A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of Coxeterhedra

Tung-Shan Fu

Pingtung Institute of Commerce

Based on joint work with S.-P. Eu and Y.-J. Pan

Cyclic sieving phenomenon

- X : a finite set
- $X(q)$: a polynomial in $\mathbb{Z}[q](X(1)=|X|)$
- C : a finite cyclic group acting on X

Cyclic sieving phenomenon

- X : a finite set
- $X(q)$: a polynomial in $\mathbb{Z}[q](X(1)=|X|)$
- C : a finite cyclic group acting on X

If $c \in C$, we let

$$
X^{c}=\{x \in X: c(x)=x\} \text { and } o(c)=\text { order of } c \text { in } C .
$$

Cyclic sieving phenomenon

- X : a finite set
- $X(q)$: a polynomial in $\mathbb{Z}[q](X(1)=|X|)$
- C : a finite cyclic group acting on X

If $c \in C$, we let

$$
X^{c}=\{x \in X: c(x)=x\} \text { and } o(c)=\text { order of } c \text { in } C
$$

We also let ω_{d} be the primitive d th root of unity.

Cyclic sieving phenomenon

- X : a finite set
- $X(q)$: a polynomial in $\mathbb{Z}[q](X(1)=|X|)$
- C : a finite cyclic group acting on X

If $c \in C$, we let

$$
X^{c}=\{x \in X: c(x)=x\} \text { and } o(c)=\text { order of } c \text { in } C .
$$

We also let ω_{d} be the primitive d th root of unity.
Definition (Reiner-Stanton-White 2004)
The triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon (CSP) if, for every $c \in C$, we have

$$
\left|X^{c}\right|=X\left(\omega_{o(c)}\right)
$$

Cyclic sieving phenomenon

- X : a finite set
- $X(q)$: a polynomial in $\mathbb{Z}[q](X(1)=|X|)$
- C : a finite cyclic group acting on X

If $c \in C$, we let

$$
X^{c}=\{x \in X: c(x)=x\} \text { and } o(c)=\text { order of } c \text { in } C .
$$

We also let ω_{d} be the primitive d th root of unity.
Definition (Reiner-Stanton-White 2004)
The triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon (CSP) if, for every $c \in C$, we have

$$
\left|X^{c}\right|=X\left(\omega_{o(c)}\right) .
$$

Note. The case $|C|=2$ was first studied by Stembridge and called the " $q=-1$ phenomenon".

Example

Let $[n]=\{1, \ldots, n\}$ and

$$
X=\binom{[n]}{k}=\{T \subseteq[n]:|T|=k\}
$$

Example

Let $[n]=\{1, \ldots, n\}$ and

$$
X=\binom{[n]}{k}=\{T \subseteq[n]:|T|=k\}
$$

Let $C=\langle(1, \ldots, n)\rangle$. Now $c \in C$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
c(T)=\left\{c\left(t_{1}\right), \ldots, c\left(t_{k}\right)\right\} .
$$

Example

Let $[n]=\{1, \ldots, n\}$ and

$$
X=\binom{[n]}{k}=\{T \subseteq[n]:|T|=k\}
$$

Let $C=\langle(1, \ldots, n)\rangle$. Now $c \in C$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
c(T)=\left\{c\left(t_{1}\right), \ldots, c\left(t_{k}\right)\right\} .
$$

For example, consider $n=4$ and $k=2$. We have

$$
\begin{aligned}
X & =\{12,13,14,23,24,34\} \\
C & =\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\}
\end{aligned}
$$

Example

Let $[n]=\{1, \ldots, n\}$ and

$$
X=\binom{[n]}{k}=\{T \subseteq[n]:|T|=k\}
$$

Let $C=\langle(1, \ldots, n)\rangle$. Now $c \in C$ acts on $T=\left\{t_{1}, \ldots, t_{k}\right\}$ by

$$
c(T)=\left\{c\left(t_{1}\right), \ldots, c\left(t_{k}\right)\right\} .
$$

For example, consider $n=4$ and $k=2$. We have

$$
\begin{aligned}
X & =\{12,13,14,23,24,34\} \\
C & =\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2)\}
\end{aligned}
$$

For $c=(1,3)(2,4)$, we have

$$
\begin{array}{lll}
c(12)=34, & c(13)=13, & c(14)=23 \\
c(34)=12, & c(24)=24, & c(23)=14
\end{array}
$$

A q-polynomial for $X(q)$
Let $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.

