A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of Coxeterhedra

Tung-Shan Fu

Pingtung Institute of Commerce

Based on joint work with S.-P. Eu and Y.-J. Pan

- X: a finite set
- X(q): a polynomial in $\mathbb{Z}[q]$ (X(1) = |X|)
- C: a finite cyclic group acting on X

- X: a finite set
- X(q): a polynomial in $\mathbb{Z}[q]$ (X(1) = |X|)
- C: a finite cyclic group acting on X

If $c \in C$, we let

 $X^c = \{x \in X : c(x) = x\}$ and o(c) =order of c in C.

- X: a finite set
- X(q): a polynomial in $\mathbb{Z}[q]$ (X(1) = |X|)
- C: a finite cyclic group acting on X

If $c \in C$, we let

 $X^c = \{x \in X : c(x) = x\}$ and o(c) =order of c in C.

We also let ω_d be the primitive dth root of unity.

- X: a finite set
- X(q): a polynomial in $\mathbb{Z}[q]$ (X(1) = |X|)
- C: a finite cyclic group acting on X

If $c \in C$, we let

 $X^c = \{x \in X : c(x) = x\}$ and o(c) =order of c in C.

We also let ω_d be the primitive *d*th root of unity.

Definition (Reiner-Stanton-White 2004) The triple (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP) if, for every $c \in C$, we have

 $|X^c| = X(\omega_{o(c)}).$

- X: a finite set
- X(q): a polynomial in $\mathbb{Z}[q]$ (X(1) = |X|)
- C: a finite cyclic group acting on X

If $c \in C$, we let

 $X^c = \{x \in X : c(x) = x\}$ and o(c) =order of c in C.

We also let ω_d be the primitive *d*th root of unity.

Definition (Reiner-Stanton-White 2004) The triple (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP) if, for every $c \in C$, we have

$$|X^c| = X(\omega_{o(c)}).$$

Note. The case |C| = 2 was first studied by Stembridge and called the "q = -1 phenomenon".

Let $[n] = \{1, \dots, n\}$ and $X = \binom{[n]}{k} = \{T \subseteq [n] : |T| = k\}.$

Let $[n] = \{1, ..., n\}$ and

$$X = \binom{[n]}{k} = \{T \subseteq [n] : |T| = k\}.$$

Let $C = \langle (1, \ldots, n) \rangle$. Now $c \in C$ acts on $T = \{t_1, \ldots, t_k\}$ by $c(T) = \{c(t_1), \ldots, c(t_k)\}.$

Let $[n] = \{1, ..., n\}$ and

$$X = \binom{[n]}{k} = \{T \subseteq [n] : |T| = k\}.$$

Let $C = \langle (1, \ldots, n) \rangle$. Now $c \in C$ acts on $T = \{t_1, \ldots, t_k\}$ by $c(T) = \{c(t_1), \ldots, c(t_k)\}.$

For example, consider n = 4 and k = 2. We have

$$X = \{12, 13, 14, 23, 24, 34\}$$

$$C = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\}.$$

Let $[n] = \{1, ..., n\}$ and

$$X = \binom{[n]}{k} = \{T \subseteq [n] : |T| = k\}.$$

Let $C = \langle (1, \ldots, n) \rangle$. Now $c \in C$ acts on $T = \{t_1, \ldots, t_k\}$ by $c(T) = \{c(t_1), \ldots, c(t_k)\}.$

For example, consider n = 4 and k = 2. We have

$$X = \{12, 13, 14, 23, 24, 34\}$$

$$C = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\}.$$

For c = (1,3)(2,4), we have c(12) = 34, c(13) = 13, c(14) = 23c(34) = 12, c(24) = 24, c(23) = 14

Let $[n]_q = 1 + q + \dots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$.

