification. However, the
gluing problems in this paper are decomposed into primitivity problems of transition
matrices of (1) and (4), and the extending problems of (2),(3) and (5). Although
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extending problem (3) is generally undecidable, the proposed finitely checkable
sufficient conditions ensure that is answered affirmatively under our situation.

Results

Expressions in H and S

Finite checkable sufficient

Mixing properties conditions

Strong specification Theorem 1.2

Uniform filling property Theorem A.2

Corner gluing Theorem A.3

Block gluing Theorem 3.19

Topological mixing Theorem 1.1 Theorem 4.28
Table 1.1.

In many physical problems, edge coloring is very common. The results of vertex
coloring can easily be extended to edge coloring. In particular, the six-vertex and
eight-vertex ice models in statistical physics can be shown to exhibit topological
mixing and strong specification, respectively. The other related cases can be treated
analogously [6, 7].

The rest of this paper is organized as follows. Section 2 introduces ordering
matrices of local patterns, transition matrices and connecting operators. Sec-
tion 3 introduces corner-extendable conditions and crisscross-extendability to study
rectangle-extendability and mixing. Section 4 introduces invariant diagonal cycles
and primitive commutative cycles to establish sufficient conditions for the primi-
tivity of H,, or V,,. Section 5 introduces k hole-filling condition to develop finitely
checkable conditions for strong specification. Section 6 presents the theory of edge
coloring. In Appendix, we present the expressions of (HFC)y, uniform filling prop-
erty and corner gluing with rectangle-extendability by H,, and S,,.

2. PRELIMINARY

This section reviews the essential aspects of the ordering matrices of local
patterns and their associated transition matrices [1]. Then, connecting operators
are introduced. This study depends on more precise properties of connecting op-
erators which were only outlined in the previous paper [2]. Most of the proofs can
be obtained by the arguments similar to those in [1, 2] and are omitted.

As presented elsewhere [1], with p > 2 fixed, the ordering matrices X,, and Y,
are introduced to arrange systematically all local patterns in Yoy, (p) and X, x2(p),
respectively.

Since the vertex coloring and face coloring are equivalent on Z2, in the following,
the colors of patterns are drawn on faces instead of on vertices.

For an n-sequence U, = (U1, ug, -+, uy) withup € Sp, 1 <k <mn, U, is assigned
the number by the n-th order counting function ¢ = ¢,:

(21) ¢(Un) = '(/J(uh U2, -+ 7un) =1+ Zukp(nik).
k=1
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The horizontal and vertical ordering matrices Xy = [24, j,]p2xp2 a0d Yo = [Yiy 55 |p2 x p2
are defined by

! i
uo0,1|U1,1 Uo,1|%1,1
(22) Tiy,j1 = and Yiz,jo = )

! !
20,0|U1,0 U0,0|%1,0

where u ¢, uf; € Sp, 0 < 5,1 < 1, with

{ i1 = Y(uo,0, uo,1) and { iz = P (ug g, U7 0)

J1=Y(ur0,u1,1) J2 = Y(ug 1, uq 1)

For instance, when p = 2,

(2.3)
1

n

o [ o g om0 | %

vie] [olo] (ol folo

7T [I70] (]

[IT0] [IT) [I70] i)

X,= [ | [l [ [ fof] and Y= [ | ol Phf phf [of1]

I [70] [

1 ! s} bl ko) il

S B Y B (09 | ol Olo) (1fo] ifo)

[o70] [o]1]
1 1)1

o} it o

Now, X5 and Y2 are closely related to each other as follows.

X1 Xo:2 o Xao
(2.4) X, — X2;.p+1 XQ;.M_Q o Xopop |
X2;p(1;—1)+1 Xg;p(z;_l)+2 e X
where
Ya,1 Yo, 2 o Yy
(2.5) Xoi = y"‘*f’*‘l ya,%)+2 e yanp |
Yap(p-1)+1 Yapp—1)+2 °  Ya,p?

the case for Y5 is similar.
The higher-order ordering matrices X,, = [@n.i jlprxpn of Laxn(p), n > 3, are
defined recursively as

Xn;l Xn;2 e Xn;p
(2.6) X - Xnipt1 Xonipr2 o Xngzp
Xopp—1)+1 Xnpp-1)42 0 Xnyp2

where
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2.7)
ya,anfl;l ya,ZXn71;2 e ya,anfl;p
yoz,;D+1Xn71;p+1 ya,p+2Xn71;p+2 T ya,2an71;2p

Xn;a = . . .
Yap(p-1)+1Xn—1ip(p-1)+1  Yap(p-1)+2Xn—1p(p-1)+2 " Yap2 Xn-1;p?

n—1

isap"lxp matrix. Notably, the entry ,,; ; is the 2 x n local pattern Usy,, =

(Us,t)o<s<1,0<t<n—1 With

(2.8) i =(u0,0,u0,15 > Uo,n—1) and j=(u1,0,u1,1, U n-1)-
Similarly, the higher-order ordering matrix Y,, can be defined recursively, as above.

Given a basic set B C Xax2(p), the horizontal and vertical transition matrices
Hy = Hy(B) = [hi,j]p2xp2 and Vo = Va(B) = [v; j] 2,2 are given by
hi’j =1 if Tij € B, Vi = 1 if Yij € B,
(2.9) { hiﬁj =0 if acm- ¢ B, and { U@j =0 if yi,j §é B
According to (2.6) and (2.7), the higher-order transition matrices H,,, n > 3,
can be defined as

Hn;l Hn;2 e Hn;p
Hn;p+1 Hn;p+2 T H?L;Qp
(2.10) H, = . . . . )
Hn;p(p—1)+1 Hn;p(p—1)+2 e Hyye
where
(2.11)
Ua,lHn—l;l Ua,QHn—l;Q e Ua,pHn—l;p
Ua7P+1Hn—1;P+1 Uoz,p+2Hn—1;P+2 T Uoz,QpHn—l;Qp
Hn;a = . . .
Vo p(p—1)+1Hn—1;p(p-1)41  Vapp—1)+2Hn—1p(p-1)+2 -+ VaprHn_1;p2
is a p"~! x p"~! zero-one matrix.

Furthermore, for any n > 2 and ¢ > 1, H,,y, are decomposed by applying (2.10)
q + 1 times, as follows. For any ¢ > 1 and 0 <r < ¢ — 1, define

Hip g q;8058,5-- Bri1

Hn+q;ﬂ1;ﬁz;~~ Brt1;l Hn+q;ﬁ1;52;~-' iBr4132 e Hn+q;51;ﬁz;--~ Bri15p
Hn+q;ﬁ1;ﬂz;~-- iBry1ipt+1 Hn+q;61;/32;--~ iBry1;p+2 T Hn+q;ﬂ1;/32;-~- iBry1;2p
Hn+q;/3’1;,32;~~ Bri1sp(p—1)+1 Hn+q;51;62;~~ Bryuip(p—1)+2 7 Hn+q;61;52;~-~ iBri1;p?

Therefore, for any ¢ > 0, H,,4, can be represented as a pItl x p?tl matrix

(2-12) Hn-m = [H7L+q;i~,j]pq+1 xpitl — [Hn+q;61;62;-~;ﬁq+1] .
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In particular, when ¢ = 0,

Hn;l,l Hn;1,2 e Hn;l,p
Hn;2,2 Hn;2,2 et Hn;Z,p
(2.13) H, = . . .
Hppi Hppo -0 Hupp
More precisely, the relation between 1 < 81, B2, -+, 8441 < pand 1 < i,j < p?T!

is as follows. Given 1 < i,j < p?*!, choose i;,j; € Sp, 1 <1< ¢+ 1, such that

(2.14) i =(ir,ig, - yigr1) and  j=(j1, 02, Jgr1)-
For1 <l <q+1,let

(2.15) Bi(i,5) = (it Ji).-

Then,

(2.16) Hytgij = Hngqi1(6,5):82 (5,5 1Ba1 (ird) -

From (2.11), for ¢ > 1,

(2.17) Hp ;81380 Ba+1 = UB1,62VB2,83 " 'Uﬁqﬂq+1Hn;ﬂq+1
can be verified. Hence, let Hyi1 = [hgy1;i,5]pa+1 xpatr; by (2.12) and (2.17),

(2.18) Hovgiig = hattsi i Hnigon ) = Pavtsi g Hnsir6.g).57(.9)
where 1 <4/, 5" < p. Actually, we have

(2.19) i'(i,7) =) and j'(4,5) = 7'(J).
Hence, i’ (or j') depends only on i (or 7).

Before showing the formula for reducing H,, 4, to H,,, two products of matrices
are introduced as follows. For any two matrices A = [a; ;] and B = [by,], the
Kronecker product (tensor product) of A ® B is defined by

A® B = [ai,jB] .
Next, for any two m x m matrices C' = [¢; ;] and D = [d; ;], where ¢; ; and d; ; are
numbers or matrices, the Hadamard product of C' o D is defined by

C oD = [Ci’j . di,j] ,
where the product ¢; ;-d; ; of ¢; j and d; ; may be a multiplication between numbers,
between numbers and matrices or between matrices whenever it is well-defined.
Now, from (2.18), high-order transition matrices H,, can be reduced to lower
order transition matrices Hl,, as follows.

Proposition 2.1. For anyn >2 and ¢ > 1,
(2.20) Hytq = (Hq+1)pq+1 xpatt © (qu xp1 @ [H’n;i’,j’]pxp) ’

where Eyxi is the k X k full matriz.
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Notably, the results for H,, are also valid for V,,, as easily determined by ex-
changing the terms H,, and V,,. Therefore, for simplicity, only the results for H,
are presented herein.

In the following, H", , can be expressed in terms of H}' and connecting opera-
tor C,,. This result is crucial in establishing finitely checkable conditions for the
primitivity of all Hy, k > 2.

From (2.13), for m > 2, the elementary pattern of H" is

Hujy o Hnija gs -+ Hn
where 1 < js <p, 1 <s<m+1. Let

JmsJm+10

(2'21) H?Sf,)n;a = Hﬂ;jl,szn;jz-,% T Hn;jmvj7n+1’

where

a:w(jl_lajm+l_]‘) and k:’lz[)(]Q_]-a]?)_lav]m_]-)
From (2.2) and (2.7), the entry (Hr(f,)n;a) _is equal to the cardinal number of the

i,
set of all (m + 1) x n B-admissible local patterns Uy, 41)xn = (Us,t)o<s<m,0<t<n—1

with

(2.22)
a = Y(ug,0, Um,0) and i =1(uo,1,u0,2, > U0,n—1)
k= ¢(U1,07 u2,0, " - 7um71,0) Jj= w(um,la Um,2, " aum,nfl)-
Clearly, 1 <a <p?and 1 <k < pmL
Therefore, for m > 2,

Hm,n;l Hm,n;2 e Hm,n;p
H,,on: H,, e Ho .
,nip+1 m,n;p+2 m,n;2p
(2.23) H™ = . . . . :
Hm,n;p(p—1)+1 Hm,n;p(p—1)+2 o Hpy g
where

pmfl
Hio = 3 A
k=1
Furthermore, denote by

(224) Hm,n;a = (Hr('lf’)";o‘)lgkgpm—l
a p™~1 column-vector that consists of all Hf,ﬁ)n;a in Hy, n:o, which is very useful in
deriving the reduction formula.

Now, the connecting operator C,,, = [Cy,;; ;] that was introduced in [2] is recalled.
First, the connecting ordering matrix C,, = [C,,. ;] , a different arrangement for
Sim+1)x2(p) from Yo, 41, is introduced. C,, = [Csijlp2xp2 , where Cpiij is a
p™ =1 x pm~! matrix of local patterns, is defined as follows.

With fixed 1 < i,j < p?, for 1 < s,t < p™~ 1,
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(2.25) (Cous)oy = [otfunal o
uo,0fu1,0] - Um0

with i = w(U0,0:UO,l)a Jj = ¢(Um,0aum,1)7 s = 1/)(11,170,11,2,0’... 7um—1,0) and t =

PY(u1,1,u2,1, 5 Um—1,1)-

Now, C,, 41,5 can be obtained in terms of C,,.; as follows.

Proposition 2.2. Let Xy = [z;,4],2xp2. For anym >2 and 1 <i,j < P2,

23,1Cm;1,; 2i,2Cms2,5 o TipCmp,j
Zi,p+1Cmipt1,5 Zip+2Cm;pt2,j o i2pCriap,j
Crttiij = . .
T p(p—1)+1Cmipp—1) 11,5 Tipr—1)+2Cmpr-1)+2,5 + Tip2Cmyp2 j

The matrix multiplication of C,,;; ; and C,,,; cannot connect local patterns
in the vertical direction. However, S,,.n,3 does so. By changing the index of
Con = [Cinsi,jlp2 xp2, the ordering matrix S, = [Syn;a,8]p2xp2 is defined by

(2.26) Smia,8 = Cmp(ar,p1),p(az,8:)5

where ag, Br € Sp, 1 < k < 2, satisfying a = (a1, a2) and = (51, B2). Indeed,
for 1 <s,t <pm 1,

(2.97) (Smap)os = [orfua] o fums

wo,0|ut,0| .- Um,0
with a = 1/1(U0,0,Um,0), B = ¢(U0,1,um,1)» s = w(ul,O;UQ,O; s 7um71,0> and t =
Y(ur,1, U271, ,Um—1,1). From (2.27), the matrix multiplication of S,,., 5 and

Sin;s,4 represents the vertical connection of the patterns on Z(,,41)x2-
Now, given B C Xax2(p), for m > 2, the connecting operator C,, = [Cinsi jl1<i,j<p?
of Cpy = [Crnsijli<i j<p? is defined as follows. For 1 < s, t < p™~1,

{ (Cmiij)st =1 if (Cpiij)ss is B-admissible,

(Cmiij)s,e =0 otherwise.

