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ABSTRACT

The study of gene functions requires a DNA library of high quality, such a library is

obtained from a large mount of testing and screening. Pooling design is a very helpful tool

for reducing the number of tests for DNA library screening. In this paper, we present new

one- and two-stage pooling designs, together with new probabilistic pooling designs. The

approach in this paper works for both error-free and error-tolerance scenarios.
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1. INTRODUCTION

ADNA LIBRARY CONSISTS OF THOUSANDS of separate recombinant DNA clones, each of which

represents some contiguous piece of a contiguous superpiece of DNA. The basic task of DNA library

screening is, for a collection of probes (a probe is a DNA subsequence), to determine which clone from

the library contains which probe. For a given probe, a clone is said to be positive if it contains the probe,

otherwise it is said to be negative. In practice, to identify all positive clones from a library, clones are

pooled together to be tested against each probe, because checking each clone-probe pair is expensive and

usually for a given probe only a few clones in the library contain it. There are experimental tests (e.g.,

the polymerase chain reaction), which can determine whether or not there exists at least one clone from a

pool containing a given probe.

The above problem is an instance of the combinatorial group testing problem, in which we have n items

each has an unknown binary status, positive (used to be called defective) or negative (used to be called

good), and the number of positives is upper bounded by an integer d (generally we assume d � n).

Suppose there is some method to test whether or not a subset of items contains at least one positive. We

say that the test outcome is positive if the test result indicates that the subset contains at least one positive

item, otherwise we say that the test outcome is negative. The problem is to resolve the status of every item

using the minimum number of tests.

Although the research of combinatorial group testing dates back to Dorfman’s 1943 paper (Dorfman,

1943), a renewed interest in the subject has occurred largely due to the applications of group testing to

the area of computational molecular biology, in which one important application is clone library screening

(Balding et al., 1995; Farach et al., 1997). In the application to molecular biology, a group testing algorithm

is called a pooling design, and the composition of each test is called a pool. While it is still important to
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minimize the number of tests, there are two other goals. First, in the biological setting, screening one pool

at a time is far more expensive than screening many pools in parallel, this strongly encourages the use of

nonadaptive algorithms. Second, DNA screening is error prone, so it is desirable to design error-tolerant

algorithms, which can detect or correct some errors in the test outcomes. The reader is referred to the

monograph by Du and Hwang (2006) for a comprehensive discussion of this topic.

Group testing algorithms can be adaptive or nonadaptive. An adaptive algorithm conducts the tests one

by one, and allows to design later tests using the outcome information of all previous tests. A nonadaptive

algorithm must specify all tests before knowing any test outcomes, the benefit is that all tests can be

performed in parallel. For group testing problems, nonadaptive algorithms require inherently more tests

than adaptive ones. It is known that any nonadaptive algorithm must use a number of �.d2 log n

log d
/ tests,1

where n is the number of items and d is the maximum number of positives, and the best known nonadaptive

algorithm uses O.d 2 log n/ tests. In contrast, there are adaptive algorithms using O.d log n/ tests (Du and

Hwang, 2006), which match the information theoretic lower bound.

A nonadaptive group testing algorithm can be represented as a 0/1 matrix M D .mij /, where the columns

are associated with the items and the rows are associated with the tests, and mij D 1 indicates that item j

is contained in test i . Given the matrix representation of an algorithm and the test outcomes, the process

of identifying all the positive items is called decoding.

A 0/1 matrix is said to be d -disjunct if no column is covered by the union of d other columns, by

union we mean bitwise boolean sum. A 0/1 matrix is said to be .d I z/-disjunct (D’yachkov et al., 1989;

Macula, 1997) if for any set D of d columns and any column c … D, there exist at least z rows such

that each of them has value 1 at column c and value 0 at all the d columns of D. Clearly, d -disjunct is

just .d I 1/-disjunct. If the matrix M representing a nonadaptive algorithm is d -disjunct and the number of

positives is no more than d , then we have efficient decoding procedure with running time linear in the size

of M . When there are errors in the test outcomes, we require the matrix to be .d I z/-disjunct, which forms

a b z�1
2

c-error-correcting algorithm. In this case we still have linear decoding that successfully identifies

all positives, provided there are no more than d positives and at most b z�1
2

c errors in the test outcomes.

d -disjunct and .d I z/-disjunct matrices form the basis for error-free and error-tolerant nonadaptive group

testing algorithms.

Between fully adaptive and nonadaptive (one-stage) algorithms, the so called trivial two-stage algorithms

(Knill, 1995) are of considerable interest for screening problems. Such an algorithm has two stages. In the

first stage, the pools are tested in parallel, and a set CP of candidate positives from the items is chosen

based on the test outcomes; in the second stage, individual tests are performed on all the items in CP .