Let $[n]_q = 1 + q + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian coefficients* by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q[n-k]_q}.$$

Let $[n]_q = 1 + q + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian coefficients* by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q[n-k]_q}$$

For example, take n = 4 and k = 2. We have

$$\begin{bmatrix} 4\\2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$$

Let $[n]_q = 1 + q + \cdots + q^{n-1}$ and $[n]_q! = [1]_q[2]_q \cdots [n]_q$. Define the *Gaussian coefficients* by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q[n-k]_q}$$

For example, take n = 4 and k = 2. We have

$$\begin{bmatrix} 4\\2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4.$$

 $\begin{array}{rcl} \omega = 1 & \Rightarrow & {4 \brack 2}_{q=1} = 1 + 1 + 2 + 1 + 1 = 6 \\ \text{Then} & \omega = -1 & \Rightarrow & {4 \brack 2}_{q=-1} = 1 - 1 + 2 - 1 + 1 = 2 \\ \omega = -i & \Rightarrow & {4 \brack 2}_{q=-i} = 1 - i - 2 + i + 1 = 0 \end{array}$

An instance of CSP

Theorem (Reiner-Stanton-White) The following triple exhibits the CSP

$$\left(\binom{[n]}{k}, \begin{bmatrix}n\\k\end{bmatrix}_q, C\right),$$

where $C = \langle (1, \ldots, n) \rangle$.

An equivalent condition for CSP

If X(q) is expanded as

$$X(q) \equiv a_0 + a_1 q + \dots + a_{n-1} q^{n-1} \pmod{q^n - 1}$$
,

where n = |C|, then a_k counts the number of orbits whose stabilizer-order divides k.

An equivalent condition for CSP

If X(q) is expanded as

$$X(q) \equiv a_0 + a_1 q + \dots + a_{n-1} q^{n-1} \pmod{q^n - 1},$$

where n = |C|, then a_k counts the number of orbits whose stabilizer-order divides k.

In particular,

- a_0 is the total number of orbits.
- a_1 the number of free orbits (i.e., of size n).
- $a_2 a_1$ is the number of orbits of size $\frac{n}{2}$.

Permutation polytopes

The *permutohedron* PA_{n-1} of dimension n-1 is the the convex hull of all permutations of the vector $(1, \ldots, n) \in \mathbb{R}^n$.

Permutation polytopes

The *permutohedron* PA_{n-1} of dimension n-1 is the the convex hull of all permutations of the vector $(1, \ldots, n) \in \mathbb{R}^n$.

Figure: The permutohedron PA₂

An instance of CSP

- X: vertex set of PA₂
- $X(q) = [3]_q! \equiv 2q^2 + 2q + 2 \pmod{q^3 1}$
- $C = \mathbb{Z}/3\mathbb{Z}$ acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.

An instance of CSP

- X: vertex set of PA₂
- $X(q) = [3]_q! \equiv 2q^2 + 2q + 2 \pmod{q^3 1}$
- $C = \mathbb{Z}/3\mathbb{Z}$ acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.

- X: edge set of PA₂
- $X(q) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}_q + \begin{bmatrix} 3 \\ 2 \end{bmatrix}_q \equiv 2q^2 + 2q + 2 \pmod{q^3 1}$
- $C = \mathbb{Z}/3\mathbb{Z}$ acts on X by rotating the coordinates

Then (X, X(q), C) exhibits the CSP.

The permutohedron PA₃

The permutohedron PA₃

- Vertex $(\sigma^{-1}(1), \ldots, \sigma^{-1}(n)) \in \mathbb{R}^n$ is labeled by $\sigma \in \mathfrak{S}_n$.
- Two vertices are adjacent iff the corresponding permutations differ by an adjacent transposition.

Description for faces of PA_{n-1}

Theorem (Billera-Sarangarajan 1996)

The face lattice of the permutohedron PA_{n-1} is isomorphic to the lattice of all ordered partitions of the set $\{1, \ldots, n\}$, ordered by refinement.

Description for faces of PA_{n-1}

Theorem (Billera-Sarangarajan 1996)

The face lattice of the permutohedron PA_{n-1} is isomorphic to the lattice of all ordered partitions of the set $\{1, \ldots, n\}$, ordered by refinement.