A q-polynomial for $X(q)$

Let $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$. Define the Gaussian coefficients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}[n-k]_{q}}
$$

A q-polynomial for $X(q)$

Let $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$. Define the Gaussian coefficients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}[n-k]_{q}}
$$

For example, take $n=4$ and $k=2$. We have

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
$$

A q-polynomial for $X(q)$

Let $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$. Define the Gaussian coefficients by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}[n-k]_{q}}
$$

For example, take $n=4$ and $k=2$. We have

$$
\begin{gathered}
{\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4} .} \\
\omega=1 \Rightarrow\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q=1}=1+1+2+1+1=6 \\
\text { Then } \omega=-1 \Rightarrow\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q=-1}=1-1+2-1+1=2 \\
\omega=-i
\end{gathered} \quad \Rightarrow\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q=-i}=1-i-2+i+1=0 .
$$

An instance of CSP

Theorem (Reiner-Stanton-White)
The following triple exhibits the CSP

$$
\left(\binom{[n]}{k},\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}, C\right),
$$

where $C=\langle(1, \ldots, n)\rangle$.

An equivalent condition for CSP

If $X(q)$ is expanded as

$$
X(q) \equiv a_{0}+a_{1} q+\cdots+a_{n-1} q^{n-1} \quad\left(\bmod q^{n}-1\right)
$$

where $n=|C|$, then a_{k} counts the number of orbits whose stabilizer-order divides k.

An equivalent condition for CSP

If $X(q)$ is expanded as

$$
X(q) \equiv a_{0}+a_{1} q+\cdots+a_{n-1} q^{n-1} \quad\left(\bmod q^{n}-1\right)
$$

where $n=|C|$, then a_{k} counts the number of orbits whose stabilizer-order divides k.

In particular,

- a_{0} is the total number of orbits.
- a_{1} the number of free orbits (i.e., of size n).
- $a_{2}-a_{1}$ is the number of orbits of size $\frac{n}{2}$.

Permutation polytopes

The permutohedron PA_{n-1} of dimension $n-1$ is the the convex hull of all permutations of the vector $(1, \ldots, n) \in \mathbb{R}^{n}$.

Permutation polytopes

The permutohedron PA_{n-1} of dimension $n-1$ is the the convex hull of all permutations of the vector $(1, \ldots, n) \in \mathbb{R}^{n}$.

Figure: The permutohedron PA_{2}

An instance of CSP

- X : vertex set of PA_{2}
- $X(q)=[3]_{q}!\equiv 2 q^{2}+2 q+2\left(\bmod q^{3}-1\right)$
- $C=\mathbb{Z} / 3 \mathbb{Z}$ acts on X by rotating the coordinates

Then $(X, X(q), C)$ exhibits the CSP.

An instance of CSP

- X : vertex set of PA_{2}
- $X(q)=[3]_{q}!\equiv 2 q^{2}+2 q+2\left(\bmod q^{3}-1\right)$
- $C=\mathbb{Z} / 3 \mathbb{Z}$ acts on X by rotating the coordinates

Then $(X, X(q), C)$ exhibits the CSP.

- X : edge set of PA_{2}
- $X(q)=\left[\begin{array}{l}3 \\ 1\end{array}\right]_{q}+\left[\begin{array}{l}3 \\ 2\end{array}\right]_{q} \equiv 2 q^{2}+2 q+2\left(\bmod q^{3}-1\right)$
- $C=\mathbb{Z} / 3 \mathbb{Z}$ acts on X by rotating the coordinates

Then $(X, X(q), C)$ exhibits the CSP.