Previous works on two-stage group testing algorithms are, among others, Knill (1995), Macula (1999),

Berger et al. (2000), De Bonis et al. (2005), and Eppstein et al. (2007). The following quotation from

Knill (1995) well emphasizes the importance of such algorithms: “It is generally feasible to construct a

number of pools (much fewer than the number of clones) initially by exploiting parallelism, but adaptive

construction of pools with many clones during the testing procedure is discouraged. The technicians who

implement the pooling strategies generally dislike even the 3-stage strategies that are often used. Thus the

most commonly used strategies for pooling libraries of clones rely on a fixed but reasonably small set of

non-singleton pools. The pools are either tested all at once or in a small number of stages (usually at most 2)

where the previous stage determines which pools to test in the next stage. The potential positives are then

inferred and confirmed by testing of individual clones. In most biological applications each positive clone

must be confirmed even if the pool results unambiguously indicate that it is positive. This is to improve

the confidence in the results, given that in practice the tests are prone to errors.”

1.1. Related work

On constructions of disjunct matrices, Kautz and Singleton (1964) introduced the construction from set

packing designs, in the context of superimposed codes. Hwang and Sós (1987) (also cited in the book by

Du and Hwang [2006]) give a greedy type construction which results in t � n d -disjunct matrices with

t � 16d 2.1 � log3 2 C .log3 2/ log n/ � 5:91d 2 C 10:09d 2 log n. In Cheng and Du (2007), they propose a

1Throughout the paper, log is of base 2 if no base is specified.
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Las Vegas construction, which compared to Hwang and Sós (1987) reduces t by more than half for d ln n

reasonably large, also the time required by the construction is reduced to polynomial in n and d . Other

works known on constructing disjunct matrices are those of, among others, Erdös et al. (1985), Macula

(1996), D’yachkov et al. (2000), Ngo and Du (2002), Park et al. (2003), Du et al. (2006), Fu and Hwang

(2006), and Eppstein et al. (2007).

For two-stage pooling designs, De Bonis et al. (2005) first present an asymptotically optimal two-stage

algorithm that requires a number of tests within a constant factor 7:54.1Co.1// of the information theoretic

lower bound d log.n=d/. Eppstein et al. (2007) improve the constant factor to 4.1 C o.1// by using the

concept of .d; k/-resolvable matrices (which we will explain later), which is currently the best. There are

also probabilistic pooling designs (Macula, 1999a, 1999b; Ngo and Du, 2002) with good performance in

practice.

1.2. Main results

We first give two improved Las Vegas algorithms from those in Cheng and Du (2007), for constructing

d -disjunct and .d I z/-disjunct matrices respectively. Compared to Cheng and Du (2007), our new con-

structions are transversal designs. They reduce t noticeably in practice and are much more simplified. For

two-stage pooling designs, we present an algorithm using a number of Cd .1Co.1// log n tests, where Cd �
3

log 3
d for d � 1, and Cd ! d log e as d ! 1. This improves the previously best bound of Eppstein et al.

(2007) by a factor of more than 2. We also propose new probabilistic pooling designs. Compared to Ngo

and Du (2002), our probabilistic designs have different type of possible errors and require much fewer tests.

2. PRELIMINARIES

2.1. Transversal design

A pooling design is transversal if the pools can be divided into disjoint families, each of which is a

partition of all items. We first introduce the concept of q-ary .d; 1/-disjunct matrix. A q-ary matrix is

.d; 1/-disjunct if for any column c and any set D of d other columns, there exists at least one element in

c such that the element does not appear in any column of D in the same row.

As described in Du and Hwang (2006) and Du et al. (2006), one can transform a q-ary .d; 1/-disjunct

matrix M 0 into a (binary) d -disjunct matrix M as follows. Replace each row Ri of M 0 by several rows

indexed with entries of Ri , for each entry x of Ri , the row with index x is obtained from Ri by turning

all x’s into 1’s and all others into 0’s. Thus, the following theorem holds.

Theorem 1 (Theorem 3.6.1 in Du and Hwang [2006]). A t0 � n q-ary .d; 1/-disjunct matrix M 0

yields a t � n d -disjunct matrix M with t � t0q.

Clearly, one can perform the above transformation even when the q-ary matrix M 0 is not .d; 1/-disjunct.

Transversal designs are favorable in practice because every column of the resulting matrix M has equal

weight, which means that every item is contained in equal number of pools, so that to perform the tests

we need the same number of copies for each item.

2.2. Two probabilistic lemmas

We present two inequalities that will be useful later. The first is the Markov inequality (see, for example,

Theorem 3.2 in Motwani and Raghavan [1995]), and the second is commonly known as Chernoff’s bounds

(see Theorem 4.1 and 4.2 in Motwani and Raghavan [1995]).

