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The Laplacian spread of a graph [1] is defined as the difference be-

tween the largest eigenvalue and the second-smallest eigenvalue

of the associated Laplacian matrix. In this paper, the minimum

Laplacian spreadof unicyclic graphswith givenorder is determined.
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1. Introduction

Let G be a simple graph with n vertices and m edges. A connected graph is called a unicyclic

graph if m = n. Denote by δ(G) and Δ(G) the minimum and the maximum degree, respectively. Let

D = diag(d1, d2, . . . , dn) be the diagonalmatrix of vertex degrees. The Laplacianmatrix of G is defined

as L = D − A, where A is the adjacency matrix of G. The Laplacian spectrum of G is the spectrum of its

Laplacian matrix, and consists of the values μ1 � μ2 � · · · � μn. Especially, μn−1(G) > 0 if and only

if G is connected. Fiedler [6] called μn−1(G) (or α(G)) the algebraic connectivity of G.

The Laplacian spread of a graph G is defined as [1]

LS(G) = μ1 − μn−1.

Fan et al. [1] showed that the star is the unique tree with maximum Laplacian spread, and the path is

the unique one with minimum Laplacian spread among all trees of given order.
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Li et al. [8] determined the unicyclic graph with maximum Laplacian spread of given order not

less than 10. In a recent work [9], using different way, Bao et al. have demonstrated that the unique

unicyclic graph with maximum Laplacian spread among all unicyclic graphs of fixed order, which is

obtained from a star by adding one edge between two pendant vertices.

As a consequence, in this paperwecharacterize theuniqueunicyclic graphwithminimumLaplacian

spread among all connected unicyclic graphs of given order.

2. Main results

The following properties of the Laplacian eigenvalues can be found in [2].

The Laplacian eigenvalues of graph G and its complement G (or Gc) have the relation μi(G) =
n − μn−i(G), i = 1, 2, . . . , n − 1.

Lemma 2.1 [2]. Let G be an n-vertex graph with at least one edge and maximum vertex degree Δ. Then
μ1 � 1 + Δ with equality for connected graph if and only if Δ = n − 1.

By the definition of Laplacian spread and the property of the complement, it is easy to check that

[3] LS(G) = μ1(G) + μ1(G) − n. By Lemma 2.1, Liu and You [3] obtained:

Lemma 2.2 [3]. Let G be an n-vertex graph with minimum degree δ and maximum degree Δ. Then

LS(G) � Δ − δ + 1.

Lemma 2.3. Let Cn be a cycle with n vertices. Then LS(Cn) < 4.

Proof. Note that μ1(Cn) � 4 and the equality holds if and only if n is even. Thus we have LS(Cn) � 4 −
μn−1(Cn) < 4. �

Theorem 2.4. Let G be an n-vertex unicyclic graph with Δ � 4. Then LS(G) � 4 > LS(Cn).

Proof. Let G be a unicyclic graph with Δ � 4. Then δ(G) = 1. By Lemmas 2.2 and 2.3, we have

LS(G) � 4 − 1 + 1 = 4 > LS(Cn). �

Following, we assume that G is a unicyclic graph with Δ = 3.

Lemma 2.5 [4]. For e /∈ E(G), the Laplacian eigenvalues of G and G′ = G + e interlace, i.e.,
μ1(G

′) � μ1(G) � μ2(G
′) � μ2(G) � · · · � μn(G

′) = μn(G) = 0.

Remark. In Lemma 2.5, if v is a pendant vertex of G and e the pendant edge incident with v, then

μ1(G − v) = μ1(G − e) � μ1(G).

From Lemma 2.5, Liu et al. [5] obtained the following result.

Lemma 2.6 [5]. Let G be a connected graph on n vertices. If v is a pendant vertex of G, then

μi(G) � μi−1(G − v), 2� i � n. Particularly, α(G) � α(G − v).

Lemma 2.7. Let G be an n-vertex unicyclic graph with Δ = 3. Then LS(G) � LS(G − v), where v is a

pendant vertex.

Proof. Let G be a unicyclic graph with Δ = 3. Then δ(G) = 1. Let v be a pendant vertex. By Lemmas

2.5 and 2.6, μ1(G) � μ1(G − v) and α(G) � α(G − v). Hence LS(G) = μ1(G) − α(G) � μ1(G − v) −
α(G − v) = LS(G − v). �



Z. You, B. Liu / Linear Algebra and its Applications 432 (2010) 499–504 501

Table 1

The largest Laplacian eigenvalue and algebraic connectivity of Ck + v with k = 9, ..., 16.

k 9 10 11 12 13 14 15 16

μ1(Ck + v) 4.37720 4.38595 4.38131 4.38387 4.38249 4.38324 4.38283 4.38305

α(Ck + v) 0.34891 0.29680 0.25454 0.22012 0.19189 0.16856 0.14910 0.13275

Table 2

The largest Laplacian eigenvalue and algebraic connectivity of Ck + v with k = 17, ..., 23.

k 17 18 19 20 21 22 23

μ1(Ck + v) 4.38293 4.38300 4.38296 4.38298 4.38297 4.38298 4.38297

α(Ck + v) 0.11889 0.10705 0.09687 0.08806 0.08039 0.07367 0.06774

Throughout this paper, let Ck + v be the cycle Ck added a pendant vertex v.