The permutohedron PA_{3}

The permutohedron PA_{3}

- Vertex $\left(\sigma^{-1}(1), \ldots, \sigma^{-1}(n)\right) \in \mathbb{R}^{n}$ is labeled by $\sigma \in \mathfrak{S}_{n}$.
- Two vertices are adjacent iff the corresponding permutations differ by an adjacent transposition.

Description for faces of PA_{n-1}

Theorem (Billera-Sarangarajan 1996)
The face lattice of the permutohedron $P A_{n-1}$ is isomorphic to the lattice of all ordered partitions of the set $\{1, \ldots, n\}$, ordered by refinement.

Description for faces of PA_{n-1}

Theorem (Billera-Sarangarajan 1996)
The face lattice of the permutohedron $P A_{n-1}$ is isomorphic to the lattice of all ordered partitions of the set $\{1, \ldots, n\}$, ordered by refinement.

Face numbers
For $2 \leq k \leq n$, the number of $(n-k)$-faces in PA_{n-1} is given by

$$
k!\cdot S_{n, k}
$$

where $S_{n, k}$ is the Stirling number of the second kind.

The facets of PA_{n-1}

The facets of PA_{n-1}

facet-orbits: | 1.234 | 12.34 | 13.24 | 123.4 |
| :--- | :--- | :--- | :--- |
| 2.134 | 23.14 | 24.13 | 234.1 |
| 3.124 | 34.12 | | 134.2 |
| 4.123 | 14.23 | | 124.3 |

Face numbers of PA_{n-1}

Let $x_{n, k}=k!S_{n, k}$. Then $x_{n, k}$ satisfies the following recurrence relation

$$
x_{n, k}= \begin{cases}1 & \text { if } k=1 \\ \sum_{i=1}^{n-k+1}\binom{n}{i} x_{(n-i, k-1)} & \text { if } 2 \leq k \leq n\end{cases}
$$

Face numbers of PA_{n-1}

Let $x_{n, k}=k!S_{n, k}$. Then $x_{n, k}$ satisfies the following recurrence relation

$$
x_{n, k}= \begin{cases}1 & \text { if } k=1 \\ \sum_{i=1}^{n-k+1}\binom{n}{i} x_{(n-i, k-1)} & \text { if } 2 \leq k \leq n\end{cases}
$$

For example,

$$
\begin{aligned}
& x_{n, 2}=\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}, \\
& x_{n, 3}=\binom{n}{1} x_{n-1,2}+\binom{n}{2} x_{n-2,2}+\cdots+\binom{n}{n-2} x_{2,2} .
\end{aligned}
$$

Face numbers of PA_{n-1}

Let $x_{n, k}=k!S_{n, k}$. Then $x_{n, k}$ satisfies the following recurrence relation

$$
x_{n, k}= \begin{cases}1 & \text { if } k=1 \\ \sum_{i=1}^{n-k+1}\binom{n}{i} x_{(n-i, k-1)} & \text { if } 2 \leq k \leq n\end{cases}
$$

For example,

$$
\begin{aligned}
x_{n, 2} & =\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}, \\
x_{n, 3} & =\binom{n}{1} x_{n-1,2}+\binom{n}{2} x_{n-2,2}+\cdots+\binom{n}{n-2} x_{2,2} .
\end{aligned}
$$

Note that $x_{n, 2}$ is number of facets of PA_{n-1}.