Lemma 2 (Markov Inequality). Let Y be a random variable assuming only non-negative values, then

for all t > 0,

PrŒY � t � �
EŒY �

t
;

where EŒY � is the expectation of Y .
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Lemma 3 (Chernoff’s Bounds). Let X1; X1; : : : ; Xn be independent 0/1 random variables, for 1 �

i � n, PrŒXi D 1� D pi , where 0 < pi < 1. Let X D
Pn

iD1 Xi , and � D EŒX� D
Pn

iD1 pi . Then, for any

ı > 0,

PrŒX � .1 C ı/�� �

�

eı

.1 C ı/1Cı

��

; (1)

PrŒX � .1 � ı/�� � e��ı2=2: (2)

The Chernoff’s bounds in Motwani and Raghavan (1995) are for strict inequalities, but the same bounds

also hold for nonstrict inequalities.

3. ONE-STAGE POOLING DESIGNS

We give two efficient constructions of d -disjunct and .d I z/-disjunct matrices, respectively. The con-

structions are transversal, and are based on randomized approach.

3.1. A new construction of d -disjunct matrices

In this section, we present a Las Vegas algorithm, for given n, d and 0 < p < 1, the algorithm

successfully constructs a t �n d -disjunct matrix with probability at least p, with t � cd 2.log 2
1�p

C logn/,

where c � 4:28 is constant.

For given n, d and 0 < p < 1, define n0 D 2n. Let � be the unique positive root of ln.1 C �/ D 2�
1C�

(� � 3:92 is chosen to minimize the leading constant of t , see the remarks at the end of this subsection).

Assign q D .1 C �/d , t0 D 1C�
�

d ln 2n�1
1�p

, and � D t0
q

. Please see Algorithm 1 as our algorithm for

constructing d -disjunct matrices.

Algorithm 1 Constructing d -disjunct matrix Mt�n

1. Construct a random q-ary matrix M 0
t0�n0

with each cell randomly assigned from f1; 2; : : : ; qg,

independently and uniformly.

2. For any 1 � i < j � n0, let wi;j be the random variable denoting the number of rows r such that

the two entries M 0.r; i/ and M 0.r; j / are equal. Then, EŒwi;j � D � .D t0
q

/. Create an edge between

columns i and j if wi;j � .1 C �/�.

3. For each edge created in Step 2, remove one of its two columns arbitrarily. Let M 00 denote the resulting

matrix.

4. If M 00 has less than n .D n0

2
/ columns, exit and the algorithm fail.

5. Using the transformation in Theorem 1, turn the first n columns of M 00 into a binary matrix Mt�n with

t � t0q.

In Algorithm 1, at Step 3, M 00 must be q-ary .d; 1/-disjunct since for any column i , the union of any

d other columns can only cover less than d � .1 C �/� D d � t0
d

D t0 entries of column i . Therefore,

if the algorithm successfully returns a matrix, it must be d -disjunct. Moreover, we have t � t0q D
.1C�/2

� log e
d 2 log 2n�1

1�p
< cd 2.log 2

1�p
C log n/, where c D

.1C�/2

� log e
� 4:28.

3.1.1. Analysis of Algorithm 1. In this section, we analyze the success probability and running time

of Algorithm 1.

Success probability. First, we estimate the expectation of the number of edges created at Step 2.

Lemma 4. Let m be the random variable denoting the number of edges created at Step 2 of Algorithm 1,

then EŒm� � n.1 � p/.
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Proof. For 1 � i < j � n0; 1 � k � t0, at Step 2 of Algorithm 1, define 0/1 random variable X
i;j

k

such that X
i;j

k D 1 if and only if M 0.k; i/ D M 0.k; j /, then wi;j D X
i;j
1 C X

i;j
2 C � � � C X

i;j
t0 . Let X i;j be

the indicator random variable for the event that there is an edge between column i and column j , that is

X i;j D

(

1 there is an edge between column i and column j , i.e., wi;j � .1 C �/�I

0 otherwise.

Since wi;j is the sum of t0 independent 0/1 random variables, the Chernoff bound, Equation (1) in Lemma 3,

implies that

PrŒX i;j D 1� D PrŒwi;j � .1 C �/�� �

�

e�

.1 C �/1C�

��

:

Notice that q D .1 C �/d and t0 D 1C�
�

d ln 2n�1
1�p

. Then, � D EŒwi;j � D t0
q

D 1
�

ln 2n�1
1�p

, and from

ln.1 C �/ D 2�
1C�

we have .1 C �/1C� D e2�, and so e�

.1C�/1C� D e��, which implies that . e�

.1C�/1C� /� D

.e��/
1
� ln 2n�1

1�p D
1�p

2n�1
. Thus, EŒX i;j � D PrŒX i;j D 1� �

1�p

2n�1
, for 1 � i < j � n0. Since m D

P

1�i<j �n0
X i;j and all the X i;j ’s are identically distributed and n0 D 2n, EŒm� D .n0

2
/EŒX1;2� �

.n0

2
/

1�p

2n�1
D n.1 � p/.

