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• X: a finite set
• X(q): a polynomial in Z[q] (X(1) = |X|)
• C: a finite cyclic group acting on X

If c ∈ C, we let

Xc = {x ∈ X : c(x) = x} and o(c) = order of c in C.

We also let ωd be the primitive dth root of unity.

Definition (Reiner-Stanton-White 2004)

The triple (X, X(q), C) exhibits the cyclic sieving
phenomenon (CSP) if, for every c ∈ C, we have

|Xc| = X(ωo(c)).

Note. The case |C| = 2 was first studied by Stembridge and
called the “q = −1 phenomenon”.
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Example

Let [n] = {1, . . . , n} and

X =

(

[n]

k

)

= {T ⊆ [n] : |T | = k}.

Let C = 〈(1, . . . , n)〉. Now c ∈ C acts on T = {t1, . . . , tk} by

c(T ) = {c(t1), . . . , c(tk)}.

For example, consider n = 4 and k = 2. We have

X = {12, 13, 14, 23, 24, 34}

C = {e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

For c = (1, 3)(2, 4), we have

c(12) = 34, c(13) = 13, c(14) = 23
c(34) = 12, c(24) = 24, c(23) = 14
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A q-polynomial for X(q)

Let [n]q = 1 + q + · · ·+ qn−1 and [n]q! = [1]q[2]q · · · [n]q.
Define the Gaussian coefficients by

[

n

k

]

q

=
[n]q!

[k]q[n− k]q
.

For example, take n = 4 and k = 2. We have

[

4

2

]

q

= 1 + q + 2q2 + q3 + q4.

Then

ω = 1 ⇒
[

4
2

]

q=1
= 1 + 1 + 2 + 1 + 1 = 6

ω = −1 ⇒
[

4
2

]

q=−1
= 1− 1 + 2− 1 + 1 = 2

ω = −i ⇒
[

4
2

]

q=−i
= 1− i− 2 + i + 1 = 0



An instance of CSP

Theorem (Reiner-Stanton-White)

The following triple exhibits the CSP

(

(

[n]

k

)

,

[

n

k

]

q

, C

)

,

where C = 〈(1, . . . , n)〉.



An equivalent condition for CSP

If X(q) is expanded as

X(q) ≡ a0 + a1q + · · ·+ an−1q
n−1 (mod qn − 1),

where n = |C|, then ak counts the number of orbits whose
stabilizer-order divides k.



An equivalent condition for CSP

If X(q) is expanded as

X(q) ≡ a0 + a1q + · · ·+ an−1q
n−1 (mod qn − 1),

where n = |C|, then ak counts the number of orbits whose
stabilizer-order divides k.

In particular,

• a0 is the total number of orbits.

• a1 the number of free orbits (i.e., of size n).

• a2 − a1 is the number of orbits of size n
2
.
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The permutohedron PAn−1 of dimension n− 1 is the the
convex hull of all permutations of the vector (1, . . . , n) ∈ R

n.

(2,3,1)

(1,3,2)(3,1,2)

(1,2,3)(2,1,3)

(3,2,1)

Figure: The permutohedron PA2



An instance of CSP

• X: vertex set of PA2

• X(q) = [3]q! ≡ 2q2 + 2q + 2 (mod q3 − 1)

• C = Z/3Z acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.



An instance of CSP

• X: vertex set of PA2

• X(q) = [3]q! ≡ 2q2 + 2q + 2 (mod q3 − 1)

• C = Z/3Z acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.

• X: edge set of PA2

• X(q) =
[

3
1

]

q
+
[

3
2

]

q
≡ 2q2 + 2q + 2 (mod q3 − 1)

• C = Z/3Z acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.
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The permutohedron PA3
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1234
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• Vertex (σ−1(1), . . . , σ−1(n)) ∈ R
n is labeled by σ ∈ Sn.

• Two vertices are adjacent iff the corresponding
permutations differ by an adjacent transposition.
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The face lattice of the permutohedron PAn−1 is isomorphic to
the lattice of all ordered partitions of the set {1, . . . , n},
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Description for faces of PAn−1

Theorem (Billera-Sarangarajan 1996)

The face lattice of the permutohedron PAn−1 is isomorphic to
the lattice of all ordered partitions of the set {1, . . . , n},
ordered by refinement.

Face numbers
For 2 ≤ k ≤ n, the number of (n− k)-faces in PAn−1 is given
by

k! · Sn,k,

where Sn,k is the Stirling number of the second kind.
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facet-orbits:

1.234 12.34 13.24 123.4
2.134 23.14 24.13 234.1
3.124 34.12 134.2
4.123 14.23 124.3
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Let xn,k = k!Sn,k. Then xn,k satisfies the following recurrence
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xn,k =

{
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Face numbers of PAn−1

Let xn,k = k!Sn,k. Then xn,k satisfies the following recurrence
relation

xn,k =

{

1 if k = 1
∑n−k+1

i=1

(
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i

)
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1
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+

(
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2
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+ · · ·+
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n
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)

,

xn,3 =

(

n

1

)

xn−1,2 +

(

n

2

)

xn−2,2 + · · ·+

(

n

n− 2

)

x2,2.

