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Abstract. This investigation studies nonemptiness problems of plane square
tiling. In the edge coloring (or Wang tiles) of a plane, unit squares with
colored edges of p colors are arranged side by side such that adjacent tiles
have the same colors. Given a set of Wang tiles B, the nonemptiness problem
is to determine whether or not Σ(B) �= ∅, where Σ(B) is the set of all global
patterns on Z

2 that can be constructed from the Wang tiles in B.
When p ≥ 5, the problem is well known to be undecidable. This work

proves that when p = 2, the problem is decidable. P(B) is the set of all
periodic patterns on Z

2 that can be generated by B. If P(B) �= ∅, then B has
a subset B′ of minimal cycle generator such that P(B′) �= ∅ and P(B′′) = ∅ for
B′′

� B′. This study demonstrates that the set of all minimal cycle generators
C(2) contains 38 elements. N (2) is the set of all maximal noncycle generators:

if B ∈ N (2), then P(B) = ∅ and ˜B � B implies P( ˜B) �= ∅. N (2) has eight
elements. That Σ(B) = ∅ for any B ∈ N (2) is proven, implying that if Σ(B) �=
∅, then P(B) �= ∅. The problem is decidable for p = 2: Σ(B) �= ∅ if and only if
B has a subset of minimal cycle generators. The approach can be applied to
corner coloring with a slight modification, and similar results hold.

1. Introduction

The coloring of unit squares on Z
2 has been studied for many years [6]. In

1961, in studying the method of proving theorems by pattern recognition, Wang
[12] started to study the square tiling of a plane. The unit squares with colored
edges are arranged side by side so that the adjacent tiles have the same color; the
tiles cannot be rotated or reflected. Today, such tiles are called Wang tiles or Wang
dominos [4, 6].

The 2× 2 unit square is denoted by Z2×2. Let Sp be a set of p (≥ 1) colors. The

total set of all Wang tiles is denoted by Σw
2×2(p) ≡ SZ2×2

p . A set B of Wang tiles,
such that B ⊂ Σw

2×2(p), is called a basic set (of Wang tiles). Let Σ(B) be the set
of all global patterns on Z

2 that can be constructed from the Wang tiles in B and
let P(B) be the set of all periodic patterns on Z

2 that can be constructed from the
Wang tiles in B. Clearly, P(B) ⊆ Σ(B). The nonemptiness problem is to determine
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whether or not Σ(B) �= ∅. In [12], Wang conjectured that any set of tiles that can
tile a plane can tile the plane periodically, i.e.,

(1.1) if Σ(B) �= ∅, then P(B) �= ∅.
However, in 1966, Berger [4] proved that Wang’s conjecture was wrong. He

presented a set B of 20426 Wang tiles that could only tile the plane aperiodically:

(1.2) Σ(B) �= ∅ and P(B) = ∅.
Later, he reduced the number of tiles to 104. Thereafter, smaller basic sets were
found by Knuth, Läuchli, Robinson, Penrose, Ammann, Culik and Kari [5, 6, 7, 10,
11]. Currently, the smallest number of tiles that can tile the plane aperiodically is
13, with five colors: (1.2) holds and then (1.1) fails for p = 5 [5].

In studying the multi-dimensional shifts of finite type and tiling dynamics [1,
2, 3], we come across this problem. This work shows that Wang’s conjecture (1.1)
holds provide p = 2: any set of Wang tiles with two colors that can tile a plane can
tile the plane periodically.

Statement (1.1) is understood by studying how periodic patterns can be gen-
erated from a given basic set. First, the minimal cycle generator is introduced.
B ⊂ Σw

2×2(p) is called a minimal cycle generator if P(B) �= ∅ and P(B′) = ∅ when-
ever B′

� B. B ⊂ Σw
2×2(p) is called a maximal noncycle generator if P(B) = ∅

and P(B′′) �= ∅ for any B′′
� B. Given p ≥ 2, denote the set of all minimal cycle

generators by C(p) and the set of maximal noncycle generators by N (p). Clearly,

(1.3) C(p) ∩N (p) = ∅.
Statement (1.1) follows for p = 2 if

(1.4) Σ(B) = ∅ for any B ∈ N (2)

can be shown.
In this study, for p = 2, C(2) and N (2) can be listed explicitly, and (1.4) is shown

to hold. Indeed, C(2) has 38 members and N (2) has eight members. Furthermore,
under the symmetry group D4 of Z2×2 and the permutation group Sp of colors of
horizontal and vertical edges separately, C(2) can be classified into six classes and
N (2) into only one class.

