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Cyclic sieving phenomenon

e X: a finite set
e X(q): a polynomial in Z[q] (X (1) =|X])
e (' a finite cyclic group acting on X

If ce C, we let

X¢={zre X :c(xr) =z} and o(c) = order of cin C.
We also let wy be the primitive dth root of unity.

Definition (Reiner-Stanton-White 2004)

The triple (X, X (q), C) exhibits the cyclic sieving
phenomenon (CSP) if, for every ¢ € C, we have

|XC| = X(wo(c)).

Note. The case |C'| = 2 was first studied by Stembridge and
called the “¢ = —1 phenomenon”.
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Example
Let [n] ={1,...,n} and

X = ([Z]) — (T Cn]:|T| = k).
Let C ={((1,...,n)). Now c € C actson T" = {t1,...,tx} by
C(T> = {C(tl)u SRR C(tk)}
For example, consider n = 4 and k = 2. We have

X = {12,13,14,23,24,34}
C = {e(1,2,3,4),(1,3)(2,4),(1,4,3,2)}.



Example
Let [n] ={1,...,n} and

X = ([Z]) — (T Cn]:|T| = k).
Let C ={((1,...,n)). Now c € C actson T" = {t1,...,tx} by
C<T> = {C<t1)7 SRR C(tk)}
For example, consider n = 4 and k = 2. We have

X = {12,13,14,23,24,34}
C = {e(1,2,3,4),(1,3)(2,4),(1,4,3,2)}.

For ¢ = (1,3)(2,4), we have
c(12) = 34, c(13) =13, c(14) =23
c(34) =12, c(24) =24, ¢(23) =14
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A g-polynomial for X (q)

Let [n], =1+ q+---+¢" " and [n],! = [1]4[2],- - [n],.
Define the Gaussian coefficients by

N s

For example, take n = 4 and k = 2. We have

4
H =1+4+q+2¢+¢+q"
q

w=1 = [J_  =1+1+2+1+1=6

Then w=-1 = [  =1-1+2-1+1=2
w=—i = [],_,=1-i-2+i+1=0



An instance of CSP

Theorem (Reiner-Stanton-White)
The following triple exhibits the CSP

(D)),

where C' = ((1,...,n)).




An equivalent condition for CSP
If X(q) is expanded as
X(q)=ag+aq+---+an1¢""" (mod ¢" — 1),

where n = |C|, then a;, counts the number of orbits whose
stabilizer-order divides k.



An equivalent condition for CSP
If X(q) is expanded as
X(q)=ag+aq+---+an1¢""" (mod ¢" — 1),

where n = |C|, then a;, counts the number of orbits whose
stabilizer-order divides k.

In particular,
e qg is the total number of orbits.
e «; the number of free orbits (i.e., of size n).

® ay — ap is the number of orbits of size 3.
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Figure: The permutohedron PAs



An instance of CSP

e X: vertex set of PA,

e X(¢q) =3, =2¢*+2q+2 (mod ¢* — 1)

e C' =17/3Z acts on X by rotating the coordinates
Then (X, X (q), C) exhibits the CSP.
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e X: vertex set of PA,

e X(¢q) =3, =2¢*+2q+2 (mod ¢* — 1)

e C' =17/3Z acts on X by rotating the coordinates
Then (X, X (q), C) exhibits the CSP.

e X: edge set of PA,

e X(q) = mq + B]q =2¢>+2¢+2 (mod ¢® — 1)

e (' =7/3Z acts on X by rotating the coordinates
Then (X, X (q), C) exhibits the CSP.
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o Vertex (07!(1),...,07(n)) € R" is labeled by 0 € &,,.

e Two vertices are adjacent iff the corresponding
permutations differ by an adjacent transposition.



Description for faces of PA,,_;

Theorem (Billera-Sarangarajan 1996)

The face lattice of the permutohedron PA, _ is isomorphic to
the lattice of all ordered partitions of the set {1,...,n},
ordered by refinement.




Description for faces of PA,,_;

Theorem (Billera-Sarangarajan 1996)

The face lattice of the permutohedron PA,,_, is isomorphic to
the lattice of all ordered partitions of the set {1,...,n},
ordered by refinement.

Face numbers
For 2 < k < n, the number of (n — k)-faces in PA,,_; is given
by

k! Sk,

where S, ;. is the Stirling number of the second kind.
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The facets of PA,,_;

4123 1423

3241 3214

1.234 | 12.34 | 13.24 | 1234
2.134(23.14 | 24.13 | 234.1
3.124 | 34.12 134.2
4.123 | 14.23 124.3

facet-orbits:




Face numbers of PA,,_;

Let x,,, = k!S,, 5. Then z,, satisfies the following recurrence
relation

1 ifk=1
Tk = n— n .
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Face numbers of PA,,_;

Let x,,, = k!S,, 5. Then z,, satisfies the following recurrence
relation

1 ifk=1
Tk = n— n .
! Zi:lk+1 (z’)x(n—iyk—l) if2<k<n.

