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Abstract

A graph is Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. We
consider the class of constructably Laplacian integral graphs – those graphs that be constructed from an empty
graph by adding a sequence of edges in such a way that each time a new edge is added, the resulting graph is
Laplacian integral. We characterize the constructably Laplacian integral graphs in terms of certain forbidden
vertex-induced subgraphs, and consider the number of nonisomorphic Laplacian integral graphs that can
be constructed by adding a suitable edge to a constructably Laplacian integral graph. We also discuss the
eigenvalues of constructably Laplacian integral graphs, and identify families of isospectral nonisomorphic
graphs within the class.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Given a graph G on n vertices, its Laplacian matrix is the n × n matrix L given by L = D − A,
where A is the (0, 1) adjacency matrix, and D is the diagonal matrix of vertex degrees. Motivated
in part by a parallel question for the spectrum of the adjacency matrix (see [6]), a number of
papers on Laplacian matrices investigate the class of Laplacian integral graphs – i.e. those graphs
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with the property that the spectrum of the Laplacian matrix consists entirely of integers (see for
example [3,8–10,13]).

In particular, a paper of So [13] suggests a strategy for constructing Laplacian integral graphs.
So observes that if an edge is added into a graph G in such a way that the Laplacian eigenvalues
of G change only by integer quantities, then only one of two situations can occur:

(a) one eigenvalue of G increases by 2 upon addition of the edge; or
(b) two eigenvalues of G increase by 1 upon addition of the edge.

These two cases are known as spectral integral variation in one place, and spectral integral
variation in two places, respectively. The following two results characterize situations (a) and (b).

Note that throughout this paper, for each i ∈ N, we use ei to denote the vector with a 1 in the
ith position and zeros elsewhere; the order of the vector will always be clear from the context.

Theorem 1.1 [13]. Let G be a graph such that vertices 1 and 2 are not adjacent. Form Ĝ from
G from by adding the edge e between vertices 1 and 2. Then spectral integral variation in one
place occurs under the addition of e if and only if vertices 1 and 2 have the same neighbours
in G. In the case that spectral integral variation in one place occurs by adding e, the eigenvalue
of G that increases is equal to the degree of vertex 1, say d; further, e1 − e2 is an eigenvector
for G corresponding to d, and for Ĝ corresponding to d + 2.

Henceforth, we use 1k to denote an all-ones vector of order k; the subscript will be suppressed
only when the order is clear from the context.

Theorem 1.2 [7]. Let G be a graph on n vertices with Laplacian matrix L given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1 0 −1T 0T −1T 0T

0 d2 0T −1T −1T 0T

−1 0 L11 L12 L13 L14

0 −1 L21 L22 L23 L24

−1 −1 L31 L32 L33 L34

0 0 L41 L42 L43 L44

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1.1)

where the blocks L11, . . . , L44 are of sizes d1 − t, d2 − t, t and n − 2 − d1 − d2 + t, respectively.
Suppose that d1 � d2. Form Ĝ from G by adding the edge e between vertices 1 and 2. Then
spectral integral variation occurs in two places under the addition of e if and only if the following
conditions hold:

L111 − L121 = (d2 + 1)1, (1.2)

L211 − L221 = −(d1 + 1)1, (1.3)

L311 − L321 = −(d1 − d2)1, (1.4)

L411 − L421 = 0. (1.5)

In the case that conditions (1.2)–(1.5) hold, the two eigenvalues of L that are changed under the
addition of e are

λi1 = d1 + d2 + 1 − √
(d1 + d2 + 1)2 − 4(d1d2 + t)

2
(1.6)
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and

λi2 = d1 + d2 + 1 + √
(d1 + d2 + 1)2 − 4(d1d2 + t)

2
, (1.7)

and the vectors u1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

d2 + 1 − λi1

λi1 − d1 − 1
1

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and u2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

d2 + 1 − λi2

λi2 − d1 − 1
1

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

are eigenvectors of L corres-

ponding to λi1 and λi2 , respectively.

Remark 1.3. In Theorem 1.2, one or more of the last four sets in the partitioning of L may be
empty. In that case, the result carries through with the corresponding members of (1.2)–(1.5)
omitted.

As mentioned above, So’s notion of spectral integral variation suggests a strategy for construct-
ing Laplacian integral graphs: starting with a known Laplacian integral graph G, add an edge into
G so that spectral integral variation occurs (if that is possible); the resulting graph will then also
be Laplacian integral. That strategy is employed in [8], which deals with the class of integrally
completable graphs, i.e., those Laplacian integral graphs having the property that a sequence of
edges can be added, with spectral integral variation occurring with each addition, and that such
edge additions can continue until a complete graph is obtained.

In this paper, we continue in a similar vein. Specifically, we consider the class of graphs defined
as follows.

Let G be a graph on n vertices with at least one edge. Denote the (empty) graph on n vertices
with no edges by On. We say that G is constructably Laplacian integral if there is a sequence of
graphs On ≡ G0, G1, . . . , Gk ≡ G such that

(i) Gi is Laplacian integral for i = 0, . . . , k, and
(ii) for each i = 0, . . . , k − 1, Gi+1 is constructed from Gi by the addition of some edge.

We also take the convention that On is constructably Laplacian integral. We use Cn to denote
the set of constructably Laplacian integral graphs on n vertices.

It is not difficult to see that the constructably Laplacian integral graphs are just the complements
of the integrally completable graphs studied in [8], and consequently the present paper can be seen
as a companion piece to [8]. In this paper, we characterize the constructably Laplacian integral
graphs, discuss their eigenvalues, consider the number of nonisomorphic graphs in Cn that differ
from a given graph in Cn by a single edge, construct families of isospectral nonisomorphic graphs
in Cn, and discuss the subclass of threshold graphs.

Throughout, we adopt the following notation and terminology. For a vertex v of a graph G, the
neighbourhood of v is the set of vertices of G that are adjacent to v. Given a collection of vertices
in a graph G, the corresponding vertex-induced subgraph, say S, is the graph on that collection
of vertices with two vertices of S adjacent in S if and only if they are adjacent in G; we use ιS
to denote the (0, 1) vector with entries equal to 1 in positions corresponding to vertices in S, and
entries equal to 0 otherwise. We use P4 and C4 to denote the path on four vertices and the cycle
on four vertices, respectively. Given graphs G and H , their union is denoted G ∪ H , while their
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join, G ∨ H , is the graph formed from G ∪ H by adding all possible edges between vertices of
G and vertices of H . Finally, we use J to denote an all-ones matrix; the order will be made clear
from the context.

2. Basic results

Recall that a graph G is a complement reducible graph, or co-graph for short, if it has the
property that for each collection of four vertices, the corresponding vertex-induced subgraph
of G is not P4. Complement reducible graphs, also known as decomposable graphs, are well-
studied (see [2], for an introduction) and in particular, it is straightforward to determine that
any co-graph is Laplacian integral. The following result discusses spectral integral variation for
co-graphs.