To prove Σ(B) = ∅ for any B ∈ N (2), the vertical ordering matrices Yw;m×2

of local patterns on Zm×2, which was developed in another work [1], are applied.
The impossibility of generating an allowable pattern on Z4×4 from any B ∈ N (2)
is demonstrated. For p = 3, (1.4) is still under investigation because the numbers
of elements in C(3) and N (3) are high. The number of C(3) exceeds 5 · 105. Under
the symmetry groups, C(3) still contains thousands of classes.

Notably, if (1.1) holds, then the nonemptiness problem can easily be determined
by studying P(B), as in the case p = 2. More precisely, Σ(B) �= ∅ if and only if B
has a subset of minimal cycle generators.

In corner coloring, the basic set of 44 tiles with six colors that can tile the
plane aperiodically without any periodic patterns has been established elsewhere [9].
Hence, (1.2) holds and then (1.1) fails for p = 6. The method used to study Wang
tiles (edge coloring) can also be applied to study corner coloring. For p = 2, no
allowable pattern on Z5×5 can be generated from any maximal noncycle generator.
Hence, (1.4) holds and the nonemptiness problem is decidable for corner coloring,
too.
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For recent results on Wang tiles (colored edges) and colored corners with their
applications to computer graphics, see Lagae and Dutré [8] and the references
therein.

The rest of this paper is arranged as follows. Section 2 proves (1.1) for corner
coloring when p = 2. Section 3 proves (1.1) for Wang tiles when p = 2.

2. Corner coloring

This section studies corner coloring and proves that (1.1) holds for p = 2. Corner
coloring is studied first because the ordering matrix of corner coloring is simpler
than that of edge coloring. Some notation must be introduced first. In this sec-
tion, Z2×2 represents the square lattice with vertices (0, 0), (0, 1), (1, 0) and (1, 1).
Furthermore, for any (i, j) ∈ Z

2, define Z2×2(i, j) = {(i, j), (i, j + 1), (i + 1, j),
(i+ 1, j + 1)}.

For given positive integers m and n, the rectangular lattice Zm×n is defined by

Zm×n = {(i, j)|0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1} .

Denote the set of p colors by Sp = {0, 1, . . . , p − 1}. The set of all global patterns
on Z

2 with colors in Sp is denoted by

Σ2
p = SZ

2

p =
{

U |U : Z2 → Sp

}

.

The set of all local patterns on Zm×n is defined by

Σm×n(p) = {U |Zm×n
: U ∈ Σ2

p}.

Now, for any given Bc ⊂ Σ2×2(p), Bc is called a basic set. The set Σm×n(Bc) of
all patterns on Zm×n generated by Bc is defined by

Σm×n(Bc) =
{

U ∈ Σm×n(p) : U |Z2×2(i,j)∈ Bc for 0 ≤ i ≤ m− 2, 0 ≤ j ≤ n− 2
}

,

and the set Σ(Bc) of all global patterns on Z
2 generated by Bc is defined by

Σ(Bc) =
{

U ∈ Σ2
p : U |Z2×2(i,j)∈ Bc for i, j ∈ Z

}

.

Clearly,

(2.1) if Σm×n(Bc) = ∅ for some m,n ≥ 2, then Σ(Bc) = ∅.

Then, the set P(Bc) of all periodic patterns generated by Bc is defined by

P(Bc) = {U = (ui,j) ∈ Σ(Bc) | ui,j = ui+n,j = ui,j+k

for all i, j ∈ Z and for some n, k ≥ 1} .

For simplicity, a periodic pattern is also called a cycle.
Now, the symmetry of the unit square Z2×2 is introduced. The symmetry group

of the rectangle Z2×2 is D4, the dihedral group of order eight. The group D4 is
generated by the rotation ρ, through π

2 , and the reflection m about the y-axis.
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Denote the elements of D4 by D4 = {I, ρ, ρ2, ρ3,m,mρ,mρ2,mρ3}.

mρ

mρ2

mρ3

m

ρ

Therefore, given a basic set Bc ⊂ Σ2×2(p) and any element τ ∈ D4, another
basic set (Bc)τ can be obtained by transforming the local patterns in Bc by τ .

Additionally, consider the permutation group Sp on Sp. If η ∈ Sp and η(0) = i0,
η(1) = i1, . . . , η(p− 1) = ip−1, we write

η =

(

0 1 · · · p− 1
i0 i1 · · · ip−1

)

.

For η ∈ Sp and Bc ⊂ Σ2×2(p), another basic set (Bc)η can be obtained.
D4 and Sp can be combined to define the equivalence classes of basic sets, as

follows: given Bc ⊂ Σ2×2(p), define the class [Bc] of Bc by

[Bc] = {B′
c ⊂ Σ2×2(p) : B′

c = ((Bc)τ )η, τ ∈ D4, η ∈ Sp} .