Face numbers For $2 \le k \le n$, the number of (n - k)-faces in PA_{n-1} is given by

 $k! \cdot S_{n,k},$

where $S_{n,k}$ is the Stirling number of the second kind.

The facets of PA_{n-1}

The facets of PA_{n-1}

Face numbers of PA_{n-1}

Let $x_{n,k} = k! S_{n,k}$. Then $x_{n,k}$ satisfies the following recurrence relation

$$x_{n,k} = \begin{cases} 1 & \text{if } k = 1\\ \sum_{i=1}^{n-k+1} {n \choose i} x_{(n-i,k-1)} & \text{if } 2 \le k \le n. \end{cases}$$

Face numbers of PA_{n-1}

Let $x_{n,k} = k! S_{n,k}$. Then $x_{n,k}$ satisfies the following recurrence relation

$$x_{n,k} = \begin{cases} 1 & \text{if } k = 1\\ \sum_{i=1}^{n-k+1} {n \choose i} x_{(n-i,k-1)} & \text{if } 2 \le k \le n. \end{cases}$$

For example,

$$x_{n,2} = \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1},$$

$$x_{n,3} = \binom{n}{1} x_{n-1,2} + \binom{n}{2} x_{n-2,2} + \dots + \binom{n}{n-2} x_{2,2}.$$

Face numbers of PA_{n-1}

Let $x_{n,k} = k!S_{n,k}$. Then $x_{n,k}$ satisfies the following recurrence relation

$$x_{n,k} = \begin{cases} 1 & \text{if } k = 1\\ \sum_{i=1}^{n-k+1} {n \choose i} x_{(n-i,k-1)} & \text{if } 2 \le k \le n. \end{cases}$$

For example,

$$x_{n,2} = \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1},$$

$$x_{n,3} = \binom{n}{1} x_{n-1,2} + \binom{n}{2} x_{n-2,2} + \dots + \binom{n}{n-2} x_{2,2}.$$

Note that $x_{n,2}$ is number of facets of PA_{n-1} .

A feasible q-polynomial for face numbers Let $X(n, k; q) \in \mathbb{Z}[q]$ be the polynomial recursively defined by

$$X(n,k;q) = \begin{cases} 1 & \text{if } k = 1\\ \sum_{i=1}^{n-k+1} {n \brack i}_q X(n-i,k-1;q) & \text{if } 2 \le k \le n. \end{cases}$$

A feasible q-polynomial for face numbers Let $X(n, k; q) \in \mathbb{Z}[q]$ be the polynomial recursively defined by

$$X(n,k;q) = \begin{cases} 1 & \text{if } k = 1\\ \sum_{i=1}^{n-k+1} {n \brack i}_q X(n-i,k-1;q) & \text{if } 2 \le k \le n. \end{cases}$$

For example, take n = 4 and k = 2,

$$\begin{aligned} X(4,2;q) &= \begin{bmatrix} 4\\1 \end{bmatrix}_q + \begin{bmatrix} 4\\2 \end{bmatrix}_q + \begin{bmatrix} 4\\3 \end{bmatrix}_q \\ &\equiv 4 + 3q + 4q^2 + 3q^3 \pmod{q^4 - 1}. \end{aligned}$$

q-Lucas Theorem

Theorem (*q*-Lucas Theorem)

Let ω be a primitive dth root of unity. If n = ad + b and k = rd + s, where $0 \le b, s \le q - 1$, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=\omega} = \binom{a}{r} \begin{bmatrix} b \\ s \end{bmatrix}_{q=\omega}.$$

q-Lucas Theorem

Theorem (*q*-Lucas Theorem) Let ω be a primitive *d*th root of unity. If n = ad + b and k = rd + s, where $0 \le b, s \le q - 1$, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=\omega} = \binom{a}{r} \begin{bmatrix} b \\ s \end{bmatrix}_{q=\omega}.$$