In the following, Cy can be obtained explicitly. For Hy = [h; ;] 2, define

p2Xp

NﬁQ;l NﬁQ;Q e NﬁZ;p
~ Hopia Hoypyo <+ Hap

(2:28) H, = ! § 7
ﬁ2;p(p71)+l Hoypp-1)42 -+ Hope

where
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hl,a h2,cx e hp,a

~ hp+1,a hp+2,a h2p,a
H2;a = . . .

hp(pfl)H,a hp(pfl)+2,oc hpz:tx

for 1 < a < p?. Then, for 1 <i,j < p?,

(2.29) Cayij = Vo 0 Hoj

is a p X p zero-one matrix. By Proposition 2.2, the connecting operator C,,1; can
also be obtained from C,,. For m > 2, C,,11 = [Oer]_;iJ‘]lSi’jSpZ satisfies

(2.30)
hi 1 Crmit hi2Cmi2, o hipCOmp,j
hi,p+1Crﬂ;p+1,j hi,p+20m;p+2,j e hi»QPCm;Qp,j
Crstsij = ) ) .
hi,p(pfl)ﬂcm;p(pfl)ﬂ,j hi,p(p71)+2cm;p(p71)+27j T hiﬁzﬂ Cm;pzﬂ'

From (2.26), Sy, = [Sm;a,8)p2xp? is defined by

(2.31) Smia,8 = Crmip(ar,B1),1(az,62)5

where 0 < a1, az, B1, f2 < p — 1 such that a = (a1, @) and B = (51, B2).

Now, the relation between HJ' ; and HJ is elucidated as follows. Since the

sizes of H,(,]f’)n +1;0 and Hﬁll)n g are different, the elementary pattern H, (k)

m,n+1;a can
be reduced further as follows.

Let
(2.32)
(k) (k k
Hm,n+1;o¢;1 Hm,)'rL+1;o¢;2 T H7(n,)n+1;a;p
g®) . g
(k) m,n+1;a;p+1 m,n+1;a;p+2 m,n+1;a;2p
Hm,n+l,o¢ = . . .
(k) w *)
Hm,n+1;a;p(p—1)+1 Hm,n+1;a;p(p—1)+2 T Hm,n+1;a;p2
and
7 (k) !
(233) Hm,n+1;a;5 = (Hm,n+1;a;6)1<k<pm71 .

As (2.22), the entry (H(k)

m n+1-a-ﬁ) can be verified to be the number of the set of
LY
all (m+ 1) x (n+ 1) B-admissible local patterns Uy +1)x (n+1) = (Us,t)0<s<m,0<t<n

with

(2.34)
(U070, Um,o)

g z i(uo 1, Um.1) and { i‘: ¥(uo,2, uo.2, 5 Uon)
k= (0, uz0 ) /=

Um 2, Um 2, , U .
(©1,0,u2,0,*** > Um—1,0 W2, U2 Um,n)
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In the following proposition, ﬁmynﬂ;a;g can be obtained as the product of Sp,.q,3
and Hp, n;g (2], i.e., Spia,p reduces H7 y to H

Proposition 2.3. For any m,n > 2,

(235) ﬁm,n«l»l;a;ﬂ = Smw,ﬁﬁmm?ﬂ'

Furthermore, for n =1, let

k k .
H’r(m)Za;l H1(”rl,)2;oz;2 cee 1(71,)2;0(;1]
(2.36) g® m,2;0;p+1 H, o 0ipt2 o Hyo g0
' m,2;a . : : ’
®, ) ()
Hm72;a§17(17—1)+1 Hm,2;a;p(p_1)+2 T m,2:0p?
then
p'mfl
k
(2.37) HY, 5= (Smas)ps-
=1

Furthermore, for ¢ > 2, g-many S.o 5 can reduce H}", , to H}' as follow.

For any positive integer ¢ > 2, the elementary patterns of H", / can be decom-
posed by applying (2.32) ¢ times. Indeed, for ¢ > 2 and 1 <r < ¢ — 1, define

(k)
Hm,n-&-q;ﬁl iB25 3 Brit
(k) H(k) . H(k)
m,n+q;B1;82; ;Br+1;1 m,n+q;B1;B2; ;8r+1;2 n}z,n+q;ﬁ1;ﬁ2;~-- iBry1ip
. m,n+q;B1;B2; ;Bri1;p+1 Hm,n+q;ﬁ1;ﬁz;"';ﬁr+1;p+2 Hm,n+q;ﬁ1;62;~--;ﬁr+1;2p
(k) (k) . (k)
H7n,n+q;51;62;-~- Brr1;p(p—1)+1 Hm,n+q;61:ﬂ2;~-~ iBry1;p(p—1)+2 Hm,n—&-q;Bl;BQ;m Bry1;p?

Therefore, for any ¢ > 1, H}", | can be represented as a patl x paT1 matrix

(2.38) ZL+q = [Hm,n+q;i,j}pq+1 xpatl — [Hm771+Q§/61§B2§"'§Bq+1]
where
m—1
_ (k)
Hm,n—&-q;ﬁl;ﬁa;“-;ﬁqﬂ - Z Hm7n+q§ﬁl;ﬁ2§“'§ﬁq+1
k=1
is a p"~! x p"~! matrix. Notably, the relation between 1 < 1,82, -+, 8441 < p

and 1 <i,j < p?t! is the same as (2.14) and (2.15). Define

t
7 — (k)
Honntq:1:825+ a1 = (Hm7n+q;51;g2;...;5q+l 1<k<pm-1

As in Proposition 2.3, the elementary patterns of H}, , can be expressed as the
product of g-many S,.,s and the elementary patterns of HJ".
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Proposition 2.4. For any m,n >2 and ¢ > 1,

~

(2-39) Hm,n+q;51;ﬁz;~~ Bar1 — Sm;ﬁl,ﬁzsm;ﬂz,ﬂs U Sm;ﬁq15q+1Hmvn§Bq+l7
where 1 < 3; < p2, 1<i<q+ 1. Moreover,

p’ln,—l
1
(240)  Hpntqprifoi b = D (Sm;ﬁl,ﬂzsm;ﬁa,ﬂs"'Sm;ﬂq,ﬁq+1)k,lHT(n),n;qu-
k=1
Similarly, for Vs, the connecting operators are denoted by Uy, = [Upi ;] (cor-

responding to C,,, = [Cpyy, ;] for Ha) and W,,, = [Wis.q,5] (corresponding to S,, =
[Sm:a,p] for Hy). The arguments that hold for H,, are also valid for V,,.

3. EXTENDABILITY AND TOPOLOGICAL MIXING

This section investigates extendability and mixing of X (B).

It is clear that primitivity of H,, and V, for all n > 2 can be interpreted as
topological mixing in horizontal and vertical directions respectively. In general,
the relative position of lattices Ry and R + v are not located horizontally or
vertically. Accordingly, mixing in the directions other than horizontal and vertical
directions need to be studied. To treat these situations, rectangle-extendability,
corner-extendable conditions and crisscross-extendability are introduced.

First, the rectangle-extendability of B is defined as follows.

Definition 3.1. For B C YXax2(p), B is called rectangle-extendable if for every
pattern Upxn € Ymxn(B), m,n > 2, there exists W € X(B) such that W |z, . =

mxn

Umxn-

Previously, the importance of corners of lattices has been noticed [12, 44]. Indeed,
in studying mixing properties, the concept of corner gluing was introduced by Boyle
et al. [12]. Similarly, for studying rectangle-extendability and mixing, the corners
of the rectangular lattice need to be studied closely. Indeed, let the L-shaped
lattices ]L] = ngg \ {(2,2)}, ]]_42 = ngg \ {(0,2)}, ]]_43 = ngg \ {(0,0)} and L4 =
ngg \ {(2, 0)}, that iS,

l |
l Ly = .

) I E— —

L, = % LQ:% Ls =

Figure 3.1.

Definition 3.2. Let B C Xoyxa(p). For 1 < i < 4, B satisfies corner-extendable
condition C(1) if for any U € 3, (B), there exists U € Y3x3(B) such that U’ |L,=
U.

Whether or not Ha(B) or Va(B) contains a zero row or a zero column are very
much different in studying mixing problem. We begin with the study when there
is no zero row and column. We need the following notation.

Definition 3.3. A matriz A = [a; jlnxn is called compressible if contains a zero
row or a zero column. A matrix is non-compressible if it is not compressible. An
Hy (or Vy) is degenerated if Ha.o (or Va,a) is compressible for some 1 < a < p?.
An Hy (or Vi) is non-degenerated if it is not degenerated.
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First, consider the case for B C Yax2(p) when Ha(B) and Vy(B) are non-
degenerated.

Clearly, if both A and B are non-negative and non-compressible matrices, then
AB is non-compressible. From (2.10), (2.11), (2.13) and (2.21), the following result
is easily obtained, and the similar result for V5 also holds.

Proposition 3.4. If Hy is non-degenerated, then H,., are non-compressible for
n>2and 1l < o < p? In particular, H, is non-compressible for all n > 2.
Moreover, H,(f%,;a are also non-compressible form,n >2, 1 <a<p? and1 <k <
pmfll

The following lemma is easily proven and the proof is omitted.

Lemma 3.5. Given B C Xaxa(p), if H,(B) and V,,(B) are non-compressible for
all n > 2, then B is rectangle-extendable.

The non-degeneracy of Ha(B) and Va(B) implies rectangle-extendability and,
moreover, three of the corner-extendable conditions, as follows.

Theorem 3.6. Given B C Xoyx2(p), if Ha(B) and Va(B) are non-degenerated, then
(i) B is rectangle-extendable,

(i1) B satisfies C(1), C(2) and C(4).

Proof. (i) is obtained directly from Proposition 3.4 and Lemma 3.5.
(ii) Since Hy(B) is non-degenerated. From (2.2), for any ug o, 1,0, Uo,1,u1,1 € Sp,
there exist a,b € S, such that

uo,1| @ b u1,1

%0,0(%1,0 %0,0|U1,0

and

Figure 3.2.

are in B, which implies that conditions C'(1) and C(2) are satisfied. Similarly, that
V2 (B) is non-degenerated implies that B satisfies conditions C'(1) and C(4).
The proof is complete. |

Now, 3(B) is mixing follows from the non-degeneracy of Hy(B) and V3 (B) and
primitivity of H,, and V,,, n > 2.

Theorem 3.7. Given B C Yax2(p), if Ha(B) and Vao(B) are non-degenerated, then
the following statements are equivalent.
(i) H,(B) and V,(B) are primitive for all n > 2.
(i) X(B) is mizing.

Proof. (i)=(ii). Let R; and Ra be finite sublattices of Z?. Then, there exist N > 2
and (i1, j1),(i2,j2) € Z?* such that R, C Zyxn((i, 1)), I = 1,2. From (i), there
exists K > 1 such that H (B) > 0 and VK (B) > 0.

Then, take M = M(Ry, Ry) = V22N + K —2). Let v = (v1,v2) € Z? with
d(Ry,Ry +v) > M and any two allowable patterns Uy € Ilg, (X(B)) and Us €
I, +v(X(B)). Clearly, Uy and Us can be extended as Ui on Znxn((i1,71)) and U}
on Znxn((iz + v1,j2 + v2)) by using the local patterns in B, respectively.
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It is not difficult to prove that U] and U) can be connected as the L-shaped
pattern Uy, by using the local patterns in B, as follows.

N N

Ur, N N Ur
or

Figure 3.3.

Notably, the L-shaped lattices may degenerate into rectangular lattices.

Since Hy(B) and Va(B) are non-degenerated, by Theorem 3.6, B satisfies condi-
tions C'(1) and C(2). Then, Uy, can be extended as U, on the rectangular lattice by
using the local patterns in B, which is obtained by filling the corner of the L-shaped
lattices.

From Theorem 3.6, B is rectangle-extendable. Then, U, can be extended as
W e ¥(B) with Iz, (W) = Uy and g, (W) = Us. Therefore, ¥(B) is mixing.

(ii)=-(i). From Proposition 3.4, H,, and V,, are non-compressible for all n > 2.
Then, for n > 2, any pattern in Xqx,(p) or X, x1(p) can be extended to Z? by
using the local patterns in B. It can be easily verified that (ii)=-(i); the details are
omitted. The proof is complete.