Theorem 2.1. Let G be a co-graph on n vertices, and suppose that vertices 1 and 2 of G are
not adjacent. Let Ĝ be the graph constructed from G by adding the edge e between vertices 1
and 2. Then spectral integral variation occurs upon the addition of e if and only if Ĝ is also a
co-graph.

Proof. First, suppose that Ĝ is a co-graph; then Ĝ is necessarily Laplacian integral. As G is also
Laplacian integral, we conclude that spectral integral variation must take place upon adding the
edge e to G.

Now suppose that spectral integral variation occurs when the e is added to G. Let N1 and N2
denote the neighbourhoods of vertices 1 and 2 in G, respectively. If spectral integral variation
occurs in one place, then by Theorem 1.1, necessarily N1 = N2. Thus, each vertex of G is adjacent
to either both of 1 and 2 or neither 1 nor 2. Consider a vertex-induced subgraph H of Ĝ on four
vertices. If H does not contain both vertices 1 and 2, then it is also a vertex-induced subgraph
of G, and so is not equal to P4. If H contains both 1 and 2, then since each vertex of Ĝ that is
distinct from 1 and 2 is adjacent to either both of 1 and 2 or neither 1 nor 2, it follows readily
that H cannot equal P4. Thus, if spectral integral variation occurs in one place, then Ĝ is also a
co-graph.

Finally, suppose that spectral integral variation occurs in two places upon adding the edge
e to G. Then N1 /= N2, and we consider the following subsets of vertices: S1 = N1\N2, S2 =
N2\N1, S3 = N1 ∩ N2 and S4, the set of vertices distinct from 1 and 2 that are adjacent to neither
1 nor 2. Observe that these subsets correspond to the last four subsets that generate the partitioning
of the Laplacian matrix L in (1.1). Since N1 /= N2, we may assume without loss of generality that
S1 /= ∅. Note that since G contains no vertex-induced P4 subgraphs there are no edges between
any vertex in S1 and any vertex in S2. Hence either S2 = ∅, or L12 = 0. Suppose that in G there is
a vertex v ∈ S4 that is adjacent to a vertex u ∈ S1. Since L411 = L421, there is necessarily a vertex
w ∈ S2 such that v is adjacent to w. But then the vertices 1, u, v, w induce a P4 in G (observe
that u and w are not adjacent) a contradiction. We conclude that either S4 = ∅ or L14 = 0. It now
follows that L111 � (t + 1)1, and since we must have L111 = (d2 + 1)1, we conclude that in
fact t = d2, L13 = −J , and S2 = ∅. Thus we see that in G, each vertex of S1 is adjacent to each
vertex of S3, and that no vertex of S1 is adjacent to any vertex of S4. It now follows readily that no
vertex-induced subgraph of Ĝ including both vertices 1 and 2 is equal to P4. We conclude then
that Ĝ is a co-graph. �

Our next result characterizes constructably Laplacian integral graphs.
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Theorem 2.2. Let G be a graph on n vertices. Then G is constructably Laplacian integral if and
only if it has no vertex-induced P4 subgraphs and no vertex-induced C4 subgraphs.

Proof. Suppose that G is constructably Laplacian integral, and let On ≡ G0, G1, . . . , Gm ≡ G

be a sequence of graphs such that each Gi is Laplacian integral, and for each i = 0, . . . , m − 1,
Gi+1 is formed from Gi by the addition of an edge. Evidently On contains no vertex-induced
P4 subgraphs; further, for each i = 0, . . . , m − 1, spectral integral variation occurs when con-
structing Gi+1 from Gi , so we conclude that Gi+1 is also a co-graph. Hence it follows that
G contains no vertex-induced P4 subgraphs. Further, since Gi contains no vertex-induced P4
subgraphs, Gi+1 cannot contain any vertex-induced C4 subgraphs. We deduce then that G contains
no vertex-induced C4 subgraphs.

Next, suppose that G is a graph on n vertices that contains no vertex-induced subgraphs equal
to either P4 or C4. We claim by induction on n that G is constructably Laplacian integral, and note
that the claim certainly holds for n � 4. Suppose that the claim holds for some n − 1 � 4 and
that G is on n vertices. Evidently G is constructably Laplacian integral if and only if each of its
connected components is, so without loss of generality, we take G to be connected. Since G has no
vertex-induced P4 subgraphs, it follows that G can be written as H1 ∨ H2 for some pair of graphs
H1 and H2 (see [2]). If neither H1 nor H2 is complete, then G has a vertex-induced C4, contrary
to hypothesis. Hence G must have a vertex of degree n − 1, so that G can be written as K1 ∨ H3
for some graph H3 having no vertex-induced P4 subgraphs or C4 subgraphs. By the induction
hypothesis, H3 is constructably Laplacian integral, say with the sequence of Laplacian integral
graphs On−1 ≡ A0, A1, . . . , Ap ≡ H3 having the property that for each i = 0, . . . , p − 1, Ai+1
is formed from Ai by adding an edge. By considering the sequence of Laplacian integral graphs
On (Ki,1 ∪ On−i−1), i = 1, . . . , n − 1, followed by Aj ∨ K1, j = 1, . . . , p, we find readily that
G is a constructably Laplacian integral graph. �

Remark 2.3. Observe that G is constructably Laplacian integral if and only if its complement,
G, is integrally completable. According to a result in [8], G is integrally completable if and only if
G has no vertex-induced P4 subgraphs and no vertex-induced K2 ∪ K2 subgraphs. Thus we have
another proof that G is constructably Laplacian integral if and only if G has no vertex-induced
P4 subgraphs and no vertex-induced C4 subgraphs.

The following is immediate from Theorem 2.2.

Corollary 2.4. Suppose that G is constructably Laplacian integral and that vertices 1 and 2 of
G are not adjacent. Denote the neighbourhoods of 1 and 2 by N1 and N2, respectively, and let
S denote the set of vertices distinct from 1 and 2 that are adjacent to neither of vertices 1 and 2.

Let Ĝ denote the graph constructed from G by adding the edge between vertices 1 and 2. Then
Ĝ is Laplacian integral (and hence constructably Laplacian integral) if and only if one of the
following holds:

(a) N1 = N2;
(b) N2 ⊂ N1 and no vertex in N1\N2 is adjacent to any vertex in S;
(c) N1 ⊂ N2 and no vertex in N2\N1 is adjacent to any vertex in S.

Remark 2.5. Consider Corollary 2.4, and suppose that d1 and d2 are the degrees of vertices 1 and
2, respectively. If condition (a) of Corollary 2.4 holds, then the vector e1 − e2 is an eigenvector
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for the Laplacian matrix of G corresponding to the eigenvalue d1, and e1 − e2 is an eigenvector
for the Laplacian matrix of Ĝ corresponding to the eigenvalue d1 + 2.