If $d \geq 2$ is a divisor of n, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=\omega} = \begin{cases} {\binom{n}{d}} & d | k \\ 0 & \text{otherwise,} \end{cases}$$

q-Lucas Theorem

Theorem (*q*-Lucas Theorem) Let ω be a primitive *d*th root of unity. If n = ad + b and k = rd + s, where $0 \le b, s \le q - 1$, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=\omega} = \binom{a}{r} \begin{bmatrix} b \\ s \end{bmatrix}_{q=\omega}.$$

If $d \geq 2$ is a divisor of n, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q=\omega} = \begin{cases} \left(\frac{n}{d} \\ \frac{k}{d} \right) & d | k \\ 0 & \text{otherwise,} \end{cases}$$

e.g., for n = 4 and d = 2, then $\omega = -1$ and $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q=-1} = {2 \choose 1}$.

The CSP for faces of PA_{n-1}

Proposition

For $d \ge 2$ a divisor of n, let ω be a primitive dth root of unity. Then

$$[X(n,k;q)]_{q=\omega} = \begin{cases} x_{(\frac{n}{d},k)} & \text{if } n \ge kd \\ 0 & \text{otherwise.} \end{cases}$$
The CSP for faces of PA_{n-1}

Proposition

For $d \geq 2$ a divisor of n, let C_d be the subgroup of order d of C, and let $X_{n,k,d}$ be the set of (n-k)-faces of PA_{n-1} that are invariant under C_d . Then

$$|X_{n,k,d}| = \begin{cases} x_{(\frac{n}{d},k)} & \text{if } n \ge kd \\ 0 & \text{otherwise.} \end{cases}$$

The CSP for faces of PA_{n-1}

Proposition

For $d \geq 2$ a divisor of n, let C_d be the subgroup of order d of C, and let $X_{n,k,d}$ be the set of (n-k)-faces of PA_{n-1} that are invariant under C_d . Then

$$|X_{n,k,d}| = egin{cases} x_{(rac{n}{d},k)} & \textit{if } n \geq kd \ 0 & \textit{otherwise.} \end{cases}$$

Count the number of k-block ordered partitions of [n] that are invariant under

$$C_d = \langle (1, \frac{n}{d} + 1, \dots, \frac{n}{d}(d-1) + 1) \\ (2, \frac{n}{d} + 2, \dots, \frac{n}{d}(d-1) + 2) \cdots (\frac{n}{d}, \frac{2n}{d}, \dots, n) \rangle.$$

Algebraic Background: Coxeter system (W, S) $W = A_{n-1}$, the Coxeter group of type A

• Group $A_{n-1} = \mathfrak{S}_n$, the symmetric group on the set [n]

Algebraic Background: Coxeter system (W, S)

 $W = A_{n-1}$, the Coxeter group of type A

- Group $A_{n-1} = \mathfrak{S}_n$, the symmetric group on the set [n]
- The *Coxeter generators* $S = \{s_1, \ldots, s_{n-1}\}$ of A_{n-1} consists of adjacent transpositions

 $s_i = (i, i+1).$

Algebraic Background: Coxeter system (W, S)

 $W = A_{n-1}$, the Coxeter group of type A

- Group $A_{n-1} = \mathfrak{S}_n$, the symmetric group on the set [n]
- The *Coxeter generators* $S = \{s_1, \ldots, s_{n-1}\}$ of A_{n-1} consists of adjacent transpositions

$$s_i = (i, i+1).$$

The diagram

Algebraic Background: Coxeter system (W, S)

 $W = A_{n-1}$, the Coxeter group of type A

- Group $A_{n-1} = \mathfrak{S}_n$, the symmetric group on the set [n]
- The *Coxeter generators* $S = \{s_1, \ldots, s_{n-1}\}$ of A_{n-1} consists of adjacent transpositions

$$s_i = (i, i+1).$$

• The diagram

• The Coxeter element

 $c = s_1 s_2 \cdots s_{n-1} = (1, 2, \dots, n) \in \mathfrak{S}_n$ generates a cyclic group of order n.

