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1. Introduction

Let G = (V , E) be a connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E. Let A(G) be

the adjacency matrix of G. Since A(G) is symmetric, its eigenvalues are real. Without loss of generality,

they can be written in descendant order as λ1(G) � λ2(G) � · · · � λn(G) and called the eigenvalues of

G. Denote the degree of vertex vi by d(vi). Let δ(G) and�(G) be theminimumdegree and themaximum

degree of the vertices of G, respectively. The Laplacian matrix L(G) is defined as D(G) − A(G), where

D(G) = diag(d(v1), d(v2), . . . , d(vn)) is the diagonal matrix of the vertex degrees of G. It is obvious that

L(G) is positive semidefinite symmetric and singular.Moreover, sinceG is connected, L(G) is irreducible.

We denote its eigenvalues by
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Fig. 1. Tree Ti
n and unicyclic graph Ui

n .

μ1(G) � μ2(G) � · · · � μn(G) = 0

and call μk(G) the kth largest Laplacian eigenvalue of G. The eigenvalues μ1(G) and μn−1(G) are called

the Laplacian spectral radius and the algebraic connectivity of the graph G, respectively.

Thestudyof theeigenvaluesof theLaplacianmatrixhave longbeenattracting researcher’s attention,

and there are several monographs and a lot of research papers published continually (see [1,3–5] and

their cited references). The eigenvalues of L(G) can be used in various areas of mathematics, mainly

discrete mathematics and combinatorial optimization, with interpretation in several physical and

chemical problems [12,13,18]. In many applications, good lower bound and upper bound of the kth

largest eigenvalue of L(G) are essential.

In [19], Pati explored the relationshipbetween the third smallest Laplacianeigenvalueand thegraph

structure. LetG denote the complement of the graphG. Since L(G) + L(G) = nI − J, where I and J denote

the identitymatrix and thematrixwith all entries equal to 1, respectively. Clearly,μ2(G) + μn−2(G) = n.

Thus, while studying the third smallest Laplacian eigenvalue of a graph G, some information about

the second largest Laplacian eigenvalue of its complement G is useful. There is another motivation for

studying the second largest Laplacian eigenvalue ofG. Guo [9] investigated the second largest Laplacian

eigenvalue of trees, provided the smallest three values of the second largest Laplacian eigenvalue for

any tree, and characterize the trees attaining those values. However, there are only very limited results

on the unicyclic graphs.

Throughout this paper, we denote the set of trees and unicyclic graphs of order n by Tn and Un,

respectively. Let Ti
n (2 � 2i � n + 1) denote the tree obtained from the star K1,n−i by joining i − 1

pendant vertices of K1,n−i to i − 1 edges (obvious K1,n−1 = T1
n ). Let Ui

n (4 � 2i � n + 1) denote the

unicyclic graph of order n obtained from C3 by attaching n − 2i + 1 pendant edges and i − 2 paths of

length 2 together to one of three vertices of C3. Both Ti
n and Ui

n are shown in Fig. 1.

We also denote by�(B) = �(B; x) = det(xI − B) the characteristic polynomial of thematrix B. Other

undefined notations are referred to [2].

The rest of this paper is organized as follows. In Section 2, we present some properties of the

Laplacian spectral radii of graphs. In Section 3, as motivated by [9], we discuss the second largest

Laplacian eigenvalue of unicyclic graphs and show that μ2(U) � 3 for all unicyclic graphs U except

two graphs, and characterize all unicyclic graphs with μ2(U) = 3. We also give an “asymptotically

good” upper bound for the second largest Laplacian eigenvalue of unicyclic graphs. In Section 4, we

use the results obtained in Section 3 to show that U2
n is the unique graph with maximum (Laplacian)

separator among all graphs in Un. Moreover, trees with maximum (Laplacian) separator will also be

discussed in this section. In Section 5, we determine U2
n is the unique graph with maximum Laplacian

spread among all graphs inUn. The definitions of (Laplacian) separator and (Laplacian) spread will be

introduced in Sections 4 and 5, respectively.

2. Laplacian spectral radii of graphs

Let G be a graph of order n and let G′ = G + e be the graph obtained from G by adding a new edge

e to G. Then L(G′) = L(G) + zzT , where z is a column n-vector with two non-zero entries 1 and −1

in the corresponding places and zT is the transpose of z. The next lemma follows the well-known

Courant–Weyl inequalities (see [4, p. 51, Theorem 2.1]) and the fact that μn(zz
T ) = 0.

Lemma 2.1. For e /∈ E(G), the Laplacian eigenvalues of G and G′ = G + e interlace, i.e.,

μ1(G
′) � μ1(G) � μ2(G

′) � μ2(G) � · · · � μn(G
′) = μn(G) = 0.
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Fig. 2. Trees T(a, b) and T+(a, b).

Fig. 3. Trees T and T∗ .

