

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

The minimum Laplacian spread of unicyclic graphs st

Zhifu You, Bolian Liu *

School of Mathematic Science, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO

Article history: Received 9 June 2009 Accepted 27 August 2009 Available online 23 September 2009

Submitted by R.A. Brualdi

AMS classification: 15A18 05C50

Keywords: Laplacian spread Unicyclic graphs Algebraic connectivity

1. Introduction

Let *G* be a simple graph with *n* vertices and *m* edges. A connected graph is called a unicyclic graph if m = n. Denote by $\delta(G)$ and $\Delta(G)$ the minimum and the maximum degree, respectively. Let $D = diag(d_1, d_2, \ldots, d_n)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of *G* is defined as L = D - A, where *A* is the adjacency matrix of *G*. The Laplacian spectrum of *G* is the spectrum of its Laplacian matrix, and consists of the values $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$. Especially, $\mu_{n-1}(G) > 0$ if and only if *G* is connected. Fielder [6] called $\mu_{n-1}(G)$ (or $\alpha(G)$) the algebraic connectivity of *G*.

The Laplacian spread of a graph *G* is defined as [1]

 $LS(G) = \mu_1 - \mu_{n-1}.$

Fan et al. [1] showed that the star is the unique tree with maximum Laplacian spread, and the path is the unique one with minimum Laplacian spread among all trees of given order.

* This work was supported by the NNSF of China (No. 10771080) and by DF of the Ministry of Education (No. 20070574006).

* Corresponding author.

E-mail address: liubl@scnu.edu.cn (B. Liu).

0024-3795/\$ - see front matter 0 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.08.027

ABSTRACT

The Laplacian spread of a graph [1] is defined as the difference between the largest eigenvalue and the second-smallest eigenvalue of the associated Laplacian matrix. In this paper, the minimum Laplacian spread of unicyclic graphs with given order is determined. © 2009 Elsevier Inc. All rights reserved.

Li et al. [8] determined the unicyclic graph with maximum Laplacian spread of given order not less than 10. In a recent work [9], using different way, Bao et al. have demonstrated that the unique unicyclic graph with maximum Laplacian spread among all unicyclic graphs of fixed order, which is obtained from a star by adding one edge between two pendant vertices.

As a consequence, in this paper we characterize the unique unicyclic graph with minimum Laplacian spread among all connected unicyclic graphs of given order.

2. Main results

The following properties of the Laplacian eigenvalues can be found in [2].

The Laplacian eigenvalues of graph *G* and its complement \overline{G} (or G^c) have the relation $\mu_i(G) = n - \mu_{n-i}(\overline{G}), i = 1, 2, ..., n - 1$.

Lemma 2.1 [2]. Let *G* be an *n*-vertex graph with at least one edge and maximum vertex degree Δ . Then $\mu_1 \ge 1 + \Delta$ with equality for connected graph if and only if $\Delta = n - 1$.

By the definition of Laplacian spread and the property of the complement, it is easy to check that [3] $LS(G) = \mu_1(G) + \mu_1(\overline{G}) - n$. By Lemma 2.1, Liu and You [3] obtained:

Lemma 2.2 [3]. Let G be an n-vertex graph with minimum degree δ and maximum degree Δ . Then $LS(G) \ge \Delta - \delta + 1$.

Lemma 2.3. Let C_n be a cycle with *n* vertices. Then $LS(C_n) < 4$.

Proof. Note that $\mu_1(C_n) \leq 4$ and the equality holds if and only if *n* is even. Thus we have $LS(C_n) \leq 4 - \mu_{n-1}(C_n) < 4$. \Box

Theorem 2.4. Let *G* be an *n*-vertex unicyclic graph with $\Delta \ge 4$. Then $LS(G) \ge 4 > LS(C_n)$.

Proof. Let *G* be a unicyclic graph with $\Delta \ge 4$. Then $\delta(G) = 1$. By Lemmas 2.2 and 2.3, we have $LS(G) \ge 4 - 1 + 1 = 4 > LS(C_n)$. \Box

Following, we assume that *G* is a unicyclic graph with $\Delta = 3$.

Lemma 2.5 [4]. For $e \notin E(G)$, the Laplacian eigenvalues of G and G' = G + e interlace, i.e., $\mu_1(G') \ge \mu_1(G) \ge \mu_2(G') \ge \mu_2(G) \ge \cdots \ge \mu_n(G') = \mu_n(G) = 0$.

Remark. In Lemma 2.5, if *v* is a pendant vertex of *G* and *e* the pendant edge incident with *v*, then $\mu_1(G - v) = \mu_1(G - e) \leq \mu_1(G)$.