Note that xn,2 is number of facets of PAn−1.
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A feasible q-polynomial for face numbers

Let X(n, k; q) ∈ Z[q] be the polynomial recursively defined by

X(n, k; q) =















1 if k = 1

n−k+1
∑

i=1

[

n

i

]

q

X(n− i, k − 1; q) if 2 ≤ k ≤ n.

For example, take n = 4 and k = 2,

X(4, 2; q) =

[

4

1

]

q

+

[

4

2

]

q

+

[

4

3

]

q

≡ 4 + 3q + 4q2 + 3q3 (mod q4 − 1).
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q-Lucas Theorem

Theorem (q-Lucas Theorem)

Let ω be a primitive dth root of unity. If n = ad + b and
k = rd + s, where 0 ≤ b, s ≤ q − 1, then

[

n

k

]

q=ω

=

(

a

r

)[

b

s

]

q=ω

.

If d ≥ 2 is a divisor of n, then

[

n

k

]

q=ω

=

{
(n

d

k

d

)

d|k

0 otherwise,

e.g., for n = 4 and d = 2, then ω = −1 and
[

4
2

]

q=−1
=
(

2
1

)

.



The CSP for faces of PAn−1

Proposition
For d ≥ 2 a divisor of n, let ω be a primitive dth root of unity.
Then

[X(n, k; q)]q=ω =

{

x(n

d
,k) if n ≥ kd

0 otherwise.
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The CSP for faces of PAn−1

Proposition
For d ≥ 2 a divisor of n, let Cd be the subgroup of order d of
C, and let Xn,k,d be the set of (n− k)-faces of PAn−1 that are
invariant under Cd. Then

|Xn,k,d| =

{

x(n

d
,k) if n ≥ kd

0 otherwise.

Count the number of k-block ordered partitions of [n] that are
invariant under

Cd = 〈(1, n
d

+ 1, . . . , n
d
(d− 1) + 1)

(2, n
d

+ 2, . . . , n
d
(d− 1) + 2) · · · (n

d
, 2n

d
, . . . , n)〉.
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Algebraic Background: Coxeter system (W, S)

W = An−1, the Coxeter group of type A

• Group An−1 = Sn, the symmetric group on the set [n]

• The Coxeter generators S = {s1, . . . , sn−1} of An−1

consists of adjacent transpositions

si = (i, i + 1).

• The diagram

1 s2 s3 n−1ss

• The Coxeter element
c = s1s2 · · · sn−1 = (1, 2, . . . , n) ∈ Sn generates a cyclic
group of order n.
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Example: permutohedron A3

• W = S4.

• S = {s1, s2, s3}, i.e., s1 = (1, 2), s2 = (2, 3), s3 = (3, 4).

J ⊆ S {s2, s3} {s1, s3} {s1, s2}
1234, 1342 1234 1234, 2314

WJ 1243, 1423 2134 1324, 3124
1324, 1432 2143 2134, 3214

1243
1.234 12.34 123.4

2.134 13.24 234.1

wWJ 3.124 14.23 134.2

(cosets) 4.134 23.14 124.3

24.13

34.12
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For a Coxeter system (W, S), the subgroups WJ generated by
subsets J ⊆ S are called parabolic subgroups of W .



Coxeterhedron

For a Coxeter system (W, S), the subgroups WJ generated by
subsets J ⊆ S are called parabolic subgroups of W .

The Coxeterhedron PW associated to (W, S) is the finite
poset of all cosets {wWJ}w∈W,J⊆S of all parabolic subgroups
of W , ordered by inclusion.
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W = Bn, the Coxeter group of type B

• The group Bn is the group of all signed permutations w
on the set {±1,±2, . . . ,±n} such that w(−i) = −w(i)
for 1 ≤ i ≤ n.

• The Coxeter generators {s1, . . . , sn} of Bn are defined by

{

si = (i, i + 1)(−i,−i− 1), 1 ≤ i ≤ n− 1
sn = (n,−n).

• The diagram

4

1 s2 s3 n−1s sns

• The Coxeter element
c = s1 · · · sn = (1, 2, . . . , n,−1,−2, . . . ,−n) generates a
cyclic group of order 2n.
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j if wi = +j

j if wi = −j.



Notation for signed permutations

Given w ∈ Bn, let w = w1w2 · · ·wn, where

wi =

{

j if wi = +j

j if wi = −j.

For example,

B2 consists of
12, 12, 12, 12
21, 21, 21, 21



The coxeterhedron PB2
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The coxeterhedron PB2

21

21 12

12

2112

21

12

Under the cyclic group action generated by c = (1, 2,−1,−2),
there are 2 free vertex-orbits and 2 free edge-orbits.
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W = Dn, the Coxeter group of type D

• The group Dn is the subgroup of Bn consisting of all
signed permutations with an even number of sign
changes.

• The Coxeter generators {s1, . . . , sn} of Dn are defined by
{

si = (i, i + 1)(−i,−i− 1), 1 ≤ i ≤ n− 1
sn = (n,−n + 1)(n− 1,−n).