The nonemptiness of Σ(Bc) and P(Bc) is clearly independent of the choice of ele-
ments in [Bc]: for any B′

c ∈ [Bc],

Σ(B′
c) �= ∅ (or P(B′

c) �= ∅) if and only if Σ(Bc) �= ∅ (or P(Bc) �= ∅).

More definitions are required.

Definition 2.1. For Bc ⊂ Σ2×2(p):

(i) Bc is called a cycle generator if P(Bc) �= ∅.
(ii) Bc is called a minimal cycle generator if P(Bc) �= ∅ and P(B′

c) = ∅ for all
B′
c � Bc.

(iii) Bc is called a noncycle generator if P(Bc) = ∅.
(iv) Bc is called a maximal noncycle generator if P(Bc) = ∅ and P(B′′

c ) �= ∅ for
all B′′

c � Bc .
(v) Cc(p) is the set of all minimal cycle generators that are subsets of Σ2×2(p).
(vi) Nc(p) is the set of all maximal noncycle generators that are subsets of

Σ2×2(p).

Notably, if Bc is a cycle generator, then it has a subset of minimal cycle gener-
ators. In contrast, if B′

c is a noncycle generator, then B′
c is a subset of a maximal

noncycle generator.
From now on, only the case p = 2 is considered: S2 = {0, 1}. In another work [1],

the horizontal ordering matrix X2×2 = [xp,q ]4×4 for all local patterns in Σ2×2(2) is
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defined by

(2.2)

For any n ≥ 2, the horizontal ordering matrix X2×n for all local patterns of Σ2×n(2)
can also be defined. The recursive formula for generating X2×n from X2×2 is as
follows. Let

(2.3) X2×n = [xn;i,j ]2n×2n =

[

X2×n;1 X2×n;2

X2×n;3 X2×n;4

]

,

where X2×n;i is a 2n−1 × 2n−1 matrix of patterns. Then,

(2.4) X2×(n+1) =

⎡

⎢

⎢

⎣

x1,1X2×n;1 x1,2X2×n;2 x1,3X2×n;1 x1,4X2×n;2

x2,1X2×n;3 x2,2X2×n;4 x2,3X2×n;3 x2,4X2×n;4

x3,1X2×n;1 x3,2X2×n;2 x3,3X2×n;1 x3,4X2×n;2

x4,1X2×n;3 x4,2X2×n;4 x4,3X2×n;3 x4,4X2×n;4

⎤

⎥

⎥

⎦

is a 2n+1×2n+1 matrix. Consequently, given a basic set Bc, the associated horizontal
transition matrix Hn(Bc) is obtained from X2×n. Indeed, H2(Bc) = [hi,j ], where
hi,j = 1 if and only if xi,j ∈ Bc. The recursive formula of X2×n can also be applied
to Hn(Bc). If

Hn(Bc) =

[

Hn;1 Hn;2

Hn;3 Hn;4

]

2n×2n
,

where Hn;j is a 2n−1 × 2n−1 matrix, then

(2.5) Hn+1(Bc) =

⎡

⎢

⎢

⎣

h1,1Hn;1 h1,2Hn;2 h1,3Hn;1 h1,4Hn;2

h2,1Hn;3 h2,2Hn;4 h2,3Hn;3 h2,4Hn;4

h3,1Hn;1 h3,2Hn;2 h3,3Hn;1 h3,4Hn;2

h4,1Hn;3 h4,2Hn;4 h4,3Hn;3 h4,4Hn;4

⎤

⎥

⎥

⎦

.

Let Γm×n(Bc) be the cardinal number of Σm×n(Bc). Hence, Γm×n(Bc) is equal to
∣

∣Hm−1
n (Bc)

∣

∣, where |A| is the sum of all entries in matrix A.
For convenience, the name of each local pattern in Σ2×2(2), which is listed in

(2.2), is given as follows.
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Definition 2.2. Denote by

(2.6) X2×2 =

⎡

⎢

⎢

⎣

O e2 e4 r
e1 t I e3
e3 J b e1
l e4 e2 E

⎤

⎥

⎥

⎦

.

Note that the ordering of four corners of Z2×2 is given by

1 2

3 4 , which was used
in [1, 2, 3]. For each i ∈ {1, 2, 3, 4}, ei (ei) is designed for one 1 (0) at the i-th
corner and three 0s (1s) on the other corners. As two 1s (and two 0s), t stands
for top, b for bottom, r for right, l for left, I for diagonal and J for anti-diagonal.
Finally, O stands for four 0s, and the full matrix E stands for four 1s.

