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ABSTRACT

The study of gene functions requires a DNA library of high quality, such a library is obtained

from a large mount of testing and screening. Pooling design is a very helpful tool for reducing

the number of tests for DNA library screening. In this paper, we present two Las Vegas

algorithms for efficient constructions of d-disjunct and .dI z/-disjunct matrices respectively.

These new constructions can be directly applied to construct error-free and error-tolerant

pooling designs.

Key words: disjunct matrices, DNA library screening, Las Vegas algorithm, nonadaptive group

testing, pooling designs.

1. INTRODUCTION

THE BASIC TASK of DNA library screening is to determine which clone (a DNA segment) from the

library contains which probe from a given collection of probes. If a clone contains a probe, then the

clone is said to be positive for the probe, otherwise it is said to be negative for that probe. Since in practice

checking each clone-probe pair is expensive and usually only a few clones in the library contain a given

probe, clones are pooled together to be tested against each probe. An example is when Sequenced-Tagged

Site markers (also called STS probes) are used (Olson et al., 1989). For a given probe, if the test result for

a pool of clones is negative, then no clone in the pool contains the probe, and we do not need any further

tests for the clones in the pool. If the test result for a pool is positive, then there exists at least one clone

in the pool containing the given probe.

The above problem is an instance of the combinatorial group testing problem, in which there are n

items each can be either positive (used to be called defective) or negative (used to be called good), and

the number of positive items is upper bounded by an integer d . We assume there exists some testing

mechanism which if applied to an arbitrary subset of the items gives a positive outcome (denoted by 1) if

the subset contains at least one positive item and a negative outcome (denoted by 0) otherwise. The goal

is to identify all positive items using minimum number of tests.

Group testing algorithms can be either adaptive or nonadaptive. An adaptive algorithm conducts the

tests one by one and allows to design a later test using the outcomes of all previous tests. A nonadaptive
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algorithm specifies all tests simultaneously, forbidding designing tests using the outcome information of

other tests. In general, nonadaptive algorithms require more number of tests because we are not allowed

to use the outcomes of other tests for more efficient test designs, but require less time since all tests

can be performed in paralell. Between completely adaptive and nonadaptive algorithms, there are s-stage

algorithms in which all tests in each stage must be specified simultaneously, but the tests in different stages

can be adaptive.

A group testing algorithm is error-tolerant if it can detect or correct some errors in the test out-

comes. Previous works on error-tolerant group testing algorithms are those of, among others, Muthukr-

ishnan (1994), Aigner (1996), Balding and Torney (1996), Macula (1997, 1999), and De Bonis et al.

(2005).

In the application to DNA library screening, a group testing algorithm is called a pooling design, and

the composition of each test is called a pool. While it is still important to minimize the number of tests,

there are two other goals. First, in practice we prefer nonadaptive group testing (NGT) algorithms in which

all tests are performed simultaneously, so that the total time spent is tolerable (sometimes a pooling design

with s stages for small s is adopted). Second, DNA screening is error prone, so it is desirable to design

error-tolerant algorithms. For a comprehensive discussion of this topic, the reader is referred to the book

by Du and Hwang (2006).

A NGT algorithm can be represented as a 0-1 matrix M D .mij / in which the columns are associated

with the items and the rows are associated with the tests, and mij D 1 indicates that item j is contained

in test i . The outcomes of the tests can also be represented as a 0-1 vector where 0 indicates a negative

outcome and 1 indicates a positive outcome, which is called the outcome vector. Denote by D the set of

columns associated with positive items, and denote by U.D/ the union of these columns (i.e., the bitwise

boolean sum of these 0-1 column vectors), it is easy to see that the outcome vector is equal to U.D/ if

there is no error in the test outcomes. Given the matrix representation of a NGT algorithm and the outcome

vector, the process of identifying all the positive items is called decoding.

A 0-1 matrix is said to be d -disjunct if no column is contained in the union of any other d columns. If

the matrix represents a NGT algorithm is d -disjunct, the number of positive items is no more than d and

the test outcomes are error-free, then we have the following easy decoding method: for each column c, c

corresponds to a positive item if and only if c is contained in the outcome vector v. d -disjunct matrices

form a basis for NGT algorithms, and the design of a d -disjunct matrix is also called a nonadaptive

pooling design.