O

Next, consider the case for B C ¥ax2(p) when Hy(B) or Va(B) is degenerated.
Theorems 3.6 and 3.7 are to be generalized when B satisfies corner-extendable con-
ditions and crisscross-extendability, which is introduced as follows. The crisscross
lattice Z4 is defined by

(3.1) Zy = U Zax2((1, 7)),
0<[il+[j]<1
Indeed,
Z+ = o ;
Figure 3.4.

where O = (0,0) is the origin of Z2. For B C Yax2(p), denote by
5, (B) = %z, (B).

Later, the extendability of B € B on Z? will be reduced to study the extendability
on Zy . First, the subset B, of B, which is the collection of all crisscross-extendable
patterns in B, is introduced.

Definition 3.8. For B C Yoxa(p), B. = B.(B) is the mazimal subset of B such
that if B € B, there exists Uy € X4 (B) with Uy |z,,,= B.

Clearly, B, can be obtained through the following finite processes.
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Proposition 3.9. For B C Yaxa(p),

(3.2) B. =B\ (Nu(B) | JNu(B)).
where
»’ P’
(3.3) Nu(B) =< @i €B|Y hpi=0o0rY hjr=0
k=1 k=1
and
p’ r’
(34) NU(B) =4 Yij € B | ka’i =0 or Zvj7k =0
k=1 k=1

That the shift spaces X(B) and X(B..) are equal is proven as follows.

Proposition 3.10. For B C Yax2(p),

(3.5) X(B.) = X(B).
In particular, X(B.) is mizing if and only if X(B) is mizing.

Proof. Clearly, £(B.) C X(B).

Suppose that $(B.) 2 X(B). Then, there exists U € Z(B) but U ¢ Z(B.),
that is, U [z,,,(@.j)€ (B\ Be) for some (i, j') € Z*. Since U € %(B), from the
definition of B., we have U |z, , (i )€ Be . This leads a contradiction. Thus,
5(5,) > %(B).

The proof is complete. |

The following notation is important in studying rectangle-extendability and mix-
ing for X(B) when Hy(B) or Vy(B) is degenerated.

Definition 3.11. A basic set B C Yax2(p) is called crisscross-extendable if B.(B) =
B, that is, for every B € B, there exists Uy € Y4 (B) with Uy |z,,.,= B.

When B C ¥ax2(p) is not crisscross-extendable, the maximal crisscross-extendable
subset B* of B can be obtained as follows. Indeed, let By = B and B,, = B.(B,-1)
for all n > 1. Clearly, B,, C B,_1 for all n > 1. We have that the size of Hy(B)
and Va(B) is p? x p?. Define

o) 2p
(3.6) B*=B*(B)= ()Bn= ()Bn.
n=0 n=0

From the construction of B*, by Proposition 3.10, the following result can be ob-
tained easily and the proof is omitted.

Proposition 3.12. For B C ¥sx2(p),
(i) B* is crisscross-extendable,

(i) X(B*) = 2(B).
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Therefore, if B C Yayx2(p) is not crisscross-extendable, then the discussion con-
cerning rectangle-extendability and mixing of 3(B) is the same as that of ¥(B*).
Hereafter, B C ¥ax2(p) is always assumed to be crisscross-extendable when Hy(B)
or Vo(B) is degenerated.

Proposition 3.13. If B satisfies either C(1) and C(3) or C(2) and C(4), then the
following statements are equivalent.

(i) B is rectangle-extendable.

(il) B is crisscross-extendable.

Proof. Clearly, (i) implies (ii).

(if)=-(i). Assume that B satisfies C(1) and C(3). The case in which it satisfies
C(2) and C(4) is similar. Let Upxn € Zmxn(B), m,n > 2. Since B satisfies
C(1) and C(3), from (ii), Upxn can be extended in both positive and and negative
vertical directions by using the local patterns in B, as follows.

n —» n —» n+2

Figure 3.5.

Similarly, the above pattern can be extended in both positive horizontal and nega-
tive horizontal directions by using the local patterns in B. Therefore, by the above
method, U,,x» can be extended to Z? by using the local patterns in B. The proof
is complete. O

Theorem 3.7 can now be generalized. Indeed, the following theorem shows that
primitivity and mixing are equivalent when B is crisscross-extendable and satisfies
the corner-extendable conditions.

Theorem 3.14. If

(i) B C Xoxa(p) is crisscross-extendable,
(ii) B satisfies three of corner-extendable conditions C(i), 1 <i <4,

then H,,(B) and V,,(B) are primitive for all n > 2 if and only if ¥(B) is mizing.

Proof. (=). From (ii), without loss of generality, assume that B satisfies conditions
C(1), C(2) and C(3).

Let Ry and R be finite sublattices of Z?. Since B satisfies C(1) and C(2), as in
the proof of Theorem 3.7, there exists M (R, R2) > 1 such that for all v = (vy,v2) €
7% with d(Ry, Re + v) > M and any two allowable patterns Uy € Ilg, (3(B)) and
Us € llp,+v(X(B)), Uy and Us can be extended as U, on the rectangular lattice by
using the local patterns in B.

Since B is crisscross-extendable and satisfies conditions C'(1) and C(3), by Propo-
sition 3.13, B is rectangle-extendable. Then, U, can be extended as W € X(B) with
g, (W) = Uy and lg,4v (W) = Us. Therefore, ¥(B) is mixing.

(«<=). From (i) and (ii), by Proposition 3.13, B is rectangle-extendable. Then, for
n > 2, any pattern in Yay.,,(B) can be extended to Z? by using the local patterns
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in B. Therefore, that X(B) is mixing implies that H,,(B) is primitive for all n > 2.
Similarly, V,,(B) is primitive for all n > 2.
The proof is complete. O

The following example demonstrates that the corner-extendable conditions of
Theorem 3.14 are crucial: if corner-extendable conditions fail, then crisscross-
extendability (or rectangle-extendability) and primitivity may not imply mixing.

Example 3.15. Let

Bﬂ/4—{ U2 > g and g, ug, ug, ug € {0, 1} }

Clearly,

HQ(BW/4) = V?(BW/4) =

O O = =
— = =
O O ==
— = =

From (2.10) and (2.11), it can be verified that H,, is non-compressible for all n > 2.
Since Vo = Ha, V,, is also non-compressible for all n > 2. By Lemma 3.5, B,y is
rectangle-extendable. In particular, By 4 is crisscross-extendable.

Forn > 2, any two 1 x n local patterns Uixn = (Uo,j)o<j<n—1 = (Uj)o<j<n—1
and U{xn = (uéjj)ogjgn_l = (u;—)ogjgn_l, uj7u;- c {0, 1}, 0 <j<n-— 1, can be
connected in the horizontal direction by using the local patterns in By s, as follows.

’
1wy, —o|un—3 U1 uo Uy 1
u 4 !
1y, —offun—3|Un—4 0 |Un—1f¥n—2
.
.
.
U2 uy ) uy uy uy
’
wuq uQ ’LLn71 713 'U«2 ’U,l
’ ’ ’ /
uo  Wug, g |ul o uy |1 ug
n—1
Figure 3.6.

Then, H > 0 for all n > 2. Since Vo =Hy, V]! = H! > 0 for all n > 2.

Let Ry = Ry = Ziayo. Consider Uy = {0}Z2 and Uy = {1}22. Clearly, Uy, Uy €
¥(Br)s), but g, (Ur) cannot connect with 1 g, ; 5(Uo) = Tz, ,((,i))(Uo) by using
the local patterns in B,y for all i > 2. Therefore, ¥(By/4) is not miving. This
claim does not contradict Theorem 3.14 since By, does not satisfy conditions C(2)
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and C(4): neither

oo

0[0 0[0
1 0 0
8 0 € 2]112(871'/4) 0 9

< E]L (Bﬂ' 4)
0 nor 1 ! /

can be extended to Zzxs by using the local patterns in By 4.

The following corollary follows directly from the proof of Theorem 3.14 and is
useful for checking that X (B) is not mixing.

Corollary 3.16. Given B C Yayxo(p), assume that B is rectangle-extendable. If
there exists N > 2 such that Hy(B) or Vn(B) is not primitive, then 3X(B) is not
mizing.

At the end of this section, we recall and compare various mixing properties which
are described in the introduction.

Definition 3.17. Suppose ¥ is a Z? shift.

(i) X has the uniform filling property (UFP) if a number M (X) > 1 exists such that
for any two allowable patterns Uy € g, (X) and Uy € IR, (2) with d(R1, R2) > M,
where Ry = Zmxn((i,7)), m,n > 1 and (i,j) € Z*, and Ry C Z?, there exists a
global pattern W € 3 with Iz, (W) = U, and g, (W) = Us.

(il) ¥ is strongly irreducible if a number M(X) > 1 exists such that for any two
allowable patterns Uy € Mg, (X) and Uy € Ilg,(X) with d(R1, Re) > M, where
Ry C 72 is finite and Ry C 72, there exists a global pattern W € ¥ with Tlg, (W) =
U1 and HR2(W) = UQ.

(iii) ¥ is corner gluing if a number M(X) > 1 exists such that for any two al-
lowable patterns Uy € g, (X) and Uy € Ilg,(X) with d(Ry,Re) > M, where
Ry = Zinxn((i,7)), m,n > 1 and (i,5) € Z2, and Ry = Zop, sen, (i+m—my, j+n—
11)) \ Zimgxny (i +m —ma, j+n—mn2)), my >mg >m~+M andny >ng >n+M,
there exists a global pattern W € ¥ with g, (W) = Uy and Ug,(W) = Us.

(iv) X is block gluing if a number M(X) > 1 ewxists such that for any two allow-
able patterns Uy € Ilg,(X) and Uy € Mg, (X) with d(R1, Re) > M, where Ry =
Ly xny ((i1,51)) and Ry = Ly xny ((i2, 52)), mu,ny > 1 and (i, 1) € Z2, 1 € {1,2},
there exists a global pattern W € ¥ with g, (W) = Uy and Ug,(W) = Us.

(v) X has periodic specification if a number M(X) > 1 exists such that for any two
allowable patterns Uy € 1lg,(X) and Uz € Ilg,(X) with d(Ry,Re) > M, where
Ry, Ry C 72 are finite, there exists a periodic pattern W € Prxn(X), m,n > 1,
with M, (W) = Uy and lg,(W) = Ua, where Ppxn(X) is the set of all periodic
patterns in X with period m in horizontal direction and period n in vertical direction.

Notably, (i)~(iv) are introduced in Boyle et al. [12] and (iv) is newly introduced.

Remark 3.18. Boyle et al. [12] showed that the strong irreducibility for both Ry
and Ry are finite is equivalent to Ry is finite and Ry is arbitrary. Hence, it is clear
that periodic specification implies strong irreducibility. By a similar argument as
in Ward [54] in which X(B) with strong specification has dense periodic patterns,
it can be shown that strong specification for X(B) implies periodic specification for
X(B). Recently, Ceccherini-Silberstein and Coornaert [15, 16] proved that strong
specification is equivalent to strong irreducibility. Therefore, strong specification,
periodic specification and strong irreducibility for X(B) are all equivalent.
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As Theorem 3.14, it can be proven that N-primitivity and block gluing are
equivalent when B is rectangle-extendable. For brevity, the proof is omitted

Theorem 3.19. If B C Yox2(p) is rectangle-extendable, then the following state-
ments are equivalent.
(i) there exists N > 1 such that H,, and V,, are N-primitive for all n > 2
(if) X(B) is block gluing.

4. INVARIANT DIAGONAL CYCLES AND PRIMITIVE COMMUTATIVE CYCLES

This section introduces invariant diagonal cycles and primitive commutative
cycles to provide finitely checkable conditions for the primitivity of H, or V,, for
n > 2. For brevity, the discussion for H,, is more addressed. The discussion for V,,
is similar to that for H,,.

4.1. Invariant diagonal cycles. This subsection introduces invariant diagonal
cycles to provide finitely checkable conditions for the primitivity of H,, or V,,.
First, the diagonal index set is defined by

Dy ={1+jlp+1)lj €S}
Clearly, if 81, B2, , Bqr1 € Dy, then Hyy nig:81:60; 8,41 1ies on the diagonal of
HY,, in (2.38).

Definition 4.1.

(i) For ¢ > 1, a finite sequence Bq = P1B2--- By is called a diagonal cycle with
length q if B; € Dy for 1 <j <gq.

(ii) A diagonal cycle Bq = P1B2 - Bybh is called an S-invariant diagonal cycle of

order (m,q) if there exist m > 2 and an invariant index set K C {1, 2,0 ,pm’l}
such that

(4'1) Z (Sm;ﬁlﬁz Sm;ﬁzwﬁs e Sm;/@mfh)kJ >1

keK

foralll € K. B
(iii) A diagonal cycle By = B1B2 - Bybr is called a W-invariant diagonal cycle of
order (m,q) if there exist m > 2 and an invariant index set K C {1, 2,0 ,pm’l}
such that

(4.2) Z (Wm;ﬁlﬂzwm;ﬁzﬂa T Wm?ﬂq;ﬁl)kyl >1

ke
foralll e K.

Notably, it is easy to show that for any n > 1,

(4.3) Y (SmiprpaSmigasps -+ Smspap)" )y = 1
ke

for all [ € K if (4.1) holds. The case for W-invariant diagonal cycles is similar.