A feasible q-polynomial for face numbers

Let $X(n, k ; q) \in \mathbb{Z}[q]$ be the polynomial recursively defined by

$$
X(n, k ; q)= \begin{cases}1 & \text { if } k=1 \\
\sum_{i=1}^{n-k+1}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} X(n-i, k-1 ; q) & \text { if } 2 \leq k \leq n\end{cases}
$$

A feasible q-polynomial for face numbers

Let $X(n, k ; q) \in \mathbb{Z}[q]$ be the polynomial recursively defined by
$X(n, k ; q)= \begin{cases}1 & \text { if } k=1 \\ \sum_{i=1}^{n-k+1}\left[\begin{array}{c}n \\ i\end{array}\right]_{q} X(n-i, k-1 ; q) & \text { if } 2 \leq k \leq n .\end{cases}$

For example, take $n=4$ and $k=2$,

$$
\begin{aligned}
X(4,2 ; q) & =\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{q}+\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}+\left[\begin{array}{l}
4 \\
3
\end{array}\right]_{q} \\
& \equiv 4+3 q+4 q^{2}+3 q^{3}\left(\bmod q^{4}-1\right)
\end{aligned}
$$

q-Lucas Theorem

Theorem (q-Lucas Theorem)
Let ω be a primitive dth root of unity. If $n=a d+b$ and $k=r d+s$, where $0 \leq b, s \leq q-1$, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\omega}=\binom{a}{r}\left[\begin{array}{l}
b \\
s
\end{array}\right]_{q=\omega} .
$$

q-Lucas Theorem

Theorem (q-Lucas Theorem)
Let ω be a primitive dth root of unity. If $n=a d+b$ and $k=r d+s$, where $0 \leq b, s \leq q-1$, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\omega}=\binom{a}{r}\left[\begin{array}{l}
b \\
s
\end{array}\right]_{q=\omega} .
$$

If $d \geq 2$ is a divisor of n, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\omega}= \begin{cases}\binom{\frac{n}{d}}{\frac{k}{d}} & d \mid k \\
0 & \text { otherwise }\end{cases}
$$

q-Lucas Theorem

Theorem (q-Lucas Theorem)
Let ω be a primitive dth root of unity. If $n=a d+b$ and $k=r d+s$, where $0 \leq b, s \leq q-1$, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\omega}=\binom{a}{r}\left[\begin{array}{l}
b \\
s
\end{array}\right]_{q=\omega} .
$$

If $d \geq 2$ is a divisor of n, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\omega}= \begin{cases}\binom{\frac{n}{d}}{\frac{k}{d}} & d \mid k \\
0 & \text { otherwise }\end{cases}
$$

e.g., for $n=4$ and $d=2$, then $\omega=-1$ and $\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q=-1}=\binom{2}{1}$.

The CSP for faces of PA_{n-1}

Proposition

For $d \geq 2$ a divisor of n, let ω be a primitive d th root of unity. Then

$$
[X(n, k ; q)]_{q=\omega}= \begin{cases}x_{\left(\frac{n}{d}, k\right)} & \text { if } n \geq k d \\ 0 & \text { otherwise. }\end{cases}
$$

The CSP for faces of PA_{n-1}

Proposition

For $d \geq 2$ a divisor of n, let C_{d} be the subgroup of order d of C, and let $X_{n, k, d}$ be the set of $(n-k)$-faces of $P A_{n-1}$ that are invariant under C_{d}. Then

$$
\left|X_{n, k, d}\right|= \begin{cases}x_{\left(\frac{n}{d}, k\right)} & \text { if } n \geq k d \\ 0 & \text { otherwise } .\end{cases}
$$

The CSP for faces of PA_{n-1}

Proposition

For $d \geq 2$ a divisor of n, let C_{d} be the subgroup of order d of C, and let $X_{n, k, d}$ be the set of $(n-k)$-faces of $P A_{n-1}$ that are invariant under C_{d}. Then

$$
\left|X_{n, k, d}\right|= \begin{cases}x_{\left(\frac{n}{d}, k\right)} & \text { if } n \geq k d \\ 0 & \text { otherwise } .\end{cases}
$$

Count the number of k-block ordered partitions of $[n]$ that are invariant under

$$
\begin{aligned}
C_{d}= & \left\langle\left(1, \frac{n}{d}+1, \ldots, \frac{n}{d}(d-1)+1\right)\right. \\
& \left.\left(2, \frac{n}{d}+2, \ldots, \frac{n}{d}(d-1)+2\right) \cdots\left(\frac{n}{d}, \frac{2 n}{d}, \ldots, n\right)\right\rangle .
\end{aligned}
$$