Clearly, m denotes the most number of columns that may be removed at Step 3. Since EŒm� � n.1�p/,

by applying the Markov inequality (Lemma 2), the probability that there are less than n columns left in

M 00 at Step 4 (i.e., the failure probability of Algorithm 1) is at most PrŒm > n� �
EŒm�

n
� 1 � p.

Running time. The time required by Algorithm 1 is dominated by Step 2, which is .n0

2
/t0 D O.dn2 ln n/

by simply counting, for all pairs of columns, the number of rows at which the two columns have equal

entry. In fact, we can obtain an expected O.n2 ln n/ running time by counting along the rows.

For 1 � i < j � n0, let n.i; j / denote the number of equal entries between column i and column j in

the same row. Initially, set n.i; j / D 0 for 1 � i < j � n0. For each row r , let Sr;1; Sr;2; : : : ; Sr;q denote

the sets of column indices such that Sr;k D fi W M 0.r; i/ D kg. Clearly, the sets Sr;k , 1 � k � q, can be

constructed in n0 time. For each k, we increase the values of n.i; j / by 1 for all i < j and i; j 2 Sr;k .

The expected number of such pairs .i; j / for each Sr;k is EŒ. jSr;k j
2

/�. Since jSr;kj are identically distributed

for 1 � k � q, the expected running time of Step 2 is t0 � .n0 C qEŒ. jSr;1j
2

/�/. Notice that jSr;1j has the

binomial distribution with parameters n0 and 1=q, thus n0 C qEŒ. jSr;1j
2

/� D n0 C q 1
q2 .n2

0 � n0/ D O.n2=d/,

and so the expected running time of Step 2, which is also the expected running time of Algorithm 1, is

t0 � O.n2=d/ D O.n2 ln n/.

Therefore, we have established the following theorem.

Theorem 5. Given n, d and 0 < p < 1, Algorithm 1 successfully constructs a t � n d -disjunct matrix

with probability at least p, with t < cd 2.log 2
1�p

C log n/, where c � 4:28 is constant. The algorithm

runs in expected O.n2 ln n/ time.

Remarks. In Algorithm 1, we choose � to minimize the leading constant of t . We require .1 C �/� �
t0
d

(where � D t0
q

), i.e., q � .1 C �/d , to guarantee that matrix M 00 is .d; 1/-disjunct. To guarantee

that with reasonable probability M 00 has no less than n columns, we require (at least) n0 � EŒm� � n

(where EŒm� D .n0

2
/EŒX1;2�), which implies that PrŒX1;2 D 1� � n0�n

.
n0
2

/
. Since maxn0

n0�n

.
n0
2

/
D 1

2n�1
, which

can be achieved when n0 D 2n � 1 or n0 D 2n, we should have PrŒX1;2 D 1� � 1
2n�1

. This can be

guaranteed by . e�

.1C�/1C� /� � 1
2n�1

, that is, � ln
.1C�/1C�

e� � O.1/ C ln n. By plugging in � D t0
q

D t
q2

and q � .1 C �/d , we get t �
.1C�/2

ln
.1C�/1C�

e�

d 2.O.1/ C ln n/. Define f .�/ D
.1C�/2

ln
.1C�/1C�

e�

D
.1C�/2

.1C�/ ln.1C�/��
. To

minimize f .�/ for � > 0, from basic calculus f 0.�/ D 0 implies that ln.1 C �/ D 2�
1C�

. It is easy to
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verify that this equation has one unique positive root � � 3:92. Also, from the equation we have f .�/ D
.1C�/2

.1C�/ ln.1C�/��
D

.1C�/2

�
.

3.2. Error-tolerance case

In this section, we modify Algorithm 1 so that, given n, d , z > 1 and 0 < p < 1, the modified

algorithm successfully constructs a t � n .d I z/-disjunct matrix with probability at least p, with t �

cd 2.log 2
1�p

C log n/ C 2.1 C �/dz C O. z2

ln n
/, where � � 3:92 and c � 4:28 are constants, and the O.�/

notation hides dependencies on p.

We first give a generalization of .d; 1/-disjunct matrices. A q-ary matrix is .d; 1I z/-disjunct if for any

column c and any set D of d other columns, there exist at least z elements in c such that each of these

elements does not appear in any column of D in the same row. Clearly, by applying the same transformation

in Theorem 1, one can turn a t0 � n q-ary .d; 1I z/-disjunct matrix into a .d I z/-disjunct matrix with n

columns and at most t0q rows.