However, when there are errors in the test outcomes, the above decoding method no longer works. To

deal with the case where there are errors in the test outcomes, we require the matrix to be .d I z/-disjunct.

A 0-1 matrix is said to be .d I z/-disjunct (D’yachkov et al., 1989; Macula, 1997) if for any column c

and any d other columns, c has at least z elements not covered by the union of these d columns. Thus,

d -disjunct is just .d I 1/-disjunct. .d I z/-disjunct matrices form a basis for error-tolerant NGT algorithms,

the following is a good illustration showing the b z�1
2

c-error-correcting ability of a .d I z/-disjunct matrix. If

the matrix represents the algorithm is .d I z/-disjunct, there are no more than d positive items and at most

b z�1
2

c errors in the test outcomes (i.e., the outcome vector v has no more than b z�1
2

c error bits), then the

following decoding method holds: a column c corresponds to a positive item if and only if jc nvj � b z�1
2

c,

here c nv denotes the difference of two sets of row indices determined by vectors c and v (i.e., jc nvj is the

number of rows having value 1 in c and value 0 in v). In this paper, we investigate efficient constructions

of both d -disjunct and .d I z/-disjunct matrices.

1.1. Related work

For asymptotic bounds on disjunct matrices, if we denote t.d; n/ to be the minimum number of rows

required by a d -disjunct matrix with n columns, then t.d; n/ D �.
d2 log2 n

log2 d
/ (D’yachkov and Rykov,

1982; Ruszinkó, 1994; Füredi, 1996). In particular, D’yachkov and Rykov (1982) proved that t.d; n/ �
d2

2 log2 d
.1Co.1// log2 n, which is the best lower bound so far. For upper bounds on t.d; n/, by using random

coding method D’yachkov et al. (1989) proved that for n large, t.d; n/ � .log2 e/.1 C o.1//d 2 log2 n,

which is currently the best. For .d I z/-disjunct matrices, let t.d; nI z/ denote the minimum number of

rows required by a .d I z/-disjunct matrix with n columns. For fixed d and z, D’yachkov et al. (1989)
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studied lim
log2 n

t
as n ! 1 among others, they proved that t.d; nI z/ � CŒ

d2 log2 n

log2 d
C .z � 1/d � where C

is a constant.

On construction of disjunct matrices, Kautz and Singleton (1964) introduced the construction of disjunct

matrices from set packing designs, in the context of superimposed codes. Hwang and Sós (1987) (also

cited in Du and Hwang, 2006) gave an explicit construction that results in t � n d -disjunct matrices with

t � 16d 2.1 � log3 2 C .log3 2/ log2 n/ � 5:91d 2 C 10:09d 2 log2 n. Other works known on constructing

disjunct matrices are those of, among others, Erdös et al. (1985), Macula (1996), D’yachkov et al. (2000),

Ngo and Du (2002), Park et al. (2003), Du et al. (2006), and Fu and Hwang (2006).

1.2. Our contribution

We present two Las Vegas algorithms for constructing d -disjunct and .d I z/-disjunct matrices, respec-

tively. The first algorithm, for given n and d , when d ln n � 1, constructs a t � n d -disjunct matrix

with some pre-specified constant probability in time O.d 2n2 ln n/ (can be further improved to expected

O.n2 ln n/ time), with t D c.1 C O. 1p
d ln n

//d 2 .O.1/ C log2 n/, where c � 4:28 is constant. Compared

to the construction of Hwang and Sós (1987), our algorithm reduces t by more than half for d ln n rea-

sonably large, also from an algorithmic point of view our construction is much more efficient. The second

algorithm, for given n, d and z > 1, when d ln n � z � 1, with some pre-specified constant probability

and the same running time, constructs a t � n .d I z/-disjunct matrix with t � 4:28.1 C O. 1p
d ln n

//d 2

.O.1/ C 2:30.z�1/

d
C log2 n/.

To the best of our knowledge, the first algorithm is the first explicit construction of d -disjunct matrices

that achieves the leading constant c � 4:28, and runs in time polynomial in both n and d provided

d ln n � 1; the second algorithm is the first construction of .d I z/-disjunct matrices that achieves t D

O.dz C d 2 log2 n/ provided d ln n � z � 1.