If condition (b) of Corollary 2.4 holds, then partitioning the vectors below conformally with
(1.1), we find that the vectors⎡

⎢⎢⎢⎢⎣
d2 − d1

0
1
0
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1
d2 − d1 − 1

1
0
0

⎤
⎥⎥⎥⎥⎦

are eigenvectors for the Laplacian matrix of G corresponding to eigenvalues d1 + 1 and d2,
respectively, while the vectors⎡

⎢⎢⎢⎢⎣
d2 − d1 − 1

1
1
0
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0
d2 − d1

1
0
0

⎤
⎥⎥⎥⎥⎦

are eigenvectors for the Laplacian matrix of Ĝ corresponding to eigenvalues d1 + 2 and d2 + 1,
respectively.

Remark 2.6. It arises from the proof of Theorem 2.2 that if n � 2 and G is a connected graph in
Cn, then G = K1 ∨ G̃ for some G̃ ∈ Cn−1. In particular, G necessarily has one or more vertices of
degree n − 1. If G /= Kn, and has say p < n vertices of degree n − 1, we find that G = Kp ∨ H ,
where H ∈ Cn−p, and H has no vertices of degree n − p − 1. It follows then that G can be
written as G = Kp ∨ (H1 ∪ · · · ∪ Hq), where q � 2 and each Hi is a connected constructably
Laplacian integral graph of lower order.

From a standard result on the Laplacian spectrum of a join of graphs (see Corollary 9.25 of
[11]), we find then that G has p as an eigenvalue of multiplicity q − 1, while the remaining nonzero
eigenvalues of G are of the form λ + p, where λ is a nonzero eigenvalue of some Hi . Further,
each λ-eigenvector for Hi lifts to a (λ + p)-eigenvector of G by appending zeros in the positions
corresponding to the vertices of G\Hi . In particular, it follows that the algebraic connectivity α

of G, i.e. the smallest positive eigenvalue for G, is the number of vertices of G having degree
n − 1, and the multiplicity of α is one less than the number of connected components in the graph
formed from G by deleting all vertices of degree n − 1.

3. Eigenvalues of a graph in Cn

In this section, we provide some graph-theoretic interpretations of eigenvalues for construc-
tably Laplacian integral graphs. Remark 2.5 suggests a connection between vertex degrees and
eigenvalues for graphs in Cn, and the next result reinforces that connection.

Theorem 3.1. Let G ∈ Cn, and let v be a vertex of G of degree d. Then one of the following
holds.
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(a) d + 1 is an eigenvalue of G. In that case, either there is a vertex u adjacent to v such that
Nv\{u} = Nu\{v} and eu − ev is a (d + 1)-eigenvector, or the set A of vertices in Nv of
degree less than d is not empty, and −ιA + |A|ev is a (d + 1)-eigenvector.

(b) d + 1 is not an eigenvalue of G. In that case, d is an eigenvalue of G. Further, there is a
vertex u not adjacent to v such that Nu = Nv, and eu − ev is a d-eigenvector.

Proof. We proceed by induction on n, and note that for n = 2 the conclusion is readily verified.
Suppose now that n � 3, and without loss of generality, we take G to be connected. If G = Kn,
then any vertex v has degree n − 1, and certainly n is an eigenvalue. Further, observe that for a
vertex u /= v, Nv\{u} = Nu\{v} and eu − ev is an n-eigenvector, so that (a) holds.

Now suppose that G /= Kn, in which case we have G = Kp ∨ (H1 ∪ · · · ∪ Hq) for some
p � 1 and q � 2, where H1, . . . , Hq are connected constructably Laplacian integral graphs of
lower order. If the degree of v is n − 1, then note that certainly n is an eigenvalue for G. Letting
A denote the set of vertices of degree less than n, we find that −ιA + |A|ev is an n-eigenvector.
Further, if p � 2, then for a vertex u /= v of degree n − 1 we have Nv\{u} = Nu\{v} and eu − ev

is an n-eigenvector.
If the degree of v is d < n, then without loss of generality, we can take v to be in H1. Recall

from Remark 2.6 that each nonzero eigenvalue λ of H1 generates the eigenvalue λ + p of G, and
that the corresponding λ-eigenvectors lift to (λ + p)-eigenvectors of G. Since the d is the sum
of p with the degree of v as a vertex of H1, conclusions (a) and (b) now follow readily from the
induction hypothesis. �

Let G be a connected graph that is constructively Laplacian integral. We inductively construct

a rooted, directed tree
→
T (G) having a weight mv associated with each vertex v of the tree as

follows:

1. If G = Km for some m � 1, then
→
T (G) is a single vertex, the root, with weight m.

2. Suppose that G is not a complete graph, say G = Kp ∨ (H1 ∪ · · · ∪ Hq) for some p, q ∈ N

with q � 2, where each Hi is a connected, constructably Laplacian integral graph. For each

i = 1, . . . , q, let vi be the root vertex of
→
T (Hi), and form

→
T (G) from

→
T (H1) ∪ · · · ∪ →

T (Hq)

by adding a new root vertex v0, with weight p, and the arcs vi → v0, i = 1, . . . , q. Observe

that each arc in
→
T (G) is oriented towards the root vertex v0, that for each vertex of

→
T (G), there

is a unique directed path to the root vertex, and that each vertex of
→
T (G) either has indegree

zero, or has indegree at least two. We note in passing that the directed tree
→
T (G) is similar in

approach to the so-called composition tree for a co-graph described in [5].

Let A denote the set of vertices of
→
T (G) of indegree at least two, and let B denote the

set of vertices of
→
T (G) of indegree zero. For any vertex v of

→
T (G), let sv denote the sum of

the weights of the vertices on the unique path from v to v0 (here we admit the empty path if
v = v0, with sv0 = mv0 ). Finally, for each v ∈ A, let rv denote the sum of the weights of the
vertices distinct from v whose path to v0 goes through v, and let dv denote the indegree of v.
We now construct the following multisets of integers. For each v ∈ A, let L1(v) = {s(dv−1)

v } and
L2(v) = {(rv + sv)

(mv)}, and for each v ∈ B, let L3(v) = {s(mv−1)
v }; here we adopt the convention
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a(b) to indicate that the number a is repeated b times. Our next result shows how
→
T (G) can be

used to find the spectrum of a graph G ∈ Cn.

Theorem 3.2. Suppose that G is a connected constructably Laplacian integral graph. Let �(G)

denote the nonzero part of the spectrum of G. Then �(G) is given by the multiset
⋃

v∈A(L1(v) ∪
L2(v)) ∪ ⋃

v∈B L3(v).

Proof. We proceed by induction on the number of vertices of G. Note that if G happens to be

a complete graph, say on m vertices, then
→
T (G) is a single vertex v0 of weight m, A = ∅, and

L3(v0) = {m(m−1)}, which coincides �(G) (observe that both sets are empty in the case that
m = 1). In particular, note that if G has two vertices (and so is necessarily equal to K2), we have
the desired conclusion.