Lemma 2.2 [12]. Let G be a graph containing at least one edge. Then μ1(G) � �(G) + 1. Moreover, for G

connected on n > 1 vertices, the equality holds if and only if �(G) = n − 1.

Lemma 2.3 [1]. Let G be a graph. Then μ1(G) � max{d(u) + d(v)|uv ∈ E(G)}.

2.1. Results on trees

LetT ∈ Tn (n � 4), and e = uvbeanon-pendantedgeofT . SupposeX andY are the twocomponents

of T − e such that u ∈ X and v ∈ Y . We define T0 to be the graph obtained from T in the followingways:

Contract the edge e such that u and v are identified to form a new vertexw, and then add a pendant

edge to w. This procedure is called the Edge-Growing Transformation of T (on the edge e), or EGT of T

(on the edge e) for short.

Proposition 2.4 [15]. Let T ∈ Tn(n � 4) be a tree with at least one non-pendant edge e = uv. If T0 is

obtained from T by an EGT on e, then μ1(T) < μ1(T0).

The following lemma can be obtained directly from Proposition 2.4.

Lemma 2.5. Let T be a tree and uv ∈ E(T). Suppose a and b are orders of the two components of T − uv.

Then μ1(T) � μ1(T(a, b)), where T(a, b) is shown in Fig. 2. Moreover, the equality holds if and only if

T ∼= T(a, b).

Lemma 2.6 [8]. Let T and T∗ be the trees in Fig. 3,where T0 is a tree with at least two vertices, s � 2, t � 0,

or s = 1, t � 1. Then μ1(T) < μ1(T
∗).

Making use of Lemmas 2.5 and 2.6, we establish the following proposition for trees with perfect

matchings.

Proposition 2.7. Let T be a tree and uv ∈ E(T). Suppose T1 and T2 are the two components of T − uv such

that both of them contain perfect matchings. Suppose T1 and T2 are of orders 2a and 2b, respectively. Then

μ1(T) � μ1(T
+(a, b)) (T+(a, b) is shown in Fig. 2). Moreover, the equality holds if and only if T ∼= T+(a, b).

Proof. Let M1 and M2 be perfect matchings of T1 and T2, respectively. Then |M1| = a and |M2| = b.

Let M = M1 ∪ M2. Note that uv /∈ M. If M contains a non-pendent edge xy of T , then let T0 be the tree

obtained from T by performing EGT on xy. Then T0 contains a perfect matching M0 = M ∪ {e0} \ {xy},
where e0 is thenewedgeadded intoT afterperformingEGT.Repeat thisprocedureuntil there isnonon-
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pendent edge in themost updated perfectmatching. Let T ′ be the resulting tree and the corresponding

perfect matching be M′. By Proposition 2.4 we have μ1(T) � μ1(T
′). Note that the equality does not

hold if at least one EGT is preformed. Moreover, each edge in M′ is a pendent edge.

Claim 1. degT ′ (u) = 2 (resp. degT ′ (v) = 2) if and only if a = 1 (resp. b = 1).

Claim 2. If there are two adjacent vertices of degree 2 in T ′, then T ′ = T ∼= T+(1, 1).

If a = b = 1, then by Claims 1 and 2 we have μ1(T) = μ1(T
+(1, 1)). When a > 1 (b > 1), by Claim

1, we have degT ′ (u) � 3 (degT ′ (v) � 3). Suppose there is a vertex of at least degree 3 in V(T ′) \ {u, v}.
Without loss of generality, we assume that T1 contains such vertex. Let w ∈ V(T1) of degree at least 3

such that the distance between u and w is maximum. Let u · · · xw be the path between u and w. Note

that degT ′ (x) � 3 and x is incident with a pendent edge. By Lemma 2.6, we obtain the tree T∗ from T ′
(in this case, s = 1). Then μ1(T

∗) < μ1(T
′). Note that the number of vertices of degree at least 3 in T∗ is

one less than that in T ′ and M′ is still a perfect matching of T∗. Applying Lemma 2.6 repeatedly, until

there is no vertex of degree at least 3 except u and v. Then the resulting tree is T+(a, b). Combining the

previous results, we have μ1(T) � μ1(T
′) � μ1(T

+(a, b)).

Proof of Claim 1. It is because that if an EGT is performed in T1, then the degree of u will increase by

one.

Proof of Claim 2. Suppose there are two vertices of degree 2 in T ′, say x′ and y′. Let NT ′ (x′) = {y′,w}
andNT ′ (y′) = {x′, z}, where x′, y′,w and z are distinct. Since each edge inM′ is a pendent edge, x′y′ /∈ M′.
Since M′ is perfect, x′w, y′z ∈ M′. Then w and z are pendents. Hence the order of T ′ is of order 4. Then
we have the claim, and the proof is complete. �

With Proposition 2.7, the Corollary 6 in [10] becomes an obvious corollary.