From Lemma 2.5, Liu et al. [5] obtained the following result.

Lemma 2.6 [5]. Let *G* be a connected graph on *n* vertices. If *v* is a pendant vertex of *G*, then $\mu_i(G) \leq \mu_{i-1}(G-v), 2 \leq i \leq n$. Particularly, $\alpha(G) \leq \alpha(G-v)$.

Lemma 2.7. Let G be an n-vertex unicyclic graph with $\Delta = 3$. Then $LS(G) \ge LS(G - v)$, where v is a pendant vertex.

Proof. Let *G* be a unicyclic graph with $\Delta = 3$. Then $\delta(G) = 1$. Let *v* be a pendant vertex. By Lemmas 2.5 and 2.6, $\mu_1(G) \ge \mu_1(G - v)$ and $\alpha(G) \le \alpha(G - v)$. Hence $LS(G) = \mu_1(G) - \alpha(G) \ge \mu_1(G - v) - \alpha(G - v) = LS(G - v)$. \Box

Table 1
The largest Laplacian eigenvalue and algebraic connectivity of $C_k + v$ with $k = 9,, 16$.

k	9	10	11	12	13	14	15	16
$\mu_1(C_k + \nu)$	4.37720	4.38595	4.38131	4.38387	4.38249	4.38324	4.38283	4.38305
$\alpha(C_k + \nu)$	0.34891	0.29680	0.25454	0.22012	0.19189	0.16856	0.14910	0.13275

Table 2

The largest Laplacian eigenvalue and algebraic connectivity of $C_k + v$ with k = 17, ..., 23.

k	17	18	19	20	21	22	23
$\mu_1(C_k + \nu)$	4.38293	4.38300	4.38296	4.38298	4.38297	4.38298	4.38297
$\alpha(C_k + \nu)$	0.11889	0.10705	0.09687	0.08806	0.08039	0.07367	0.06774

Throughout this paper, let $C_k + v$ be the cycle C_k added a pendant vertex v. By Lemma 2.7 and finite steps deleting pendant vertices, we arrive at:

Theorem 2.8. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be *k*. Then $LS(G) \ge LS(C_k + \nu)$.

Lemma 2.9 [7]. Let G be a simple graph with at least one edge. If μ_1 be the largest Laplacian eigenvalue of G, then

$$\mu_{1} \ge \max\left\{\sqrt{\frac{d_{i}^{2} + 2d_{i} - 2d_{j} - 2 + \sqrt{\left(d_{i}^{2} + 2d_{i} + 2d_{j} + 4\right)^{2} + 4(d_{i} - c_{ij} - 1)(d_{j} - c_{ij} - 1)}}{2}} : v_{i}v_{j} \in E\right\},$$
(1)

where v_i and v_j are the vertices of degree d_i and d_j respectively, and c_{ij} is the cardinality of the set of common neighbors between v_i and v_j .

It is well known that $\mu_{n-1}(C_n) = 2\left(1 - \cos\left(\frac{2\pi}{n}\right)\right)$. Then we have

Lemma 2.10. The algebraic connectivity of C_n is a decreasing function on n.

Lemma 2.11. If $k \ge 61$, then $LS(C_k + v) \ge 4 > LS(C_n)$, where $n \ (n \ge 3)$ is an arbitrary positive integer.

Proof. Let *u* be the neighbor of *v* and let *w* be another neighbor of *u*. Then $d_i = \deg(u) = 3$ and $d_j = \deg(w) = 2$. Note that $c_{ij} = 0$. Then the right hand side of (1) is equal to $\sqrt{\frac{9+\sqrt{537}}{2}}$ which is greater than 4.0408. By Lemmas 2.6, 2.10 and direct calculation we have $\alpha(C_k + v) \leq \alpha(C_k) \leq \alpha(C_{61}) \doteq 0.0106$ for $k \geq 61$. Thus we have $LS(C_k + v) > 4.01081 - 0.0106 > 4 > LS(C_n)$.

With the computer direct calculations, we straightforwardly have:

Lemma 2.12. If $9 \le k \le 60$, then $LS(C_k + v) > 4 > LS(C_n)$, where $n \ (n \ge 3)$ is an arbitrary positive integer.

Proof. If $24 \le k \le 60$, then $\mu_1(C_{24} + v) \doteq 4.38298$ and $\alpha(C_k + v) \le \alpha(C_{24} + v) \doteq 0.06251$. Thus $LS(C_k + v) \ge LS(C_{24} + v) \doteq 4.38298 - 0.06251 = 4.32047 > 4 > LS(C_n)$. If $9 \le k \le 23$, by Tables 1 and 2, then

 $LS(C_k + v) \ge LS(C_9 + v) \doteq 4.37720 - 0.34891 = 4.02829 > 4 > LS(C_n).$

The lemma follows. \Box

By Theorem 2.8, Lemmas 2.11 and 2.12, we arrive at:

Corollary 2.13. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be *k*. If $k \ge 9$, then $LS(G) > LS(C_n)$.