Now suppose that G has more than two vertices, and is not a complete graph. Then G can be
written as G = Kp ∨ (H1 ∪ · · · ∪ Hq) for some p ∈ N and q � 2, where each Hi is a connected,
constructably Laplacian integral graph. Suppose that for each i, Hi has ni vertices. Let v0 denote

the root vertex of
→
T (G), which has weight p. Then v0 ∈ A, L1(v0) = {p(dv0 −1)} while L2(v0) =

{(p + ∑q

i=1 ni)
(p)}. Further, for each vertex v /= v0, we have v ∈ Hi and note that v is in the set A

or the set B for
→
T (G) according as v is in the corresponding set for

→
T (Hi). Further, in order to com-

pute sv for the vertex v of
→
T (G), we simply add p to the corresponding value of sv considered as a

vertex of
→
T (Hi). It now follows readily that

⋃
v∈A(L1(v) ∪ L2(v)) ∪ ⋃

v∈B L3(v) = {p(dv0 −1)} ∪
{(p + ∑q

i=1 ni)
(p)} ⋃q

i=1{�(Hi) + p}, the latter union from the induction hypothesis. This last

is easily seen to coincide with �(G). �

Example 3.3. In this example we illustrate the technique of Theorem 3.2. Consider the follow-
ing three graphs, each on 12 vertices: H1 = K1 ∨ ((K1 ∨ (K2 ∪ K2)) ∪ (K1 ∨ O5)), H2 = K1 ∨
((K1 ∨ (K2 ∪ O2)) ∪ (K2 ∨ O3)), H3 = K1 ∨ ((K1 ∨ O4) ∪ (K1 ∨ (K2 ∪ K2 ∪ K1))). The

weighted digraphs
→
T (H1),

→
T (H2),

→
T (H3) are given in Figs. 1–3. From those digraphs, it is

straightforward to determine that each of these graphs has the following Laplacian spectrum:
0, 1, 2(5), 4(2), 6, 7, 12. It is not difficult to see that in each digraph, the two eigenvalues equal to
4 arise from the vertices in B, while the remaining nonzero eigenvalues correspond to vertices
in A.

2 2 1 1 1

1 1

1 1

1

Fig. 1.
→
T (H1).
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1 1

1

2 1 1 11 12

Fig. 2.
→
T (H2).

1 1

1

12  2 1 1 1 1

Fig. 3.
→
T (H3).

Remark 3.4. Let G be a connected constructably Laplacian integral graph, and suppose, adopting

the notation of Theorem 3.2, that v is a vertex of
→
T (G) with v ∈ A. Evidently there are mv vertices

of G, each of common degree δ = rv + sv − 1. Considering the set L2(V ) = {(rv + sv)
(mv)}, we

see that each of those mv vertices of degree δ gives rise to an eigenvalue of the Laplacian matrix
equal to δ + 1, illustrating Corollary 3.1(a). A similar conclusion holds if v ∈ B and mv � 2, as we
generate (from L3(v)) mv vertices of G having degree δ = sv − 1, and a corresponding Laplacian
eigenvalue δ + 1 of multiplicity mv − 1, again illustrating Corollary 3.1(a). Now suppose that

v ∈ B and that mv = 1, say with v → u as the arc in
→
T (G). If there is a w ∈ B such that

w → u and mw = 1, then note that the eigenvalue su is the common degree of the vertices in
G corresponding to u and w, both of which have the same neighbourhood in G. That illustrates
Corollary 3.1(b).

Finally, we provide an interpretation of the eigenvalues of G arising from L1(v) for some
v ∈ A. We say that a subset S of vertices of G is a splitting clique if the vertices of G induce a
clique, and G\S is disconnected. It is straightforward to see that if v ∈ A, then there is a splitting
clique S of cardinality sv such that G\S has exactly dv connected components. Thus we see that a
Laplacian eigenvalue arising from some L1(v) corresponds to the cardinality of a certain splitting
clique, and that the corresponding multiplicity arises from the number of connected components
formed by deleting that splitting clique.
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Remark 3.5. In Remark 2.5, we saw that the eigenvectors⎡
⎢⎢⎢⎢⎣

d2 − d1
0
1
0
0

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

d2 − d1 − 1
1
1
0
0

⎤
⎥⎥⎥⎥⎦

correspond, respectively, to the eigenvalues d1 + 1 for G and d1 + 2 for G ∪ {e}, where e denotes
the edge between vertices 1 and 2. Note that each of these vectors is of the form ιA − |A|e1, where
A denotes the set of vertices in N1 of degree less than d1.

Consider the eigenvalues d2 and d2 + 1 of G and G ∪ {e} respectively, and let S denote the
set of vertices that are adjacent to both vertices 1 and 2. Observe that the vertices of S must
induce a complete subgraph of G, for if not, there are nonadjacent vertices u, v of S, so that the
vertices {1, 2, u, v} induce a C4 in G, a contradiction. Since S induces a complete subgraph of G,
it follows that S is in fact a splitting clique, so that d2 = |S| is the cardinality of a splitting clique
in G. A similar argument shows that in G ∪ {e}, the set of vertices S ∪ {1} is a splitting clique,
which evidently has cardinality d2 + 1.

4. Graphs in Cn differing by one edge

Given a graph in Cn, there might be several different edges that can be added in order to yield
other constructably Laplacian integral graphs; it is natural to wonder how many nonisomorphic
graphs in Cn can be constructed from a given graph in Cn by adding an edge. Similarly we might
ask how many different graphs in Cn will yield a given graph in Cn via the addition of a suitable
edge. In this section, we address that topic.

Suppose that G ∈ Cn, and let δ̄(G) be the number of nonisomorphic graphs in Cn that can
be constructed from G by the addition of a single edge. Let σn = max{δ̄(G)|G ∈ Cn}. Our next
result yields the value of σn.

Theorem 4.1. For each n ∈ N, σn = � 2n−1
3 �.

Proof. It is straightforward to verify the formula for σn for 1 � n � 4. We first claim that if
G ∈ Cn then δ̄(G) � � 2n−1

3 �, and we proceed by induction on n. Suppose that n � 5 and that
G ∈ Cn. If G is connected, then G = K1 ∨ H where H ∈ Cn−1, and so from the induction
hypothesis, we find that δ̄(G) = δ̄(H) � � 2(n−1)−1

3 � � � 2n−1
3 �, as desired.

Next, suppose that G is not connected, say with G = Op ∪ G1 ∪ · · · ∪ Gk , where for each i =
1, . . . , k, Gi is a connected graph inCni

, with ni � 2 and where p + ∑k
i=1 ni = n. Note that if we

add an edge to G that joins G1 and G2, say, then that creates a P4, and so spectral integral variation
cannot occur. Similarly, suppose that G has an isolated vertex u, and consider the graph formed by
adding an edge of the form {u, v}. It is straightforward to see that spectral integral variation occurs
if and only if either v is also an isolated vertex, or v is a vertex of some Gi that is adjacent to every
other vertex of Gi . Also, observe that as above, since each Gi is connected, δ̄(Gi) � 2(ni−1)−1

3 . If

p = 0, then k � 2 and δ̄(G) �
∑k

i=1 δ̄(Gi) �
∑k

i=1
2(ni−1)−1

3 = 2n
3 − k � 2n−1

3 , as desired. If

p = 1 then k � 1 and δ̄(G) �
∑k

i=1 δ̄(Gi) + k �
∑k

i=1
2(ni−1)−1

3 + k = 2(n−1)
3 � 2n−1

3 , again,

as desired. Finally, if p � 2, we find that δ̄(G) �
∑k

i=1 δ̄(Gi) + k + 1 �
∑k

i=1
2(ni−1)−1

3 + k +
1 = 2(n−p)