Corollary 2.8 [10]. Let T be a tree on n = 2k vertices with a perfect matching. Then μ1(T) � μ1(T
k
2k

), and

the equality holds if and only if T = Tk
2k

.

2.2. Results on unicyclic graphs

A matching of a graph G with maximum cardinality is called a maximum matching in G. The cardi-

nality of a maximummatching of G is called the matching number of G and denoted by β(G).

Lemma 2.9 [22]. Let U ∈ Un with matching number β(U) = i. Then μ1(U) � r, where r is the maximum

root of the equation

x3 − (n − i + 5)x2 + (3n − 3i + 7)x − n = 0,

and the equality holds if and only if U ∼= Ui
n.

Corollary 2.10. Let U be a unicyclic graph on n = 2t vertices with a perfect matching. Then μ1(U) � r,

where r is the maximum root of the equation

x3 − (t + 5)x2 + (3t + 7)x − 2t = 0,

and the equality holds if and only if U ∼= Ut
2t

.

Proposition 2.11. The Laplacian spectral radius of the unicyclic graph Ui
n is a decreasing function on i, i.e.,

n = μ1(U
2
n ) > μ1(U

3
n ) > · · · > μ1

(
U

� n+1
2

�
n

)
.

Proof. Since �(Ui
n) = n − i + 1, by Lemmas 2.2 and 2.3, we have μ1(U

i
n) > n − i + 2 and μ1(U

i+1
n ) �

n − i + 2 for i = 2, 3, . . . , � n−1
2

�. Moreover, when i = 2, μ1(U
2
n ) = n. Hence the assertion holds. �
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Fig. 4. Unicyclic graph C1
4
.

By using Lemma 2.9 and Proposition 2.11 we have

Corollary 2.12. Let U ∈ Un, then μ1(U) � n, with the equality holds if and only if U ∼= U2
n .

3. The second largest Laplacian eigenvalues of unicyclic graphs

It is easy to see that δ(U) � 2 for all U ∈ Un with n � 3. Moreover, δ(U) = 2 if and only if U = Cn.

Lemma 3.1 [4]. For n � 3,

μ2(Cn) =
{
2
(
1 + cos π

n

)
if n is odd,

2
(
1 + cos 2π

n

)
if n is even.

By Lemma 3.1, we have μ2(Cn) � 3 (n /= 4) and μ2(Cn) = 3 if and only if n = 3, 6.

So, the second largest Laplacian eigenvalue of unicyclic graph with minimum degree 2 is totally

determined. In the following, for considering the lower bound of the second largest Laplacian eigen-

value of unicyclic graph U ∈ Un with n � 4, we assume δ(U) = 1. For convenience, we let U+
n be the

set of unicyclic graphs of order nwith minimum degree 1.

Lemma 3.2. For i � 2,μ2(U
i
n) = 3.

Proof. For i = 2, the characteristic polynomial of L(U2
n ) is

�(L(U2
n ), x) = x(x − 3)(x − n)(x − 1)n−3.

Hence μ2(U
2
n ) = 3.

For i � 3, by some computations, the characteristic polynomial of L(Ui
n) is equal to

�(L(Ui
n), x) = x(x − 3)(x − 1)n−2i+1(x2 − 3x + 1)i−3

× [x3 − (n − i + 5)x2 + (3n − 3i + 7)x − n].

Let f (x) = x3 − (n − i + 5)x2 + (3n − 3i + 7)x − n. We have

f (n) = (i − 2)(n2 − 3n) > 0 (since i � 3,n � 2i − 1 � 5),

f (3) = 3 − n < 0,

f (2) = n − 2i + 2 > 0 (n � 2i − 1),

f

(
1

3

)
= −1

9
n − 8

9
i + 1

27
− 5

9
+ 7

3
� −2

9
i + 1

9
− 8

9
i + 1

27
− 5

9
+ 7

3
� − 8

27
< 0.

So, the three roots of equation f (x) = 0 lie in (3,n), (2, 3) and
(
1
3
, 2
)
, respectively.

And the equation x2 − 3x + 1 = 0 has two roots 3+√
5

2
and 3−√

5
2

which are less than 3.

Hence μ2(U
i
n) = 3. �

From the tables of the Laplacian spectra of all unicyclic graphs of order n (3 � n � 6) in [4], we

know that μ2(U) � 3 for U ∈ U+
n except U ∼= C1

4
(see Fig. 4) and the equality holds if and only if U is

isomorphic to one of graphs, Hi (1 � i � 5) (see Fig. 5), and Ui
n (i � 2).
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Fig. 5. Unicyclic graphs Hi (1 � i � 5).

Fig. 6. Unicyclic graph G1.

Thus, from now on, we only consider the cases of n � 7.

Theorem 3.3. For n � 7,μ2(U) � 3 for U ∈ U+
n ; and the equality holds if and only if U ∼= Ui

n(2 � i �
� n+1

2
�).

Proof. Let Cl be the unique cycle in U, l � 3.