2. A NEW ALGORITHM

In this section we present a Las Vegas algorithm, for given n and d , with some constant probability the

algorithm returns a t �n d -disjunct matrix, with t D c.1CO. 1p
d ln n

//d 2.O.1/C log2 n/ when d ln n � 1,

where c � 4:28 is constant. This result can be directly applied to construct nonadaptive pooling designs,

in which n denotes the number of items and d denotes an upper bound on the number of positives.

The main idea of the algorithm is, similar to those in Kautz and Singleton (1964), Hwang and Sós

(1987), and Fu and Hwang (2006), to control the number of intersections of any two columns to guarantee

d -disjunctness. The major difference is that we also use randomness in our construction, which turns out

to be effective. Roughly speaking, first we construct a larger t � n0 (n0 > n) random binary matrix, then

we remove some of its columns so that in the resultant matrix the weight of each column will not be too

small and the intersection of any two columns will not be too large.

For given n and d , let c1; c2 > 1 be constants that will be specified later. Define q D 1
c1

C 1
c2

which

is intended to denote the failure probability of the algorithm (we require c1; c2 to satisfy q < 1). First,

we set some parameters that will be useful in the algorithm. Define n0 D 2qc2n. Set �; ı > 0 such

that ln.1 C �/ D 2�
1C�

(� � 3:92) and ı D
q

2� ln c1

.1C�/d ln.c2n0/
(we require c1; c2 to satisfy ı < 1). Assign

p D 1�ı
.1C�/d

and t D ln.c2n0/

p2�
D .1C�/2

�.1�ı/2 d 2 ln.c2n0/. For our algorithm for constructing d -disjunct matrices,

see Algorithm 1.

Algorithm 1. Constructing d -disjunct matrix Mt�n, with parameters c1 and c2 ( 1
c1

C 1
c2

< 1):

Step 1. Construct a random binary matrix Mt�n0 with each cell assigned to be 1 independently with

probability p.

Step 2. For any 1 � i � n0, denote by wi the weight of column i , let �1 D EŒwi � D pt , mark column i

if wi � .1 � ı/�1.
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Step 3. For any 1 � i < j � n0, denote by wi;j the number of rows of Mt�n0 that have 1 at both

column i and column j (i.e., wi;j denotes the number of intersections of column i and column j ), let

�2 D EŒwi;j � D p2t , create an edge between columns i and j if wi;j � .1 C �/�2.

Step 4. Remove all marked columns from Mt�n0 . For each edge between the remaining columns, remove

one of its two columns arbitrarily.

Step 5. Let M denote the resulting matrix from the above steps. If M has less than n .D n0

2qc2
/ columns,

exit and the algorithm fail; else return the first n columns of M as the d -disjunct matrix Mt�n.

In the above setting of parameters, for d ln n � 1 we have ı D
q

2� ln c1

.1C�/d ln.2qc2
2n/

� 1, and ı �
q

2� ln c1

.1C�/d ln n
. Thus, t D

.1C�/2

�.1�ı/2 d 2 ln.c2n0/ D
.1C�/2

�.1�ı/2 log2 e
d 2 log2.2qc2

2n/ �
.1C�/2

� log2 e
.1 C 2ı/d 2 log2.2qc2

2n/

� c.1Ct1
1p

d ln n
/ d 2.t2Clog2 n/, where c, t1 and t2 are positive constants, c D .1C�/2

� log2 e
� 4:28, t1 D

q

8� ln c1

1C�

and t2 D log2.2qc2
2/.

Also, we can see that as long as Algorithm 1 returns a matrix Mt�n (i.e., there are at least n columns

left at Step 5), Mt�n is d -disjunct. Since from the algorithm, we know that the weight of any column of

Mt�n is greater than .1 � ı/�1, and the number of intersections between any pair of columns of Mt�n is

less than .1 C �/�2. Notice we set p such that .1 � ı/�1 D d.1 C �/�2, thus for any column i , the union

of any d other columns can only cover less than d.1 C �/�2 D .1 � ı/�1 1’s of column i . Therefore, they

can not completely cover column i since wi > .1 � ı/�1.

3. ANALYSIS OF ALGORITHM 1

In this section we analyze the success probability and running time of Algorithm 1.

3.1. Preliminaries

We first present two lemmas that will be useful later. The first lemma is the Markov inequality (e.g.,

see Theorem 3.2 in by Motwani and Raghavan, 1995).

Lemma 3.1 (Markov Inequality). Let Y be a random variable assuming only non-negative values,

then for all t > 0,

PrŒY � t � �
EŒY �

t
;

where EŒY � is the expectation of Y .