3 + 1 � 2n−1
3 . This completes the induction proof of the claim.
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Lastly, to show that σn = � 2n−1
3 �, we exhibit, for each n � 5, a graph G ∈ Cn such that δ̄(G) =

� 2n−1
3 �. To construct these graphs, let A(1) = O2, B(1) = K1,2, and C(1) = K2 ∪ O2. For each

i ∈ N, we define A(i + 1) = (K1 ∨ A(i)) ∪ O2, B(i + 1) = (K1 ∨ B(i)) ∪ O2, and C(i + 1) =
(K1 ∨ C(i)) ∪ O2. Note that for each i ∈ N, A(i) has 3i − 1 vertices, B(i) has 3i vertices, and
that C(i) has 3i + 1 vertices. We claim that for each i ∈ N, δ̄(A(i)) = 2i − 1, δ̄(B(i)) = 2i − 1
and δ̄(C(i)) = 2i, which will yield the desired conclusion. To show that δ̄(A(i)) = 2i − 1, we
proceed by induction on i, and note that the case for i = 1 is evident. Suppose that i � 2. We
find that δ̄(A(i)) = δ̄(A(i − 1)) + 2 = 2(i − 1) − 1 + 2 = 2i − 1, as desired. The proofs that
δ̄(B(i)) = 2i − 1 and δ̄(C(i)) = 2i, are analogous, and are omitted. �

Corollary 4.2. Suppose that n ∈ N with n � 2. Then for each k ∈ N with 1 � k � � 2n−1
3 �, there

is a graph G ∈ Cn such that δ̄(G) = k.

Proof. We proceed by induction on n, and note that the result certainly holds for n = 2, 3, 4.
Suppose that n � 5. From Theorem 4.1, there is certainly a G ∈ Cn such that δ̄(G) = � 2n−1

3 �, so

suppose that 1 � k � � 2n−1
3 � − 1. Then k � � 2(n−1)−1

3 �, so from the induction hypothesis, there
is a graph H ∈ Cn−1 such that δ̄(H) = k. It now follows that the graph G = K1 ∨ H is in Cn

and that δ̄(G) = δ̄(H) = k. �

For each G ∈ Cn, let δ(G) be the number of nonisomorphic graphs in Cn to which an edge can
be added that will yield G. Evidently δ(G) is the number of nonisomorphic graphs in Cn that can
be formed by deleting a suitable edge in G. Let τn = max{δ(G)|G ∈ Cn}. We have the following
observations.

Observation 1. If G = G1 ∪ · · · ∪ Gk where each Gi is connected and is a constructably Lapla-
cian integral graph, then δ(G) �

∑k
i=1 δ(Gi).

Observation 2. If H is a connected constructably Laplacian integral graph, then δ(K1 ∨ H) =
δ(H). The equality is obvious if H is a complete graph, so suppose that H is not a complete

graph, so that H has the form H = K1 ∨ Ĥ for some noncomplete constructably Laplacian
integral graph Ĥ . Let G = K1 ∨ H , let u be the vertex of G not in H , and let v be a vertex of H

that is adjacent to every other vertex of H . Let δ(H) = m, and suppose that H1, . . . , Hm are the
nonisomorphic constructably Laplacian integral graphs that can be formed by deleting an edge
from H . It now follows that if any edge other than {u, v} is deleted from G, the resulting graph,
if it is constructably Laplacian integral, is isomorphic to one of K1 ∨ Hi, i = 1, . . . , m. Finally,
let x and y be nonadjacent vertices of H . Observe that in the graph G\{u, v}, the vertices u, v, x

and y induce a C4, so that G\{u, v} is not constructably Laplacian integral. It now follows that
δ(G) = m, as desired.

Observation 3. Suppose that for each i = 1, . . . , m, Gi is a connected constructably Laplacian
integral graph on at least two vertices. Suppose that m + p � 2 and let G = K1 ∨ (G1 ∪ · · · ∪
Gm ∪ Op). Then

δ(G) �
m∑

i=1

δ(Gi) +
{

1, p � 1,

0, p = 0.
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To see this, note first that if p � 1, then all graphs formed from deleting a pendant edge of G are
isomorphic. Next, let u be a vertex of G of maximum degree and suppose that v is a vertex of
G1. Observe that there is a vertex w of G1 that is adjacent to v, and that since m + p � 2, there
is a vertex x that is adjacent to neither v nor w. If we delete the edge {u, v} from G, it follows
that in the resulting graph, the subgraph induced by vertices u, v, w and x is isomorphic to P4,
so that G\{u, v} is not constructably Laplacian integral. It now follows that if a nonpendant edge
is deleted from G that yields a constructably Laplacian integral graph then that edge must be an
edge e in some Gi such that Gi − e is a constructably Laplacian integral graph. We find that

δ(G) �
m∑

i=1

δ(Gi) +
{

1, p � 1,

0, p = 0,

as desired.

Our next result gives the value of τn.

Theorem 4.3. For each n ∈ N, we have τn = ⌊
n
2

⌋
.

Proof. We begin by proving by induction on n that if G ∈ Cn, then δ(G) � �n
2 �, and note that the

result is evident for n = 1, 2, 3. Suppose that n � 4, and that G ∈ Cn. First suppose that G is not
connected, and has the form G = G1 ∪ · · · ∪ Gk where each Gi is connected, on ni vertices. By
Observation 1 and the induction hypothesis, we have δ(G) �

∑k
i=1 δ(Gi) �

∑k
i=1�ni

2 � � �n
2 �.

If G is connected, and is of the form G = K1 ∨ H , then by Observation 2, we have δ(G) =
δ(H) � �n−1

2 � � �n
2 �, the first inequality following from the induction hypothesis. Finally, if G

is connected and is of the form G = K1 ∨ (G1 ∪ · · · ∪ Gm ∪ Op) where each Gi is connected on
ni � 2 vertices, and where m + p � 2, then by Observation 3 we have δ(G) �

∑m
i=1 δ(Gi) +{

1, p � 1
0, p = 0

If p = 0, then applying the induction hypothesis, to each δ(Gi) it follows that

δ(G) � �n−1
2 �, while if p � 1, a similar argument yields δ(G) � n−p−1

2 + 1 � n
2 , and the desired

inequality follows. Thus δ(G) � �n
2 �.

Finally, we claim that for each n ∈ N, there is a graph G ∈ Cn such that δ(G) = �n
2 �. We

proceed by induction on n, and note that this is straightforward to see for n = 1, 2, 3, so suppose
that n � 4. Select a graph H ∈ Cn−2 such that δ(H) = �n−2

2 �. Letting G = K1 ∨ (H ∪ K1), it
is straightforward to see that δ(G) � δ(H) + 1 = �n−2

2 � + 1 = �n
2 �. The fact that δ(G) = �n

2 �
now follows immediately. �

Corollary 4.4. Suppose that n ∈ N with n � 2. Then for each k ∈ N with 1 � k � �n
2 �, there is

a connected graph G ∈ Cn such that δ(G) = k.