In the case of non-degeneracy, the following simpler sufficient condition for prim-
itivity holds. The proof is postponed until after Theorem 4.12 which treats more
general situation.
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Theorem 4.2. Given B C Yaxa(p), if
(1) Ha(B) is non-degenerated,
(ii) there exists an S-invariant diagonal cycle B; = B1Pa - - - Bgp1 of order (m, q)
with its invariant index set IC,
(i) S HY 5, is primitive for 2 <n < q+1,
lek o
then H,, is primitive for all n > 2. Similarly, if
(i)’ Va(B) is non-degenerated, _
(ii)" there exists a W-invariant diagonal cycle B; = 182 --- BgB1 of order (m, q)
with its invariant index set K,
(i) > v s primitive for 2 <n < g+ 1,

m,n;
leX A

then V,, is primitive for all n > 2. Furthermore, if (i)~ (iit) and (i)'~ (iii)” hold,
then 3(B) is mizing.

The following example illustrates the application of Theorem 4.2.

Example 4.3. Consider

1 0 0 1

1 1 1 0

HB)=11 09 0 1

01 1 0

Clearly, Hy is non-degenerated. From (2.30),

1 0 0 0
00 0 O
Ss11=C11= | o o 1
0 0 1 0

Let B, =11 and K = {3,4}. Since
Z (S3§1=1)k,l > 1

ke

for 1l € K, B, is an S-invariant diagonal cycle of order (3,1) with index set K.
Clearly,

2 1
> Hidy = HouoHaza Hony + Ho o Haoo Hoon = [ L1 ]
lek

is primitive. By using Theorem 4.2, H,, is primitive for all n > 2. Mizing of X(B)
will be proven in Example 4.29.

To study the general cases, which includes degenerated case, more notation and
lemmas are required. First, the crisscross lattice Z, is decomposed into four rect-
angular lattices:

where { R(l) _ ZgXQ((O,O))v and { ]R(?,) = Z3><2((_]-70))7
R 0,0 R(4) = Z2x3((0,—1)).
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Definition 4.4. For 1 < i <4, a basic set B C Xoxa(p) is called R(i)-extendable
if for any B € B, there exists U € Yy (B) such that U |z,,,= B.

Clearly, a basic set B C Yoxo(p) is crisscross-extendable if and only if B is
R(i)-extendable for all 1 < i < 4.

Let A = [a; j]lnxn be a non-negative matrix; the index set of non-zero rows of A
and the index set of non-zero columns of A are denoted by

(4.4) r(A) = {z | éam > o} and  c(A) = {j | :f;lai,j > 0},

respectively. From (2.9), it is easy to show that

B is R(1)-extendable if and only if r(Hy(B)) 2 ¢(Ha(B));

(4.5) B is R(2)-extendable if and only if r(V4(B)) 2 ¢(Va(B));
’ B is R(3)-extendable if and only if ¢(Hz(B)) 2 r(Hz(B));
B is R(4)-extendable if and only if ¢(Hx(B)) 2 r(Ha(B)).

Now, the following lemma is obtained.

Lemma 4.5. Assume that B C ¥ax2(p) is R(2)-extendable. Forn > 2 and g > 1,
denote Hn_;,_q = [Hn_i'_q;i,j]pq#»l X pat1 and Hq-‘rl = [hq+1;i7j]pq+l X patl - ]f hq+1;i’j = 1,
then Hy g5 s not a zero matris.

Proof. Since B is R(2)-extendable, any pattern in X, (441)(B) can be extended to
Zyx (n+q) by using the local patterns in B. From (2.17), the result follows. O

In degenerated case, the weak non-degeneracy of Hy(B) (or Vo(B)) is introduced
and is useful in establishing the primitivity of H,, (B) (or V,,(B)).

Definition 4.6. Given B C Yox2(p), Ha(B) = [Hay jlpxp is weakly non-degenerated
if
(i) when both Hay; j, and Hay; j, are not zero matrices, 1 < i, 1,72 < p,
r(Haij,) = r(Hai g );
(ii) when both Hay, j and Hay, ; are not zero matrices, 1 < iy1,i2,7 < p,
(Ha ) = c(Haziy j)-
Weak non-degeneracy of Vo(B) is defined analogously.
Clearly, if Hy(B) (or V(B)) is non-degenerated, then Hy(B) (or Vo(B)) is weakly
non-degenerated.

The following lemma can be proven straightforwardly from Lemma 4.5 and the
proof is omitted.

Lemma 4.7. Given B C Yaxa(p), if B is R(2)-extendable and Ha(B) is weakly
non-degenerated, then

(i) when both Ho; j, and Ha; j, are not zero matrices, 1 <1i,j1,j2 < p,
r(Hpsi5,) = 7(Hpij,) for alln > 2;
(i) when both Hay, ; and Hay, j are not zero matrices, 1 < iy,i2,j < p,

¢(Hpiy ) = c(Hpyiy ) for all m > 2.
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In the following lemma, the corner-extendable conditions C(i) can be obtained
from the R(i)-extendability and weak non-degeneracy.

Lemma 4.8. Given B C Yoyxa(p), assume Ho(B) is weakly non-degenerated, then
(1) if B is R(1)- and R(2)-extendable, then B satisfies C(1);
(ii) if B is R(2)- and R(3)-extendable, then B satisfies C(2).
Similarly, assume Va(B) is weakly non-degenerated, then
(iii) of B is R(1)- and R(2)-extendable, then B satisfies C(1);
(iv) if B is R(1)- and R(4)-extendable, then B satisfies C(4).

Proof. For simplicity, only (i) is proven. The other are proven similarly.

For any U]]_‘1 = (’U/i’j)(i’j)e]Ll S ELI(B)7 let i1 = U1, + 1, ig = U2,1 +1 and
is = u12 + 1. The R(2)-extendability of B implies that Hs,, ;, is not a zero
matrix. From the R(1)-extendability of B, there exist 1 < i4,i5 < p such that

(Hg;ihu)i?’ i = 1. Since Hy(B) is weakly non-degenerated, there exists 1 <ig < p
such that (Hay, 4,);, 5, = 1, that is,
uy2| @
e B,
u1,1|u2,1

where a = i — 1. Therefore, U, can be extended to Zsx3 by using the local
patterns in B, which implies B satisfies C(1). The proof is complete.
O

For easily expressing the primitivity of compressible matrices, the following def-
inition is introduced.

Definition 4.9. If A = [a; j]nxn s @ matric with a;; € {0,1}, the associated
saturated matriz E(A) = [ei jlnxn of A is defined by

€i7j = O Zf Zai,k = 0 or Zak,j — 0’
(46) k=1 k=1

e;; =1 otherwise.

Clearly, given A = [a;jlnxn With a;; € {0,1}, if there exists ng > 1 such
that A™ > E(A), then A is primitive (no-primitive); here, if B = [b; j]nxn and
C = [¢i,jlnxn are two matrices, B > C means b; ; > ¢; ; for all 1 <4,j <mn.

For n > 2 and ¢ > 0, as (2.12), let

Hpyq = [Hn+q;i~,j]pq+1 xpitl — [Hn+q;61;62;-~;6q+1] :
For convenience, E(H,,,) is denoted by

(4.7) E(Hp1q) = [En-f-q;i,j]pqﬂ xpatl — [En+q;ﬁ1;ﬁz;---;,3q+1] :
From (2.20), it is easy to verify that

(4.8) E(Hn+q) < (E(Hq+1))pq+1 xpa+1l © [ququ ® [En;i”j/]pxp} :

Lemmas 4.7 and 4.8 yield the following lemma.
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Lemma 4.10. Gien B C Xaoxa(p), for n > 2, let H,(B) = [Hypyjlpxp and
E(H,) = [Eni.jlpxp- Assume that B is R(q)-extendable, q € {1,2,3}, and Hy(B) is
weakly non-degenerated. Then, for n > 2 and 1 < iy,i2,i3 < p,

(4'9) Hn;il,izEn;iz,ia > En;i17i3
when Hay;, 4, 15 not a zero matriz;
(4'10) En;il,ian;i27i3 > En;ihis

when Ha, i, 15 not a zero matriz.

Proof. By Lemma 4.8, we have that B satisfies C'(1) and C(2).

From the R(1)-extendability of B and C(1), for n > 2, every pattern Usy, €
Yoxn(B) can be extended to Zzx, by using the local patterns in B. Therefore, by
Lemma 4.7, it can be verified that (4.9) holds; the details of the proof are omitted.
Similarly, (4.10) can be shown to hold.

O

We also need following notation in proving the theorem for the primitivity of
H,,.
Definition 4.11. Let M = [M; ;] n, where M;; is an M x M non-negative
matriz for 1 <i,j < N. The indicator matriz A(M) = [m; j]nxn of M is defined
by

m;j = 1 Zf |Mi,j| > 0,
m;; =0 otherwise,

where |M; ;| is the sum of all entries in M, ;.

The following theorem provides a sufficient condition for the primitivity of H,
when Hy is weakly non-degenerated with some R(i)-extendability.

Theorem 4.12. Given B C Yax2(p), if
(i) Ha(B) is weakly non-degenerated,
(ii) B is R(i)-extendable, i € {1,2,3}, o o
(iii) there exists an S-invariant diagonal cycle B; = B1B2 - -+ 331 of order (1m,q)
with its invariant index set K,
(iv) for 2 <n < q+1, there exists a = a(n) > 1 such that

O] _
(ZHm,n:ﬂ1> Z E”?Bl’
ek

(v) H,, is primitive for 2 <n < q+1,
then H,, is primitive for all n > 2.

Proof. The result that H,, is primitive for n > 2 is proven by induction, as follows.
For s > 0, the statement P(s) means that H,, is primitive for sg+2 < n < (s+1)g+1.
From (v), P(0) is true. Assume that P(t) follows for some ¢ > 0, that is, H,, is
primitive for tg+2 <n < (t+ 1)g+ 1.
For (t+1)g+2<n<(t+2)g+1,let n=(t+1)g+r, where 2 <r < g+ 1. Let
N = (t+1)g+1, define By_; = Brpy1yg = (1B Bg)' " Br. From (4.3), By_, is
an S-invariant diagonal cycle of order (m, N — 1) with invariant index set K.
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From (2.38), let Hy, = [Hysin jnlpy spy and H = [Hp, niin in ] pn xpy for m > 1.
Then, from (2.20),

H, = [Hnﬂ;N;jN} = (HN)pNXpN © Eprlxprl ® [Hr;i,j}pxp} :

By Lemma 4.5, Hy is the indicative matrix of H,, = [Hy. ;5] By the assump-
tion for P(t), Hy is primitive; then suppose HY > E(Hy) for some m’ > 1.
Therefore, for any 1 < iyn,jn < p"¥ with (E(Hy)) = 1, there exist 1 <
lo(in, ), li(in, jn)s -+ sl (in, ) < p such that

INL,IN

Hyn nsinjn = Hrsto i Hrso 1o - Hrgl

"m

1ol

where Hyy, 1.,
From (2.40),

is not a zero matrix for all 0 < g < m/ — 1.

Hm,n;BN,l = Hmﬁn;31;52;~--;3(7;--~;31;52;-";55;51

(t+1) times

—1

p’ﬁl
3,8 3. 3 o)t O]
2 (g oS iy i i) It H 1o,

O]
Z lchmﬂ’;Bl'
Notably, H, 5~ is on the diagonal of Hi; then let Hy, .55 = H,, niBn for

some 1 < k < pV. Hence, form (iv), H__ nBa_s = Eripy Since 1 € D), E.5 =
By pr for some 1 <k <p.
Let N = am + 2m’/ and HY =

= For 1 < in,jn < pN with
(E(HN))

[HN,TL;iN,jN]pN xpV”
=1, from (4.9) and (4.10),

INSIN

HNv"?'iijN > H H;

m' nyin,k " am,n;k,k

H

m',nik,jn

2 Hyo(in oy Gin k) st G oy Bk b B 1 gy = sty (v (i)
ETQZ()(iN’E)vlm’(EvjN).
Hence, from (4.8),

Hiv > (E(HN))pNXpN © EpN—1XpN—1 ® [Er§i7j]p><p > E(Hn)

Then, H,, is primitive for (t +1)g+2 <n < (t+2)g + 1, that is, P(¢ + 1) holds.
Therefore, P(s) is true for all s > 0, implying that H,, is primitive for all n > 2.
The proof is complete.
O

Now, the proof of Theorem 4.2 is given as follows.

Proof of Theorem 4.2. From (2.4), (2.5) and (4.5), clearly, B is R(i)-extendable for
i € {1,2,3}. From (iii), by Proposition 3.4, it can be verified that H,, is primitive
for 2 < n < g+ 1 and the detail is omitted for brevity. Therefore, by Theorem 4.12,
H,, is primitive for all n > 2. O
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For n > 2, let V,,(B) = [Viali<a<p? and E(V,,) = [E], ,]i<a<p?. Like Theorem
4.12, the following theorem provides a sufficient condition for the primitivity of V,,.

