Vertex-Transitive and Cayley Graphs

Mingyao Xu
Peking University

January 18, 2011

DEFINITIONS

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.
- Automorphisms

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G=\operatorname{Aut}(\Gamma)$.

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G=\operatorname{Aut}(\Gamma)$.
- Transitivity of graphs: vertex-, edge-, arc-transitive graphs.

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G=\operatorname{Aut}(\Gamma)$.
- Transitivity of graphs: vertex-, edge-, arc-transitive graphs.
- Cayley graphs: Let G be a finite group and S a subset of G not containing the identity element 1 . Assume $S^{-1}=S$. We define the Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ on G with respect to S by

$$
\begin{aligned}
V(\Gamma) & =G \\
E(\Gamma) & =\{(g, s g) \mid g \in G, s \in S\}
\end{aligned}
$$

DEFINITIONS

- Graphs $\Gamma=(V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G=\operatorname{Aut}(\Gamma)$.
- Transitivity of graphs: vertex-, edge-, arc-transitive graphs.
- Cayley graphs: Let G be a finite group and S a subset of G not containing the identity element 1. Assume $S^{-1}=S$. We define the Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ on G with respect to S by

$$
\begin{aligned}
V(\Gamma) & =G \\
E(\Gamma) & =\{(g, s g) \mid g \in G, s \in S\}
\end{aligned}
$$

Cayley graphs

Cayley graphs

Properties of Cayley graphs

- Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on G with respect to S.
(1) Aut(Γ) contains the right regular representation $R(G)$ of G, so
Γ is vertex-transitive.
(2) Γ is connected if and only if $G=\langle S\rangle$.

Properties of Cayley graphs

- Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on G with respect to S.
(1) Aut(Γ) contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive.
(2) Γ is connected if and only if $G=\langle S\rangle$.
- A graph $\Gamma=(V, E)$ is a Cayley graph of a group G if and only if Aut(Γ) contains a regular subgroup isomorphic to G. Above Proposition \Longrightarrow Cayley graphs are just those vertex-transitive graphs whose full automorphism groups have a regular subgroup.

Properties of Cayley graphs

- Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on G with respect to S.
(1) Aut(Γ) contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive. (2) Γ is connected if and only if $G=\langle S\rangle$.
- A graph $\Gamma=(V, E)$ is a Cayley graph of a group G if and only if $\operatorname{Aut}(\Gamma)$ contains a regular subgroup isomorphic to G. Above Proposition \Longrightarrow Cayley graphs are just those vertex-transitive graphs whose full automorphism groups have a regular subgroup.

Cayley graphs

The Petersen graph is not Cayley

- Outline of a proof:

If it is Cayley, then the group has order 10.
There are two non-isomorphic groups: cyclic and dihedral.
The girth of Cayley graphs on abelian groups are 3 or 4 . So $G=$ D_{10}.
$G=\left\langle a, b \mid a^{5}=b^{2}=1, b a b=a^{-1}\right\rangle$.
$S=\left\{a, a^{-1}, b\right\}$ or three involutions.
For the former, since $a b a b$ is a cyclic of size 4, this is not the case. For the latter, the product of any two involutions is 1 or of order 5 , a contradiction.

The Petersen graph is not Cayley

- Outline of a proof:

If it is Cayley, then the group has order 10.
There are two non-isomorphic groups: cyclic and dihedral.
The girth of Cayley graphs on abelian groups are 3 or 4 . So $G=$ D_{10}.
$G=\left\langle a, b \mid a^{5}=b^{2}=1, b a b=a^{-1}\right\rangle$.
$S=\left\{a, a^{-1}, b\right\}$ or three involutions.
For the former, since $a b a b$ is a cyclic of size 4, this is not the case. For the latter, the product of any two involutions is 1 or of order 5 , a contradiction.

- Note: For a positive integer n, if every transitive group has a regular subgroup then every vertex-transitive graph is Cayley.
(Example: $n=p$, a prime.)