•
$$W = \mathfrak{S}_4$$
.

•
$$S = \{s_1, s_2, s_3\}$$
, i.e., $s_1 = (1, 2)$, $s_2 = (2, 3)$, $s_3 = (3, 4)$.

•
$$W = \mathfrak{S}_4$$
.
• $S = \{s_1, s_2, s_3\}$, i.e., $s_1 = (1, 2)$, $s_2 = (2, 3)$, $s_3 = (3, 4)$.

$J \subseteq S$	$\{s_2,s_3\}$	$\{s_1, s_3\}$	$\{s_1,s_2\}$
	1234, 1342	1234	1234, 2314
W_J	1243, 1423	2134	1324, 3124
	1324, 1432	2143	2134, 3214
		1243	

•
$$W = \mathfrak{S}_4$$
.
• $S = \{s_1, s_2, s_3\}$, i.e., $s_1 = (1, 2)$, $s_2 = (2, 3)$, $s_3 = (3, 4)$.

$J \subseteq S$	$\{s_2, s_3\}$	$\{s_1, s_3\}$	$\{s_1, s_2\}$
	1234, 1342	1234	1234, 2314
W_J	1243, 1423	2134	1324, 3124
	1324, 1432	2143	2134, 3214
		1243	
	1.234	12.34	123.4

•
$$W = \mathfrak{S}_4$$
.
• $S = \{s_1, s_2, s_3\}$, i.e., $s_1 = (1, 2)$, $s_2 = (2, 3)$, $s_3 = (3, 4)$.

$J \subseteq S$	$\{s_2, s_3\}$	$\{s_1, s_3\}$	$\{s_1, s_2\}$
	1234, 1342	1234	1234, 2314
W_J	1243, 1423	2134	1324, 3124
	1324, 1432	2143	2134, 3214
		1243	
	1.234	12.34	123.4
	2.134	13.24	234.1
wW_J	3.124	14.23	134.2
(cosets)	4.134	23.14	124.3
		24.13	
		34.12	

Coxeterhedron

For a Coxeter system (W, S), the subgroups W_J generated by subsets $J \subseteq S$ are called *parabolic subgroups* of W.

Coxeterhedron

For a Coxeter system (W, S), the subgroups W_J generated by subsets $J \subseteq S$ are called *parabolic subgroups* of W.

The *Coxeterhedron* PW associated to (W, S) is the finite poset of all cosets $\{wW_J\}_{w \in W, J \subseteq S}$ of all parabolic subgroups of W, ordered by inclusion.

• The group B_n is the group of all signed permutations won the set $\{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i)for $1 \le i \le n$.

- The group B_n is the group of all signed permutations won the set $\{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i)for $1 \le i \le n$.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of B_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n). \end{cases}$$

- The group B_n is the group of all signed permutations won the set $\{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i)for $1 \le i \le n$.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of B_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n). \end{cases}$$

• The diagram

- The group B_n is the group of all signed permutations won the set $\{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i)for $1 \le i \le n$.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of B_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n). \end{cases}$$

• The diagram

• The Coxeter element

 $c = s_1 \cdots s_n = (1, 2, \dots, n, -1, -2, \dots, -n)$ generates a cyclic group of order 2n.

Notation for signed permutations

Given $w \in B_n$, let $w = w_1 w_2 \cdots w_n$, where

$$w_i = \begin{cases} j & \text{if } w_i = +j \\ \overline{j} & \text{if } w_i = -j. \end{cases}$$

Notation for signed permutations

Given $w \in B_n$, let $w = w_1 w_2 \cdots w_n$, where

$$w_i = \begin{cases} j & \text{if } w_i = +j \\ \overline{j} & \text{if } w_i = -j. \end{cases}$$

For example,

$$B_2$$
 consists of $\begin{array}{ccc} 12, & \overline{1}2, & 1\overline{2}, & \overline{1}2\\ 21, & \overline{2}1, & 2\overline{1}, & 2\overline{1}, & \overline{2}1 \end{array}$

The coxeterhedron PB_2

The coxeterhedron PB_2

Under the cyclic group action generated by c = (1, 2, -1, -2), there are 2 free vertex-orbits and 2 free edge-orbits.