Theorem 4.13. Given B C Yax2(p), if
(i) Va(B) is weakly non-degenerated,
(ii) B is R(i)-extendable, i € {1,2,4}, o o
(iii) there exists a W-invariant diagonal cycle 5 = 182 -+ 8481 of order (m, q)
with its invariant index set K,
(iv) for 2 <n < g+ 1, there exists b =b(n) > 1 such that

b
) ’
<va,n:ﬂ1> = E”;Bl’
lex

(v) V,, is primitive for 2 <n < g+ 1,

then V,, is primitive for all n > 2.

In viewing the primitive properties in Theorem 4.12 and Theorem 4.13, we intro-
duce the H(1)- and V(1)-primitive conditions for B has invariant diagonal cycles
as follows. Later, H(2)- and V(2)-primitive conditions are introduced for B has
primitive commutative cycles; see Definition 4.26.

Definition 4.14. Let B C Yax2(p).

(i) B satisfies H(1)-primitive condition if the conditions (iii)~(v) of Theorem 4.12
are satisfied.

(ii) B satisfies V (1)-primitive condition if the condition (iii)~(v) of Theorem 4.13
are satisfied.

Remark 4.15. From the proof of Theorem 4.2, if Ha(B) is non-degenerated and
the conditions (i)~ (i11) of Theorem 4.2 are satisfied, then B satisfies the H(1)-
primitive condition. A similar result holds when Vo(B) is non-degenerated.

From Lemma 4.8 and Theorems 3.14, 4.12 and 4.13, mixing of 3(B) follows.

Theorem 4.16. Given B C Yax2(p), if
(1) Hy(B) and Va(B) are weakly non-degenerated,
(i) B is crisscross-extendable,
(iii) B satisfies H(1)- and V (1)-primitive conditions,
then 3(B) is mizing.
The following well-known examples illustrate Theorem 4.16. The first example
is the Golden-Mean shift (or the hard square model).

Example 4.17. The rule of the Golden-Mean shift X(Ba), Ba C Yax2(2), is that
there is no two 1’s next to each other in horizontal or vertical direction. From (2.3),

1110
|1 0 1 0| | Hyix Haip
Hz(Bc) = 1100 {Hg;m H2;2,2]
00 0 0

and
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[E Y

B, Es.
Eq(Hy) = _ [ 2;1,1 2:1,2 ] .

Eso1 FEaao

O ==
O ==
OO OO

0

Clearly, Vo(Bg) = Ha(Bg). From (4.5), Ba is crisscross-extendable. That Ha(Bg)
and Vo (Bg) are weakly non-degenerated are easily seen.
Now,

1 1
Sa11=Co1 = [ 10 } .

Then, B, = 11 is an S-invariant diagonal cycle of order (2,1) with index set K =
{1,2}. Clearly,

ZHQ(ZL = Hon1Hoa1 + HojoHoo 1 = [
ek
Since H3 > E(Hz), Hy is primitive. Therefore, Bg satisfies the H(1)-primitive
condition.

Since Vo = Ha, Be also satisfies V(1)-primitive condition. Hence, by Theorem
4.16, the Golden-Mean shift X(Bga) is mizing. In fact, that the Golden-Mean shift
has strong specification will be shown in Fxample 5.6.

3 2
9 9 } > Foq1 = Eaa.

The next example concerns the three-coloring of the square lattice, which is
closely related to the six-vertex ice model in statistical physics [7], see also Example
6.7 of this paper.

Example 4.18. The three-coloring of the square lattice is the coloring of the square
lattice Z* with three colors such that no two adjacent vertices have the same color.

Let By C Yax2(3) be the basic set of the three-colouring of the square lattice. We
have that

00 0[00O0[0 00

00 0[1 0 1/1 0 0

00 0[1 001 10

01 1]0 0 0/0 1 0 Hyqy Hogo Haas
Hy(Br)=| 0 0 0[0 0 0/0 0 0| =| Hysy Hooo Hosg

0 1 1]0 0 1|0 0 0

00 1[1 0 1/0 0 0

L0 0 0[0 0000 0]

Clearly, Vo = Hy. It is easy to verify that Br is crisscross-extendable and Hy = Vo
1s weakly non-degenerated. We have that

So1,5 = Cono = and So51 = Co44 =

_ = o
o O O
O = O
o O O
[ e R
o O =
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0 0
Since S9.1,552;5,1 = 2 11, 32 = 151 is an S-invariant diagonal cycle of
01 1
order (2,2) with its invariant index set K = {2,3}.

That the conditions (iv) and (v) of Theorem 4.12 are satisfied can be checked
straightforwardly; the details are omitted for brevity. Hence, By satisfies the H(1)-
primitive condition. Since Vo = Hs, Br satisfies the V(1)-primitive condition.
Therefore, by Theorem 4.16, X(Br) is mizing. It can be proved that X(Br) does
not have strong specification; the detail is omitted.

4.2. Primitive commutative cycles. This subsection introduces primitive com-
mutative cycles in order to obtain another finitely checkable sufficient condition for
the primitivity of H,, or V,, when invariant diagonal cycles are unavailable.

For ¢,q¢' > 1, let I, = tyig---i4i1 and Jy = j1j2- - jyJ1 are two cycles, where
ik, g1 €41,2,--- ,ppfor 1 <k <gand 1 <[ <¢.
Definition 4.19. If j1 = iy, let (Iqul) = i1i2~~~iqi1j2~~~jq/i1 and (Jqllq) =
i1j2 -+ Jgrtiie - - igi1. The pair (I4Jy) and (Jy 1) is called a commutative cycle
pair.

Given a commutative cycle pair (I;Jy ) and (Jg 1), denote the index of (I;Jy)
and (JgI,) by (m,&; K, L), where

m=q+¢

a=1v(1— 1,91 — 1)
K:w(’LQ—lv 7iq_17i1_17j2_1a"' 7jq’ _1)
L:’l/)(.]Z 717 qu/ 7177;1 7172.271:"' >iq71)~
From (2.21), it is easy to check that

(4.11)

K

Hn;ihian;iz,is, e Hniiq:ilHnﬂlijHn;j%jS e Hn;jq/ﬂd = Hm,n;a
(4.12) ”
L

Hn;iméHn;jz’ja T Hn;jq/,i1Hn;i1’i2Hn;i2,i3 o 'Hn;iq,h = Hm,n;a-

Moreover, the number @ is a member of the diagonal index set D,,, and then H,, n;a
lies on the diagonal of H™.

Definition 4.20. A commutative cycle pair (I4Jy) and (Jy 1) with index (m, &; K, L)
is called an H-primitive commutative cycle pair if there exists N > 1 such that

(4.13) either (H<K) )N ) (H<L7);7>N > By,

m,2;&

A V-primitive commutative cycle pair is similarly specified, and the details are
omitted.

The following theorem provides a sufficient condition for the primitivity of H,
when Hs is weakly non-degenerated.

Theorem 4.21. Given B C Yax2(p), if

(i) Hy is weakly non-degenerated,
(ii) B is R(i)-extendable, i € {1,2,3},
(iii) there exists an H-primitive commutative cycle pair (InJy) and (JgI4) with
index (m,a; K, L) such that (Sma.a)rk, =1 or (Smia,a)L,x =1,
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(iv) Hy is primitive,

then H,, is primitive for all n > 2.

Proof. By Lemma 4.8, B satisfies C(1) and C(2). Suppose (Sp;a,a)k,. = 1. The
case for (Sp.a.a)r,xk = 1 is similar. From (i) and (ii), by Lemma 4.10, (4.9) and
(4.10) follow.

First, we show that for n > 2, there exists N(n) > 1 such that

N(n) N(n)
(414) (Hﬁn{('r)b,o?) Z En,ﬁ/ and (anL,ZL,a) Z En;(i
by induction. From (4.9), (4.10) and (4.13), it is clear that (4.14) holds for n = 2.
Assume that the case for n = ¢ is true, ¢ > 2. Let H;KQ)(& = I:h:ij]pxp =
[Hf(rf(Q)da} , from (2.37), it is clear that
Tl I<asp?

m—1

*_ pk _ gg(K) _ §
hi7j - hi(a)g’(a) - Hm,2;d;a - (Sm;d,a)K,l
=1
forall 1 <i,57 <p. Let A (H(K) ) be the indicator matrix of H'X) = [h;’k-j]pxzf

m,2;& m,2;&

N(2) N(2)
Since (Hﬁfgﬂ) > Fb.5, we have (A (H(I’{);f)) > Ea.q.
(K)

K
Let Hm,t+1;& = |:H( : i| xp = [Hm t+1;05a

ERASEERIN & Lgag;ﬁ’ by Proposition 2.3,

m—1
K K 1
HT(TL,t)-‘rl;&;i,j = H7(n,t)+l;d;a = Z (Sm;@,a)K,lH751)7t;a
=1
for all 1 < 4,5 < p. Since B is R(2)-extendable and satisfies condition C(1), for
m > 2, every pattern U,,x2 € Zix2(B) can be extended to Z,,x3 by using the
local patterns in B. Thus, if (Spm;a,q) k0 = 1, then HY

m.t:0 18 MOt & zero matrix for

1<a<p?and1<!<pm™ ! Hence, A (H,(,LKZ)a) is also the indicator matrix of
K K
Hr(n,t)Jrl;& = [an,t)—}—l;&;i,j}
pxp

N(t) N(t)
Since (Smia,a)kx, = 1 and (H(L,)f) > Ei.a, (H(K) ) > Eia. No-

m,t+1;050

tably, H\I), | . lies on the diagonal of H{), | .. Let N’ = N(t) + 2N(2). Since
N(2) N (1)
(A (H(K) )) > Fy.a and (H(K) ) > Bya, from (4.8)~(4.10),

m,2;& m,t+1;0;a

N/
K
(Hr(rL,t)+1;d) 2 (E2;07)pxp °© {[Et;&]lgaglﬂ} > Et—&-l;éw

N'+1
From (4.9) and (4.10), (Hf,i2+1;d) > FEii1,a. Hence, the case forn =t 41
holds. Indeed, N (¢t 4+ 1) = N’ + 1. Therefore, (4.14) follows.
Now, we want to show that H,, is primitive for all n > 2. First, the case for
n = 2 directly follows from (iv).
For n > 3, from (2.20),
Hy, = [Hsi ]

p2 xp? = (HQ)pzpr © EPXP ® [Hn*1§a]1§a§p2:| :



VERIFICATION OF MIXING PROPERTIES IN TWO-DIMENSIONAL SHIFTS OF FINITE TYBHE

From (ii), by Lemma 4.5, if (Hg)m =1, Hy;,; is not a zero matrix. Hence, H
is the indicator matrix of H,, = [Hp.; ;]
Let H' = [Hun,nii 5]

p?xp?”

p2xp? = [Hmnigi:8,]- Since (Smia,a)rr =1,

1n 1

E: @) (L)
'mnau_ maa)lenLn 1a_H7nn L;a
k,l=1

From (4.14), clearly, (Hpm n:a:a) —
diagonal of H}}'. Therefore, from (iv) and (4 )~
exists N > 1 such that

otably, m,n;aza 1s on the

N(n—1) > B, 1. .
8)~ (4 , it can be verified that there

HY > (B(H2)),0, © [Epxp ® [Bactiilppy) > E(H).

Therefore, H,, is primitive for all n > 2. The proof is complete. |

pXp

Similarly, the following theorem provides a sufficient condition for the primitivity
of V,,, and the proof is omitted.

Theorem 4.22. Given B C Yax2(p), if

(i) V3 is weakly non-degenerated,
(ii) B is R(i)-extendable, i € {1,2,4},
(iii) there exists a V -primitive commutative cycle pair (IgJy) and (Jy 1) with
index (m,a; K, L) such that W.a.a)k,p =1 or Wimaa)r,x = 1,
(iv) Vg is primitive,

then V,, is primitive for all n > 2.

Remark 4.23. In practice, to find an invariant diagonal cycle is easier than to
find a primitive commutative cycle pair. However, it may be more convenient to
verify primitivity of H,, or V,, by using the method of primitive commutative cycle
pair; see Example 4.24 and 4.29.

The following example illustrates Theorem 4.21.

Example 4.24. Consider

Hz(B) =

O =IO O = OO
O OO OO0 oo
= O Ol OO~ O
O O RO O oo oo
O O oo o oo o o
O OO O oo oo
O OO OOl O O
O OO OOl oo
O RO OO0 O

[en}
o
—_
o
[en)

Clearly, Hy is weakly non-degenerated. It can be verified that B is R(i)-extendable,
i€{1,2,3}. We also have that Hy is primitive.
Let Is = 1311 and Jy = 13331; the following is easily computed.

(513)
Hz7 o = HonsHos1Hon 1 Hon 3Ho,3Ho3,3Hoi31 =

_ O =
o OO
S O =
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and
00 0 0 1
H§,2;1) = Ho.1 3Ho.:33H9.33H2.31Ho1 3Ho,31Hoi10 =10 0 0
1 0 1

We have that

Eon=Fs11=

_ O =
o O O
_ O =

Then,
2 2
(HS’Q?) > Fpy  and (H;Tg?) > By

Hence, (IsJy) and (Juls) is an H-primitive commutative cycle pair with index
(7,1;513,709). Moreover,

(57%171)513,709 =1
Therefore, by Theorem 4.21, H,, is primitive for all n > 2.