The following theorem groups all minimal cycle generators into seven classes and
maximal noncycle generators into four classes. Table A.1 of Appendix A presents
the symmetries of minimal cycle generators in Cc(2), and Table A.2 lists those of
maximal noncycle generators in Nc(2).

Theorem 2.3.

(i) Cc(2) contains 17 elements and is classified into seven classes of minimal
cycle generators which are given by
(1) [{O}] = {{O}, {E}},
(2) [{b, t}] = {{b, t}, {l, r}},
(3) [{I, J}] = {{I, J}},
(4) [{e1, e2, e3, e4}] = {{e1, e2, e3, e4}, {e1, e2, e3, e4}},
(5) [{e1, e2, e3, e4, b}]={{e1, e2, e3, e4, b},{e3, e4, e1, e2, t}, {e1, e3, e2, e4, r},

{e2, e4, e1, e3, l}},
(6) [{e1, e4, J}] = {{e1, e4, J}, {e2, e3, I}, {e2, e3, J}, {e1, e4, I}},
(7) [{e1, e4, e1, e4}] = {{e1, e4, e1, e4}, {e2, e3, e2, e3}}.

(ii) Nc(2) contains 56 elements and is classified into four classes of maximal
noncycle generators which are given by
(1) [{e1, e2, e1, e2, e4, J, r, b}] ≡ [N1],
(2) [{e1, e2, e1, e2, e4, J, r, t}] ≡ [N2],
(3) [{e1, e4, e1, e2, e3, I, l, t}] ≡ [N3],
(4) [{e1, e2, e3, e1, e2, e4, J, l, b}] ≡ [N4].

(iii) If Bc ∈ Nc(2), then Σ(Bc) = ∅.
Furthermore, (1.1) holds for p = 2.

Proof. The 17 basic sets in Theorem 2.3(i) are easily shown to be minimal cycle
generators. The 56 basic sets that are listed in Table A.2 are obtained from the
17 minimal cycle generators in (i) by finding all maximal basic sets Bc ⊂ Σ2×2(2)
that do not contain any minimal cycle generator in (i). If the 56 basic sets cannot
generate any periodic pattern, then the set of 17 minimal cycle generators is Cc(2)
and the set of 56 basic sets, listed in Table A.2, is Nc(2).

Now, the stronger result that the 56 basic sets in Theorem 2.3(ii) cannot generate
global patterns on Z

2 is to be proven. Since (ii) specifies all four classes of the
56 basic sets, only the four cases Ni, i = 1, 2, 3, 4 need to be considered. It is
straightforward to check that H4

4(Ni) is a zero matrix, i = 1, 2, 3, 4; see Appendix
A.3 for H2(N1) and H4(N1). The details are omitted here. Hence, Γ5×4(Ni) = 0
such that Σ5×4(Ni) = ∅, and then Σ(Ni) = ∅. The results (i), (ii) and (iii) follow.
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Finally, from Theorem 2.3(iii), Σ(Bc) = ∅ is easily seen for any Bc ∈ Σ2×2(2)
with P(Bc) = ∅. Therefore, (1.1) holds for p = 2. The proof is complete. �

3. Wang tiles

This section discusses edge coloring (Wang tiles). In this section, the unit square
is still denoted by Z2×2. The left, right, bottom, and top edges of the unit square
Z2×2 are given by h1(Z2×2), h2(Z2×2), v1(Z2×2), and v2(Z2×2), respectively. De-
note the set of all local patterns with colored edges on Z2×2 (Wang tiles) over Sp

by Σw
2×2(p). Given B ⊂ Σw

2×2(p), let Σm×n(B) be the set of all local patterns on
Zm×n generated by B; let Σ(B) be the set of all global patterns generated by B,
and P(B) be the set of all periodic patterns generated by B. Clearly,
(3.1) if Σm×n(B) = ∅ for some m,n ≥ 2, then Σ(B) = ∅.

The ideas of corner coloring can be applied to edge coloring with some required
modifications. The main difference between edge coloring and corner coloring is
that the former is less rigid than the latter. More precisely, in edge coloring,
every edge needs only be matched with other unit squares in the horizontal or
vertical directions. Therefore, the horizontal and vertical matchings are mutually
independent in the first stage. In corner coloring, the color of every corner must be
matched with the colors of all four unit squares around the corner, and then the
horizontal and vertical directions are closely related.

Since, in edge coloring, the permutations of colors in the horizontal and verti-
cal directions are mutually independent, denote the permutations of colors in the
horizontal and vertical edges by ηh ∈ Sp and ηv ∈ Sp, respectively. Then, for any
B ⊂ Σw

2×2(p), define the equivalence class [B] of B by

[B] =
{

B′ ⊂ Σw
2×2(p) : B′ = (((B)τ )ηh

)ηv
, τ ∈ D4 and ηh, ηv ∈ Sp

}

.