For example,
n N n P n
:'UTL f— “ .. s
? 1 2 n—1
n n n
Tng = (1>$n—1,2 + (2>In—2,2 + -+ <n B 2) T2,2.

Note that z, 2 is number of facets of PA,,_;.



A feasible g-polynomial for face numbers
Let X (n, k; q) € Z|q] be the polynomial recursively defined by
1 ifk=1

X(Tl,k,q> — n—k+1 n
{ ] X(n—ik—1;q) if2<k<n.
q



A feasible g-polynomial for face numbers
Let X (n, k; q) € Z|q] be the polynomial recursively defined by
1 ifk=1

X(n7k7q> — n—k+1 n
{ ] X(n—ik—1;q) if2<k<n.
q

For example, take n = 4 and k = 2,

X(4,2;q) = mq* E}f EL

44 3q+4¢* +3¢* (mod ¢* —1).
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g-Lucas Theorem

Theorem (g-Lucas Theorem)

Let w be a primitive dth root of unity. If n = ad + b and
k=rd+ s, where() <b,s <q—1, then

- OLL

If d > 2 is a divisor of n, then

m (1) dlk
= d
k =w 0 otherwise,

e.g., forn =4 and d =2, then w = —1 and [g}q:q = (f)



The CSP for faces of PA,,_;

Proposition

For d > 2 a divisor of n, let w be a primitive dth root of unity.
Then
:L‘(%Jf) ifn Z kd

0 otherwise.

[X(TL, k; (])]q:w - {




The CSP for faces of PA,,_;

Proposition

For d > 2 a divisor of n, let Cy be the subgroup of order d of
C, and let X, ;, 4 be the set of (n — k)-faces of PA,_1 that are
invariant under Cy. Then

Tin ifn > kd
X, geal = ¢ .
0 otherwise.




The CSP for faces of PA,,_4

Proposition

For d > 2 a divisor of n, let Cy be the subgroup of order d of
C, and let X, ;, 4 be the set of (n — k)-faces of PA,_1 that are
invariant under Cy. Then

Tn gy ifn>kd
| X k| = (@) .
0 otherwise.

Count the number of k-block ordered partitions of [n] that are
invariant under

Ca = ((1,5+1,...,5(d-1)+1
1
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Algebraic Background: Coxeter system (W, 5)
W = A,_1, the Coxeter group of type A

e Group A,_1 = &,, the symmetric group on the set [n]

e The Coxeter generators S = {s1,...,8,_1} of A,_1
consists of adjacent transpositions

si=(i,i+1).
e The diagram
o 0 O 0
s1 2 03 Sn-1

e The Coxeter element
c=51828,-1=(1,2,...,n) € S, generates a cyclic
group of order n.
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o W = 64.
o S ={s1,892,83} i.e, s1=(1,2), so=(2,3), s3 = (3,4).

J Q S {82,83} {81,83} {81,82}

1234,1342 | 1234 | 1234,2314
W 1243,1423 | 2134 | 1324,3124
1324,1432 | 2143 | 2134,3214
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Example: permutohedron A;

o W = 64.
o S ={s1,892,83} i.e, s1=(1,2), so=(2,3), s3 = (3,4).

J Q S {82,83} {81,83} {81782}

1234,1342 | 1234 | 1234,2314
W 1243,1423 | 2134 | 1324,3124
1324,1432 | 2143 | 2134,3214
1243
1.234 12.34 123.4




Example: permutohedron A;

o W = 64.
o S ={s1,892,83} i.e, s1=(1,2), so=(2,3), s3 = (3,4).

JCS {s2,s3} | {s1,s3} | {s1,52}
1234,1342 | 1234 | 1234,2314
W 1243,1423 | 2134 | 1324,3124
1324,1432 | 2143 | 2134,3214
1243
1.234 12.34 123.4
2.134 13.24 234.1
wWy 3.124 14.23 134.2
(cosets) 4.134 23.14 124.3
24.13
34.12
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For a Coxeter system (W, S), the subgroups W generated by
subsets J C S are called parabolic subgroups of W,



Coxeterhedron

For a Coxeter system (W, S), the subgroups W generated by
subsets J C S are called parabolic subgroups of W,

The Coxeterhedron PW associated to (W, S) is the finite
poset of all cosets {wW;},ew.scs of all parabolic subgroups
of W, ordered by inclusion.
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W = B,, the Coxeter group of type B

e The group B, is the group of all signed permutations w
on the set {£1,42,...,+n} such that w(—i) = —w(i)
forl1 <i<n.

e The Coxeter generators {sy,...,s,} of B, are defined by

si=(i,i +1)(—i,—i—1), 1<i<n-—1
Sp = (n,—n).

e The diagram

o 4 0

S1 2 0s3 Sh-1 Sn

e The Coxeter element
c=81-8,=(1,2,...,n,—1,—2,...,—n) generates a
cyclic group of order 2n.
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Notation for signed permutations

Given w € B, let w = wyws - - - w,,, where

Joifw=+j
W; = §= . .
g ifw; = —7.