As Theorem 4.2, Theorem 4.21 can be made simpler when Hy(B) is non-degenerated.
The proof is similar to that of Theorem 4.2 and is omitted here. The result for Vq
is also valid.

Theorem 4.25. Given B C Yoxo(p), if
(i) Hsy is non-degenerated,
(i) there exists an H-primitive commutative cycle pair (I4Jy ) and (Jy 1) with
index (m,a; K, L) such that (Sma,a)k,L =1 or (Smia,a)L.x =1,
then H,, is primitive for all n > 2.

As the primitive conditions in Definition 4.14 for invariant diagonal cycles, the
primitive conditions for primitive commutative cycles in Theorem 4.21 and 4.22 are
introduced as follows.

Definition 4.26. Let B C Yax2(p).

(i) B satisfies H(2)-primitive condition if the conditions (iii) and (iv) of Theorem
4.21 are satisfied.

(ii) B satisfies V(2)-primitive condition if the conditions (iii) and (i) of Theorem
4.22 are satisfied.

Remark 4.27. If Hy(B) is non-degenerated and condition (ii) of Theorem 4.25 is
satisfied, then B satisfies the H(2)-primitive condition. A similar result holds when
V2 (B) is non-degenerated.

Since it may happen that H (or V) has invariant diagonal cycle and V (or H)
has primitive commutative cycles. Therefore, combining the primitive conditions
for invariant diagonal cycles and primitive commutative cycles, Theorem 4.16 is
generalized, yielding a finitely checkable condition for mixing of X(B).

Theorem 4.28. Given B C Yax2(p), if

(i) Hy(B) and Va(B) are weakly non-degenerated,
(ii) B is crisscross-extendable,
(i) B satisfies H(i)- and V(j)-primitive conditions for some i,j € {1,2},
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then X(B) is mizing.

Notably, when both Hy(B) and Va(B) are non-degenerated, the condition (ii) of
Theorem 4.28 automatically holds.
The following example illustrates the application of Theorem 4.28.

Example 4.29. (continued)
In Example 4.3,

Vo (B) =

O = O
O = O
—_ O = =
O = O

Clearly, Va(B) is non-degenerated.
Let Is = 211212 and Jy = 222. That

2 1
‘/7(1221 = Vo21Vo.1,1V2;1,2V:2,1 Vo1 2 V20 2Vo0 0 = [ 11 ]

and

2 1
V7(521); = Va09Vo.00Vai01Vo:1,1 Vo1 20Va0 1 Va1 0 = { 11 ]

are primitive can be easily verified. Hence, (IsJ2) and (Jols) form a V-primitive
commutative cycle pair with index (7,4;12,51). Moreover,

(W7%4=4)12,51 =L

Therefore, B satisfies the V(2)-primitive condition.
From the result in Example 4.3, B satisfies the H(1)-primitive condition. There-
fore, by Theorem 4.28, ¥(B) is mizing.

The following example demonstrates that the weakly non-degenerated condition
is crucial in order to have topological mixing.

Example 4.30. (continued) In Example 3.15, clearly, Ha(By/s) = Va(Br,4) is not
weakly non-degenerated. From (2.29),

1 0
Sa11=Cop1 = [ 0 0 } .

Hence, B, = 11 is an S-invariant diagonal cycle of order (2,1) with index set

K = {1}, and

2 2

is primitive. Therefore, By 4 satisfies the H(1)-primitive condition. Since Hy(Br/4) =
Vo(Br/a), Brya also satisfies the V(1)-primitive condition.

From Ezample 3.15, B4 is crisscross-extendable. Thus, By satisfies condi-
tions (ii) and (iii) of Theorem 4.28. However, ¥(B4) is not mizing. Therefore,
the importance of the weakly non-degenerated condition is established.

2 2
Hg(lg)l = Hy11H211 = { }

Remark 4.31. When invariant diagonal cycles and primitive commutative cycles
are unavailable, some examples can also be shown to be mizing.
For example, consider
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U
B’L—{ uiu;l tug +uz +ug =0 (mod 2) and uy, us,us, ug € {0,1} }

This shift space X(B%) is related to the shift space X(By,) that is given by

uijus

BL:{ G2 tuy + ug +uz =0 (mod 2) and uy,us, usz,us € {0,1} }7

which was first investigated by Ledrappier [35] who showed that X(By,) was mizing
with zero entropy. Clearly,

Hy(B)) = Va(By) =

O = O =
— o = O
— o = O
O = O =

is non-degenerated. H, = V,, can be shown to be primitive for all n > 2. Then,
X(BY}) is mizing.
A systematic method for solving this type of problem is being developed.

Remark 4.32. For studying mixing problem, the ideas in this work can be applied
to higher-dimensional shifts of finite type; see [5, 31].

5. STRONG SPECIFICATION

This section introduces the k hole-filling condition as in Step (5) in the
introduction, and provides finitely checkable conditions for the strong specification
of X(B).

First, for M, N > 1 and ¢, j € Z, the rectangularly annular lattice Ansx n;a((4, 7))
with hole Z s« n((Z,7)) and width d (called the annular lattice for short) is defined
by

(5.1) Anrxna((i,7)) = Liarv2dyx (N+2a) (0 = d, j — d)) \ Zarxn (4, 7))

In particular,

(5.2) Anisni2((4,5)) = Auxn((4,5))  and  Anvxn = Anxn;2((0,0)).
Hole-filling condition is defined as follows.

Definition 5.1. For B C ¥ax2(p) and k > 2, B satisfies k hole-filling ((HFC)y,)
with size (M, N), M, N > 2k—3, if for any U € E-A(IVI+4—2k)><(N+4—2k);k((k727k72))(6)7
there exists U' € Yp,, 0 nvia(—2,-2)(B) such that U |4, v=U |apen- In
particular, (HFC)q is also called hole-filling condition (HFC).
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Anrxn o \

Anra—2k)x (N+a—2k);k (K — 2,k — 2))

Figure 5.1.

(HFC)j can be expressed in terms of the horizontal transition matrices H,, and
the connecting operators Sy,.a,3 and Wy, g. Therefore, the condition can be easily
checked, especially using computer programs. The following theorem presents only
the case in which B satisfies hole-filling; for brevity, the general case in which B
satisfies (HFC)y, k > 2, is presented in Theorem A.1

Theorem 5.2. Given B C Yoxa(p), for M, N > 1, B satisfies HFC with size
(M, N) if and only if for 1 <i,j <pM and 1 <a; <p?, 1 <I< N +4, if

p]bl p]\/l
(i) kzl (SA4+1§0¢17052)]<;11L > 1, (ii) kzl (SM+1;QN+3704N+4)J',I@ 21,
N+4 pN+4
(i) Y (Hyga)e, = 1, () S (Hyia),, > 1,
k=1 k=1
where
(5.3) s=1v (1,001, ,an+a1) andt =1 (o 2,002, ,QANt42),
' a1, a2 € Sp such that ¥ (o, 002) =a1,1 <1< N +4,
then
(54) (SM+l;a2,a3$]W+l;a37a4a e 7SM+1;aN+2,aN+3)i,j 2 1.
Proof. For1 <i,j < pM choosei,j; €Sy, 1 <1< M,suchthati =1 (i1,i2, - ,in)

and j = ¢ (j1,j2, - ,jm). Let Ny = N +3 and Ny = N + 4. Clearly, conditions
(i), (ii), (iii) and (iv) imply that the empty places in the patterns U,, Uy, U; and
U, can can be filled with some colors in S, such that the patterns Uy, Uy, U; and

U, are B-admissible, respectively. Furthermore, the following annular pattern is
B-admissible.
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U¢t

XN, 1] N5 L2

oony 1| Ju Ml Jeny 2

a1 | i1 in | |o2,2

v

Uy

Figure 5.2.

Therefore, by the construction of connecting operators, (5.4) is equivalent to the
hole-filling condition with size (M, N). The proof is complete. O

Before showing the main theorem, the following notation is needed..

Definition 5.3. For k > 2, B C Yaxa(p) is called k crisscross-extendable if

r(Hi(B)) = ¢(Hi(B)) and r (Vi(B)) = ¢(Vi(B)). In particular, 2 crisscross-
extendability is the crisscross-extendability.

In the following, the k crisscross-extendability, (HFC); and primitivity of Hy
and Vj, are shown to provide sufficient conditions for strong specification of X(B).
Since all conditions are finitely checkable, the theorem provides a finitely checkable
sufficient condition for the strong specification of ¥(B).

Theorem 5.4. Given B C Yaxa2(p), if there exists k > 2 such that

(i) B is k crisscross-extendable,
(ii) B satisfies (HFC)y, with size (M, N) for some M, N > 2k — 3,
(i) Hy is (M — 2k 4 5)-primitive and Vi, is (N — 2k + 5)-primitive,
then X(B) has strong specification.

Proof. Let M' = M — k+4 and N' = N — k + 4. First, define the lattice Ly =
Lg.x (M, N), which is like the grid on a checkerboard with line width k and (M +
4 — 2k) x (N + 4 — 2k) blank spaces, as

Ly = U An+a—2kyx(N+a—2kyk (M + k= 2,iN" + k = 2)).
i,jEZ
Denote the lattice of blank spaces on the checkerboard by

Lok = Z* \ L.
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ey
[ [ [ |
[ [ [ |
e B 5
[ [ [ |
[ | | | o
EifN=tin 0 O
[ [ [ |
[ | | |
(e [ [ |
ASpucEEppes

(0,0)
(a) The shadowed lattice is Lg;3. (b) The white lattice is Ly3.
for M = N =4. for M = N = 4.

Figure 5.3.
For i,j € Z, define

L(i,§) = Ligym,n (4, §) = Zap vy (M7 =2, jN' — 2))

L(i,7) = Lyarn (6, 5) = Zpvivayx(N+a) (EM" =2, jN" = 2)).

L3.4,4(4,5) = La,a(i,j) =

v
(5t —2,55 — 2) 4
(51— 2,55 — 2)

Figure 5.4. The lattices L4 4(4, j) and ]I:3;4,4(z‘,j).

Clearly, L(4, j) D L(i, j) and L(i1, j1) N L(i2, j2) = 0 if (i1, 1) # (i2,2). Then,
72 lattice can be decomposed into disjoint sublattices:

7’ = | J L(i, j).
i,JEL
Take
(5.5) d=3/(M')? + (N")2.
Let Ry, Ry C 7Z? with d(Ry, Ry) > d. For any U, = I, (W;) with W; € %(B),
[=1,2, let
R, = U L, 5"

Ry ML(4,5)#0
(#,5')E€Z2x2((i—1,j—1))

for I = 1,2. Hence, U; can be extended as U] = HR;(WZ)7 Il = 1,2. Clearly, for
1=1,2,
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(5.6) if (i,7) € Ry, then Zepy1)yx2k+1) (i — k,j — k)) C Ry.

From (5.5), it can be verified that it never occurs both I/[:(i,j) N R, # 0 and
L(i,7) R, # 0 for all (i,5) € Z2.

Now, from conditions (i) and (iii), there exists a B-admissible pattern U” on
R} U Ry ULy such that U” [gy= U, i = 1,2. Clearly, Z* \ (R} J Ry L) is the
union of the discrete (M + 4 — 2k) x (N + 4 — 2k) rectangular lattices.

Hence, from (5.6) and condition (ii), there exists W € ¥(B) such that W |g,= U;
for i = 1,2. Notably, in general, W' [r/ ) g, L, is not equal to U"” since condition
(ii) may change the colors on the boundary of R |J R, JL, with width k& — 2.
Therefore, ¥:(B) has strong specification. The proof is complete.

(]

Remark 5.5.

(i) In the proof of Theorem 5.4, the constant M (X(B)) of strong specification is less
than or equal to 31/ (M")2 + (N")2, which is given by (5.5). It is of interest to know
the optimal (least) value of M (X(B)).

(ii) Lightwood [42] showed that if a Z* shift of finite type ¥ is square filling and
topologically mixing, then X has the UFP.

The following two well-known examples illustrate Theorem 5.4. The first is the
Golden-Mean shift, which is considered in Example 4.17.

Example 5.6. From Example /.17,

1 110
1 010

Ha(Be) = V2(Be) = | | 0 0
000 0

Clearly, Bg is crisscross-extendable and Hy = Vo is 2-primitive.
It can be computed that

1 1] (1 0] 1 0]
S2:1,1 = 10l Soi1,2 = 10| Sa1,3 = 101

(1 0] (1 1] (1 0]
S2;1,4 = 1 0 5 52;2,1 = 0 0 5 52;2,3 = 0 0 )

(1 1] (1 0] (1 1
52;3,1 = 0 0|’ 52;3,2 = 0o 0|’ 52;4,1 = 00

The other So.a.3 are zero matrices.
Then, by Theorem 5.2, it is easy to verify that Ba satisfies HFC with size (1,1).
Therefore, by Theorem 5.4, X(Bg) has strong specification.