The Petersen graph is not Cayley

- Outline of a proof:

If it is Cayley, then the group has order 10.
There are two non-isomorphic groups: cyclic and dihedral.
The girth of Cayley graphs on abelian groups are 3 or 4 . So $G=$ D_{10}.
$G=\left\langle a, b \mid a^{5}=b^{2}=1, b a b=a^{-1}\right\rangle$.
$S=\left\{a, a^{-1}, b\right\}$ or three involutions.
For the former, since $a b a b$ is a cyclic of size 4, this is not the case. For the latter, the product of any two involutions is 1 or of order 5 , a contradiction.

- Note: For a positive integer n, if every transitive group has a regular subgroup then every vertex-transitive graph is Cayley.
(Example: $n=p$, a prime.)

A Question

A Question

Let

$$
\begin{aligned}
\mathcal{N} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N C}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive graph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

Then $\mathcal{N} \mathcal{R} \supseteqq \mathcal{N C}$.

- Question: $\mathcal{N} \mathcal{R}=\mathcal{N C}$?

Let

$$
\begin{aligned}
\mathcal{N} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N C}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive graph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

Then $\mathcal{N} \mathcal{R} \supseteqq \mathcal{N C}$.

- Question: $\mathcal{N} \mathcal{R}=\mathcal{N C}$?
- Answer: $\mathcal{N} \mathcal{R} \supsetneqq \mathcal{N C}$. For example, $12 \notin \mathcal{N C}$, but $12 \in \mathcal{N} \mathcal{R}$ since M_{11}, acting on 12 points, has no regular subgroup.

Let

$$
\begin{aligned}
\mathcal{N} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N C}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive graph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

Then $\mathcal{N} \mathcal{R} \supseteqq \mathcal{N C}$.

- Question: $\mathcal{N} \mathcal{R}=\mathcal{N C}$?
- Answer: $\mathcal{N} \mathcal{R} \supsetneqq \mathcal{N C}$. For example, $12 \notin \mathcal{N C}$, but $12 \in \mathcal{N} \mathcal{R}$ since M_{11}, acting on 12 points, has no regular subgroup.
- Exercise: 6 is the smallest number in $\mathcal{N} \mathcal{R} \backslash \mathcal{N C}$ since A_{6} has no regular subgroups.

Let

$$
\begin{aligned}
\mathcal{N} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N C}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive graph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

Then $\mathcal{N} \mathcal{R} \supseteqq \mathcal{N C}$.

- Question: $\mathcal{N R}=\mathcal{N C}$?
- Answer: $\mathcal{N} \mathcal{R} \supsetneqq \mathcal{N C}$. For example, $12 \notin \mathcal{N C}$, but $12 \in \mathcal{N} \mathcal{R}$ since M_{11}, acting on 12 points, has no regular subgroup.
- Exercise: 6 is the smallest number in $\mathcal{N} \mathcal{R} \backslash \mathcal{N C}$ since A_{6} has no regular subgroups.

