Partial Orders and Equivalence Relations

Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University

Definition

A relation R

Definition

A relation R on a set X

Definition

A relation R on a set X is a subset of $X \times X$.

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X.

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X. Then R' is an extension of R if

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X. Then R' is an extension of R if $R \subseteq R'$.

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X. Then R' is an extension of R if $R \subseteq R'$.

Example

For $X = \{1, 2, 3\}$,

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X. Then R' is an extension of R if $R \subseteq R'$.

Example

For $X = \{1, 2, 3\}$, the relation $R' = \{(1, 2), (1, 3), (2, 3)\}$ is an extension of

Definition

A relation R on a set X is a subset of $X \times X$. Sometimes we write xRy for $(x,y) \in R$.

Definition

Let R, R' be relations on X. Then R' is an extension of R if $R \subseteq R'$.

Example

For $X = \{1, 2, 3\}$, the relation $R' = \{(1, 2), (1, 3), (2, 3)\}$ is an extension of $R = \{(1, 2), (1, 3)\}$.

Definition

A relation R on a set X is a partial order (偏序)

Definition

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

(i) (reflexive)

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

(i) (reflexive) xRx. (反身性)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and yRz ⇒ xRz. (遞移性)

If R is a partial order on X, we call (X, R)

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and yRz ⇒ xRz. (遞移性)

If R is a partial order on X, we call (X, R) (or simply call X)

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and yRz ⇒ xRz. (遞移性)

If R is a partial order on X, we call (X, R) (or simply call X) a

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

If R is a partial order on X, we call (X,R) (or simply call X) a partially ordered set or

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

If R is a partial order on X, we call (X,R) (or simply call X) a partially ordered set or poset

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

If R is a partial order on X, we call (X, R) (or simply call X) a partially ordered set or poset (偏序集).

Definition

A relation R on a set X is a partial order (偏序) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (antisymmetric) xRy and $yRx \Rightarrow x = y$. (反對稱性)
- (iii) (transitive) xRy and yRz ⇒ xRz. (遞移性)

If R is a partial order on X, we call (X,R) (or simply call X) a partially ordered set or poset (偏序集). In this case we usually write $x \leq y$ for xRy.

We use diagrams to denote finite posets.

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R =$$

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R = \{(1,2), (1,3), (1,4), (2,5), (3,5), (4,6), (5,6), (4,6), (5,6), (4,6), (5,6), (4,6), (5$$

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R = \{(1,2), (1,3), (1,4), (2,5), (3,5), (4,6), (5,6), (1,5), (1$$

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R = \{(1,2), (1,3), (1,4), (2,5), (3,5), (4,6), (5,6), (1,5), (1,6), (2,6), (3,6), (3,6), (4$$

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R = \{(1,2), (1,3), (1,4), (2,5), (3,5), (4,6), (5,6), (1,5), (1,6), (2,6), (3,6), (1,1), (1,1), (1,2,6), (1,2$$

We use diagrams to denote finite posets. For example if $X = \{1, 2, 3, 4, 5\}$, the following diagram:

$$R = \{(1,2), (1,3), (1,4), (2,5), (3,5), (4,6), (5,6), (1,5), (1,6), (2,6), (3,6), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}.$$

Chain

Definition

A relation R on a set X is a linear order (全序)

Chain

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx.

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx. If R is a linear order on X, we call (X, R) a

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx. If R is a linear order on X, we call (X, R) a linearly ordered set or

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx. If R is a linear order on X, we call (X, R) a linearly ordered set or chain.

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx. If R is a linear order on X, we call (X, R) a linearly ordered set or chain.

A chain $\{1, 2, 3, 4\}$:

Definition

A relation R on a set X is a linear order (全序) if R is a partial order, and for all $x, y \in X$, xRy or yRx. If R is a linear order on X, we call (X, R) a linearly ordered set or chain.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

Proof.

1 Induction on |X|.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- **1** Induction on |X|.
- 2 This is clear for |X| = 1.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- **1** Induction on |X|.
- 2 This is clear for |X| = 1.
- 3 Pick $x \in X$ such that there is no $y \neq x$ with yRx.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- **1** Induction on |X|.
- 2 This is clear for |X| = 1.
- 3 Pick $x \in X$ such that there is no $y \neq x$ with yRx.
- By induction $X \{x\}$ can be extended to a chain.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- **1** Induction on |X|.
- 2 This is clear for |X| = 1.
- 3 Pick $x \in X$ such that there is no $y \neq x$ with yRx.
- By induction $X \{x\}$ can be extended to a chain.
- **5** Add (x, y) to R for each $y \in X$

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- Induction on |X|.
- 2 This is clear for |X| = 1.
- **3** Pick $x \in X$ such that there is no $y \neq x$ with yRx.
- By induction $X \{x\}$ can be extended to a chain.
- **3** Add (x, y) to R for each $y \in X$ to have a linear order.