If l /= 4, then U contains Cl + Nn−l as a spanning subgraph, where Nm is the null graph of order m.

By Lemmas 2.1 and 3.1, we have μ2(U) � μ2(Cl + Nn−l) � 3.

If l = 4, then U contains one of the graphs Hi + Nn−6 (i = 3, 4, 5) or G1 + Nn−6 as a spanning sub-

graph, where Hi (i = 3, 4, 5) are shown in Fig. 5 and G1 is shown in Fig. 6. Since μ2(H3 + Nn−6) =
μ2(H4 + Nn−6) = μ2(H5 + Nn−6) = 3 and μ2(G1 + Nn−6)

.= 3.414. By Lemma 2.1, we have μ2(U) �
min3�i�5{μ2(Hi + Nn−6),μ2(G1 + Nn−6)} = 3.

Hence we have μ2(U) � 3.

In the following, we shall show that for each U ∈ U+
n , μ2(U) = 3 if and only if U ∼= Ui

n for some i.

From Lemma 3.2, we know that μ2(U
i
n) = 3 for n � 7.

Let Cl be the unique cycle in U. Then Cl + Nn−l is a spanning subgraph of U, n � 7 and n > l � 3. By

Lemma 2.1, μ2(U) � μ2(Cl + Nn−l) = μ2(Cl). Since μ2(U) = 3, by Lemma 3.1 we have l = 3, 4 or 6.

Suppose l = 6. Since n � 7, C1
6

+ Nn−7 is a spanning subgraph ofU. By Lemma2.1 again, 3 = μ2(U) ≥
μ2(C

1
6

+ Nn−7) = μ2(C
1
6
)

.= 3.414 > 3. It is impossible.

If l = 4, then U contains one of the graphs G1 + (n − 6)K1 or Gi + (n − 7)K1 (i = 2, 3, 4, 5, 6) as a

spanning subgraph, where G1 is shown in Fig. 6 and Gi (i = 2, 3, 4, 5, 6) are shown in Fig. 7. By Lemma

2.1,wehaveμ2(U) � min2�i�6{μ2(G1 + (n − 6)K1),μ2(Gi + (n − 7)K1)} = μ2(G4 + (n − 7)K1)
.= 3.058.

It is impossible too.

Suppose l = 3. If U �∼= Ui
n, then U contains one of the graphs G7 + (n − 5)K1 or Gi + (n − 7)K1 (i =

8, 9, 10, 11) as a spanning subgraph (n � 7), where Gi (i = 7, 8, 9, 10, 11) are shown in Fig. 8. By Lemma

2.1, we have μ2(U) � min8�i�11{μ2(G7 + Nn−5),μ2(Gi + Nn−7)} = μ2(G9 + Nn−7)
.= 3.117. It is impos-

sible. So by Lemma 3.2, for any U ∈ U+
n , if μ2(U) = 3, then U ∼= Ui

n.

From the above discussions, the proof is completed. �

Consequently, the second largest Laplacian eigenvalues of all unicyclic graphs of order n � 3 except

C4 and C1
4
are at least 3. Furthermore, the second largest Laplacian eigenvalue equal to 3 if and only if

the unicyclic graph is isomorphic to one of graphs, Hi (1 � i � 5), Ui
n (i � 2), C3 and C6.

In the following,wewill give an “asymptotically good” upper bound for the second largest Laplacian

eigenvalue of unicyclic graph inUn. We then begin with introducing some useful results as follows.
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Fig. 7. Unicyclic graphs, C1
6
and Gi (2 � i � 6).

Fig. 8. Unicyclic graphs, Gi (7 � i � 11).

Let v ∈ V(G). Lv(G) is defined as the principal submatrix of L(G) formed by deleting the row and

column corresponding to vertex v.

Lemma 3.4 [9]. Let uv be a cut edge of a graph G. Let G − uv = G1 + G2 and let u ∈ V(G1) and v ∈ V(G2).

Then

�(L(G)) = �(L(G1))�(L(G2)) − �(L(G1))�(Lv(G2)) − �(Lu(G1))�(L(G2)).

ByLemma3.4,weget that�(L(T(k, k)); x) = x(x − 1)2k−4(x − k)[x2 − (k + 2)x + 2]. Thenμ1(T(k, k)) =
k+2+

√
(k+2)2−8
2

. Here T(a, b) is defined in Lemma 2.5.

Lemma3.5 [23]. LetU ∈ Un.Then for anypositive integer a (2 � a � � n
2
�), there is an (a − 1)-vertex subset

V ′ of U such that all components U1,U2, . . . ,Ut of U − V ′ satisfy one of the following three conditions:

1. Each Ui (i = 1, 2, . . . , t) is a tree of order at most � n
2
�.

2. There exists a unicyclic graph Up of order atmost � n
2
�, and other components Ui (i = 1, 2, . . . , t, i /= p)

are trees of order at most � n
2
�.