As in corner coloring, the nonemptiness of Σ(B) and P(B) is independent of the
choice of elements in [B].

The minimal cycle generator and maximal noncycle generator are defined as
in Definition 2.1. The sets of all minimal cycle generators and maximal noncycle
generators contained in Σw

2×2(p) are denoted by C(p) and N (p), respectively.
From now on, only the case p = 2 is considered. The vertical ordering matrix

Yw;2×2 = [yw;i,j ] of all local patterns in Σw
2×2(p) is denoted by

(3.2)
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=

⎡

⎢

⎢

⎣

yw;1,1 yw;1,2 yw;1,3 yw;1,4

yw;2,1 yw;2,2 yw;2,3 yw;2,4

yw;3,1 yw;3,2 yw;3,3 yw;3,4

yw;4,1 yw;4,2 yw;4,3 yw;4,4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

O E2 E4 R
E3 J B E1

E1 T I E3

L E4 E2 E

⎤

⎥

⎥

⎦

.(3.3)

To match colors in the vertical direction, the permutation matrix R2 for four ele-
ments {1, 2, 3, 4} with 1 → 3 → 1 and 2 → 4 → 2 is introduced:

(3.4) R2 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎦

.

Now, the ordering matrix Yw;2×3 of local patterns , where • ∈ {0, 1}, on
Z2×3 is arranged in

(3.5) Yw;2×3 = Y
[2]
w;2×2 ≡ Yw;2×2 ((I4 +R2)Yw;2×2) ,

where Iq is the q × q identity matrix. Furthermore, for n ≥ 3, the ordering matrix
Yw;2×n on Z2×n is obtained recursively by
(3.6)

Yw;2×n = Y
[n−1]
w;2×2 ≡ Yw;2×2

(

(I4 +R2)Y
[n−2]
w;2×2

)

= Yw;2×2

(

(I4 +R2)Yw;2×(n−1)

)

.

The proofs of (3.5) and (3.6) are straightforward and are omitted here.

The ordering matrixYw;3×2 of local patterns
••••••

•
• , where • ∈ {0, 1}, on Z3×2 is

quite different from that associated with corner coloring. Indeed, Yw;3×2 of
••••••

•
•

has 27 elements and is arranged in a 24× 24 matrix, as presented in Appendix A.4.
Furthermore, to introduce the vertical ordering matrix Yw;m×2 on Zm×2, the

following notation is required. For any two q×q matrices A = (ai,j) and B = (bi,j),
where ai,j and bi,j are numbers or matrices, the Hadamard product of A ◦ B is
defined by A ◦B = (ai,jbi,j). Then, for m ≥ 3, if

Yw;m×2 =

[

Yw;m;1 Yw;m;2

Yw;m;3 Yw;m;4

]

,
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then
(3.7)

Yw;(m+1)×2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

yw;1,1 × yw;1,2 × yw;1,1 × yw;1,2 ×
× yw;1,3 × yw;1,4 × yw;1,3 × yw;1,4

yw;2,1 × yw;2,2 × yw;2,1 × yw;2,2 ×
× yw;2,3 × yw;2,4 × yw;2,3 × yw;2,4

yw;3,1 × yw;3,2 × yw;3,1 × yw;3,2 ×
× yw;3,3 × yw;3,4 × yw;3,3 × yw;3,4

yw;4,1 × yw;4,2 × yw;4,1 × yw;4,2 ×
× yw;4,3 × yw;4,4 × yw;4,3 × yw;4,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

◦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yw;m;1 × Yw;m;1 × Yw;m;2 × Yw;m;2 ×
× Yw;m;3 × Yw;m;3 × Yw;m;4 × Yw;m;4

Yw;m;1 × Yw;m;1 × Yw;m;2 × Yw;m;2 ×
× Yw;m;3 × Yw;m;3 × Yw;m;4 × Yw;m;4

Yw;m;1 × Yw;m;1 × Yw;m;2 × Yw;m;2 ×
× Yw;m;3 × Yw;m;3 × Yw;m;4 × Yw;m;4

Yw;m;1 × Yw;m;1 × Yw;m;2 × Yw;m;2 ×
× Yw;m;3 × Yw;m;3 × Yw;m;4 × Yw;m;4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where × means no pattern.
As in m = 2, to match colors in the vertical direction for Yw;m×2, m ≥ 3, the

22m−2 × 22m−2 permutation matrix Rm = [Rm;i,j ] must be introduced. For any
1 ≤ i ≤ 22m−2, the existence of a unique α1, α2, . . . , α2m−2 ∈ {0, 1} such that

i = 1 +

2m−2
∑

q=1

αq2
2m−2−q

is easy to verify. Let

ξ(i) =

m−1
∑

q=1

α2q−12
m−1−q.