Burton and Steif [13, 14] introduced the following example, which is closely
related to the ferromagnetic Ising model in statistical physics.

Example 5.7. Consider the color set 8§ = {—2,—1,1,2}. The rule of Xps C 84’122
s that a negative is disallowed to sit to a positive unless they are both +£1. To fit
S} to the color set Sy = {0,1,2,3} used in this work, —2, —1, 1 and 2 are replaced
with 0, 1, 2 and 3, respectively. Then, the following can be shown;
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Hy(Bps) =

oo oo~ HO O~
O OO DO OO0 HFHEFEIOOF—
O OO DO OO OO OO0 OO
O OO DO OO OO oo o oo

O O OO FEOIOFFEOOO O
SO OO DO OO OO OO0 o oo
O OO OO OO O OO0 oo
—_ O OO OO FEFEOOOOO

== O O == OO FEFEOOO OO

= O Ol M= OO0 OO o OO
SO OO DO OO OO oo o oo

S OO OO OO O OO OO oOoOco oo

== O OB OO OoOOoOoo OO0

== O O = OO0 oo OO

O O OO OO OO - FHIOO - =
O OO OO P OO FHRFEIOORFF

)
o
)
o
)
o
)
)

Clearly, Ho = V5 is 3-primitive and Bpg is crisscross-extendable.
That Bps satisfies HF'C with size (2,2) can be proven and the details are omitted.
Therefore, by Theorem 5.4, 3(Bps) has strong specification.

The size (M, N) of hole-filling condition may be even larger than (2,2), as in the
following example.

Example 5.8. It can be verified that

11 1 1
110 1
HB)=|1 ¢ 1 1
111 0|
satisfies HE'C with size (3,3) and
(1 1 1 17
101 1
Ha(B2)=| | | 1
01 1 1

satisfies HE'C with size (4,4). Both have strong specification. The details are omit-
ted.

The following example concerns the Simplified Golden Mean (SGM), which does
not satisfy HFC but satisfies (HFC)s.

Example 5.9. (Simplified Golden-Mean) Consider S; = {0,1} and

1
Hy(B,) = Va(B.) = | |

O O =
O O =
o O O

0 000

That X(Bs) has strong specification can be easily shown. Indeed, for any two pat-
terns Uy € g, (2(Bs)) and Us € Tlg,(2(Bs)), Ri, Ry C Z2, with d (R, Re) > 2,



40 JUNG-CHAO BAN*, WEN-GUEI HU, SONG-SUN LIN**, AND YIN-HENG LIN

coloring the vertices in 72\ (Ry\J R2) by 0 yields a Bs-admissible global pattern.

Therefore, SGM has strong specification with size M = 2.
Howewver, consider the Bgs-admissible pattern U in Fig. 5.5.

oJoJoJo] ---JoJo]o
ofoJiJo[ ---[o]o]o
01 0o
[o]o] [0]0]
BER i
o0} M ‘[FT‘
ofofofJo] ---ToJo]o
ofofofo][---ToJo]o
Figure 5.5.

[O]1]
Clearly, U cannot be extended any further on the corner since the local patterns

| -
[LI0} and are forbidden. Therefore, SGM does not satisfy HFC.

Now, by Theorem A.1, it can be verified that Bs satisfies (HFC)3 with size (3,3).
Clearly, By is 3 crisscross-extendable, and H3 = Vg3 is 2-primitive. Therefore, by

Theorem 5.4, SGM has strong specification.

The following example demonstrates a genuine failure of the hole-filling con-
dition, which causes the failure of strong specification. Indeed, in [12], Boyle at
el. consider this example to prove that block gluing is strictly weaker than corner
gluing. Hence, this example does not have strong specification.

Example 5.10. Consider Bg = SQZZXZ \ { %.l }, meaning that

Hy =V, =

e =
—_ == O
— =
= =

Now, X(Bg) lacks the corner gluing property, as follows. Consider Wi = {0}Zz
and Wy = {1}22. Let U; = W; |g,, it = 1,2, where Ry is the L-shaped lattice and
Ry is the rectangular lattice; see Fig. 5.6.

oo
o
Piin 42
m+ 2

[o]

00
ofo]

[o

[0]

[0]
0
0

Figure 5.6.

Therefore, the following pattern on Apxn, n Fig. 5.7 for all m,n > 1 where
[0T1]
e € {0,1}, cannot be filled without , which is forbidden.
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ofofefe[ ---Je]t]1
00 o[o‘ o [0 11
o] oo
i i
1010 |o e
0fo m ole
ofofoJo] ---ToJo]o
ofofoJo[ --Tofo]o
Figure 5.7.

Similarly, the corner gluing property fails in one of the four corners when 0101,

B and B ¢ B for some
[1]o] [0]o] [oJo] [1]o] [O]1]
pe{ bl i, B & & B B}
and then 3(B) does not have strong specification.

Remark 5.11. The ideas for strong specification in this section can be applied to
higher-dimensional shifts of finite type; see [5, 31].

6. EDGE COLORING

Edge coloring models are very common in statistical physics and other fields
[6, 7, 36, 37, 38, 39, 40]. For completeness, this section briefly discusses edge
coloring. The ideas of corner coloring in the previous sections apply to edge coloring
with some modifications. For simplicity, only the case of two colors is considered:
Sy = {0,1}. The results hold for all S,, p > 2. The unit square lattice is still
denoted by Zaxo. For m,n > 2, denote the set of all local patterns with colored
edges on Zy,xn over Sy by X ...
Fist, the ordering matrices X¢ and Y, n > 2, are introduced to arrange sys-

tematically all local patterns in X§,, and X¢ 5.
4

For n = 2, the horizontal ordering matrix X§ = ZXEJ and vertical ordering
=1
4
matrix Y§ = > Y5 are defined as
j=1
u2 u2, O 1
0 X0[ [0 X1 upXug|  furXus
. uy ur . 0 0
25 = and Y =
u2 w3 0 1 ’
1 0 1 1 1 Xu2) w1 Xuo
Ul Ul 1 1

where uy,uz € {0,1} with j = ¢(uq,uz). For n > 3, the higher order ordering
4

matrix X = > X7 . can be recursively defined recursively by
j=1
il (X5;1 ®Xg 1)+ (X2;2 & sz—1,3) )
(6.1) ni2 = (X§;1 ® sz—m) + (X2;2 ® XfL—1;4) )
i3 = (X2,3 ® anl;l) + (X§;4 ® X%&;B) )
i1 = (X853 @ X5 _10) + (X854 © X5, _14)

€
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4

Similarly, Y = ZYfm7 n > 3, can be defined recursively as above. Notably,
j=1

comparing (6.1) with (2.6), the discussion of edge coloring is very different from
that of corner coloring. Accordingly, the formulae for the transition matrices and
connecting operators must be changed.

Now, for m > 2 and 1 < a < 4, the connecting ordering matrix Sf,.,

[(S‘;‘n.a)kJ is defined, where (S¢ )M is the set of all local patterns of
! Pl 2m x om ]

mio

the form,

15 153 lm

a1 b1 |b1 by . b — as
k1 ko km

with b; € {0,1}, 1 < j < m—1, a = Y(ar,a2), k = Y(ki,....ky) and | =
¥(ly, ..., ln). Notably,

(62) Sin;oc = Y:;H—l;a
forallm>21<a<4.

4
Now, given a basic set Be C X5, ,, the horizontal transition matrix Hf = > HS ;
j=1

is defined by HS,; = [hg;j;s’t] where

2x2’

(63) {(Hhaas =1 1 (550), <5

=0 otherwise.
4

As in (6.1), for n > 3, Hf, = > HJ ; can be defined recursively. The vertical
j=1

4
transition matrix V§ = 3 V5 . is defined analogously.
j=1

Given Be C X5, 5, for m > 2 and 1 < a < 4, the connecting operator Sy, =

[(56. )k ZL ym €A be defined, where (an;a) is the cardinal number of all
k) 77L>< m

m;a k,l
Be-admissible local patterns in (an:a)k ;- Furthermore, from (6.2),
(64) Src;z;a = VrenJrl;a

for m > 2 and 1 < a < 4. Similarly, for V§, the connecting operator is denoted by
we. .m>2and 1 <a <4.

m;a
For m,n > 2, H, .4 = (Hflﬂ)m can be expressed in terms of Hf, , and Sy,
as follows. First, for n > 2, let

(6.5) Hn;l =H;, +H, and ng =Hy,.5 + HY 4.
Then, for m > 2 and 1 <[ < 2™, define

(6-6) Hr(v?,n = 7n;l1Hn;lz "'Hn;lm»
where [; € {1,2}, 1 <j<m, withli=¢ (1 —1,la —1,--- L, — 1).
For m > 2, let
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(6.7) HY oyt = [anﬂﬁl%ﬁ]lszﬁﬁﬁl ~ | H

e e

Hm,n+1;1 Hm,n+1;2
H¢ ’

m,n+1;3 m,n+1;4

Then, for 1 < ¢ < n—1, apply (6.7) ¢ times to decompose HY 1 = [H;7n+1;31;62;_”;5q hcricie
<B;<4,1<5<q

into 4%-many 2"79 x 2"7% submatrices Hy, . 11.5,.3,. .3,- 1he results that hold for
H¢ are also valid for V¢.
As in Proposition 2.4, H¢ 1818058, CAN be expressed as the product of ¢-

m

many Sf, 5 and Flfrll)’n_qﬂ.

Theorem 6.1. For any m,n>2 and1 <g<n-—1,

om

e _ e e e ()
(6.8) H 13813018, = Z ( m;B1Pmsfy T m;ﬂq)k . g1
k,l=1 ’
and
gm o
(1
(6.9) Vrfz,nJrl;ﬁl;ﬁz;.--;ﬁq = Z ( mips Winiga * 'Wﬁuﬁ()k . Vinin—q+1-
k,l=1 ’

Notably, in edge coloring, to color a lattice R C Z? is to color the horizonal
and vertical edges that connect the vertices in R. The definitions of rectangle-
extendability, crisscross-extendability and corner-extendable conditions C(1) ~
C(4) for edge coloring are similar to those for corner coloring. Furthermore, the
following theorem is obtained as Theorem 3.14. The details are omitted for brevity.

Theorem 6.2. If

(1) Be C X545 is crisscross-extendable,
(i) B. satisfies three of corner-extendable conditions C(i), 1 <1i <4,

then HE (B.) and V& (B.) are primitive for all n > 2 if and only if £(B.) is mizing.
The non-degeneracy of H§ and V§ is defined as follows.

Definition 6.3. An HS (V5) is non-degenerated if both Hs and Has (Va1 and
Va,2) are non-compressible.

That if both H$(B.) and V§(B.) are non-degenerated, then B, is crisscross-
extendable and satisfies corner filling conditions C(1), C(2) and C(4), can be easily
confirmed.

Definition 6.4. B

i) For q > 1, a finite sequence B, = (182 -+ By is called a diagonal sequence with
( ) q q g

length q if B; € {1,4} for 1 <j <q.

ii) A diagonal sequence B, = 132 - - By is called an S.-invariant diagonal sequence
(ii) g q g 4 g q

of order (m,q) if there exist m > 2 and an invariant index set K C {1,2,---,2™}
such that
(6.10) > (StusStuss "Sﬁm;ﬁq)kl 21

kel ’

foralll € K.
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(iii) A diagonal sequence Bq = p1B2 - Bq is called a We-invariant diagonal sequence

of order (m, q) if there exist m > 2 and an invariant index set K C {1,2,---,2™}
such that
(611) Z ( fn;ﬁlw’sl;ﬁz “.Wsﬁfﬁq)k,l = 1
keK ’
foralll € K.

As Theorem 4.2, the following theorem provides a finitely checkable sufficient
condition for the primitivity of H¢ (V¢), n > 2, and then for mixing of X(B,).

Theorem 6.5. Given B, C 3§, 4, if

(i) HS is non-degenerated,
(i) there exists an Se-invariant diagonal sequence Bq = 3152"'85 of order
(m, q) with its invariant index set IC,
(iil) > I?[f;ll)yn is primitive for 2 <n < g+ 1,
ek
then H¢ is primitive for all n > 2. Similarly, if

(i)’ V§ is non-degenerated,
(ii)’ there exists a We-invariant diagonal cycle Bq = B1Ba -+ By of order (m,q)
with its invariant index set K,
(iii)” > Véi)n is primitive for 2 <n < g+1,
lex
then V¢ is primitive for all n > 2. Furthermore, if (i)~ (iii) and (i)~ (iii)’ hold,
then 3(B.) is mizing.

Remark 6.6.

(i) As above, the method of primitive commutative cycles for corner coloring in
Section 4 is also wvalid for edge coloring. For brevily, the detailed statements of
primitive commutative cycles for edge coloring are omitted. The results concerning
strong specification in Section 5 apply to the edge coloring problem and detailed
statements are also omitted here.

(ii) 1t is known edge-coloring problem can convert into corner-coloring problem, but
the number of symbols will become large in general. In practice, many problems
are more convenient to be studied by transforming into edge-coloring problems; see
Ezxamples 6.7 and 6.8. Hence, the methods for edge coloring are discussed in this
section.