Lemma 2.14. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be k = 6, 7, 8. Then $LS(G) > LS(C_n)$.

Proof. When k = 8. We consider two cases according to the order of *G*.

Case 1. k = 8 and n = 9.

Then $G \cong C_8 + v$ and $LS(G) \doteq 4.39276 - 0.41309 > 3.87939 - 0.46791 \doteq LS(C_9)$. Case 2. k = 8 and $n \ge 10$.

Let $C_8 = v_1 v_2 \cdots v_8 v_1$ and let *G* have a subgraph $C_8 + v_1 v$. Since $n \ge 10$ and $\Delta = 3$, *G* has a subgraph obtained by adding a vertex *u* to $C_8 + v_1 v$. There exist five such non-isomorphic graphs. The graph which attains the minimum Laplacian spread among these 5 graphs is $C_8 + v_1 v + v_5 u$. By gradually deleting pendant vertices from *G*, *G* can be transformed into $C_8 + v_1 v + v_5 u$.

By Lemma 2.7, we have $LS(G) \ge LS(C_8 + v_1v + v_5u) \doteq 4.15632 > LS(C_n)$. When k = 6, 7, similar to the case k = 8, the results follow. The proof of Lemma 2.14 is completed. \Box

Lemma 2.15. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be k = 5. Then $LS(G) > LS(C_n)$.

Proof. If n = 6, then $G \cong C_5 + v$ for some v. Thus we have

 $LS(G) \doteq 4.30278 - 0.69722 > 3 = LS(C_6).$

When $n \ge 7$. Let $C_5 = v_1v_2 \cdots v_5v_1$ and v be a vertex adjacent to v_1 . Then $C_5 + v_1v$ is a subgraph of *G*. Note that $n \ge 7$ and $\Delta = 3$. A new vertex *u* may be adjacent to v, v_2 , v_3 , v_4 or v_5 . We consider the following two cases.

Case 1. u is no adjacent to v_3 .

By direct computation, the minimum *LS* value of $C_5 + v_1v + xu$ for $x \in \{v, v_2, v_4, v_5\}$ is attained when $x = v_2$ or v_5 .

By Lemma 2.7, we have $LS(G) \ge LS(C_5 + v_1v + v_2u) \doteq 4.65109 - 0.62280 > 4 > LS(C_n)$.

Case 2. u is adjacent to v_3 .

Subcase 2.1. n = 7.

Then $G \cong C_5 + v_1v + v_3u$ and $LS(G) \doteq 4.41421 - 0.51881 = 3.8954 > 3.04892 \doteq LS(C_7)$. Subcase 2.2. $n \ge 8$.

By direct computation, the minimum *LS* value of $C_5 + v_1v + v_3u + xy$ for $y \in \{v, v_2, u, v_4, v_5\}$ is attained when y = v or u.

By Lemma 2.7, we have $LS(G) \ge LS(C_5 + v_1v + v_3u + xv) \doteq 4.48119 - 0.32487 > 4 > LS(C_n)$. Thus the proof of Lemma 2.15 is completed. \Box

Lemma 2.16. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be k = 4. Then $LS(G) > LS(C_n)$.

Proof. There are two cases:

Case 1. n = 5.

Then $G \cong C_4 + v$ for some v and $LS(G) \doteq 4.48119 - 0.82991 = 3.65128 > 2.23606 \doteq LS(C_5)$. Case 2. $n \ge 6$.

Let $C_4 = v_1 v_2 \cdots v_4 v_1$ and v be a vertex adjacent to v_1 . Then G contains the subgraph $C_4 + v_1 v$. Since $n \ge 6$ and $\Delta = 3$, a new vertex u may be adjacent to v, v_2 , v_3 or v_4 . By direct computation, the subgraph which attains the minimum Laplacian spread is $C_4 + v_1 v + vu$, where the value is $LS(C_4 + v_1 v + vu) \doteq 4.56155 - 0.43845 = 4.12310 > 4 > LS(C_n)$. By gradually deleting pendant vertices from *G*, *G* can be transformed into $C_4 + v_1v + vu$. Then by Lemma 2.7, $LS(G) \ge LS(C_4 + v_1v + vu) > 4 > LS(C_n)$.

Thus the lemma follows. \Box

Lemma 2.17. Let *G* be an *n*-vertex unicyclic graph with $\Delta = 3$ and the length of the cycle be k = 3. Then $LS(G) > LS(C_n)$.