3. There exists Uq of order at most 2� n
2
�,which is obtained from joining two trees of orders at most � n

2
�

with an edge, and other components Ui(i = 1, 2, . . . , t, i /= q) are trees of order at most � n
2
�.

Lemma 3.6 [5,17]. For each v ∈ V(G) and each i ∈ {1, 2, . . . ,n − 1},μi+1(G) − 1 � μi(G − v) � μi(G).

Thus, in particular, μ2(G) � μ1(G − v) + 1 and μ2(G − v) � μ2(G).

Theorem 3.7. If U ∈ Un, then μ2(U) � k+4+
√

(k+2)2−8
2

, where k = � n
2
�.

Proof. Let k = � n
2
�. By taking a = 2 in Lemma 3.5, there exists a vertex v0 ∈ V(U) such that all the

components U1,U2, . . . ,Ut of U − v0 satisfy one of the cases in Lemma 3.5. We consider the following

two cases.
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Fig. 9. Unicyclic graphs U(k − 1, k − 2) and U(k − 1, k − 1).

Case 1. All the components U1,U2, . . . ,Ut of U − v0 satisfy the first or second case in Lemma 3.5. It

is well-known that μ1(G) � n, and equality holds if and only if the complement of G is disconnected

[4]. By Lemma 3.6 and Corollary 2.12, since |Ui| � k for i = 1, 2, . . . , t, we have

μ2(U) � μ1(U1 + U2 + · · · + Ut) + 1 � k + 1.

Case 2. There exists a graph Uq of order at most 2k, which is obtained from joining two trees of

order at most k with an edge, and other components Ui (i = 1, 2, . . . , t, i /= q) are trees with order at

most � n
2
�. In this case, for each components Ui (i = 1, 2, . . . , t, i /= q) of U − v0, we have μ1(Ui) � k. So,

by Lemma 2.5, Lemma 3.6 and Lemma 2.1, we have

μ2(U) � μ1(U1 + U2 + · · · + Ut) + 1 � μ1(T(k, k)) + 1 = k + 4 +
√

(k + 2)2 − 8

2
.

The proof is completed. �

Remark.For thecasesn = 2k andn = 2k + 1,wehave, respectively, twounicyclic graphsU(k − 1, k − 2)

and U(k − 1, k − 1) as shown in Fig. 9. In the former case, since U(k − 1, k − 2) − u ∼= U(k − 2, k − 2),

μ2(U(k − 1, k − 2)) � μ2(U(k − 2, k − 2)) � k+1+
√

(k+1)2−8
2

. In the latter case, we have μ2(U(k − 1, k −
1)) � μ2(U(k − 1, k − 1) − v) = k+2+

√
(k+2)2−8
2

. With the upper bound obtained in Theorem 3.7, we

have

k + 1 +
√

(k + 1)2 − 8

2
� μ2(U(k − 1, k − 2)) � k + 4 +

√
(k + 2)2 − 8

2
and

k + 2 +
√

(k + 2)2 − 8

2
� μ2(U(k − 1, k − 1)) � k + 4 +

√
(k + 2)2 − 8

2
.

The differences between two bounds are 3
2

+ 2k+3

2(
√

(k+2)2−8+
√

(k+1)2−8)
and 1, respectively.

Since limk→∞ 3
2

+ 2k+3

2(
√

(k+2)2−8+
√

(k+1)2−8)
= 2, theupper boundobtained in Theorem3.7 is “asymp-

totically good”.

4. Maximum (Laplacian) separator

The separator SA(G) of a graphG is the difference between its largest and second largest eigenvalues,

i.e., SA(G) = λ1(G) − λ2(G). Similarly, the Laplacian separator SL(G) of G is the difference between its

largest and second largest Laplacian eigenvalues, i.e., SL(G) = μ1(G) − μ2(G).

Theorem 4.1. If G is a regular graphof order n, then SA(G) = μn−1(G). In particular, if G is a regular bipartite

graph, then SA(G) = SL(G).

Proof. If G is r-regular, then L(G) = rI − A(G), we have

μn−i+1(G) = r − λi(G) or equivalent to

λi(G) = r − μn−i+1(G) for i = 1, 2, . . . ,n.

In particular, λ1(G) = r, λ2(G) = r − μn−1(G). Hence we have SA(G) = μn−1(G).
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If G is an r-regular bipartite graph, then λi(G) = −λn−i+1(G) = μi(G) − r, i = 1, . . . ,n. So SL(G) =
μ1(G) − μ2(G) = (λ1(G) + r) − (λ2(G) + r) = λ1(G) − λ2(G) = SA(G). �

Let n, m be the numbers of vertices and edges of a graph G, respectively. Also let M(G) be the

incidence matrix of G. We can see their relations as follows:

M(G)MT (G) = D(G) + A(G), MT (G)M(G) = A(GL) + 2I,

where A(GL) is the adjacency matrix of the line graph GL of G.