A Question

- (Marušič ıč) Any transitive group G of degree p^{2} on Ω has a regular subgroup, i.e., $p^{2} \notin \mathcal{N} \mathcal{R}$.
- (Marušič ıč) Any transitive group G of degree p^{2} on Ω has a regular subgroup, i.e., $p^{2} \notin \mathcal{N} \mathcal{R}$.
- Outline of a proof: Take a minimal transitive subgroup P of G. Then P is a p-group and every maximal subgroup M of P is intransitive. For any $\alpha \in \Omega$, we have $\left|P_{\alpha}\right|=|P| / p^{2}$ and $\left|M_{\alpha}\right|>|M| / p^{2}$, so $M_{\alpha}=P_{\alpha}$. It follows that $P_{\alpha} \leq M$ and hence $P_{\alpha} \leq \Phi(P)$. If $|P: \Phi(P)|=p$, then P is cyclic and is regular. If $|P: \Phi(P)|=p^{2}$, then $P_{\alpha}=\Phi(P)$. Since $\Phi(P)$ is normal in P and P_{α} is core-free, we have $P_{\alpha}=1$ and hence $P \cong \mathbb{Z}_{p}^{2}$ is regular.
- (Marušič ıč) Any transitive group G of degree p^{2} on Ω has a regular subgroup, i.e., $p^{2} \notin \mathcal{N} \mathcal{R}$.
- Outline of a proof: Take a minimal transitive subgroup P of G. Then P is a p-group and every maximal subgroup M of P is intransitive. For any $\alpha \in \Omega$, we have $\left|P_{\alpha}\right|=|P| / p^{2}$ and $\left|M_{\alpha}\right|>|M| / p^{2}$, so $M_{\alpha}=P_{\alpha}$. It follows that $P_{\alpha} \leq M$ and hence $P_{\alpha} \leq \Phi(P)$. If $|P: \Phi(P)|=p$, then P is cyclic and is regular. If $|P: \Phi(P)|=p^{2}$, then $P_{\alpha}=\Phi(P)$. Since $\Phi(P)$ is normal in P and P_{α} is core-free, we have $P_{\alpha}=1$ and hence $P \cong \mathbb{Z}_{p}^{2}$ is regular.

A Question

A Question

$p^{3} \in \mathcal{N} \mathcal{R} \backslash \mathcal{N C}$

- (Marušič ıč) $p^{3} \notin \mathcal{N C}$.

$p^{3} \in \mathcal{N} \mathcal{R} \backslash \mathcal{N C}$

- (Marušič ıč) $p^{3} \notin \mathcal{N C}$.
- $p^{3} \in \mathcal{N} \mathcal{R}$ (For $p>2$).

Let G be the following group of order p^{4}

$$
G=\left\langle a, b \mid a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=a^{p},[c, b]=1\right\rangle .
$$

Let $H=\langle c\rangle$. Consider the transitive permutation representation φ of G acting on the coset space $[G: H]$. Then $\varphi(G)$ is a transitive group of degree p^{3}, and $\varphi(G)$ has no regular subgroups.

$p^{3} \in \mathcal{N} \mathcal{R} \backslash \mathcal{N C}$

- (Marušič ıč) $p^{3} \notin \mathcal{N C}$.
- $p^{3} \in \mathcal{N} \mathcal{R}$ (For $p>2$).

Let G be the following group of order p^{4}

$$
G=\left\langle a, b \mid a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=a^{p},[c, b]=1\right\rangle .
$$

Let $H=\langle c\rangle$. Consider the transitive permutation representation φ of G acting on the coset space $[G: H]$. Then $\varphi(G)$ is a transitive group of degree p^{3}, and $\varphi(G)$ has no regular subgroups.

- $p^{3} \in \mathcal{N} \mathcal{R}$ (For $p=2$).

Let

$$
\begin{aligned}
G= & \langle a, b, c, d| a^{2}=b^{2}=c^{2}=d^{4}=1 \\
& {\left.[a, b]=[b, c]=[c, a]=1, a^{d}=a b, b^{d}=b c, c^{d}=c\right\rangle }
\end{aligned}
$$

Then $G \cong \mathbb{Z}_{2}^{3} \rtimes \mathbb{Z}_{4}$ has order 2^{5}. Let $H=\left\langle b, d^{2}\right\rangle$ and φ be the transitive permutation representation of G acting on the coset space [$G: H]$.
Then $\varphi(G)$ is a transitive group of degree 2^{3} and has no regular subgroup.

- $p^{3} \in \mathcal{N} \mathcal{R}$ (For $p=2$).