By Lemma 2.7 and finite steps deleting pendant vertices, we arrive at:

Theorem 2.8. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k. Then
LS(G) � LS(Ck + v).

Lemma 2.9 [7]. Let G be a simple graph with at least one edge. If μ1 be the largest Laplacian eigenvalue of

G, then

μ1 �max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√√d2i + 2di − 2dj − 2 +
√(

d2i + 2di + 2dj + 4
)2 + 4(di − cij − 1)(dj − cij − 1)

2
: vivj ∈ E

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(1)

where vi and vj are the vertices of degree di and dj respectively, and cij is the cardinality of the set of common

neighbors between vi and vj.

It is well known that μn−1(Cn) = 2
(
1 − cos

(
2π
n

))
. Then we have

Lemma 2.10. The algebraic connectivity of Cn is a decreasing function on n.

Lemma 2.11. If k � 61, then LS(Ck + v) � 4 > LS(Cn), where n (n� 3) is an arbitrary positive integer.

Proof. Let u be the neighbor of v and let w be another neighbor of u. Then di = deg(u) = 3 and

dj = deg(w) = 2.Note that cij = 0. Then the righthandsideof (1) is equal to

√
9+√

537
2

which is greater

than4.0408. By Lemmas2.6, 2.10 anddirect calculationwehaveα(Ck + v) � α(Ck) � α(C61)
.= 0.0106

for k � 61. Thus we have LS(Ck + v) > 4.01081 − 0.0106 > 4 > LS(Cn). �
With the computer direct calculations, we straightforwardly have:

Lemma 2.12. If 9� k � 60, then LS(Ck + v) > 4 > LS(Cn), where n (n� 3) is an arbitrary positive

integer.

Proof. If 24� k � 60, then μ1(C24 + v)
.= 4.38298 and α(Ck + v) � α(C24 + v)

.= 0.06251. Thus
LS(Ck + v) � LS(C24 + v)

.= 4.38298 − 0.06251 = 4.32047 > 4 > LS(Cn).
If 9� k � 23, by Tables 1 and 2, then

LS(Ck + v) � LS(C9 + v)
.= 4.37720 − 0.34891 = 4.02829 > 4 > LS(Cn).

The lemma follows. �
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By Theorem 2.8, Lemmas 2.11 and 2.12, we arrive at:

Corollary 2.13. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k. If k � 9,

then LS(G) > LS(Cn).

Lemma 2.14. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k = 6, 7, 8.
Then LS(G) > LS(Cn).

Proof. When k = 8. We consider two cases according to the order of G.

Case 1. k = 8 and n = 9.

Then G ∼= C8 + v and LS(G)
.= 4.39276 − 0.41309 > 3.87939 − 0.46791

.= LS(C9).
Case 2. k = 8 and n� 10.

LetC8 = v1v2 · · · v8v1 and letGhave a subgraphC8 + v1v. Sincen� 10andΔ = 3,Ghas a subgraph

obtained by adding a vertex u to C8 + v1v. There exist five such non-isomorphic graphs. The graph

which attains the minimum Laplacian spread among these 5 graphs is C8 + v1v + v5u. By gradually

deleting pendant vertices from G, G can be transformed into C8 + v1v + v5u.

By Lemma 2.7, we have LS(G) � LS(C8 + v1v + v5u)
.= 4.15632 > LS(Cn).

When k = 6, 7, similar to the case k = 8, the results follow.

The proof of Lemma 2.14 is completed. �

Lemma 2.15. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k = 5. Then
LS(G) > LS(Cn).

Proof. If n = 6, then G ∼= C5 + v for some v. Thus we have

LS(G)
.= 4.30278 − 0.69722 > 3 = LS(C6).

When n� 7. Let C5 = v1v2 · · · v5v1 and v be a vertex adjacent to v1. Then C5 + v1v is a subgraph

of G. Note that n� 7 and Δ = 3. A new vertex umay be adjacent to v, v2, v3, v4 or v5. We consider the

following two cases.

Case 1. u is no adjacent to v3.

By direct computation, the minimum LS value of C5 + v1v + xu for x ∈ {v, v2, v4, v5} is attained

when x = v2 or v5.

By Lemma 2.7, we have LS(G) � LS(C5 + v1v + v2u)
.= 4.65109 − 0.62280 > 4 > LS(Cn).