Algebraic Background: Coxeter system (W, S)
$W=A_{n-1}$, the Coxeter group of type \mathbf{A}

- Group $A_{n-1}=\mathfrak{S}_{n}$, the symmetric group on the set $[n]$

Algebraic Background: Coxeter system (W, S)

$W=A_{n-1}$, the Coxeter group of type \mathbf{A}

- Group $A_{n-1}=\mathfrak{S}_{n}$, the symmetric group on the set $[n]$
- The Coxeter generators $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ of A_{n-1} consists of adjacent transpositions

$$
s_{i}=(i, i+1)
$$

Algebraic Background: Coxeter system (W, S)

$W=A_{n-1}$, the Coxeter group of type \mathbf{A}

- Group $A_{n-1}=\mathfrak{S}_{n}$, the symmetric group on the set $[n]$
- The Coxeter generators $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ of A_{n-1} consists of adjacent transpositions

$$
s_{i}=(i, i+1)
$$

- The diagram

Algebraic Background: Coxeter system (W, S)

 $W=A_{n-1}$, the Coxeter group of type \mathbf{A}- Group $A_{n-1}=\mathfrak{S}_{n}$, the symmetric group on the set $[n]$
- The Coxeter generators $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ of A_{n-1} consists of adjacent transpositions

$$
s_{i}=(i, i+1)
$$

- The diagram

- The Coxeter element $c=s_{1} s_{2} \cdots s_{n-1}=(1,2, \ldots, n) \in \mathfrak{S}_{n}$ generates a cyclic group of order n.

Example: permutohedron A_{3}

- $W=\mathfrak{S}_{4}$.
- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, i.e., $s_{1}=(1,2), s_{2}=(2,3), s_{3}=(3,4)$.

Example: permutohedron A_{3}

- $W=\mathfrak{S}_{4}$.
- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, i.e., $s_{1}=(1,2), s_{2}=(2,3), s_{3}=(3,4)$.

Example: permutohedron A_{3}

- $W=\mathfrak{S}_{4}$.
- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, i.e., $s_{1}=(1,2), s_{2}=(2,3), s_{3}=(3,4)$.

$J \subseteq S$	$\left\{s_{2}, s_{3}\right\}$	$\left\{s_{1}, s_{3}\right\}$	$\left\{s_{1}, s_{2}\right\}$
	1234,1342	1234	1234,2314
W_{J}	1243,1423	2134	1324,3124
	1324,1432	2143	2134,3214
		1243	

Example: permutohedron A_{3}

- $W=\mathfrak{S}_{4}$.
- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, i.e., $s_{1}=(1,2), s_{2}=(2,3), s_{3}=(3,4)$.

$J \subseteq S$	$\left\{s_{2}, s_{3}\right\}$	$\left\{s_{1}, s_{3}\right\}$	$\left\{s_{1}, s_{2}\right\}$
	1234,1342	1234	1234,2314
W_{J}	1243,1423	2134	1324,3124
	1324,1432	2143	2134,3214
		1243	
	$\mathbf{1 . 2 3 4}$	$\mathbf{1 2 . 3 4}$	$\mathbf{1 2 3 . 4}$

Example: permutohedron A_{3}

- $W=\mathfrak{S}_{4}$.
- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, i.e., $s_{1}=(1,2), s_{2}=(2,3), s_{3}=(3,4)$.

$J \subseteq S$	$\left\{s_{2}, s_{3}\right\}$	$\left\{s_{1}, s_{3}\right\}$	$\left\{s_{1}, s_{2}\right\}$
	1234,1342	1234	1234,2314
W_{J}	1243,1423	2134	1324,3124
	1324,1432	2143	2134,3214
		1243	
	1.234	12.34	123.4
	2.134	13.24	234.1
$w W_{J}$	3.124	14.23	134.2
(cosets)	4.134	$\mathbf{2 3 . 1 4}$	$\mathbf{1 2 4 . 3}$
		24.13	
		34.12	

Coxeterhedron

For a Coxeter system (W, S), the subgroups W_{J} generated by subsets $J \subseteq S$ are called parabolic subgroups of W.