• The group D_n is the subgroup of B_n consisting of all signed permutations with an *even* number of sign changes.

- The group D_n is the subgroup of B_n consisting of all signed permutations with an *even* number of sign changes.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of D_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n+1)(n-1, -n). \end{cases}$$

- The group D_n is the subgroup of B_n consisting of all signed permutations with an *even* number of sign changes.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of D_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n+1)(n-1, -n). \end{cases}$$

• The diagram

- The group D_n is the subgroup of B_n consisting of all signed permutations with an *even* number of sign changes.
- The *Coxeter generators* $\{s_1, \ldots, s_n\}$ of D_n are defined by

$$\begin{cases} s_i = (i, i+1)(-i, -i-1), & 1 \le i \le n-1 \\ s_n = (n, -n+1)(n-1, -n). \end{cases}$$

• The diagram

• The Coxeter element $c = s_1 \cdots s_n = (1, 2, \dots, n-1, -1, -2, \dots, -n+1)(n, -n)$ generates a cyclic group of order 2n - 2.

Reiner-Ziegler's representation for faces of PW Representing the faces wW_J of PW by boxed ordered partitions:

13.4.256	\longleftrightarrow	$314652W_{\{s_1,s_4,s_5\}}$	in PA_5
$1\overline{3}.4.\overline{2}5\overline{6}$	\longleftrightarrow	$\overline{3}14\overline{6}5\overline{2}W_{\{s_1,s_4,s_5\}}$	in PB_6
13.4.256	\longleftrightarrow	$\overline{3}14\overline{6}5\overline{2}W_{\{s_1,s_4,s_5,s_6\}}$	in PB_6
$1\overline{3}.4.\overline{256}$	\longleftrightarrow	$\overline{3}14\overline{652}W_{\{s_1,s_4,s_5\}}$	in PD_6
1 <u>3</u> .4. <u>25</u> 6	\longleftrightarrow	$\overline{3}14\overline{652}W_{\{s_1,s_4,s_5,s_6\}}$	in PD_6
13.4.25.6	\longleftrightarrow	$\overline{3}14\overline{652}W_{\{s_1,s_4,s_6\}}$	in PD_6

Face numbers of PW

For the groups $W = A_{n-1}$, B_n , D_n , the number $f_W(k)$ of (n-k)-faces of the Coxeterhedron PW is given by

$$f_{A_{n-1}}(k) = x_{n,k},$$

$$f_{B_n}(k) = \sum_{j=0}^{n-k} \binom{n}{j} x_{(n-j,k)} \cdot 2^{n-j},$$

$$f_{D_n}(k) = (2x_{n,k} - n \cdot x_{(n-1,k-1)}) \cdot 2^{n-1}$$

$$+ \sum_{j=2}^{n-k} \binom{n}{j} x_{(n-j,k)} \cdot 2^{n-j},$$

where
$$x_{n,k} = \begin{cases} 1 & \text{if } k = 1 \\ \sum_{i=1}^{n-k+1} {n \choose i} x_{(n-i,k-1)} & \text{if } 2 \le k \le n. \end{cases}$$

q-polynomials for face numbers of PW

For the groups $W = A_{n-1}$, B_n , D_n , the number $f_W(k)$ of (n-k)-faces of the Coxeterhedron PW is given by

$$\begin{aligned} f_{A_{n-1}}(k;q) &= X(n,k;q), \\ f_{B_n}(k;q) &= \sum_{j=0}^{n-k} {n \brack j}_q X(n-j,k;q) \prod_{i=j+1}^n (1+q^i), \\ f_{D_n}(k;q) &= \left(2X(n,k;q) - {n \brack 1}_q X(n-1,k-1;q)\right) \prod_{i=1}^{n-1} (1+q^i) \\ &+ \sum_{j=2}^{n-k} {n \brack j}_q X(n-j,k;q) \prod_{i=j}^{n-1} (1+q^i). \end{aligned}$$

Poincaré polynomials

For a subset $W' \subseteq W$, let W'(q) be the *Poincaré polynomial* of W', which is defined by

$$W'(q) := \sum_{w \in W'} q^{\ell(w)},$$

where $\ell(\cdot)$ is the length function of W.