Since we have the same set of non-zero eigenvalues of M(G)MT (G) andMT (G)M(G), so

�(A(GL); x) = (x + 2)m−n�(Q (G); (x + 2)), (4.1)

where Q (G) = D(G) + A(G).

By Eq. (4.1), assume the eigenvalues of theQ (G) are θ1 � θ2 � · · · � θn � 0, then the eigenvalues of

A(GL) must be λi(G
L) = θi − 2 (1 � i � n) for m � n. If m > n, we further have λn+1(G

L) = λn+2(G
L) =

· · · = λm(GL) = −2.

Lemma 4.2 [13]. Let G be a bipartite graph. Then Q (G) = D(G) + A(G) and L(G) = D(G) − A(G) are unitary

similar, i.e., there exists an orthogonal matrix U such that Q (G) = U−1L(G)U.

Theorem 4.3. The Laplacian separator of a bipartite graph G is the same as the separator of GL , i.e., SL(G) =
SA(GL).

Proof. By Lemma 4.2, thematrixQ (G) = M(G)MT (G) = D(G) + A(G) is unitary similar to L(G) = D(G) −
A(G). Thus they have the same eigenvalues. Hence,

SA(GL) = λ1(G
L) − λ2(G

L) = (θ1 − 2) − (θ2 − 2)

= θ1 − θ2 = μ1(G) − μ2(G) = SL(G). �
In the following, we will show that K1,n−1 and U2

n are the unique tree and the unique unicyclic

graph withmaximum separator and Laplacian separator among all trees and unicyclic graphs of order

n, respectively.

4.1. Trees with maximal (Laplacian) separator

Lemma 4.4 [14]. Let T ∈ Tn with n � 4. If T is neither K1,n−1 nor T2
n , then λ2(T) � 1.

Theorem 4.5. If T ∈ Tn with n � 4, then SA(T) � √
n − 1. The equality holds if and only if T = K1,n−1.

Proof. It is known that for each T ∈ Tn, λ1(T) � √
n − 1 (see [20]).

Since λ2(G) � 0 if and only if G is a complete multipartite graph (see [4]), λ2(T) > 0 if T is not

isomorphic to K1,n−1. Hence SA(T) <
√
n − 1 if T is not isomorphic to K1,n−1.

Actually SA(K1,n−1) = √
n − 1. Hence the proof is complete. �

Theorem 4.6 [9]. If T ∈ Tn (n � 3), then μ2(T) � 1. The equality holds if and only if T = K1,n−1.

Theorem 4.7 [9]. Let T ∈ Tn (n � 4). If T /= K1,n−1, then μ2(T) � r, where r is the second largest root of

the equation x3 − (n + 2)x2 + (3n − 2)x − n = 0, and the equality holds if and only if T = T2
n . Moreover,

for r � 2,μ2(T) = r if and only if n = 4. Also r is a strictly increasing function of n, and converges to 3+√
5

2
as n → ∞.

Theorem 4.8 [9]. Let T ∈ Tn n � 5). If T is neither K1,n−1 nor T2
n , then μ2(T) � 3+√

5
2

, and the equality

holds if and only if T ∼= Ti
n (i � 3).
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Fig. 10. Trees T∗
i
(2 � i � 4).

It is known that μ1(G) � n (see [4]), and the equality holds if and only if the complement of G

is disconnected. Thus, if T ∈ Tn, then μ1(T) � n, and the equality holds if and only if T = K1,n−1. By

Theorem 4.6, it is easy to get that for each T ∈ Tn (n � 3), SL(T) � n − 1, and the equality holds if and

only if T = K1,n−1.

Consider the characteristic polynomial of L(T2
n ) which is

�(L(T2
n ); x) = x(x − 1)n−4[x3 − (n + 2)x2 + (3n − 2)x − n].

Let f (x) = x3 − (n + 2)x2 + (3n − 2)x − n. We have

f (n) = n2 − 3n > 0 (n � 4),

f (n − 1) = −1 < 0,

f

(
3 + √

5

2

)
= −1 < 0,

f (1) = n − 3 > 0 (n � 4),

f (0) = −n < 0.

Hence,n > μ1(T
2
n ) > n − 1and 3+√

5
2

> μ2(T
2
n ) > 1.Therefore,n − 1 > SL(T

2
n ) > n − 1 − 3+√

5
2

= n − 5+√
5

2
.

Guo [10] gave the first four trees T∗
1
, T∗

2
, T∗

3
, T∗

4
inTn (n � 6) ordered according to their Laplacian

spectral radii. Namely, T∗
1

= K1,n−1, T
∗
2

= T2
n , T

∗
3
and T∗

4
are shown in Fig. 10.

Lemma 4.9. For any T ∈ Tn with n � 6, if T is neither K1,n−1 nor T2
n , then μ1(T) < n − 1.