For given n, d , z > 1 and 0 < p < 1, let n0, � be as in Algorithm 1. Assign q D .1 C �/d C �z

ln 2n�1
1�p

,

t0 D z C 1C�
�

d ln 2n�1
1�p

, and � D t0
q

. It can be verified that by this assignment, .1 C �/� D t0�z
d

and

. e�

.1C�/1C� /� D 1�p

2n�1
. Please see Algorithm 2 as our algorithm for constructing .d I z/-disjunct matrices.

Algorithm 2 Constructing .d I z/-disjunct matrix Mt�n

Algorithm 2 works in the same way as Algorithm 1, except that with q D .1 C �/d C �z

ln 2n�1
1�p

and

t0 D z C 1C�
�

d ln 2n�1
1�p

.

Firstly, at Step 3 of Algorithm 2, M 00 must be q-ary .d; 1I z/-disjunct because for any column i ,

any d other columns can only cover less than d � .1 C �/� D t0 � z of its entries. Therefore, if the

algorithm successfully returns a matrix, it must be .d I z/-disjunct. Secondly, when z D o.d ln n/, by similar

arguments, Algorithm 2 runs in time O.dn2 ln n/ in the straightforward manner, and can be improved to

expected O.n2 ln n/ time by counting the pairs of equal entries along the rows. Thirdly, t � t0q D
.1C�/2

� log e
d 2 log 2n�1

1�p
C 2.1 C �/dz C

.� log e/z2

log 2n�1
1�p

� cd 2.log 2
1�p

C log n/ C 2.1 C �/dz C O. z2

ln n
/, where c D

.1C�/2

� log e
� 4:28.

For the success probability, if we let m� be the random variable denoting the number of edges created

at Step 2, since . e�

.1C�/1C� /� D 1�p

2n�1
still holds, the same result in lemma 4 also holds here, that is

EŒm�� � n.1 � p/. Therefore, the probability that there are less than n columns left at Step 4 (i.e., the

failure probability of Algorithm 2) is at most PrŒm� > n� � 1 � p. We have established the following

theorem.

Theorem 6. Given n, d , z > 1 and 0 < p < 1, Algorithm 2 successfully constructs a t � n .d I z/-

disjunct matrix with probability at least p, with t � cd 2.log 2
1�p

C log n/ C 2.1 C �/dz C O. z2

ln n
/, where

� � 3:92 and c � 4:28 are constants. When z D o.d ln n/, the algorithm runs in expected O.n2 ln n/

time.

Remarks. The two constructions in this section are improvements from the previous constructions

proposed in Cheng and Du (2007), by incorporating the concepts of transversal designs and q-ary .d; 1/-

disjunct (.d; 1I z/-disjunct) matrices. Compared to Cheng and Du (2007), the new constructions have

several advantages. Firstly, as mentioned before the new constructions are transversal designs requiring

equal number of copies for each item, which is practically favorable. Secondly, they both reduce t by a

factor of 1
.1�ı/2 , which is approximately .1 C 1p

d ln n
/ for a reasonably good choice of parameters c1 and

c2 in the previous constructions. For instance, for n D 10,000,000 and d D 5, we have 1 C 1p
d ln n

� 1:11,

which means that for this n and d we can reduce the number of tests by approximately 10%. Thirdly, the

new constructions are much simplified while require the same running time.
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4. TWO-STAGE POOLING DESIGNS

In this section, we present new two-stage pooling designs, which require a number of tests asymptotically

no more than a factor of 3
log 3

(the factor approaches log2 e � 1:44 as d tends to infinity) of the information-

theoretic lower bound d log.n=d/. This improves the previously best upper bound of 4.1 C o.1// times

the information theoretic bound of Eppstein et al. (2007) by a factor of more than 2.

For a 0/1 matrix M , let C denote the set of columns of M , recall that M is d -disjunct if for any

d -sized subset D of C , each column in C � D is not covered by U.D/, where U.D/ denotes the union

of the columns in D. Such matrices form the basis for nonadaptive (one stage) pooling designs. However,

a d -disjunct matrix with n columns requires no less than �.d2 log n

log d
/ rows, which is a factor of d= logd of

the information-theoretic lower bound.

Instead of determining all the positives immediately, in Eppstein et al. (2007), the authors relax the

property of M by introducing the concept of .d; k/-resolvable matrices, which forms a good two-stage

group testing regimen. A 0/1 matrix M is called .d; k/-resolvable if, for any d -sized subset D of C , there

are fewer than k columns in C � D that are covered by U.D/. Thus, a matrix is d -disjunct if and only if

it is .d; 1/-resolvable.