Theorem

Any partial order R on a finite set X can be extended to a linear order on X.

- Induction on |X|.
- 2 This is clear for |X| = 1.
- **3** Pick $x \in X$ such that there is no $y \neq x$ with yRx.
- By induction $X \{x\}$ can be extended to a chain.
- **3** Add (x, y) to R for each $y \in X$ to have a linear order.

Definition

A relation R on a set X is a equivalence relation (等價關係)

Definition

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

(i) (reflexive)

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

(i) (reflexive) xRx. (反身性)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive)

Definition

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t whose union is X and

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t whose union is X and each pair of them nonempty subsets has no intersection.

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t whose union is X and each pair of them nonempty subsets has no intersection. (有時想把空集合加進去)

Definition

Let R be a relation on X.

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t whose union is X and each pair of them nonempty subsets has no intersection. (有時想把空集合加進去)

Definition

Let R be a relation on X. For $x \in X$, R(x) :=

Definition

A relation R on a set X is a equivalence relation (等價關係) if for all $x, y, z \in X$ the following (i)-(iii) hold.

- (i) (reflexive) xRx. (反身性)
- (ii) (symmetric) xRy ⇒ yRx. (對稱性)
- (iii) (transitive) xRy and $yRz \Rightarrow xRz$. (遞移性)

Definition

A partition (分割) on X is a class of nonempty subsets A_1, A_2, \ldots, A_t whose union is X and each pair of them nonempty subsets has no intersection. (有時想把空集合加進去)

Definition

Let R be a relation on X. For $x \in X$, $R(x) := \{y \in X \mid (x, y) \in R\}$.

Example

For $X = \mathbb{Z}$,

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}.$

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation,

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, R(0) =

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\}$

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\} = R(6)$,

Example

For $X = \mathbb{Z}$, define $R = \{(x, y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\} = R(6)$, R(1) =

Example

For $X = \mathbb{Z}$, define $R = \{(x,y) \mid y - x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\} = R(6)$, $R(1) = \{n \in \mathbb{Z} \mid n - 1 \text{ is a multiple of 6}\}$

Example

Example

For $X = \mathbb{Z}$, define $R = \{(x,y) \mid y-x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\} = R(6)$, $R(1) = \{n \in \mathbb{Z} \mid n-1 \text{ is a multiple of 6}\} = R(7), \ldots$,

Example

Example

For $X = \mathbb{Z}$, define $R = \{(x,y) \mid y-x \text{ is a multiple of 6}\}$. Then R is an equivalence relation, $R(0) = \{n \in \mathbb{Z} \mid n \text{ is a multiple of 6}\} = R(6)$, $R(1) = \{n \in \mathbb{Z} \mid n-1 \text{ is a multiple of 6}\} = R(7), \ldots$, and R(0), R(1), R(2), R(3), R(4), R(5) form a partition of \mathbb{Z} .

Theorem

(i) Let R be an equivalence relation on X.

Theorem

(i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X.

Theorem

(i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X.

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Then R is an equivalence relation.

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Then R is an equivalence relation.

(等價關係與分割是同一回事)

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Then R is an equivalence relation.

(等價關係與分割是同一回事)

Proof.

Routine.

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Then R is an equivalence relation.

(等價關係與分割是同一回事)

Proof.

Routine. (Hint. Try to show $y \in R(x) \Rightarrow R(x) = R(y)$ first.)

Theorem

- (i) Let R be an equivalence relation on X. Then $\{R(x) \mid x \in X\}$ is a partition of X. (Here R(x) is called an equivalence class 等價類).
- (ii) Let A_1, A_2, \ldots, A_t be a partition of X. Define a relation R on X by

$$R = \{(x, y) \mid \text{there exists } A_i \text{ such that } x, y \in A_i\}.$$

Then R is an equivalence relation.

(等價關係與分割是同一回事)

Proof.

Routine. (Hint. Try to show $y \in R(x) \Rightarrow R(x) = R(y)$ first.)

Remark

The equivalence relation and partition are two important concepts in the algebra course.

Homework

4.6: 45, 46, 48, 49.