Coxeterhedron

For a Coxeter system (W, S), the subgroups W_{J} generated by subsets $J \subseteq S$ are called parabolic subgroups of W.

The Coxeterhedron PW associated to (W, S) is the finite poset of all cosets $\left\{w W_{J}\right\}_{w \in W, J \subseteq S}$ of all parabolic subgroups of W, ordered by inclusion.

$W=B_{n}$, the Coxeter group of type B

- The group B_{n} is the group of all signed permutations w on the set $\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ for $1 \leq i \leq n$.

$W=B_{n}$, the Coxeter group of type B

- The group B_{n} is the group of all signed permutations w on the set $\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ for $1 \leq i \leq n$.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of B_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n)
\end{array}\right.
$$

$W=B_{n}$, the Coxeter group of type B

- The group B_{n} is the group of all signed permutations w on the set $\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ for $1 \leq i \leq n$.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of B_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n)
\end{array}\right.
$$

- The diagram

$W=B_{n}$, the Coxeter group of type B

- The group B_{n} is the group of all signed permutations w on the set $\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ for $1 \leq i \leq n$.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of B_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n)
\end{array}\right.
$$

- The diagram

- The Coxeter element
$c=s_{1} \cdots s_{n}=(1,2, \ldots, n,-1,-2, \ldots,-n)$ generates a cyclic group of order $2 n$.

Notation for signed permutations

Given $w \in B_{n}$, let $w=w_{1} w_{2} \cdots w_{n}$, where

$$
w_{i}= \begin{cases}j & \text { if } w_{i}=+j \\ \bar{j} & \text { if } w_{i}=-j\end{cases}
$$

Notation for signed permutations

Given $w \in B_{n}$, let $w=w_{1} w_{2} \cdots w_{n}$, where

$$
w_{i}= \begin{cases}j & \text { if } w_{i}=+j \\ \bar{j} & \text { if } w_{i}=-j\end{cases}
$$

For example,

$$
\begin{array}{lllll}
B_{2} \text { consists of } & \begin{array}{lll}
12, & \overline{1} 2, & 1 \overline{2}, \\
21, & \overline{2} 1, & 2 \overline{12}, \\
\hline 21
\end{array}
\end{array}
$$

The coxeterhedron PB_{2}

The coxeterhedron PB_{2}

Under the cyclic group action generated by $c=(1,2,-1,-2)$, there are 2 free vertex-orbits and 2 free edge-orbits.

$W=D_{n}$, the Coxeter group of type D

- The group D_{n} is the subgroup of B_{n} consisting of all signed permutations with an even number of sign changes.

$W=D_{n}$, the Coxeter group of type D

- The group D_{n} is the subgroup of B_{n} consisting of all signed permutations with an even number of sign changes.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of D_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n+1)(n-1,-n)
\end{array}\right.
$$

$W=D_{n}$, the Coxeter group of type D

- The group D_{n} is the subgroup of B_{n} consisting of all signed permutations with an even number of sign changes.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of D_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n+1)(n-1,-n)
\end{array}\right.
$$

- The diagram

$W=D_{n}$, the Coxeter group of type D

- The group D_{n} is the subgroup of B_{n} consisting of all signed permutations with an even number of sign changes.
- The Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$ of D_{n} are defined by

$$
\left\{\begin{array}{l}
s_{i}=(i, i+1)(-i,-i-1), \quad 1 \leq i \leq n-1 \\
s_{n}=(n,-n+1)(n-1,-n)
\end{array}\right.
$$

- The diagram

- The Coxeter element $c=s_{1} \cdots s_{n}=$ $(1,2, \ldots, n-1,-1,-2, \ldots,-n+1)(n,-n)$ generates a cyclic group of order $2 n-2$.