Proof. If n = 4, then $G \cong C_3 + v$ for some *v*. Hence $LS(G) = 4 - 1 = 3 > 2 = LS(C_4)$.

Let $C_3 = v_1 v_2 v_3 v_1$ and v be a vertex adjacent to v_1 . Then $C_3 + v_1 v$ is a subgraph of G.

When $n \ge 5$. A new vertex u may be adjacent to v_2 , v_3 or v. According to the vertex-induced subgraphs of G, we have:

Case 1. $C_3 + v_1v + v_2u$ is a subgraph of *G*.

Let $G_1 \cong C_3 + v_1v + v_2u$, $G_2 \cong C_3 + v_1v + v_2u + vx \cong C_3 + v_1v + v_2u + ux$, $G_3 \cong C_3 + v_1v + v_2u + v_3x$ for some x.

If n = 5, then $G \cong G_1$ and $LS(G) \doteq 4.30278 - 0.69722 = 3.60556 > LS(C_5) \doteq 2.23606$.

If n = 6, then $G \cong G_i$ (i = 2, 3). By direct calculation, $LS(G_i) > LS(C_6) = 3$.

Suppose $n \ge 7$. By direct computation, the minimum *LS* value among all 7-vertex unicyclic graphs containing $C_3 + v_1v + v_2u$ is $LS(C_3 + v_1v + v_2u + vx + v_3y) \doteq 4.03224$ for some *x* and *y*. By Lemma 2.7, we have $LS(G) \ge LS(C_3 + v_1v + v_2u + vx + v_3y) \doteq 4.03224 > 4 > LS(C_n)$.

Case 2. $C_3 + v_1v + v_3u$ is a subgraph of *G*.

Since v_2 and v_3 are symmetric in $C_3 + v_1 v$, this case is similar to Case 1.

Case 3.
$$C_3 + v_1v + vu$$
 is a subgraph of *G*.

Let $G_4 \cong C_3 + v_1v + vu$, $G_5 \cong C_3 + v_1v + vu + ux$, $G_6 \cong C_3 + v_1v + vu + vx$ and $G_7 \cong C_3 + v_1v + vu + v_2x \cong C_3 + v_1v + vu + v_3x$.

If n = 5, then $G \cong G_4$ and $LS(G) \doteq 4.17009 - 0.51881 = 3.65128 > LS(C_5) \doteq 2.23606$.

If n = 6, then $G \cong G_j$ (j = 5, 6, 7). By direct calculation, we have $LS(G_j) > LS(C_n)$. When $n \ge 7$.

Similar to Case 1 the graph $C_3 + v_1v + vu + ux + xy$ for some x and y attains the minimum LS value among all 7-vertex unicyclic graphs containing $C_3 + v_1v + vu$. By Lemma 2.7, we have $LS(G) \ge LS(C_3 + v_1v + vu + ux + xy) \doteq 4.22833 - 0.22538 > 4 > LS(C_n)$.

All possible cases are exhausted, and the proof of Lemma 2.17 is completed. \Box

By Corollary 2.13 and Lemmas 2.14–2.17, we have the following result:

Theorem 2.18. Let *G* be a unicyclic graph with $\Delta = 3$. Then $LS(G) > LS(C_n)$.

Combining Theorems 2.4 and 2.18, we arrive at the main result:

Theorem 2.19. Let G be a unicyclic graph with n vertices. Then $LS(G) \ge LS(C_n)$ and the equality holds if and only if $G \cong C_n$.

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable comments and suggestions, which have improved the presentation of the paper.

References

- [1] Y. Fan, J. Xu, Y. Wang, D. Liang, The Laplacian spread of a tree, Disc. Math. Theoret. Comput. Sci. 10 (2008) 79-86.
- [2] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Disc. Math. 7 (1994) 221-229.
- [3] B. Liu, Z. You, The Laplacian spread of graphs, Linear Algebra Appl., submitted for publication.
- [4] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.

- [5] Y. Liu, Y. Liu, The ordering of unicyclic graphs with the smallest algebraic connectivity, Discrete Math. 309 (2009) 4315–4325.
- [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
 [7] K. Das, The largest two Laplacian eigenvalues of a graph, Linear and Multilinear Algebra 52 (2004) 441–460.
- [8] J. Li, W.C. Shiu, W.H. Chan, Some results on the Laplacian eigenvalues of unicyclic graphs, Linear Algebra Appl. 430 (2009) 2080–2093.
- [9] Y. Bao, Y. Tan, Y. Fan, The Laplacian spread of unicyclic graphs, Appl. Math. Lett. 22 (2009) 1011–1015.