The second lemma is commonly known as Chernoff’s bounds (Theorems 4.1 and 4.2 in Motwani and

Raghavan, 1995).

Lemma 3.2 (Chernoff’s Bounds). Let X1; X1; � � � ; Xn be independent 0-1 random variables, for 1 �

i � n, PrŒXi D 1� D pi , where 0 < pi < 1. Let X D
Pn

iD1 Xi , and � D EŒX� D
Pn

iD1 pi . Then, for any

ı > 0,

(1) PrŒX � .1 C ı/�� � Œ eı

.1Cı/1Cı ��,

(2) PrŒX � .1 � ı/�� � e��ı2=2.

The Chernoff’s bounds in Motwani and Raghavan (1995) are for strict inequalities, but the same bounds

also hold for nonstrict inequalities.
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3.2. Success probability of Algorithm 1

First, we estimate the expectations of the number of marked columns and the number of edges created

in Algorithm 1.

Lemma 3.3. Let Y be the random variable that denotes the number of marked columns in Step 2 of

Algorithm 1, then EŒY � � n0

c1
.

Proof. For 1 � i � n0, in Step 2 of Algorithm 1, let Yi be the indicator random variable for the event

that column i is marked, that is

Yi D

(

1 column i is marked, i.e., wi � .1 � ı/�1;

0 otherwise.

Since wi D M.1; i/ C M.2; i/ C � � � C M.t; i/ is the sum of t independent 0-1 random variables, by

applying the Chernoff bound, (2) in Lemma 3.2, we obtain that

PrŒYi D 1� D PrŒwi � .1 � ı/�1� � e��1ı2=2:

Since �1 D EŒwi � D pt , it follows that ��1ı
2=2 D � ı2

2
pt D � ı2

2
1�ı

.1C�/d

.1C�/2

�.1�ı/2 d 2 ln.c2n0/ D

�
.1C�/ı2

2�.1�ı/
d ln.c2n0/ D �

.1C�/

2�.1�ı/
2� ln c1

.1C�/d ln.c2n0/
d ln.c2n0/D � ln c1

1�ı
� � ln c1. Therefore, PrŒYi D 1� �

e��1ı2=2 � 1
c1

. Notice Y D
P

1�i�n0
Yi and all the Yi ’s are i.i.d. random variables, we have EŒY � D

n0 PrŒY1 D 1� � n0

c1
.

Lemma 3.4. Let m be the random variable that denotes the number of edges created in Step 3 of

Algorithm 1, then EŒm� < n0

2c2
.

Proof. For 1 � i < j � n0; 1 � k � t , in Step 3 of Algorithm 1, define random variable X
i;j

k
D

M.k; i/M.k; j /, then wi;j D X
i;j

1 C X
i;j

2 C � � � C X
i;j
t . Let X i;j be the indicator random variable for the

event that there is an edge between column i and column j :

X i;j D

(

1 there is an edge between column i and column j , i.e., wi;j � .1 C �/�2I

0 otherwise.

Since wi;j is the sum of t independent 0-1 random variables, the Chernoff bound, (1) in Lemma 3.2,

implies that

PrŒX i;j D 1� D PrŒwi;j � .1 C �/�2� �

�

e�

.1 C �/1C�

��2

:

Notice that �2 D EŒwi;j � D p2t D 1
�

ln.c2n0/, we have . e�

.1C�/1C� /�2 D . e

.1C�/
1C�

�

/ln.c2n0/. Since ln.1 C

�/ D 2�
1C�

, it follows that .1C�/
1C�

� D .e
2�

1C� /
1C�

� D e2, thus PrŒX i;j D 1� � . e�

.1C�/1C� /�2 D .e�1/ln.c2n0/ D
1

c2n0
. Since m D

P

1�i<j �n0
X i;j and all the X i;j ’s are identically distributed, EŒm� D

�

n0

2

�

PrŒX1;2 D 1� �
�

n0

2

�

1
c2n0

< n0

2c2
.