Proof. We use induction on n, and note that the cases n = 2, 3 are straightforward. Suppose that
1 � k � �n−2

2 �, and, applying the induction hypothesis, let H be a connected graph in Cn−2 such
that δ(H) = k. Now let G = K1 ∨ (H ∪ K1); it is not difficult to see then that δ(G) = k + 1.
Consequently, for each 2 � k � �n

2 �, there is a connected graph G ∈ Cn such that δ(G) = k, and
observing that δ(K1,n−1) = 1, the statement follows. �

A graph G ∈ Cn is called a terminal graph if adding any edge into G fails to yield a Laplacian
integral graph. Our next result characterizes those graphs.
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Theorem 4.5. A graph G is a terminal graph if and only if both of the following are satisfied:

(i) G has no vertex-induced P4 or C4 subgraphs;
(ii) each pair of nonadjacent vertices in G sits on a vertex-induced K2 ∪ K2.

Proof. First, note that if both (i) and (ii) hold, then from (i), G is constructably Laplacian integral.
Further, from (ii), if any edge e is added into G, then G ∪ {e} contains a vertex-induced P4. Hence
G ∪ {e} is not constructably Laplacian integral, from which it follows that G ∪ {e} is not Laplacian
integral.

Now suppose that G is a terminal graph on n vertices. Since G is constructably Laplacian
integral, certainly (i) holds. We claim that (ii) also holds, and we proceed to establish the claim
by induction on n. Note that if n = 2, then G = K2, and the claim holds vacuously. Suppose now
that n � 3. If G is connected, then G = K1 ∨ H for some terminal graph H on n − 1 vertices.
Applying the induction hypothesis to H now yields that (ii) holds for G. Now suppose that G is
not connected, say G = G1 ∪ · · · ∪ Gk , where each Gi is connected and constructably Laplacian
integral. Evidently each Gi must be a terminal graph, and note that no Gi can consist of a single
vertex, otherwise we can an add at least one edge incident with that isolated vertex to yield
another Laplacian integral graph. Thus each Gi is a connected constructably Laplacian integral
on at least two vertices. Note then that any pair of (necessarily nonadjacent) vertices belonging to
distinct Gi’s sits on a vertex-induced K2 ∪ K2. Further, from the induction hypothesis, any pair
of nonadjacent vertices of G belonging to the same Gi sits on a vertex-induced K2 ∪ K2. Thus
(ii) holds, as desired. �

Next, we consider the connected terminal graphs on n vertices having a minimum number of
edges.

Theorem 4.6. Let G be a connected terminal graph on n � 5 vertices. Then G has at least 3�n
2 �

edges. Ifn is odd, then equality holds in that lower bound if and only ifG = K1 ∨ (K2 ∪ · · · ∪ K2).

If n is even, then equality holds in that lower bound if and only if G = K1 ∨ (K3 ∪ K2 ∪ · · · ∪ K2).

Proof. Suppose that G is a connected terminal graph. Then G = K1 ∨ H for some terminal graph
H on n − 1 vertices. Let ε(H) be the number of edges in H , and let the degree sequence for H be
di, i = 1, . . . , n − 1. Observe that if at least one di is zero, then H is not a terminal graph (since
we could add an edge incident with the isolated vertex of H and preserve Laplacian integrality).
Hence we have 2ε(H) = ∑n−1

i=1 di � n − 1, so that ε(H) � n−1
2 .

In the case that n is odd, we have ε(H) � n−1
2 , with equality if any only if H is a union of n−1

2
independent edges. The lower bound on the number of edges in G, along with the characterization
of the equality case, now follows readily when n is odd.

Now suppose that n is even. Since ε(H) � n−1
2 , in fact it must be the case that ε(H) � n

2 .
If it were the case that ε(H) = n

2 , then since each di � 1, we would necessarily have that H

has one vertex of degree 2, and the remaining vertices of degree 1. It follows then that H =
P3 ∪ K2 ∪ · · · ∪ K2, which is not a terminal graph, a contradiction.

Hence, we must have that ε(H) � n+2
2 , which readily yields the lower bound on the number

of edges in G. Suppose next that G has 3n
2 edges, so that necessarily ε(H) = n+2

2 . Let d1 be

the maximum degree for H , and note that since d1 = n + 2 − ∑n−1
i=2 di � 4, it follows that the
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possible degree sequences for H are: 4, 1(n−2) if d1 = 4; 3, 2, 1(n−3) if d1 = 3; and 2(3), 1(n−4)

if d1 = 2.
If H has the degree sequence 4, 1(n−2), then since H is constructably Laplacian integral, the

vertex of maximum degree 4 is necessarily in a connected component of H on 5 vertices, and
it follows that in that case, H = K1,4 ∪ K2 ∪ · · · ∪ K2, which is not a terminal graph. We then
conclude that G is not a terminal graph, a contradiction.

If H has the degree sequence 3, 2, 1(n−3), then one connected component of H has 4 vertices
and a spanning star (corresponding to the vertex of degree 3), but that component has at most one
vertex of degree 2. Hence that component must be K1,3, which is not a terminal graph. It follows
that H , and hence G, is not a terminal graph, a contradiction.

Finally, suppose that H has degree sequence 2(3), 1(n−4). It follows that either H = P3 ∪ P3 ∪
K2 ∪ · · · ∪ K2, or H = K3 ∪ K2 ∪ · · · ∪ K2. The former is not a terminal graph, while the latter
is certainly a terminal graph. We thus conclude that if G is a terminal graph with 3n

2 edges, then
G = K1 ∨ (K3 ∪ K2 ∪ · · · ∪ K2), as desired. �

5. Classes of isospectral graphs in Cn

In this section we focus on families of nonisomorphic isospectral constructably Laplacian
integral graphs. The next result exhibits one such family.

Theorem 5.1. For each n � 12, there is a collection of 3� n
12 � connected graphs in Cn that are

isospectral but pairwise nonisomorphic.

Proof. Consider the following three graphs, each of which has 11 vertices: G1 = (K1 ∨ (K2 ∪
K2)) ∪ (K1 ∨ O5),G2 =(K1 ∨ (K2 ∪ O2)) ∪ (K2 ∨ O3),G3 =(K1 ∨ O4) ∪ (K1 ∨ (K2 ∪ K2 ∪
K1)). It is straightforward to see that the graphs G1, G2 and G3 are pairwise nonisomorphic, and
that each has Laplacian spectrum given by 0(2), 1(5), 3(2), 5, 6.