Poincaré polynomials

For a subset $W' \subseteq W$, let W'(q) be the *Poincaré polynomial* of W', which is defined by

$$W'(q) := \sum_{w \in W'} q^{\ell(w)},$$

where $\ell(\cdot)$ is the length function of W. The cardinality and Poincaré polynomial of W are given by

$$|W| = \prod_{i=1}^{|S|} (e_i + 1), \quad W(q) = \prod_{i=1}^{|S|} [e_i + 1]_q,$$

where e_i are the *exponents* of W.

Poincaré polynomials

For a subset $W' \subseteq W$, let W'(q) be the *Poincaré polynomial* of W', which is defined by

$$W'(q) := \sum_{w \in W'} q^{\ell(w)},$$

where $\ell(\cdot)$ is the length function of W. The cardinality and Poincaré polynomial of W are given by

$$|W| = \prod_{i=1}^{|S|} (e_i + 1), \quad W(q) = \prod_{i=1}^{|S|} [e_i + 1]_q,$$

where e_i are the *exponents* of W.

Φ	e_1,\ldots,e_n
A_n	$1, 2, 3, \ldots, n$
B_n	$1, 3, 5, \ldots, 2n - 1$
D_n	$1, 3, 5, \ldots, 2n - 3, n - 1$

The number of cosets for parabolic subgroups

For any parabolic subgroup W_J and $J \subseteq S$,

• the diagram for (W_J, J) is obtained from the diagram for (W, S) by removing all nodes in $S \backslash J$,

The number of cosets for parabolic subgroups

For any parabolic subgroup W_J and $J \subseteq S$,

- the diagram for (W_J,J) is obtained from the diagram for (W,S) by removing all nodes in $S\backslash J$,
- $|W_J|$ and $W_J(q)$ can be expressed in terms exponents as a product derived from the connected components of the diagram for W_J ,

The number of cosets for parabolic subgroups

For any parabolic subgroup W_J and $J \subseteq S$,

- the diagram for (W_J,J) is obtained from the diagram for (W,S) by removing all nodes in $S\backslash J$,
- $|W_J|$ and $W_J(q)$ can be expressed in terms exponents as a product derived from the connected components of the diagram for W_J ,
- $|W^J| = |W|/|W_J|$ and $W^J(q) = W(q)/W_J(q)$.

The CSP for faces of Coxeterhedron

Theorem (Reiner-Stanton-White 2004)

For a Coxeter system (W, S) and $J \subseteq S$, let C be a cyclic group generated by a regular element. Let X be the set of cosets W/W_J , and $X(q) := W^J(q)$. Then the triple (X, X(q), C) exhibits the cyclic sieving phenomenon.

Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

• The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.
Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

- The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.
- The CSP that we show is collectively on the set of all cosets ∪_{J⊆S,|J|=n-k}W/W_J, while Theorem [RSW] shows a refinement of such phenomenon that holds individually for each W_J on the cosets W/W_J.

Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

- The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.
- The CSP that we show is collectively on the set of all cosets ∪_{J⊆S,|J|=n-k}W/W_J, while Theorem [RSW] shows a refinement of such phenomenon that holds individually for each W_J on the cosets W/W_J.
- The polynomial $f_W(k;q)$ that we use is exactly the sum of the Poincaré polynomials $W^J(q)$ for all $J \subseteq S$ and |J| = n - k, while in Theorem [RSW] a single polynomial $W^J(q)$ is used.