Hence, there exist unique α′
1, α

′
3, . . . , α

′
2m−3 ∈ {0, 1} such that

m−1
∑

q=1

α′
2q−12

m−1−q ≡ ξ(i) + 1
(

mod 2m−1
)

.

Now, define

(3.8) Rm;i,j = 1 if and only if j = r(i),

where

r(i) = 1 +

m−1
∑

q=1

(

α′
2q−12

2m−2−(2q−1) + α2q2
2m−2−2q

)

.

Furthermore, define

(3.9) Rm =
2m−1−1
∑

l=0

Rl
m.
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Now, the ordering matrix Yw;m×3 on Zm×3 can be shown as

(3.10) Yw;m×3 = Y
[2]
w;m×2 ≡ Yw;m×2 (RmYw;m×2)

and

(3.11) Yw;m×n = Y
[n−1]
w;m×2 ≡ Yw;m×2

(

RmY
[n−2]
w;m×2

)

for n ≥ 3. The proofs of (3.10) and (3.11) are similar to those in corner coloring
and are omitted here.

Given B ⊂ Σw
2×2(2), the associated transition matrix Vw;m(B) is obtained from

Yw;m×2. Indeed, Vw;2(B) = [vi,j ], where vi,j = 1 if and only if yw;i,j ∈ B. As in
corner coloring, the recursive formula of Yw;m×2 can also be applied to Vw;m(B)
as follows. If

Vw;m(B) =
[

Vm;1 Vm;2

Vm;3 Vm;4

]

22m−2×22m−2

,

where Vm;j is a 22m−3 × 22m−3 matrix, then

(3.12)

Vw;m+1(B)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1,1 0 v1,2 0 v1,1 0 v1,2 0
0 v1,3 0 v1,4 0 v1,3 0 v1,4

v2,1 0 v2,2 0 v2,1 0 v2,2 0
0 v2,3 0 v2,4 0 v2,3 0 v2,4

v3,1 0 v3,2 0 v3,1 0 v3,2 0
0 v3,3 0 v3,4 0 v3,3 0 v3,4

v4,1 0 v4,2 0 v4,1 0 v4,2 0
0 v4,3 0 v4,4 0 v4,3 0 v4,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

◦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vm;1 Om Vm;1 Om Vm;2 Om Vm;2 Om

Om Vm;3 Om Vm;3 Om Vm;4 Om Vm;4

Vm;1 Om Vm;1 Om Vm;2 Om Vm;2 Om

Om Vm;3 Om Vm;3 Om Vm;4 Om Vm;4

Vm;1 Om Vm;1 Om Vm;2 Om Vm;2 Om

Om Vm;3 Om Vm;3 Om Vm;4 Om Vm;4

Vm;1 Om Vm;1 Om Vm;2 Om Vm;2 Om

Om Vm;3 Om Vm;3 Om Vm;4 Om Vm;4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Om is the 22m−3× 22m−3 zero matrix. Let Γm×n(B) be the cardinal number
of Σm×n(B). Therefore,

(3.13) Γm×n(B) =
∣

∣

∣Vw;m(B) (RmVw;m(B))n−2
∣

∣

∣ .

Now, the following theorem gives the six classes of 38 minimal cycle generators
in C(2) and the one class of eight maximal noncycle generators in N (2). Tables A.5
and A.6 present the details of six equivalent classes of C(2) and the symmetries of
eight maximal noncycle generators in N (2), respectively.

Theorem 3.1.

(i) The six classes of minimal cycle generators in C(2) are given as follows:
(1) [{O}],
(2) [{E1, E4}],
(3) [{E1, E1}],
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(4) [{B, T}],
(5) [{E1, B,R}],
(6) [{E1, E2, B}].

(ii) The one class of maximal noncycle generators in N (2) is given by
[{E1, E2, E3, E4, T, R}] ≡ [Nw].

(iii) If B ∈ N (2), then Σ(B) = ∅.
Furthermore, (1.1) holds for p = 2.

Proof. The idea of this proof is similar to that of corner coloring. The 38 basic sets
in Table A.5 are easily seen to be minimal cycle generators. The eight basic sets
in Table A.6 are obtained from the 38 minimal cycle generators in Table A.5 by
finding all maximal basic sets B ⊂ Σw

2×2(2) that do not contain any minimal cycle
generator in Table A.5.