For a set of n items in which at most d are positives, one can construct a “trivial two-stage” pooling

design based on a t � n .d; k/-resolvable matrix as follows. Define the first round tests according to the

rows of the matrix. By identifying the items in a negative pool (a pool with negative test outcome) as

negatives, we can restrict the positives to a set D0 of size smaller than d C k. Then, perform an additional

round of tests on each item in D0 individually. Thus, the total number of tests of the two stages is less

than t C d C k.

4.1. Near optimal two-stage pooling designs

Let M1 be a q-ary matrix, and let C denote the set of columns of M1. We say that M1 is .d; 1I k/-

resolvable if, for any d -sized subset D of C , there are fewer than k columns in C � D that are

covered by D. Here by saying a column c is covered by D we mean that for each element of c, the

element appears at least once in some column of D in the same row. By applying the transformation in

Theorem 1, one can turn a t0 � n q-ary .d; 1I k/-resolvable matrix into a t � n .d; k/-resolvable matrix

with t � t0q.

Let M 0 be a random t0 � n q-ary (where q will be specified later) matrix with each cell assigned

randomly from f1; 2; : : : ; qg, independently and uniformly. For each set D of d columns and a column

c … D, for each element ci (i D 1; 2; : : : ; t0) in c, the probability that ci appears in some column of D in

the same row is 1 � .1 � 1
q
/d , thus the probability that every element in c appears in some column of D in

the same row, i.e., c is covered by D, is Œ1 � .1 � 1
q
/d �t0 . We choose t0 such that Œ1 � .1 � 1

q
/d �t0 D 1

n�d
,

that is t0 D �
log.n�d/

logŒ1�.1� 1
q /d �

.

Let C denote the set of columns of M 0. For any set D of d columns of M 0, and for each c 2 C �D, let

Xc be the indicator variable such that Xc D 1 if and only if c is covered by D. Then, PrŒXc D 1� D 1
n�d

.

Define XD D
P

c2C �D Xc , then XD is the random variable denoting the number of columns in C � D

that are covered by D. Since XD is the sum of .n � d/ i.i.d. 0/1 random variables and EŒXD� D 1,

the Chernoff’s bound implies that the probability that D covers at least .1 C ı/ columns in C � D is

PrŒXD � .1 C ı/� � eı

.1Cı/1Cı . Therefore, the probability that M 0 is not .d; 1I 1 C ı/-resolvable, i.e.,

there exists some set D of d columns that covers at least .1 C ı/ columns in C � D, is at most p D

. n
d

/ eı

.1Cı/1Cı .

In order to satisfy p < 1, it suffices to assign ı such that . 1Cı
e

/1Cı D nd , since which implies that
.1Cı/1Cı

eı >
.1Cı/1Cı

e1Cı D nd > . n

d
/. Notice that . 1Cı

e
/1Cı D nd implies . 1Cı

e
/

1Cı
e D n

d
e , thus 1 C ı D

.1 C o.1// d ln n
ln.d ln n/

. Hence, by probabilistic arguments we have proved the existence of a t0 � n q-ary

.d; 1I 1 C ı/-resolvable matrix with t0 and ı as specified above.

By applying the transformation in Theorem 1, one can turn the t0 � n q-ary .d; 1I 1 C ı/-resolvable

matrix M 0 into a (binary) t � n .d; 1 C ı/-resolvable matrix M with t � t0q < �
q log n

logŒ1�.1� 1
q

/d �
. Define
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Cd .x/ D x

� logŒ1�.1� 1
x /d �

for x > 1. We choose q to be the positive integer that minimizes Cd .x/, and let

Cd D Cd .q/. Then, t � Cd log n. For d � 1, Cd =d � Cd .3d/=d D 3

� logŒ1�.1� 1
3d /d �

� 3
log 3

(also it is

not hard to see that when d D 1, C1 D C1.3/ D 3
log 3

indeed holds). Further more, the following lemma

estimates that q D ‚.d/ and Cd ! d log e as d ! 1.

Lemma 7. For d � 1, let q D q.d/ be the point that minimizes Cd .x/ D x

� logŒ1�.1� 1
x /d �

for x > 1,

and let Cd D Cd .q/. Then, q.d/ D ‚.d/, and limd!1 Cd =d D log e.

To prove Lemma 7, we first prove a useful fact.

Fact 8. Let f .y/ D ln y ln.1 � y/, 0 < y < 1. Then f .y/ achieves maximum at y D 1
2
.

Proof of Fact 8. By symmetry, it is sufficient to show that f 0.y/ > 0 for 0 < y < 1
2
. Since

f 0.y/ D 1
y

ln.1 � y/ � 1
1�y

ln y D 1
y.1�y/

Œ.1 � y/ ln.1 � y/ � y ln y�, let g.y/ D .1 � y/ ln.1 � y/ � y ln y,

we will show that g.y/ > 0 for 0 < y < 1
2
.