Case 2. u is adjacent to v3.

Subcase 2.1. n = 7.

Then G ∼= C5 + v1v + v3u and LS(G)
.= 4.41421 − 0.51881 = 3.8954 > 3.04892

.= LS(C7).
Subcase 2.2. n� 8.

By direct computation, the minimum LS value of C5 + v1v + v3u + xy for y ∈ {v, v2, u, v4, v5} is

attained when y = v or u.

By Lemma 2.7, we have LS(G) � LS(C5 + v1v + v3u + xv)
.= 4.48119 − 0.32487 > 4 > LS(Cn).

Thus the proof of Lemma 2.15 is completed. �

Lemma 2.16. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k = 4. Then
LS(G) > LS(Cn).

Proof. There are two cases:

Case 1. n = 5.

Then G ∼= C4 + v for some v and LS(G)
.= 4.48119 − 0.82991 = 3.65128 > 2.23606

.= LS(C5).
Case 2. n� 6.

Let C4 = v1v2 · · · v4v1 and v be a vertex adjacent to v1. Then G contains the subgraph C4 + v1v.

Since n� 6 and Δ = 3, a new vertex u may be adjacent to v, v2, v3 or v4. By direct computation,

the subgraph which attains the minimum Laplacian spread is C4 + v1v + vu, where the value is

LS(C4 + v1v + vu)
.= 4.56155 − 0.43845 = 4.12310 > 4 > LS(Cn). By gradually deleting pendant
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vertices from G, G can be transformed into C4 + v1v + vu. Then by Lemma 2.7, LS(G) � LS(C4 + v1v +
vu) > 4 > LS(Cn).

Thus the lemma follows. �

Lemma 2.17. Let G be an n-vertex unicyclic graph with Δ = 3 and the length of the cycle be k = 3. Then
LS(G) > LS(Cn).

Proof. If n = 4, then G ∼= C3 + v for some v. Hence LS(G) = 4 − 1 = 3 > 2 = LS(C4).
Let C3 = v1v2v3v1 and v be a vertex adjacent to v1. Then C3 + v1v is a subgraph of G.

Whenn� 5.Anewvertexumaybeadjacent tov2,v3 orv. According to thevertex-inducedsubgraphs

of G, we have:

Case 1. C3 + v1v + v2u is a subgraph of G.

Let G1
∼= C3 + v1v + v2u, G2

∼= C3 + v1v + v2u + vx ∼= C3 + v1v + v2u + ux, G3
∼= C3 + v1v +

v2u + v3x for some x.

If n = 5, then G ∼= G1 and LS(G)
.= 4.30278 − 0.69722 = 3.60556 > LS(C5)

.= 2.23606.
If n = 6, then G ∼= Gi (i = 2, 3). By direct calculation, LS(Gi) > LS(C6) = 3.

Suppose n� 7. By direct computation, the minimum LS value among all 7-vertex unicyclic graphs

containing C3 + v1v + v2u is LS(C3 + v1v + v2u + vx + v3y)
.= 4.03224 for some x and y. By Lemma

2.7, we have LS(G) � LS(C3 + v1v + v2u + vx + v3y)
.= 4.03224 > 4 > LS(Cn).

Case 2. C3 + v1v + v3u is a subgraph of G.

Since v2 and v3 are symmetric in C3 + v1v, this case is similar to Case 1.

Case 3. C3 + v1v + vu is a subgraph of G.

LetG4
∼= C3 + v1v + vu,G5

∼= C3 + v1v + vu + ux,G6
∼= C3 + v1v + vu + vxandG7

∼= C3 + v1v +
vu + v2x ∼= C3 + v1v + vu + v3x.

If n = 5, then G ∼= G4 and LS(G)
.= 4.17009 − 0.51881 = 3.65128 > LS(C5)

.= 2.23606.
If n = 6, then G ∼= Gj (j = 5, 6, 7). By direct calculation, we have LS(Gj) > LS(Cn).
When n� 7.

Similar to Case 1 the graphC3 + v1v + vu + ux + xy for some x and y attains theminimum LS value

amongall 7-vertexunicyclic graphs containingC3 + v1v + vu. By Lemma2.7,wehave LS(G) � LS(C3 +
v1v + vu + ux + xy)

.= 4.22833 − 0.22538 > 4 > LS(Cn).
All possible cases are exhausted, and the proof of Lemma 2.17 is completed. �

By Corollary 2.13 and Lemmas 2.14–2.17, we have the following result:

Theorem 2.18. Let G be a unicyclic graph with Δ = 3. Then LS(G) > LS(Cn).

Combining Theorems 2.4 and 2.18, we arrive at the main result:

Theorem 2.19. Let G be a unicyclic graph with n vertices. Then LS(G) � LS(Cn) and the equality holds if

and only if G ∼= Cn.
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