Then, to prove (i), (ii) and (iii), only Σ(Nw) = ∅ need be proven. Form (3.8),
(3.12) and (3.13), Γ3×4(Nw) = 0 is straightforwardly proven; then, Σ(Nw) = ∅.
Therefore, the results (i), (ii) and (iii) hold.

Finally, from (iii), Σ(B) = ∅ is easily seen for any B ⊂ Σw
2×2(2) with P(B) = ∅.

Therefore, (1.1) holds for p = 2 in corner coloring. The proof is complete. �

Appendix A

A.1. The symmetries of D4 and S2 of 17 minimal cycle generators in Cc(2) are listed
in Table A.1.

Table A.1

Minimal cycle generator ρ ρ2 ρ3 m mρ mρ2 mρ3 0 ↔ 1

(1) 1× 1 {O} • • • • • • • (2)

(2) 1× 1 {E} • • • • • • • (1)

(3) 1× 2 {t, b} (4) • (4) • (4) • (4) •

(4) 2× 1 {l, r} (3) • (3) • (3) • (3) •

(5) 2× 2 {I, J} • • • • • • • •

(6) 2× 2 {e1, e2, e3, e4} • • • • • • • (7)

(7) 2× 2 {e1, e2, e3, e4} • • • • • • • (6)

(8) 3× 2 {r, e1, e3, e2, e4} (10) (9) (11) (9) (10) • (11) (9)

(9) 3× 2 {l, e2, e4, e1, e3} (11) (8) (10) (8) (11) • (10) (8)

(10) 2× 3 {t, e3, e4, e1, e2} (9) (11) (8) • (8) (11) (9) (11)

(11) 2× 3 {b, e1, e2, e3, e4} (8) (10) (9) • (9) (10) (8) (10)

(12) 3× 3 {e1, e4, J} (13) • (13) (13) • (13) • (15)

(13) 3× 3 {e2, e3, I} (12) • (12) (12) • (12) • (14)

(14) 3× 3 {e2, e3, J} (15) • (15) (15) • (15) • (13)

(15) 3× 3 {e1, e4, I} (14) • (14) (14) • (14) • (12)

(16) 4× 4 {e2, e3, e2, e3} (17) • (17) (17) • (17) • •

(17) 4× 4 {e1, e4, e1, e4} (16) • (16) (16) • (16) • •
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A.2. Given Bc ∈ Nc(2), denote by Bc, Bc;1, Bc;2, Bc;3, Bc;4, Bc;5, Bc;6, Bc;7 the basic
sets transformed by η = ( 0 1

1 0 ), ρ, ρ
2, ρ3, m, mρ, mρ2, mρ3, respectively. Table A.2

lists the 56 maximal noncycle generators in Nc(2).