Let

$$
\begin{aligned}
G= & \langle a, b, c, d| a^{2}=b^{2}=c^{2}=d^{4}=1 \\
& {\left.[a, b]=[b, c]=[c, a]=1, a^{d}=a b, b^{d}=b c, c^{d}=c\right\rangle }
\end{aligned}
$$

Then $G \cong \mathbb{Z}_{2}^{3} \rtimes \mathbb{Z}_{4}$ has order 2^{5}. Let $H=\left\langle b, d^{2}\right\rangle$ and φ be the transitive permutation representation of G acting on the coset space [$G: H]$.
Then $\varphi(G)$ is a transitive group of degree 2^{3} and has no regular subgroup.

Determine the set $\mathcal{N} \mathcal{R}$

Determine the set $\mathcal{N} \mathcal{R}$

- Let $p<q$ be two primes. Then $p q \in \mathcal{N} \mathcal{R}$.
- Let $p<q$ be two primes. Then $p q \in \mathcal{N} \mathcal{R}$.
- Let $p<q$ be two primes. Then $p q \in \mathcal{N} \mathcal{R}$.
Theorem
Let n be a positive integer greater than 1. Then $n \in \mathcal{N} \mathcal{R}$ unless $n=p$ or p^{2} for a prime p.
- Let $p<q$ be two primes. Then $p q \in \mathcal{N} \mathcal{R}$.
Theorem
Let n be a positive integer greater than 1. Then $n \in \mathcal{N} \mathcal{R}$ unless $n=p$ or p^{2} for a prime p.

Let

$$
\begin{aligned}
\mathcal{N}_{2} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a 2-closed transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N D}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive digraph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

- Question 1: Is $\mathcal{N}_{2} \mathcal{R}=\mathcal{N C}$?

Let

$$
\begin{aligned}
\mathcal{N}_{2} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a 2-closed transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N D}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive digraph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

- Question 1: Is $\mathcal{N}_{2} \mathcal{R}=\mathcal{N C}$?
- Question 2: Is $\mathcal{N D}=\mathcal{N C}$?

Let

$$
\begin{aligned}
\mathcal{N}_{2} \mathcal{R}= & \{n \in \mathbb{N} \mid \text { there is a 2-closed transitive group } \\
& \text { of degree } n \text { without a regular subgroup }\} \\
\mathcal{N D}= & \{n \in \mathbb{N} \mid \text { there is a vertex-transitive digraph } \\
& \text { of order } n \text { which is non-Cayley }\}
\end{aligned}
$$

- Question 1: Is $\mathcal{N}_{2} \mathcal{R}=\mathcal{N C}$?
- Question 2: Is $\mathcal{N D}=\mathcal{N C}$?

Let

$$
\begin{aligned}
\mathcal{P N R}= & \{n \in \mathbb{N} \mid \text { there is a primitive group } \\
& \text { of degree } n \text { without a regular subgroup }\}
\end{aligned}
$$

- Determine the set $\mathcal{P N} \mathcal{R}$.

Let

$$
\begin{aligned}
\mathcal{P N R}= & \{n \in \mathbb{N} \mid \text { there is a primitive group } \\
& \text { of degree } n \text { without a regular subgroup }\}
\end{aligned}
$$

- Determine the set $\mathcal{P N} \mathcal{R}$.
- Note: Different from the set $\mathcal{N} \mathcal{R}$, we know that $p^{n} \notin \mathcal{P N} \mathcal{R}$ for any prime p and any positive integer n. Thus, determining the set $\mathcal{P N} \mathcal{R}$ should be much harder than $\mathcal{N} \mathcal{R}$.

Let

$$
\begin{aligned}
\mathcal{P N R}= & \{n \in \mathbb{N} \mid \text { there is a primitive group } \\
& \text { of degree } n \text { without a regular subgroup }\}
\end{aligned}
$$

- Determine the set $\mathcal{P N} \mathcal{R}$.
- Note: Different from the set $\mathcal{N} \mathcal{R}$, we know that $p^{n} \notin \mathcal{P N} \mathcal{R}$ for any prime p and any positive integer n. Thus, determining the set $\mathcal{P N} \mathcal{R}$ should be much harder than $\mathcal{N} \mathcal{R}$.