For example,

B> consists of

N =l
—| o
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The coxeterhedron PBs

12 21

Under the cyclic group action generated by ¢ = (1,2, —1, —2),
there are 2 free vertex-orbits and 2 free edge-orbits.
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W = D, the Coxeter group of type D

The group D,, is the subgroup of B,, consisting of all
signed permutations with an even number of sign
changes.

The Coxeter generators {s,...,s,} of D,, are defined by

si=(i,i+ 1)(—i,—i—1), 1<i<n-—1
S$p=(n,—n+1)(n—1,—n).

The diagram

Sn-1
O
S1 S S3

Sh

The Coxeter element ¢ = s1--- 5, =
(1,2,...,n—1,—1, -2, ..., —n+ 1)(n, —n) generates a
cyclic group of order 2n — 2.




Reiner-Ziegler's representation for faces of PW

Representing the faces wW; of PW by boxed ordered
partitions:

13.4.256  «—— 314652W(, 00)  in PA;
134256 «—— 314652W(,, .,0p  in PBg
]3.4. > §1465§W{31,34,55,35} in PBG
134256 «—— 314652W(, 4,0} in PDg
13.4[256] —— 314652Wi,, ., 00000 in PDg

13.4/25.6] «—— 314652W(,, ,0p  in PDg



Face numbers of PW

For the groups W = A, 1, By, D,, the number fy (k) of
(n — k)-faces of the Coxeterhedron PW is given by

fAn_1<k> - xn7k’

n—k
n »
Jo.(k) = ( <)‘”(nj,k) -2,
— \J

J
fou(k) = (2zpx =1 Tuorp-yy) 2"

n—k
n .
" ( ')x(”j,k) 2",
— Vi

]:

here ! if k=1
w re Tpp = e " .
* Zizlk—H ( )x(n—z‘,k—l) if 2 <k <n.

)



g-polynomials for face numbers of PW

For the groups W = A, 1, By, D,, the number fy (k) of
(n — k)-faces of the Coxeterhedron PW is given by

fAn—1<k; q) = X(n7 ka q)7

fo (ki) — m Xn—jikig) T (1+d).
j=o LJ1g i=j+1
fo.(kiq) = (2X(n,k;q) — m X(n—l,k—l;Q))H(Hqi)
n—=k n ! n—1 A =
+3 |7 X - s [Ta+a),
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Poincaré polynomials

For a subset W' C W, let W'(q) be the Poincaré polynomial
of W', which is defined by
W(q):= Y 4",
wew’

where /() is the length function of W.
The cardinality and Poincaré polynomial of W are given by

E S|

W =TJte:+1), Wig)=]]le: + 1l

i=1 i=1

where ¢; are the exponents of W.

P €1,...,6n

A, 1,2,3,...,n

B, 1,3,5,...,2n—1

D, 1,3,5,...,2n—3,n—1
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The number of cosets for parabolic subgroups

For any parabolic subgroup W; and J C 5,
e the diagram for (W}, J) is obtained from the diagram for
(W, S) by removing all nodes in S\ J,

e |W;| and W;(q) can be expressed in terms exponents as
a product derived from the connected components of the
diagram for W,

o W= [WI[/[W;| and W(q) = W(q)/Wi(q)-



The CSP for faces of Coxeterhedron

Theorem (Reiner-Stanton-White 2004)

For a Coxeter system (W, S) and J C S, let C' be a cyclic
group generated by a regular element. Let X be the set of
cosets W/W;, and X (q) := W’(q). Then the triple
(X, X(q),C) exhibits the cyclic sieving phenomenon.
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Remarks

We prove a special case of Theorem [RSW] with the following
restrictions.

e The cyclic group we considered is generated by a Coxeter
element, while Theorem [RSW] holds for the cyclic group
generated by a regular element.

e The CSP that we show is collectively on the set of all
cosets Ucs,|jj=n—kW/W, while Theorem [RSW] shows
a refinement of such phenomenon that holds individually
for each W; on the cosets W/W.

e The polynomial fy (k;q) that we use is exactly the sum
of the Poincaré polynomials W7 (q) for all J C S and
|J| = n — k, while in Theorem [RSW] a single polynomial
W7(q) is used.