• The diagram

1 s2 s3

n−1s

sn

s

• The Coxeter element c = s1 · · · sn =
(1, 2, . . . , n− 1,−1,−2, . . . ,−n + 1)(n,−n) generates a
cyclic group of order 2n− 2.



Reiner-Ziegler’s representation for faces of PW

Representing the faces wWJ of PW by boxed ordered
partitions:

13.4.256 ←→ 314652W{s1,s4,s5} in PA5

13.4.256 ←→ 314652W{s1,s4,s5} in PB6

13.4. 256 ←→ 314652W{s1,s4,s5,s6} in PB6

13.4.256 ←→ 314652W{s1,s4,s5} in PD6

13.4. 256 ←→ 314652W{s1,s4,s5,s6} in PD6

13.4. 25.6 ←→ 314652W{s1,s4,s6} in PD6



Face numbers of PW

For the groups W = An−1, Bn, Dn, the number fW (k) of
(n− k)-faces of the Coxeterhedron PW is given by

fAn−1
(k) = xn,k,

fBn
(k) =

n−k
∑

j=0

(

n

j

)

x(n−j,k) · 2
n−j,

fDn
(k) =

(

2xn,k − n · x(n−1,k−1)

)

· 2n−1

+

n−k
∑

j=2

(

n

j

)

x(n−j,k) · 2
n−j,

where xn,k =

{

1 if k = 1
∑n−k+1

i=1

(

n

i

)

x(n−i,k−1) if 2 ≤ k ≤ n.



q-polynomials for face numbers of PW

For the groups W = An−1, Bn, Dn, the number fW (k) of
(n− k)-faces of the Coxeterhedron PW is given by

fAn−1
(k; q) = X(n, k; q),

fBn
(k; q) =

n−k
∑

j=0

[

n

j

]

q

X(n− j, k; q)
n
∏

i=j+1

(1 + qi),

fDn
(k; q) =

(

2X(n, k; q)−

[

n

1

]

q

X(n− 1, k − 1; q)
)

n−1
∏

i=1

(1 + qi)

+

n−k
∑

j=2

[

n

j

]

q

X(n− j, k; q)

n−1
∏

i=j

(1 + qi).



Poincaré polynomials

For a subset W ′ ⊆ W , let W ′(q) be the Poincaré polynomial
of W ′, which is defined by

W ′(q) :=
∑

w∈W ′

qℓ(w),

where ℓ(·) is the length function of W .
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Poincaré polynomials

For a subset W ′ ⊆ W , let W ′(q) be the Poincaré polynomial
of W ′, which is defined by

W ′(q) :=
∑

w∈W ′

qℓ(w),

where ℓ(·) is the length function of W .
The cardinality and Poincaré polynomial of W are given by

|W | =

|S|
∏

i=1

(ei + 1), W (q) =

|S|
∏

i=1

[ei + 1]q,

where ei are the exponents of W .

Φ e1, . . . , en

An 1, 2, 3, . . . , n
Bn 1, 3, 5, . . . , 2n− 1
Dn 1, 3, 5, . . . , 2n− 3, n− 1



The number of cosets for parabolic subgroups

For any parabolic subgroup WJ and J ⊆ S,

• the diagram for (WJ , J) is obtained from the diagram for
(W, S) by removing all nodes in S\J ,
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The number of cosets for parabolic subgroups

For any parabolic subgroup WJ and J ⊆ S,

• the diagram for (WJ , J) is obtained from the diagram for
(W, S) by removing all nodes in S\J ,

• |WJ | and WJ(q) can be expressed in terms exponents as
a product derived from the connected components of the
diagram for WJ ,

• |W J | = |W |/|WJ | and W J(q) = W (q)/WJ(q).



The CSP for faces of Coxeterhedron

Theorem (Reiner-Stanton-White 2004)

For a Coxeter system (W, S) and J ⊆ S, let C be a cyclic
group generated by a regular element. Let X be the set of
cosets W/WJ , and X(q) := W J(q). Then the triple
(X, X(q), C) exhibits the cyclic sieving phenomenon.



Remarks

We prove a special case of Theorem [RSW] with the following
restrictions.

• The cyclic group we considered is generated by a Coxeter
element, while Theorem [RSW] holds for the cyclic group
generated by a regular element.
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for each WJ on the cosets W/WJ .



Remarks

We prove a special case of Theorem [RSW] with the following
restrictions.

• The cyclic group we considered is generated by a Coxeter
element, while Theorem [RSW] holds for the cyclic group
generated by a regular element.

• The CSP that we show is collectively on the set of all
cosets ∪J⊆S,|J |=n−kW/WJ , while Theorem [RSW] shows
a refinement of such phenomenon that holds individually
for each WJ on the cosets W/WJ .

• The polynomial fW (k; q) that we use is exactly the sum
of the Poincaré polynomials W J(q) for all J ⊆ S and
|J | = n− k, while in Theorem [RSW] a single polynomial
W J(q) is used.