Proof. By the discussion above, we only need to prove that μ1(T
∗
3
) < n − 1. In fact, the characteristic

polynomial of L(T∗
3
) is

�(L(T∗
3 ); x) = x(x − 1)n−4[x3 − (n + 2)x2 + (4n − 7)x − n].

Let f (x) = x3 − (n + 2)x2 + (4n − 7)x − n. We have

f (n − 1) = n2 − 6n + 4 > 0 (n � 6),

f (n − 2) = −2 < 0,

f (1) = 2n − 8 > 0 (n � 6),

f (0) = −n < 0.

The three roots of the equation f (x) = 0 lie in (0, 1), (1,n − 2) and (n − 2,n − 1), respectively. Then

μ1(T
∗
3
) < n − 1. �

Theorem 4.10. For any T ∈ Tn with n � 6, if T is neither K1,n−1 nor T2
n , then SL(T) < n − 5+√

5
2

.

Proof. If T is neither K1,n−1 nor T2
n , by Theorem 4.8 and Lemma 4.9, we have

SL(T) = μ1(T) − μ2(T) < n − 1 − 3 + √
5

2
= n − 5 + √

5

2
. �
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4.2. Unicyclic graphs with maximal (Laplacian) separator

Lemma4.11 [24]. If U ∈ Un with n � 8, then λ2(U) � r2, where r2 is the second largest root of the equation

x4 − nx2 − 2x + (n − 3) = 0, and the equality holds if and only if U = U2
n .

It is known that for each U ∈ Un, λ1(U) � r1, where r1 is the first largest root of the equation

x4 − nx2 − 2x + (n − 3) = 0 (see [23]), and the equality holds if and only if U = U2
n . By Lemma 4.11, we

have the following result.

Theorem 4.12. If U ∈ Un with n � 8, then SA(U) � r1 − r2,where r1 and r2 are the first and second largest

roots of the equation x4 − nx2 − 2x + (n − 3) = 0, respectively. Moreover, the equality holds if and only if

U = U2
n .

By Corollary 2.12 and the conclusion after Theorem 3.3, we have the following theorem.

Theorem 4.13. If U ∈ Un for n � 6, then SL(U) � n − 3, and the equality if and only if U ∼= U2
n .

5. Maximum Laplacian spread of unicyclic graphs

The spread of the graph G is defined as

LA(G) = λ1(G) − λn(G).

If G is a bipartite graph, then λ1(G) = −λn(G), hence LA(G) = 2λ1(G). Moreover, since λ1(Pn) �
λ1(T) � λ1(K1,n−1), we haveLA(Pn) � LA(T) � LA(K1,n−1) for all T ∈ Tn.

Shu et al. [21] investigated the spread of unicyclic graphs, and got that for any U ∈ Un (n � 6),

LA(Cn) � LA(U) � LA(U2
n ).

Recently, Fan et al. [7] defined the Laplacian spread of the graph G as

LL(G) = μ1(G) − μn−1(G).

They investigated the Laplacian spread of trees and got that for any tree T ∈ Tn (n � 5),

LL(Pn) � LL(T) � LL(K1,n−1).

The first equality holds only if T ∼= Pn, and the second equality holds only if T ∼= K1,n−1.

For regular graph G, by the same with the proof of Theorem 4.1, we have the following result.

Theorem 5.1. If G is a regular graph, thenLA(G) = μ1(G). In particular, if G is a regular bipartite graph,

thenLL(G) = λ1(G) + λ2(G).

Wenowconsider themaximal Laplacian spreadofunicyclic graphs. It is knownthat for anyunicyclic

graph U ∈ Un (n > 6),

μ1(U) � μ1(U
2
n ) = n (see [11]), (5.1)

μn−1(U) � μn−1(U
2
n ) = 1 (see [6]). (5.2)

The equalities hold if and only if U = U2
n . With inequalities (5.1) and (5.2), we cannot directly tell that

U2
n is the onewithmaximum Laplacian spread among all graphs inUn. In the following, we shall show

that U2
n is the unique unicyclic graph with maximum Laplacian spread among all graphs inUn.

Lemma 5.2 [11,16]. For n � 10,U∗
1
,U∗

2
,U∗

3
,U∗

4
,U∗

5,U
∗
6
,U∗

7,U
∗
8
,U∗

9
and U∗

10
are the first ten unicyclic graphs

in descendent order according to the largest Laplacian eigenvalue, where U∗
1

= U2
n , U

∗
i
, 2 � i � 10 are

shown in Fig. 11.



J. Li et al. / Linear Algebra and its Applications 430 (2009) 2080–2093 2091

Fig. 11. Unicyclic graphs U∗
i
(1 � i � 10).

Lemma 5.3. If U ∈ Un for n � 10, then μ1(U) < μ1(U
∗
5) < n − 1, for any U /∈ {U∗

1
,U∗

2
,U∗

3
,U∗

4
,U∗

5}.