The following six-vertex model (or ice-type model) is used to illustrate Theorem
6.5.

Example 6.7. The rule of the siz-vertex model is that the number of arrows that
point inwards at each vertex is two, such that

T

For ease of computing, the rightward and upward arrows in each pattern in B are
replaced by the digit (color) 1 and the leftward and downward arrows in each pattern
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are replaced by the digit (color) 0. Then, the siz-vertex model can be transformed
into an edge-coloring problem with the colors in So = {0,1}. Indeed,

5= {0 O B DR DR BR ).

Clearly,

. . 0 . 0 0 . 0 1
Hg,, = H5, = { 1 } H. = [ 1 0 } and  Hs3 = { 0 0 ] :
<4.

Also, V5., =H3 ;, 1 < From (6.4),

— = O

0
B 0
2;1 — 1
0

o O O
— o o O

0

is easily verified. Then, B, = 1 is an Se-invariant diagonal sequence of order (2,1)

with index set KK = {1,2,3,4}. Clearly, ZH§)2 is primitive. Hence, by Theorem
=1

6.5, Hy, is primitive for all n > 2. Since V5 ; = H5.,, 1 < j < 4, V7 s also

primitive for all n > 2. Therefore, the siz-vertex model is mizing. However, it does

not have strong specification.

The following well-known eight-vertex model is shown to have strong specifica-
tion.

Example 6.8. The rule of the eight-vertex model is that the number of arrows that
point iwards at each vertex is even, such that

S Rt MR AR A

As in Example 6.7, the basic set Bg of the eight-vertex model can be transformed as
follows;

s.={ 00 DM BR OR DR DR DR OHO ).

Indeed, Be.g is the set of all tiles in X5, 5 that have even sums of digits on their
four edges.

It can be wverified that for any k > 2, the following admissible pattern U on
Anxn, M, N > 2k —3 , can be extended to Aaria—ok)x (N+a—2k)sk (kK — 2,k — 2))
but U can not extend to Znriayx(N+a)((—=2,—2)). Therefore, Beg does not satisfy
(HEC)y, for all k > 2.

0 1 0, 0,
0,X 0]0X 0[0 X O ***]0X0|
0 1 0 0
0, 0,
0X0 0X0
0 0
U= |: | N+4
0, 0,
0X0 0X0
0 0
0, 0, 0 0
0,X0]0 X0 - --]0X0]0X0|
0 0 0 0

M+ 4
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Figure 6.1.

Before proving strong specification of Be.g, some notation must be defined. A
lattice Ree = U Zax2((i,7)), T C 72, is called a simple-curve lattice if each of
(i,j)€T
its unit square lattices has exactly two shared edges that connect to two other unit
square lattices of Rg.. Clearly, two kinds of simple-curve lattices exist. They are
(i) bounded simple-curve lattices and (ii) unbounded simple-curve lattices.

X

(i) A bounded simple-curve lattice. (i) An unbounded simple-curve lattice.

Figure 6.2.

Now, the following facts can be easily verified and the proofs are omitted for
brevity.

Fact 1. Suppose R is unbounded. If the non-shared edges on Rs. are colored with
0 and 1, then there exists exactly one pattern U € Xpg_ (Bes) in which
colors on the non-shared edges are as assumed.

Fact 2. Suppose R is bounded and its non-shared edges are colored with 0 and 1.
Let E;(Rs.) be the set of all interior non-shared edges and E,(Rs:) be the
set of all exterior non-shared edges.

Given a global pattern W € 3(Be.s), for any bounded simple-curve lattice
Ry, both sums of the digits (colors) of W |g,, on Ei(Rs.) and E,(Rsc:) are
even.

Conversely, if both sums of digits on E;(Rs.) and on E,(Rs.) are even,
then there exists a pattern U € X, (Bes) in which the colors of its non-
shared edges are as assumed.

Let two allowable patterns Uy € g, (W1) and Us € 1lg, (Wa) with d(R1, Ra) > 2
where W1, Wy € 3¥(B..g) and Ry, Re C 72. The Jordan curve theorem can be used
to verify the existence of R; 2 R;, i € {1,2}, satisfting the following;

(i) ﬁq UEQ = Z2 and El DEQ = @,
(i) the union of all Zoxo((4, 7)) with Zaxa((i,7)) ( R1 # 0 and Zax2((4, 7)) () Rz
(0, can be represented as a union of simple-curve lattices that do not overlap
each other.
Then, a global pattern W € X(Bes) with W |g,= Uy and W |g,= Uz can be
constructed by the following steps.
Step 1. If Zoxa((i, §)) C Rk, k € {1,2}, color W |z, .((.7)= Wi |2as((0.0))-
Step 2. From Facts 1 and 2 above, the unit square lattices that remain after Step 1
can be tiled with the tiles in Be.g.

Therefore, ¥(Be.s) has strong specification.

Remark 6.9. By converting edge coloring into corner coloring, Fxample 6.8 is an
example for strong specification # (HFC)y,.
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APPENDIX A.

In this Appendix, (HFC);, UFP and corner gluing are expressed in terms of H,
and S,,, which are very useful in verification by using numerical computation.

First, (HFC); can be expressed in terms of the horizontal transition matrices
H,, and the connecting operators Sp,.,g and Wi,.q 8.

Theorem A.1l. Given B C Xax2(p), for k > 2, B satisfies (HFC)y, with size (M, N)
if and only if for 1 <i,7 <pM and1 <oy <p?, 1 <I< N +4, if

M M
p p

(i> (a> zl (SM+19O‘1’0‘2)(171' =1, (b) Zl (SM+1§04N+370¢N+4)]‘,q >1,
q= a=
pN+4 N+4
(c) 21 (Hn+a)gs 2 1, (d) 21 (Hyta)pq 21,
q= a=
where
s=1 (11,021, ,anta1) and t =1 (12,02, ,aNy42)
1,02 € Sp such that ¢ (a1, 0n2) = an, 1 <n < N 44,

(11) there exist 1 S ilaj/ Spju wzthz’ = 1/}(2/17Zl2a 7%\/[) cmdj’ = w(.]im]éa e aj?\/[)

such that
(a)
(SM+1;a2,a35M+1;a3,a4a e 7SM+1;041¢—17041¢)1',1'/ 2 17
(b)
(SM+1;aN1+1,aN1+2SJM+1;aN1+2,aN1+37 e ’SM+1;aN+2,(xN+3)j/’j > 1,
(c)
p™2
Y (Wrat180,8.Wiat 182,80+ Wt 182 ) g 2 1
q=1
(d)
p™2
> (WN2+1;@;,6;WN2+1;ﬂ;,6ga o ’WN2+1;6;_2,@;_1> 2 b
g=1 q,
where
Ni=N+4—k and Ny = N +4 — 2k,
s = 1/J (Oék+1,1, Q42,15 " 7CYN1,1) and t' = P (Oék+1,2; Qf42,2,° " 706N1,2)

61 - w(ak,17aN1+1,1) and /Bl - ¢(i2—1ajl/—1)’l S {2a 3» e 7k - 1}7
Bl/ = ¢(i9\/17k+2+l7j§\/[—k+2+l)al € {17 2, k= 2}7 and 51;—1 = 7/1(0%,27 aN1+l,2)7
then

(SM+1;042,&3SM+1;043,0447 T SM+1;O¢N+27QN+3)Z‘J‘ > 1
Notably, conditions (i) (a)~(d) present that the patterns U on Ay xn are B-
admissible as in Theorem 5.2. As in Fig. A.1, conditions (ii) (a)~(d) present that
U can be extended to A(]VI+4—2k)><(N+4—2k);k((k — 2, k— 2))
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7\
k
(if) (b)
..T____V_..V.... &
—_— (ii) <c>jl ;‘(ﬁ) (@ N
- U D S
N (i) (a) \
N
N\

M N\

A(Ma—2k)x (N+a—2k)sk (K — 2,k — 2))
Figure A.1.

Next, UFP with rectangle-extendability can be expressed in terms of the hori-
zontal transition matrices H,, and the connecting operators Sy, 3.

Theorem A.2. Suppose B C Yoyxa(p) is rectangle-extendable. 3(B) has the UFP
if and only if there exist a positive integer g such that for m,n >2 and 1 < a,b <
P 1< e d <pt, 1<id,j < pmtttand 1< st < pr TRt with

CL:’l/}(al,CLQ,"' ,Cl7n,2) and b:’l/)(b17b2,"' 7bm72)7

CZl/J(ClaCQ:"' 7C’Vl) and dzlﬂ(dl»d%"' adn)v
i = (i1, 02, yimtog+a)  and  §=Y(1, 52, Jmtaga),s
s = ¢(317 82, ,$7L+2g+4) and t= w(th t?a e 7t’n+29+4)a
if
. P4 pm4
(1) (a) ) (5777,73;0417042)(1’1' > ]-7 (b) Zl (Sm*&a'ﬁ—haﬁ)j’q > 1,
q= q=
" "
(C) Z (H'ﬁ)q,s Z 1’ (d) Z (Hﬁ)t,q Z 1’
g=1 q=1
(e) (Sﬁl73;a2,a35ﬁ173;a3,a47 e 7Sm73;aﬂ,727a7’1,71)i7j Z 1;
where

{ m=m+2g+4 and n=n+2g+ 4,
=1 (s,t), 1 <1<,
(i) (11618 Sm—1:82,85 " Sm—-1:8_1.80) 4 p = Lo
where B = (¢, dp), 1l € {1,2,--- ,n},
then there exist §,&,m,n, € Sp, 1 <1 <g, such that
(1) (Sin-temins Srr—apian -+ Sy nnnsa) i = 1
(2) (Sg+1;71,7259+1;72w3 e Sg+1;vn71,%)i<1),i<z> >1,

®) (Sgﬂwiﬁé ottmsg Sorti it ) ) i 2
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(4) <Sm_3;an+g+2-,an+g+3S7h_3;an+g+37an+g+4 o Sm_g;aﬁ727aﬁ73)j/’j > 17

where
i/ = ¢(§17€27“‘ 7§gvclvalaa27"' 7am727d17§i7£é7"' 55;)7
j/ :1/1(771’7727"' 7779,Cn,b1,b2,"' 7b’m_2ad’ﬂ7nllanéa"' 777/g)7
Z(l) = 1/}(517523"' 755) and 2(2) = ¢(711a772,"' ang)a
(3 — V(€L Eh, - ,fg) and i) = Dy, nl, - - ).

For example, let m = n = 3 and g = 2; see Fig. A.2.

S11 tll

s10| J1 | j2 J7 | tio

A @)

c3 | b1 |ds |yt mh

. 12 My
Aefa] || 4
: &

&i& || a|di
- by
s2 | i1 | i2 i7 | t2
S1 t1
Figure A.2.

Similarly, corner gluing condition with rectangle-extendability also can be ex-
pressed in terms of the horizontal transition matrices H,,, V,, and the connecting
operators Sp;a,3-

Theorem A.3. Suppose B C Xoyxa(p) is rectangle-extendable. X (B) is corner
gluing if and only if there exist a positive integer g such that for m,n > 2 and
1<a<p™, 1<b<p 1 1<s<p"9t2 gnd 1 < t < p™t9 with

{ a=1(ar,az, -, am) and b =1(by, by, -+ ,bp_1),

s = ¢(Sl7 52, 75n+g+2) and t= w(tlatQa e 7t’m+g)7
if
prtat? pmte
i) (a) 21 (Hntgt2)g s > 1, (b) Zl (Vintg+1isi+1,s041) g 2 1,
q= q=
(c) there exist ¢; € Sp, 1 < j <n+ g, such that
prta—1
Z (Ser!};al,aszJrg;az,aga e 7Sm+g;a,,b+g>an+g+1)t’,q = 17
qg=1
where

t' =Yt t2, -+ tmag—1),
a1 =1 (s2,tmrg) and o =P (si41,t-1),2 <1 <n+g+1,
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(ii) there exist dj € Sp, 1 < j <mn—1, such that

m—2

P

D (Sm-1818Sm—T82,80 s Sm—1i6u-1,60) g = 1y
q=1

where
a/ = 1/)(61‘2’ as, - - - 7am71)7
a1 = (a1, 0,) and ap = (bi-1,d1-1),2 <1 <n,
then there exist §,m € Sp, 1 <1 < g, such that

49 —

(1) (Serg;'n,'yszng;'yzfyz e Sm+g;'vg+1,’vg+z)t/m/ >1,
p.q

(2) Zl (Sg+1;51,5zsg+1;52,53 e Sg+1;5n71,5n) >1,
q:

where

11 =P (82, tm+g) and Vg2 =V (Sg43,am),

Y= (s141,&-1),2 <1< g+ 2,

01 =Y (sg43,a1) and & = ¥ (sgri42,b1-1),2 <1 <,

n= ¢(01,U27 U 7779) and 77’ = ¢(ﬁ1,772a cr g, G1,a2, 0 7a'm—1)-

For example, let m =n = 3 and g = 2; see Fig. A.3.

ST ba
56 $(2) b1

ss| miimz | a1 | az| as

“ Ay

sa |ty |t |t |ta |ts

S1

Figure A.3.
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