Consider the following sets of graphs: S = {G1, G2, G3} and C12 = {H1, H2, H3}, where
Hi = K1 ∨ Gi, i = 1, 2, 3. Evidently the graphs in C12 are connected, constructably Lapla-
cian integral, isospectral, and nonisomorphic. For each k � 2, let C12k = {K1 ∨ (A ∪ B)|A ∈
C12(k−1), B ∈ S}. A straightforward induction proof on k shows that C12k is a set of cardinality
3k , that each graph in C12k is a connected graph in C12k , and that the graphs in C12k are isospectral
and pairwise nonisomorphic. In particular, if n is divisible by 12, then there is a collection of 3

n
12

connected graphs in Cn that are isospectral but pairwise nonisomorphic.
To cover the case that n is not divisible by 12, we consider the following collections of graphs.

For each j =1, . . . , 11, let Hi(j)=K1 ∨ (Gi ∪ Oj), i =1, 2, 3, and let C12+j ={H1(j), H2(j),
H3(j)}. For each k � 2 and j = 1, . . . , 11, let C12k+j = {K1 ∨ (A ∪ B)|A ∈ C12(k−1)+j , B ∈
S}. Again, a proof by induction on k shows that C12k+j is a collection of 3k connected, isospectral
pairwise nonisomorphic graphs in C12k+j . The conclusion now follows. �

Remark 5.2. In [10], Merris constructs, for each r ∈ N, a family of
(

2r−2

2r−3

)
Laplacian integral

graphs on n = 2r−3(2r + 1) vertices, where the graphs in the family are isospectral and pairwise
nonisomorphic. Indeed, following the details of the construction in [10], it is not difficult to verify
that each of the graphs in that family is constructably Laplacian integral.
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Fig. 4. H .

In this remark, we estimate, for large values of n, the number of graphs in the family constructed
by Merris. In order to facilitate the estimation, we let k = 2r−3. Recall Stirling’s asymptotic

formula for m!, namely that as m → ∞, we have m! ≈ √
2πmm+ 1

2 e−m (see [4]). Using Stir-

ling’s formula, it follows that as r → ∞, we have
(

2r−2

2r−3

)
=

(
2k

k

)
= (2k)!

(k!)2 ≈ 22k√
πk

. Since n =
2r−3(2r + 1), we find that for all sufficiently large r , log2(n) = r − 3 + log2(2r + 1) � r +
1
2 , and 2r + 1 � r − 3 + log2(2r + 1) = log2(n). Since n = k(2r + 1), it follows from these
inequalities that n

2 log2(n)
� k = n

2r+1 � n
log2(n)

. Applying these lower and upper bounds on k, it
follows that

1√
π

(
log2(n)

n

) 1
2

2
n

log2(n) � 22k

√
πk

�
√

2√
π

(
log2(n)

n

) 1
2

2
2n

log2(n) .

Referring to the inequalities above, we see that for all sufficiently large n, the family of Laplacian
integral nonisomorphic isospectral graphs on n vertices constructed in Theorem 5.1, which has
3� n

12 � members, is larger than the family of graphs constructed in [10].

Example 5.3. In this example, we show that a constructably Laplacian integral graph can be
isospectral with a graph that is not constructably Laplacian integral. We begin by noting that
the Laplacian spectrum of K1,4 is 0, 1(3), 5, that the Laplacian spectrum of K2 is 0, 2, and
that the obtained from K4 by deleting an edge, K4\{e}, say, has Laplacian spectrum 0, 2, 4(2).
Hence the graph G1 = K1,4 ∪ K2 ∪ (K4\{e}) has Laplacian spectrum given by 0(3), 1(3),

2(2), 4(2), 5. It is straightforward to see that G1 ∈ C11.
Next, consider the graph H shown in Fig. 4. It turns out that the Laplacian spectrum of H is

0, 1, 2(2), 4, 5. Note also that the Laplacian spectrum of K1 is 0, while that of K1,3 is 0, 1(2), 4.

Hence, the graph G2 = K1 ∪ K1,3 ∪ H has Laplacian spectrum given by 0(3), 1(3), 2(2), 4(2), 5,
and so is isospectral with G1. Evidently G2 /∈ C11, since G2 contains both a vertex-induced P4
subgraph and a vertex-induced C4 subgraph. Observe that for any p ∈ N, the connected graphs
Kp ∨ G1 and Kp ∨ G2 are isospectral, with the former being constructably Laplacian integral
and the latter failing to be a co-graph.

Given a square matrix whose entries consist of integers, one of the invariants associated with
it is the Smith normal form. Recall that two square integer matrices M1 and M2 are equivalent if
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there are integer matrices U, V each of determinant 1 or −1, such that UM1V = M2. Evidently
M1 and M2 are equivalent provided that one can be obtained from the other via a sequence of
row or column operations of the following type: permutation of rows (columns); addition of a
multiple of one row (column) to another row (column); multiplication of a row (column) by −1.
A standard result asserts that if M1 and M2 are equivalent, then they have the same Smith normal
form. See [12] for further details.

The Smith normal form for the Laplacian matrix of a graph has been investigated in several
papers, see for example [1] and the references therein. Here we investigate a family of constructably
Laplacian integral graphs sharing the same spectrum, degree sequence, and Smith normal form.

Suppose that p, q ∈ N with q � 2 and consider the graph

G(p, q) = K1 ∨ (

p︷ ︸︸ ︷
K2 ∪ · · · ∪ K2 ∪Oq).

Now for parameters p1, p1, q1, q2 ∈N with q1, q2 �2, let H(p1, q1, p2, q2)=K1 ∨ (G(p1, q1) ∪
G(p2, q2)). Using the technique of Theorem 3.2, it follows that the Laplacian spectrum of
H(p1, q1, p2, q2) is given by

0, 1, 2(p1+p2+q1+q2−1), 4(p1+p2), 2p1 + q1 + 2, 2p2 + q2 + 2,

2p1 + 2p2 + q1 + q2 + 3.

In particular if q4 �4, q2 �2 and p2 �2, then the graphs H(p1 + i, q1 − 2i, p2 − i, q2 + 2i), 0 �
i � min{p2 − 1,

q1−2
2 }, are all isospectral and all have the same degree sequence. Our next result

helps to discus the Smith normal form for this family of graphs.

Lemma 5.4. Suppose that p, q ∈ N with q � 2, and let L be the Laplacian matrix of G(p, q).

Then L + I is equivalent to a diagonal matrix whose entries consist of 1(p+2), 2(q−2), 8(p) and
2(2p + q + 2).

Proof. Throughout this proof, Ik and 0k×j will denote the k × k identity matrix and the k × j

zero matrix, respectively. Subscripts will be suppressed only when the order is clear from the
context.

Let U =
[

3 −1
−1 3

]
, and note that L + I can be written as

L + I =

⎡
⎢⎢⎢⎢⎢⎢⎣

U 02p×q −12p

. . .
U

0q×2p 2Iq −1q

−1T
2p −1T

q 2p + q + 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Letting A =
[

1 3
0 1

]
, and B =

[
3 1
1 0

]
, we have AUB =

[
8 0
0 −1

]
≡ D. It follows readily that

L + I is equivalent to the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

D 02p×q −c

. . .
D

0q×2p 2Iq −1q

−cT −1T
q 2p + q + 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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where c = 1p ⊗
[

4
1

]
. It is readily seen that M permutationally similar to⎡

⎢⎢⎢⎣
−Ip 0 0 −1p

0 8Ip 0 −41p

0 0 2Iq −1q

−1T
p −41T

p −1T
q 2p + q + 1

⎤
⎥⎥⎥⎦ ,

which is in turn equivalent to Ip ⊕ M̃ , where M̃ is given by

M̃ =
⎡
⎢⎣

8Ip 0 −41p

0 2Ip −1q

−41T
p −1T

q 3p + q + 1

⎤
⎥⎦ .