Define random variable Z D Y C m, then Z denotes the most number of columns that may be

removed at Step 4. Since EŒZ� D EŒY � C EŒm� � . 1
c1

C 1
2c2

/n0 and q D 1
c1

C 1
c2

, it follows that

n0 � n D .1 � 1
2qc2

/n0 D 1
q
.q � 1

2c2
/n0 D 1

q
. 1

c1
C 1

2c2
/n0 � 1

q
EŒZ�. By applying the Markov inequality

(Lemma 3.1), the probability that there are less than n columns left in the matrix at Step 5 is at most

PrŒZ > n0 � n� �
EŒZ�

n0�n
� q. Therefore, we have established the following theorem.
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Theorem 3.5. Given n and d , Algorithm 1 with parameters c1 and c2 . 1
c1

C 1
c2

< 1/ successfully returns

a d -disjunct t � n matrix with probability at least 1 � q, where t D
.1C�/2

�.1�ı/2 d 2 ln.c2n0/ and q D 1
c1

C 1
c2

. In

addition, when d ln n � 1, t � c.1 C t1
1p

d ln n
/ d 2.t2 C log2 n/, where c, t1 and t2 are positive constants,

c D .1C�/2

� log2 e
� 4:28, t1 D

q

8� ln c1

1C�
and t2 D log2.2qc2

2/.

Remark 3.6. In the framework of Algorithm 1, � is chosen to minimize the leading constant of t , see

Appendix A. The idea behind choosing parameters c1; c2; q such that q D 1
c1

C 1
c2

is, for pre-specified

success probability 1 � q and fixed c1 (thus fixed t1 in the approximate expression t � 4:28.1 C t1
1p

d ln n
/

d 2.t2 C log2 n/), c2 is assigned c1

qc1�1
to minimize the additive term t2, see Appendix B.

For instance, if we set the failure probability q D 0:99 and want t1 D 1, by solving the equations we

can get c1 � 1:17, c2 � 7:40 and t2 � 6:76. If we set q D 0:99 and t1 D 2, then c1 � 1:87, c2 � 2:19

and t2 � 3:25. For q D 0:9, we have the choices t1 D 1, c1 � 1:17, c2 � 22:13 and t2 � 9:78, or, t1 D 2,

c1 � 1:87, c2 � 2:73 and t2 � 3:75, etc.

3.3. Running time of Algorithm 1

The time required by Algorithm 1 is dominated by Step 2, which is
�

n0

2

�

t D O.d 2n2 ln n/ by simply

counts the number of intersections between all pairs of columns. In fact, we can obtain an expected

O.n2 ln n/ running time by counting intersections along the rows.

For 1 � i < j � n0, denote by n.i; j / the number of intersections between column i and column j .

Initially, we set n.i; j / D 0 for all 1 � i < j � n0. For each row r of Mt�n0 , let w denote the weight

of row r , and let i1; i2; � � � ; iw denote the indices of r having value 1, we increase the values of n.ia; ib/

by 1 for all 1 � a < b � w. The expected number of such pairs .ia; ib/ for each row is EŒ
�

w

2

�

�, thus

the expected running time of Step 2 is tEŒ
�

w

2

�

�. Since w has the binomial distribution with parameters n0

and p, the expected running time can be estimated to be tEŒ
�

w
2

�

� D t � p2

2
.n2

0 � n0/ D O.n2 ln n/.

Theoretically by running the algorithm repeatedly with independent random choices, we can make the

failure probability arbitrarily small, at the cost of spending more time. Practically, we can just repeat

running the algorithm until a d -disjunct matrix is successfully constructed. It is easy to see that the

expected number of times that we need to run the algorithm so that a d -disjunct matrix is successfully

constructed is no more than 1
1�q

, and once a d -disjunct matrix is constructed, it can be used as a NGT

algorithm as many times as needed.

4. ERROR-TOLERANCE CASE

In this section, we modify Algorithm 1 such that, for given n, d , and z > 1, with some constant

probability the modified algorithm constructs a t �n .d I z/-disjunct matrix, with t � 4:28.1CO. 1p
d ln n

//d 2

.O.1/ C
2:30.z�1/

d
C log2 n/ when d ln n � z � 1. This construction can be directly applied to construct

nonadaptive b z�1
2

c-error-tolerant pooling designs, in which n denotes the number of items and d denotes

an upper bound on the number of positives.

For given n, d , and z > 1, let c1; c2; q; n0; � and ı be as in Algorithm 1. Assign p D 1�ı
.1C�/d

.1 C

z�1

.1C 1
� /d ln.c2n0/

/�1 and t D ln.c2n0/

p2�
D .1C�/2d2 ln.c2n0/

�.1�ı/2 .1 C z�1

.1C 1
� /d ln.c2n0/

/2 . For our algorithm for constructing

.d I z/-disjunct matrices, see Algorithm 2.