We write g.y/ D ln.1 � y/ C y ln 1
y.1�y/

. For 0 < y < 1
2
, ln 1

y.1�y/
> ln 4 since y.1 � y/ < 1

4
, thus

g.y/ > ln.1 � y/ C y ln 4. Let h.y/ D ln.1 � y/ C y ln 4. Notice that h0.y/ D ln 4 � 1
1�y

, h0.y/ > 0

for 0 < y < 1 � 1
ln 4

, and h0.y/ < 0 for 1 � 1
ln 4

< y < 1
2
. Thus, h.y/ is monotone increasing when

0 < y < 1 � 1
ln 4

and monotone decreasing when 1 � 1
ln 4

< y < 1
2
. From h.0/ D h. 1

2
/ D 0, we can

obtain h.y/ > 0 for 0 < y < 1
2
. Therefore, for 0 < y < 1

2
, g.y/ > h.y/ > 0, and so f 0.y/ D

1
y.1�y/

g.y/ > 0.

Proof of Lemma 7. Notice that if q1 satisfies .1 � 1
q1

/d D 1
2
, then q1 D ‚.d/ since

q1

d
! log e

as d ! 1. Moreover, Cd .q1/ D q1 D ‚.d/. We prove the lemma by contradiction. First assume that

q.d/ D O.d/ does not hold, that is, for any c > 0 and any d0 > 0, there exists d > d0 such that

q.d/ > cd . Then, since
q

d
> c (for simplicity we write q instead of q.d/, if it is clear from the context),

as c ! 1, Cd .q/ D
q

� logŒ1�.1� 1
q /d �

�
q

� logŒ1�.1� d
q /�

D d
q
d

log
q
d

D !.d/ (here by a � b we mean that

limc!1
a
b

D 1). However, this contradicts since q is point that minimizes Cd .q/ and we already have

Cd .q1/ D ‚.d/. On the other hand, assume that q.d/ D �.d/ does not hold, that is, for any c > 0 and

any d0 > 0, there exists d > d0 such that q.d/ < cd . Write Cd .q/ D
q

� logŒ1�.1� 1
q /d �

D
q ln 2

� lnf1�Œ.1� 1
q /q�

d
q g

.

Since 0 < .1 � 1
q
/q < 1

e
for q > 1, as c ! 0, d

q
> 1

c
! 1, and Œ.1 � 1

q
/q�

d
q < e

� d
q ! 0, thus

Cd .q/ �
q ln 2

Œ.1� 1
q /q �

d
q

> e
d
q q ln 2 D d e

d
q ln 2

d
q

D !.d/, this also contradicts (here by a � b we mean that

limc!0
a
b

D 1). Therefore, q.d/ D ‚.d/.

Next, we estimate Cd as d ! 1. Since .1 � 1
q
/q < 1

e
for q > 1, thus .1 � 1

q
/d < . 1

e
/

d
q D e� d

q , and

� logŒ1�.1� 1
q
/d � < � log.1�e

� d
q /, it follows that Cd .q/ D

q

� logŒ1�.1� 1
q /d �

>
q

� log.1�e
�

d
q /

D d ln 2

Œ� d
q ln.1�e

�
d
q /�

.

Let y D e
� d

q , then � d
q

D ln y, and Cd .q/ > d ln 2
ln y ln.1�y/

. Since ln y ln.1 � y/ achieves maximum at y D 1
2

(Fact 8), we obtain Cd .q/ > d log e for q > 1, thus Cd > d log e for d � 1. On the other hand, as

mentioned at the beginning of the proof, as d ! 1,
q1

d
! log e, and Cd .q1/ D q1 ! d log e. Therefore,

as d ! 1, Cd ! d log e.

By the above arguments, we have showed the existence of a t � n .d; 1 C ı/-resolvable matrix with

t � Cd log n and 1 C ı D .1 C o.1// d ln n
ln.d ln n/

, which implies the following theorem.
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Theorem 9. Given n and d , there exists a two-stage pooling design for finding up to d positives from

n items using no more than Cd log n C d C ı C 1 tests, where Cd D minx2N
x

� logŒ1�.1� 1
x

/d �
� 3

log 3
d for

d � 1, and ı D .1 C o.1// d ln n
ln.d ln n/

. Moreover, limd!1 Cd =d D log e.

5. PROBABILISTIC POOLING DESIGNS

We present a probabilistic pooling design identifying up to d positives from n items with high probability.

In a probabilistic group testing algorithm, one may identify a positive item as negative, we call such a

wrongly identified item a false negative, a negative item which is wrongly identified as positive is called

a false positive. Clearly, the algorithm correctly identifies all positives if and only if there are no false

positives or false negatives. Previous works on probabilistic nonadaptive group testing algorithms are,

among others, Macula (1999a, 1999b), Ngo and Du (2002).