Adding twice the bottom row plus each of the first p rows of M̃ to the p + 1st row yields⎡
⎢⎢⎢⎢⎣

8Ip 0 0 −41p

0T 0 −21T
q−1 2p + 2q + 1

0 0 2Iq−1 −1q−1

−41T
p −1 −1T

q−1 3p + q + 1

⎤
⎥⎥⎥⎥⎦ ,

which is in turn equivalent to [1] ⊕ M̂ , where

M̂ =
⎡
⎢⎣

8Ip 0 −41p

0T −21T
q−1 2p + 2q + 1

0 2Iq−1 −1q−1

⎤
⎥⎦ .

Now M̂ is equivalent to⎡
⎢⎣

8Ip 0 0

0T −21T
q−1 2p + 2q + 1

0 2Iq−1 −1q−1

⎤
⎥⎦ ,

so the conclusion will follow once we discuss the matrix M =
[−21T

q−1 2p + 2q + 1
2Iq−1 −1q−1

]
. Using

the second row of M to eliminate in the last column, we see that M is equivalent to⎡
⎢⎣

2(2p + q + 2) 0T 0

2 0T −1
−21q−2 2Iq−2 0

⎤
⎥⎦ .

Using the last q − 1 columns in this last matrix to eliminate in the first column, we arrive at⎡
⎢⎣

2(2p + q + 2) 0T 0

0 0T −1
0 2Iq−2 0

⎤
⎥⎦ ,

which is evidently equivalent to⎡
⎣2(2p + q + 2) 0T 0

0 2Iq−2 0
0 0 1

⎤
⎦ .

The conclusion now follows. �
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Corollary 5.5. Suppose thatp1, p2, q1, q2 ∈ N withq1, q2 � 2,and 2p1 + q1 /= 2p2 + q2.Con-
sider the family of graphs H(p1 + i, q1 − 2i, p2 − i, q2 + 2i), 0 � i � min{p2 − 1,

q1−2
2 }. The

members of this family are pairwise nonisomorphic, isospectral, have the same degree sequence,
and the same Smith normal form.

Proof. The fact that the graphs in this family are isospectral with the same degree sequence
has already been observed; the fact that the members of this family are pairwise nonisomorphic
follows readily from the hypothesis that 2p1 + q1 /= 2p2 + q2. It remains only to discuss the
Smith normal form.

Fix 0 � i � min{p2 − 1,
q1−2

2 }, let L1 and L2 denote the Laplacian matrices for G(p1 +
i, q1 − 2i) and G(p2 − i, q2 + 2i), respectively. A straightforward computation shows that the
Laplacian matrix for H(p1 + i, q1 − 2i, p2 − i, q2 + 2i) is equivalent to M ≡ (L1 + I ) ⊕ (L2 +
I ) ⊕ [0]. Applying Lemma 5.4, it now follows that M is equivalent to a diagonal matrix whose
diagonal entries consist of 1(p1+p2+4), 2(q1+q2−4), 8(p1+p2), 2(2p1 + q1 + 2), 2(2p2 + q2 + 2),
and 0. Thus, the Smith normal form for M is independent of i, and the result follows. �

6. Threshold graphs

The class of threshold graphs can be characterized as the graphs having no vertex-induced
subgraphs isomorphic to either P4, C4, or K2 ∪ K2 (see [11]), and so by Theorem 2.2, any
threshold is constructably Laplacian integral. In this section we make a few remarks on this
class of graphs.

The following result of Hammer and Kelmans describes the spectrum of a threshold graph in
terms of its degree sequence. We note that an alternate description of the spectrum of a threshold
graph can be found in [9].

Proposition 6.1 [5]. Let G be a connected graph on n � 2 vertices having degree sequence
d

(k1)
1 > d

(k2)
2 > · · · > d

(km)
m . Then G is a threshold graph if and only if one of the following holds:

(i) m is even, and the Laplacian spectrum of G is given by: (di + 1)(ki ), i = 1, . . . , m
2 ;

d
(k m+2

2
−1)

m+2
2

; d
(ki )
i , i = m+4

2 , . . . , m; and 0.

(ii) m is odd, and the Laplacian spectrum of G is given by: (di + 1)(ki ), i = 1, . . . , m−1
2 ;

(dm+1
2

+ 1)
(k m+1

2
−1); d

(ki )
i , i = m+3

2 , . . . , m; and 0.

Remark 6.2. Let G be a constructably Laplacian integral graph. From Theorem 3.1, we see that
for each vertex of G, say of degree d , either d or d + 1 is an eigenvalue for the corresponding
Laplacian matrix. In the special case that G is a threshold graph, a partial converse holds: we find
from Proposition 6.1 that for each nonzero Laplacian eigenvalue λ of G, there is a vertex, say of
degree d, such that λ is either d or d + 1.

Theorem 6.3. Let G be a threshold graph on n vertices, and let G0, G1, . . . , Gk be a sequence
of graphs such that G0 = On, Gk = G, each Gi is Laplacian integral, and for each i = 0, . . . ,
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k − 1, Gi+1 is formed from Gi by the addition of an edge. Then for each i = 0, . . . , k, the graph
Gi is a threshold graph.

Proof. Consider the sequence of graphs G0, G1, . . . , Gk . We claim that each Gi is a threshold
graph. To see the claim, observe that Gk is constructed from Gk−1 by the addition of a single
edge. Suppose that Gk−1 is not a threshold graph; since Gk−1 is itself constructably Laplacian
integral, we deduce from Theorem 2.2 that Gk−1 must contain a vertex-induced K2 ∪ K2, say
on vertices 1, 2, 3 and 4. If the edge e added into Gk−1 to construct Gk is incident with at most
one of vertices 1, 2, 3, 4, then Gk also has a vertex-induced K2 ∪ K2 and so is not a threshold
graph, contrary to our hypothesis. Hence both end points of e are in {1, 2, 3, 4}, and it follows that
G contains a vertex-induced P4, also contrary to our hypothesis. We conclude that necessarily
Gk−1 is also a threshold graph. Iterating the claim above, we find that each of G0, G1, . . . , Gk is
a threshold graph. �

Remark 6.4. As noted above, in [8] it is shown that a graph is Laplacian integrally completable
if and only if it has no vertex-induced P4 subgraphs, and no vertex-induced K2 ∪ K2 subgraphs.
Thus we see that a graph G is both constructably Laplacian integral and Laplacian integrally
completable if and only if it has no vertex-induced subgraphs equal to either P4, C4 or K2 ∪ K2 –
i.e. if and only if G is a threshold graph.
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