Table A.2

N1 ≡ {e1, e2, e1, e2, e4, J, r, b} N1 = {e1, e2, e1, e2, e4, I, l, t}

N1;1 = {e1, e3, e1, e2, e3, I, r, t} N1;1 = {e1, e3, e1, e2, e3, J, l, b}

N1;2 = {e3, e4, e1, e3, e4, J, l, t} N1;2 = {e3, e4, e1, e3, e4, I, r, b}

N1;3 = {e2, e4, e2, e3, e4, I, l, b} N1;3 = {e2, e4, e2, e3, e4, J, r, t}

N1;4 = {e1, e2, e1, e2, e3, I, l, b} N1;4 = {e1, e2, e1, e2, e3, J, r, t}

N1;5 = {e2, e4, e1, e2, e4, J, l, t} N1;5 = {e2, e4, e1, e2, e4, I, r, b}

N1;6 = {e3, e4, e2, e3, e4, I, r, t} N1;6 = {e4, e4, e2, e3, e4, J, l, b}

N1;7 = {e1, e3, e1, e3, e4, J, r, b} N1;7 = {e1, e3, e1, e3, e4, I, l, t}

N2 ≡ {e1, e2, e1, e2, e4, J, r, t} N2 = {e1, e2, e1, e2, e4, I, l, b}

N2;1 = {e1, e3, e1, e2, e3, I, l, t} N2;1 = {e1, e3, e1, e2, e3, J, r, b}

N2;2 = {e3, e4, e1, e3, e4, J, l, b} N2;2 = {e3, e4, e1, e3, e4, I, r, t}

N2;3 = {e2, e4, e2, e3, e4, I, r, b} N2;3 = {e2, e4, e2, e3, e4, J, l, t}

N2;4 = {e1, e2, e1, e2, e3, I, l, t} N2;4 = {e1, e2, e1, e2, e3, J, r, b}

N2;5 = {e2, e4, e1, e2, e4, J, r, t} N2;5 = {e2, e4, e1, e2, e4, I, l, b}

N2;6 = {e3, e4, e2, e3, e4, I, r, b} N2;6 = {e3, e4, e2, e3, e4, J, l, t}

N2;7 = {e1, e3, e1, e3, e4, J, l, b} N2;7 = {e1, e3, e1, e3, e4, I, r, t}

N3 ≡ {e1, e4, e1, e2, e3, I, l, t} N3 = {e1, e4, e1, e2, e3, J, r, b}

N3;1 = {e2, e3, e1, e3, e4, J, l, b} N3;1 = {e2, e3, e1, e3, e4, I, r, t}

N3;2 = {e1, e4, e2, e3, e4, I, r, b} N3;2 = {e1, e4, e2, e3, e4, J, l, t}

N3;3 = {e2, e3, e1, e2, e4, J, r, t} N3;3 = {e2, e3, e1, e2, e4, I, l, b}

N4 ≡ {e1, e2, e3, e1, e2, e4, J, l, b} N4 = {e1, e2, e3, e1, e2, e4, I, r, t}

N4;1 = {e1, e2, e3, e1, e3, e4, I, r, b} N4;1 = {e1, e2, e3, e1, e3, e4, J, l, t}

N4;2 = {e1, e3, e4, e2, e3, e4, J, r, t} N4;2 = {e1, e3, e4, e2, e3, e4, I, l, b}

N4;3 = {e1, e2, e4, e2, e3, e4, I, l, t} N4;3 = {e1, e2, e4, e2, e3, e4, J, r, b}

N4;4 = {e1, e2, e3, e1, e2, e4, I, r, b} N4;4 = {e1, e2, e3, e1, e2, e4, J, l, t}

N4;5 = {e1, e2, e4, e2, e3, e4, J, l, b} N4;5 = {e1, e2, e4, e2, e3, e4, I, r, t}

N4;6 = {e1, e3, e4, e2, e3, e4, I, l, t} N4;6 = {e1, e3, e4, e2, e3, e4, J, r, b}

N4;7 = {e1, e2, e3, e1, e3, e4, J, r, t} N4;7 = {e1, e2, e3, e1, e3, e4, I, l, b}
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A.3. H2(N1) =

⎡

⎢

⎢

⎣

0 1 0 1
1 0 0 0
0 1 1 1
0 1 1 0

⎤

⎥

⎥

⎦

and

H4(N1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

A.4. The ordering matrix of Yw;3×2 of local patterns
••••••

•
• on Z3×2 is
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A.5. The details of six equivalence classes of C(2) are listed in Table A.5.

Table A.5

[{O}] = {{O}, {I}, {J}, {E}}

[{E1, E4}] =
{

{E1, E4}, {E2, E3}, {E1, E4}, {E2, E3}
}

[

{E1, E1}
]

=
{

{E1, E1}, {E2, E2}, {E3, E3}, {E4, E4}
}

[{B,T}] = {{B,T}, {L,R}}

[{E1, B,R}] =

⎧

⎨

⎩

{E1, B,R}, {E2, B, L}, {E3, T, R}, {E4, T, L},

{E1, T, L}, {E2, T,R}, {E3, B, L}, {E4, B,R}

⎫

⎬

⎭

[{E1, E2, B}] =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{E1, E2, B}, {E1, E3, R}, {E2, E4, L}, {E3, E4, T},

{E1, E2, R}, {E1, E3, B}, {E2, E1, L}, {E2, E4, B},

{E3, E1, T}, {E3, E4, R}, {E4, E2, T}, {E4, E3, L},

{E1, E2, T}, {E1, E3, L}, {E2, E4, R}, {E3, E4, B}

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

A.6. For the Nw ∈ N (2), denote by Nw;1, Nw;2, Nw;3, Nw;4, Nw;5, Nw;6, Nw;7 the
other basic sets transformed by ρ, ρ2, ρ3, m, mρ, mρ2, mρ3, respectively. The eight
maximal noncycle generators in N2 are listed in Table A.6.

Table A.6

Nw ≡ {E1, E2, E3, E4, T,R}

Nw;1 = {E1, E3, E2, E4, T, L}

Nw;2 = {E3, E4, E1, E2, B, L}

Nw;3 = {E2, E4, E1, E3, B,R}

Nw;4 = {E2, E4, E1, E3, T,R}

Nw;5 = {E3, E4, E1, E2, B,R}

Nw;6 = {E1, E3, E2, E4, B, L}

Nw;7 = {E1, E2, E3, E4, T, L}
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8. A. Lagae and P. Dutré, An alternative for Wang tiles: Colored edges versus colored corners,
ACM Trans. Graphics, 25 (2006), no. 4, 1442–1459.
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