Proof. By Lemma 5.2, we only need to prove thatμ1(U
∗
5) < n − 1. In fact, the characteristic polynomial

of L(U∗
5) is

�(L(U∗
5); x) = x(x − 1)n−5[x4 − (n + 5)x3 + (7n − 1)x2 − (13n − 19)x + 4n].

Let f5(x) = x4 − (n + 5)x3 + (7n − 1)x2 − (13n − 19)x + 4n. Since n � 10, we have

f5(n − 1) = (n − 1)

[(
n − 9

2

)2

− 25

4

]
+ 4n > 0,

f5(4) = −4 < 0,

f5(3) = n − 6 > 0,

f5(1) = −3n + 14 < 0,

f5(0) = 4n > 0.

The four roots of the equation f5(x) = 0 lie in (0, 1), (1, 3), (3, 4) and (4,n − 1), respectively. Hence,

μ1(U
∗
5) < n − 1. �

By Lemma 5.3, we know that for any U ∈ Un (n � 10), if μ1(U) > n − 1, then U ∈ {U∗
1
,U∗

2
,U∗

3
,U∗

4
}.

Theorem 5.4. For any U ∈ Un for n � 10,LL(U) � n − 1, with equality holds if and only if U ∼= U∗
1

=
U2
n .

Proof. The characteristics polynomial of L(U∗
1
) is

�(L(U∗
1); x) = x(x − 3)(x − n)(x − 1)n−3.

ThenLL(U
∗
1
) = n − 1.

For any U ∈ Un \ {U∗
1
,U∗

2
,U∗

3
,U∗

4
} (n � 10), by Lemma 5.3, we have LL(U) < μ1(U) < n − 1. So we

only need to consider U∗
1
,U∗

2
,U∗

3
, and U∗

4
.

The characteristics polynomial of L(U∗
2
) is

�(L(U∗
2); x) = x(x − 2)(x − 1)n−5[x3 − (n + 3)x2 + 2(2n − 1)x − 2n].
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Let f2(x) = x3 − (n + 3)x2 + 2(2n − 1)x − 2n. Since n � 10, we have

f2

(
n − 2

3

)
= (3n − 8)2 − 72

27
> 0,

f2(4) = −2(n − 4) < 0,

f2(1) = n − 4 > 0,

f2

(
1

3

)
= −21n + 26

27
< 0.

The three roots of the equation f2(x) = 0 lie in
(
1
3
, 1
)
, (1, 4) and

(
4,n − 2

3

)
, respectively.

So μ1(U
∗
2
) ∈

(
4,n − 2

3

)
and μn−1(U

∗
2
) ∈

(
1
3
, 1
)
. HenceLL(U

∗
2
) <

(
n − 2

3

)
− 1

3
< n − 1.

The characteristics polynomial of L(U∗
3
) is

�(L(U∗
3); x) = x(x − 1)n−5[x4 − (n + 5)x3 + 3(2n + 1)x2 − (9n − 5)x + 3n].

Let f3(x) = x4 − (n + 5)x3 + 3(2n + 1)x2 − (9n − 5)x + 3n. Since n � 10, we have

f3

(
n − 2

3

)
= n3

3
− 8n2

3
+ 138n

27
− 26

81
> 0,

f3(4) = −(n − 4) < 0,

f3(2) = n − 2 > 0,

f3(1) = −n + 4 < 0,

f3

(
1

3

)
= 51n + 148

81
> 0.

The four roots of the equation f3(x) = 0 lie in
(
1
3
, 1
)
, (1, 2), (2, 4) and

(
4,n − 2

3

)
, respectively. Soμ1(U

∗
3
) ∈(

4,n − 2
3

)
and μn−1(U

∗
3
) ∈

(
1
3
, 1
)
. HenceLL(U

∗
3
) <

(
n − 2

3

)
− 1

3
< n − 1.

The characteristics polynomial of L(U∗
4
) is

�(L(U∗
4); x) = x(x − 3)(x − 1)n−5[x3 − (n + 2)x2 + (3n − 2)x − n].

Let f4(x) = x3 − (n + 2)x2 + (3n − 2)x − n. Since n � 10, we have

f4

(
n − 2

3

)
= 9n2 − 39n + 4

27
> 0,

f4(3) = 3 − n < 0,

f4(1) = n − 3 > 0,

f4

(
1

3

)
= −3n + 23

27
< 0.

The three roots of the equation f4(x) = 0 lie in
(
1
3
, 1
)
, (1, 3) and

(
3,n − 2

3

)
, respectively.

So μ1(U
∗
4
) ∈

(
3,n − 2

3

)
and μn−1(U

∗
4
) ∈

(
1
3
, 1
)
. HenceLL(U

∗
4
) <

(
n − 2

3

)
− 1

3
< n − 1.

From the discussions above, we have LL(U) < n − 1 for each U ∈ Un \ {U∗
1
}. This completes the

proof. �
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