Algorithm 2. Constructing .d I z/-disjunct matrix Mt�n, with parameters c1 and c2 . 1
c1

C 1
c2

< 1/:

Algorithm 2 works in the same way as Algorithm 1, but with p D 1�ı
.1C�/d

.1 C z�1

.1C 1
�
/d ln.c2n0/

/�1 and

t D ln.c2n0/

p2�
.
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For the case where d ln n � z � 1 (thus d ln n � 1), ı D
q

2� ln c1

.1C�/d ln.2qc2
2n/

� 1, and ı �
q

2� ln c1

.1C�/d ln n
.

We can estimate t D
.1C�/2d2 ln.c2n0/

�.1�ı/2 .1 C z�1

.1C 1
� /d ln.c2n0/

/2 �
.1C�/2d2 ln.c2n0/

�
.1 C 2ı/ .1 C 2 z�1

.1C 1
� /d ln.c2n0/

/ D

.1C�/2d2

� log2 e
.1 C 2ı/ .log2.c2n0/ C

.2 log2 e/.z�1/

.1C 1
� /d

/ � c.1 C t1
1p

d ln n
/d 2 .t2 C c0.z�1/

d
C log2 n/, where c, c0, t1

and t2 are positive constants, c D
.1C�/2

� log2 e
� 4:28, c0 D

2 log2 e

1C 1
�

� 2:30, t1 D
q

8� ln c1

1C�
and t2 D log2.2qc2

2/.

Similarly, it is easy to see that when d ln n � z � 1, Algorithm 2 runs in time O.d 2n2 ln n/ in the most

straightforward manner, and the running time can be improved to expected O.n2 ln n/ by counting the

column intersections along the rows.

Next we will show that for the above assignment to p and t , .1 � ı/�1 � d.1 C �/�2 D z � 1.

Since �1 D pt and �2 D p2t , it follows that .1 � ı/�1 � d.1 C �/�2 D .1 � ı � .1 C �/dp/pt D

.1 � ı � .1 C �/dp/
ln.c2n0/

p�
D . 1�ı

.1C�/dp
� 1/

.1C�/d ln.c2n0/

�
D z�1

.1C 1
� /d ln.c2n0/

.1C�/d ln.c2n0/

�
D z � 1. Thus, by

similar arguments if Algorithm 2 successfully returns a matrix Mt�n, Mt�n is .d I z/-disjunct.

In Algorithm 2, �1 D EŒwi � D pt , and �1ı2=2 D ı2

2
pt D ı2

2

ln.c2n0/

p�
> ı2

2

ln.c2n0/

�

.1C�/d

1�ı
>

ı2.1C�/d ln.c2n0/

2�
D ln c1, thus e��1ı2=2 � 1

c1
. Also, �2 D EŒwi;j � D p2t D 1

�
ln.c2n0/, thus . e�

.1C�/1C� /�2 D

. e

.1C�/
1C�

�

/ln.c2n0/ D .e�1/ln.c2n0/ D 1
c2n0

. Therefore, if we let Y � be the random variable denoting the

number of marked columns in Step 2 of Algorithm 2, and let m� be the random variable denoting the

number of edges created in Step 3 of Algorithm 2, the same results in Lemma 3.3 and 3.4 also hold here,

that is EŒY �� � n0

c1
and EŒm�� � n0

2c2
.

Let Z� D Y � C m� be the random variable denotes the most number of columns that may be removed

at Step 4 in Algorithm 2, similarly the probability that there are less than n columns left in the matrix at

Step 5 is at most PrŒZ� > n0 � n� � q, which indicates the following theorem.

Theorem 4.1. Given n, d , and z > 1, Algorithm 2 with parameters c1 and c2 . 1
c1

C 1
c2

< 1/ successfully

returns a .d I z/-disjunct t � n matrix with probability at least 1 � q, where t D
.1C�/2d2 ln.c2n0/

�.1�ı/2 .1 C

z�1

.1C 1
� /d ln.c2n0/

/2 and q D 1
c1

C 1
c2

. In addition, when d ln n � z � 1, t � c.1 C t1
1p

d ln n
/d 2 .t2 C c0.z�1/

d
C

log2 n/, where c, c0, t1 and t2 are positive constants, c D
.1C�/2

� log2 e
� 4:28, c0 D

2 log2 e

1C 1
�

� 2:30, t1 D
q

8� ln c1

1C�

and t2 D log2.2qc2
2/.