Reiner-Ziegler's representation for faces of PW

Representing the faces $w W_{J}$ of PW by boxed ordered partitions:

$13.4 \cdot 256$	\longleftrightarrow	$314652 W_{\left\{s_{1}, s_{4}, s_{5}\right\}}$	in PA_{5}
$1 \overline{3} \cdot 4 \cdot \overline{2} 5 \overline{6}$	\longleftrightarrow	$\overline{3} 14 \overline{6} 5 \overline{2} W_{\left\{s_{1}, s_{4}, s_{5}\right\}}$	in PB_{6}
$1 \overline{3} \cdot 4 \cdot .256$	\longleftrightarrow	$\overline{3} 14 \overline{6} 5 \overline{2} W_{\left\{s_{1}, s_{4}, s_{5}, s_{6}\right\}}$	in PB_{6}
$1 \overline{3} \cdot 4 . \overline{256}$	\longleftrightarrow	$\overline{3} 14 \overline{652} W_{\left\{s_{1}, s_{4}, s_{5}\right\}}$	in PD_{6}
$1 \overline{3} \cdot 4 . \overline{25 \overline{6}}$	\longleftrightarrow	$\overline{3} 14 \overline{652} W_{\left\{s_{1}, s_{4}, s_{5}, s_{6}\right\}}$	in PD_{6}
$1 \overline{3} \cdot 4 \cdot . \overline{2 \overline{5} .6}$	\longleftrightarrow	$\overline{3} 14 \overline{652} W_{\left\{s_{1}, s_{4}, s_{6}\right\}}$	in PD_{6}

Face numbers of PW

For the groups $W=A_{n-1}, B_{n}, D_{n}$, the number $f_{W}(k)$ of $(n-k)$-faces of the Coxeterhedron PW is given by

$$
\begin{aligned}
f_{A_{n-1}}(k)= & x_{n, k} \\
f_{B_{n}}(k)= & \sum_{j=0}^{n-k}\binom{n}{j} x_{(n-j, k)} \cdot 2^{n-j}, \\
f_{D_{n}}(k)= & \left(2 x_{n, k}-n \cdot x_{(n-1, k-1)}\right) \cdot 2^{n-1} \\
& \quad+\sum_{j=2}^{n-k}\binom{n}{j} x_{(n-j, k)} \cdot 2^{n-j},
\end{aligned}
$$

where $x_{n, k}= \begin{cases}1 & \text { if } k=1 \\ \sum_{i=1}^{n-k+1}\binom{n}{i} x_{(n-i, k-1)} & \text { if } 2 \leq k \leq n .\end{cases}$

q-polynomials for face numbers of PW

For the groups $W=A_{n-1}, B_{n}, D_{n}$, the number $f_{W}(k)$ of ($n-k$)-faces of the Coxeterhedron PW is given by

$$
\begin{aligned}
f_{A_{n-1}}(k ; q)= & X(n, k ; q), \\
f_{B_{n}}(k ; q)= & \sum_{j=0}^{n-k}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} X(n-j, k ; q) \prod_{i=j+1}^{n}\left(1+q^{i}\right), \\
f_{D_{n}}(k ; q)= & \left(2 X(n, k ; q)-\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} X(n-1, k-1 ; q)\right) \prod_{i=1}^{n-1}\left(1+q^{i}\right) \\
& +\sum_{j=2}^{n-k}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} X(n-j, k ; q) \prod_{i=j}^{n-1}\left(1+q^{i}\right) .
\end{aligned}
$$

Poincaré polynomials

For a subset $W^{\prime} \subseteq W$, let $W^{\prime}(q)$ be the Poincaré polynomial of W^{\prime}, which is defined by

$$
W^{\prime}(q):=\sum_{w \in W^{\prime}} q^{\ell(w)}
$$

where $\ell(\cdot)$ is the length function of W.