Algorithm

Given n and d , first construct a t0 � n random q-ary matrix M 0 with each cell randomly assigned

from f1; 2; : : : ; qg independently and uniformly (where t0 and q with be specified later). Then, use the

transformation in Theorem 1 to obtain a t � n 0/1 matrix M with t � t0q. Associate the n items with the

columns of M , and test the pools indicated by the rows of M . We identify the items not in any negative

pool as positives.

Analysis

Let D be the set of columns corresponding to the positives, then jDj � d . First, it is easy to see that

no positive item will be identified as negative if there is no error in the test outcomes. For any negative

item, let c denote the column associated with it, then the item is wrongly identified if and only if c is

covered by U.D/ in M , or equivalently, c is covered by D in M 0 (we use the same notations c and D

for different matrices M and M 0, to denote the corresponding columns). The probability that c is covered

by D, as analyzed in Section 4, is Œ1 � .1 � 1
q
/jDj�t0 � Œ1 � .1 � 1

q
/d �t0 . We choose q and t0 such that

Œ1�.1� 1
q
/d �t0 D

1�p

n
, that is, t0 D �

log nClog 1
1�p

logŒ1�.1� 1
q

/d �
. Then, the probability that there exists some negative item

wrongly identified is no more then .n � jDj/Œ1 � .1 � 1
q
/d �t0 � 1 � p, which implies that with probability

at least p, the above algorithm successfully identifies all the positives. The number of pools required is no

more than t � t0q D �
q

logŒ1�.1� 1
q

/d �
.log n C log 1

1�p
/. By choosing q to be the positive integer minimizing

Cd .x/ D x

� logŒ1�.1� 1
x /d �

for x > 1, we obtain t � Cd .log n C log 1
1�p

/.

Theorem 10. The above one-stage algorithm, with probability at least p, correctly identifies up to d

positives from n items using no more than Cd .log n C log 1
1�p

/ tests.

Remark 1. Our one-stage probabilistic pooling design is also transversal. This design never gets false

negatives, while the probabilistic algorithms in Macula (1999a, 1999b) and Ngo and Du (2002) never get

false positives. In Ngo and Du (2002), the algorithm identifies up to 9 positives from 18,918,900 items

using 5460 tests, with success probability 98.5%. In our setting, n D 18,918,900, d D 9, and p D 0:985,

by choosing q D 14 we require Cd .q/.log n C log 1
1�p

/ < 408 tests, which is much fewer.

Remark 2. In contrast to the two-stage design in Section 4, this probabilistic algorithm is explicitly

given and can be easily implemented in practice. In addition, one can extend this algorithm to two stage,

by performing an additional round of individual tests on the “positives” (actually the candidate positives)

identified by the first round, so that no item will be wrongly identified. It is easy to verify that, for

this extended two-stage probabilistic algorithm, by choosing the same value q, and choosing t0 such that

Œ1 � .1 � 1
q
/d �t0 D 1

n
, the expected total number of tests required is no more than Cd log n C d C 1, which

is better than the deterministic two-stage design in Section 4.
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Remark 3. It is not hard to verify that, compared to the simplest design of assigning each entry of

(binary) matrix M to be one independently with some constant probability, to achieve the same success

probability our design requires noticeably fewer number of tests in general.

6. CONCLUSION

In this paper, we present new one- and two-stage pooling designs, together with new probabilistic

pooling designs. The approach in this paper provides better designs then previous ones, and works for both

error-free and error-tolerance scenarios. We end the paper off with the following remarks:

1. The constructions of pooling designs in Sections 4 and 5 can also be generalized to error-tolerance case,

in a similar manner as in the construction of .d I z/-disjunct matrices in Section 3.2. We omit them here

due to the similarities.

2. We do not give efficient constructions (i.e., in time polynomial in n and d ) of the two-stage designs in

Section 4. To the best of our knowledge, no efficient construction of two-stage pooling designs using

the number of tests within a constant factor of the information theoretic lower bound is known. In De

Bonis et al. (2005), the construction requires . n
n

2d
/ time, and in Eppstein et al. (2007), the authors give

existence proof as in the current paper. Although once such a design is found it can be used as many

times as we want, efficient construction is an important issue.

3. The two-stage pooling design we present in Section 4 uses the number of tests asymptotically within

a factor of Cd =d (� 3
log 3

for general d , and tends to log2 e � 1:44 as d ! 1) of the information

theoretic bound d log.n=d/. Can two-stage algorithms do as good as fully adaptive algorithms, i.e.,

achieve a factor of asymptotically 1 of the information theoretic bound? Or, how good could it be?

4. Finally, finding more constructions of disjunct matrices with good properties (e.g., with even fewer

number of rows for fixed n and d ) is interesting, both theoretically and practically.
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