5. DISCUSSION

In this paper, we present two Las Vegas algorithms for efficient constructions of d -disjunct and .d I z/-

disjunct matrices respectively. These new constructions can be directly applied to construct error-free and

error-tolerant pooling designs. Because of their importance, it is interesting to investigate better construc-

tions of disjunct matrices. E.g., with even smaller number of rows t for fixed n, d and z.

APPENDICES

A. The idea behind choosing parameters � and ı

We choose �; ı > 0 to minimize the leading constant of t . In Algorithm 1, we require .1C�/�2 � .1�ı/�1

d

(i.e., p � 1�ı
.1C�/d

) to guarantee that the resulting matrix is d -disjunct. In addition, at Step 4 of Algorithm 1,

we require EŒm� D
�

n0

2

�

PrŒX1;2 D 1� � n0, which can be guaranteed by satisfying
�

n0

2

�

Œ e�

.1C�/1C� ��2 � n0,

that is, �2 ln
.1C�/1C�

e� � ln n0�1
2

. Since n0 � n we have �2 ln
.1C�/1C�

e� � O.1/ C ln n. By plugging in �2 D

p2t �
.1�ı/2

.1C�/2d2 t we can get t �
.1C�/2

ln
.1C�/1C�

e�

1
.1�ı/2 d 2.O.1/Cln n/. Define f .�/ D

.1C�/2

ln
.1C�/1C�

e�

D
.1C�/2

.1C�/ ln.1C�/��
.

To minimize f .�/ for � > 0, from basic calculus f 0.�/ D 0 implies that ln.1 C �/ D 2�
1C�

. It is easy to

verify that this equation has only one positive root, which can be solved by using numerical approximation
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techniques to be � � 3:92, and f .�/ D
.1C�/2

.1C�/ ln.1C�/��
D

.1C�/2

�
. Also, in order to control the leading

constant of t , we require ı � 1.

B. The idea behind choosing n0 and parameters c1; c2, and q

We choose c1, c2, and q such that c2 D c1

qc1�1
(i.e., q D 1

c1
C 1

c2
) to minimize t2 in the approximate

expression t � 4:28.1 C t1
1p

d ln n
/ d 2.t2 C log2 n/, for pre-specified success probability 1 � q and fixed c1

(thus fixed t1). In Algorithm 1, we construct a t � n d -disjunct matrix by removing some columns from

a larger t � n0 (n0 > n) random matrix, the algorithm succeeds if and only if after removal, the number

of remained columns is at least n. From Lemma 3.3 and Lemma 3.4, the expectation of the maximum

number of columns that may be removed is EŒZ� D EŒY � C EŒm� � . 1
c1

C 1
2c2

/n0 . In order to apply the

Markov inequality to get the failure probability (i.e., PrŒZ > n0 � n�) upper bounded by some constant

q < 1, we require n0 � n � 1
q
. 1

c1
C 1

2c2
/n0 � 1

q
EŒZ�, that is 1 � 1

q
. 1

c1
C 1

2c2
/ > 0 and n0 � 1

1� 1
q . 1

c1
C 1

2c2
/
n.

For n large, ı D
q

2� ln c1

.1C�/d ln.c2n0/
�

q

2� ln c1

.1C�/d ln n
. Because � is fixed, we can say that ı depends only

on c1. For fixed q and c1 and thus fixed ı � 1, t D .1C�/2

�.1�ı/2 d 2 ln.c2n0/ � .1C�/2

�.1�ı/2 d 2 ln. c2

1� 1
q . 1

c1
C 1

2c2
/
n/.

To minimize g.c2/ D c2

1� 1
q

. 1
c1

C 1
2c2

/
for c2 > 0 and 1 � 1

q
. 1

c1
C 1

2c2
/ > 0, we rewrite the expression as

g.c2/ D
2q

.q� 1
c1

/2�.q� 1
c1

� 1
c2

/2
. It is easy to see that we should choose c2 such that q � 1

c1
� 1

c2
D 0, and

choose n0 D 1

1� 1
q . 1

c1
C 1

2c2
/
n D 2qc2n.
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