Poincaré polynomials

For a subset $W^{\prime} \subseteq W$, let $W^{\prime}(q)$ be the Poincaré polynomial of W^{\prime}, which is defined by

$$
W^{\prime}(q):=\sum_{w \in W^{\prime}} q^{\ell(w)}
$$

where $\ell(\cdot)$ is the length function of W.
The cardinality and Poincaré polynomial of W are given by

$$
|W|=\prod_{i=1}^{|S|}\left(e_{i}+1\right), \quad W(q)=\prod_{i=1}^{|S|}\left[e_{i}+1\right]_{q}
$$

where e_{i} are the exponents of W.

Poincaré polynomials

For a subset $W^{\prime} \subseteq W$, let $W^{\prime}(q)$ be the Poincaré polynomial of W^{\prime}, which is defined by

$$
W^{\prime}(q):=\sum_{w \in W^{\prime}} q^{\ell(w)}
$$

where $\ell(\cdot)$ is the length function of W.
The cardinality and Poincaré polynomial of W are given by

$$
|W|=\prod_{i=1}^{|S|}\left(e_{i}+1\right), \quad W(q)=\prod_{i=1}^{|S|}\left[e_{i}+1\right]_{q}
$$

where e_{i} are the exponents of W.

Φ	e_{1}, \ldots, e_{n}
A_{n}	$1,2,3, \ldots, n$
B_{n}	$1,3,5, \ldots, 2 n-1$
D_{n}	$1,3,5, \ldots, 2 n-3, n-1$

The number of cosets for parabolic subgroups

For any parabolic subgroup W_{J} and $J \subseteq S$,

- the diagram for $\left(W_{J}, J\right)$ is obtained from the diagram for (W, S) by removing all nodes in $S \backslash J$,

The number of cosets for parabolic subgroups

For any parabolic subgroup W_{J} and $J \subseteq S$,

- the diagram for $\left(W_{J}, J\right)$ is obtained from the diagram for (W, S) by removing all nodes in $S \backslash J$,
- $\left|W_{J}\right|$ and $W_{J}(q)$ can be expressed in terms exponents as a product derived from the connected components of the diagram for W_{J},

The number of cosets for parabolic subgroups

For any parabolic subgroup W_{J} and $J \subseteq S$,

- the diagram for $\left(W_{J}, J\right)$ is obtained from the diagram for (W, S) by removing all nodes in $S \backslash J$,
- $\left|W_{J}\right|$ and $W_{J}(q)$ can be expressed in terms exponents as a product derived from the connected components of the diagram for W_{J},
- $\left|W^{J}\right|=|W| /\left|W_{J}\right|$ and $W^{J}(q)=W(q) / W_{J}(q)$.

The CSP for faces of Coxeterhedron

Theorem (Reiner-Stanton-White 2004)
For a Coxeter system (W, S) and $J \subseteq S$, let C be a cyclic group generated by a regular element. Let X be the set of cosets W / W_{J}, and $X(q):=W^{J}(q)$. Then the triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon.

Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

- The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.

Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

- The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.
- The CSP that we show is collectively on the set of all cosets $\cup_{J \subseteq S,|J|=n-k} W / W_{J}$, while Theorem [RSW] shows a refinement of such phenomenon that holds individually for each W_{J} on the cosets W / W_{J}.

Remarks

We prove a special case of Theorem [RSW] with the following restrictions.

- The cyclic group we considered is generated by a Coxeter element, while Theorem [RSW] holds for the cyclic group generated by a regular element.
- The CSP that we show is collectively on the set of all cosets $\cup_{J \subseteq S,|J|=n-k} W / W_{J}$, while Theorem [RSW] shows a refinement of such phenomenon that holds individually for each W_{J} on the cosets W / W_{J}.
- The polynomial $f_{W}(k ; q)$ that we use is exactly the sum of the Poincaré polynomials $W^{J}(q)$ for all $J \subseteq S$ and $|J|=n-k$, while in Theorem [RSW] a single polynomial $W^{J}(q)$ is used.

