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Chap 3.  P-N junction

u P-N junction Formation
u Step PN Junction
u Fermi Level Alignment
u Built-in E-field (cut-in voltage)
u Linearly Graded PN Junction
u I-V Characteristics
u Breakdown
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Basic Symbol and Structure 
of the pn Junction Diode
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Charge Distribution across PN junction
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Step Junction
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Actual Linearly Graded Profile
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Step P-N junction—Band Diagram
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Step Junction

u Recall Poisson’s Equation:

u For 1-D, E = Ex

dE/dx = ρ/ksεo

where ρ = q (p – n + ND – NA)

u For a pn junction, electrons and holes will diffuse through the 
junction, which would result in net ρ in the space charge region.
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P-N Junction

CathodeAnode

Metal contact
p-type Si, NA
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Charge Distribution in PN Junction

u Net ρ results in the depletion region (or space charge region)

u ρ = -qNA -xp ≤ x ≤ 0
qND 0 ≤ x ≤ xp
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Open-Circuit Condition of a pn Junction Diode
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Width of Space Charge Region

u Recall xnND = xpNA, 

u W is dependent on the built-in voltage Vbi.
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Reverse-Biased PN Junction Diode

p n

3 V Lamp

Open-circuit condition
(high resistance)

Vbi → Vbi + VA

W  ↑ ↑
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Forward-Biased PN Junction Diode

p n

3 V

Hole flow Electron flow

Lamp

Vbi → Vbi - VA

W ↓ ↓
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Bias Effect on the PN Junction
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Bias Effect on the PN Junction Band Diagrams

u Fig. 5.12
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Linearly Graded PN Junction

u Assume the linearly graded 
profile is ND – NA = ax, a: 
grading const.
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Continuity Equations

u There will be a change in carrier concentrations within a given 
small regions of the semiconductor if an imbalance exists 
between the total currents into and out of the region.

u Minority Carrier Diffusion Equation
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Continuity Equations

u If thermal R-G is considered, continuity equations would be 
modified

u ⇒Minority carrier Diffusion equations become

const. time:  ,         1
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Diffusion Length

uThe average distance minority carriers can diffuse 
into a sea of majority carriers before being 
annihilated.
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Quasi-Fermi levels

uAre energy levels used to specify the carrier 
concentrations inside a semiconductor under 
nonequilibrium conditions.
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PN Diodes: I-V Characteristics
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Forward and Reverse Electrical Characteristics 
of a Silicon Diode
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Composite energy-band/circuit diagram of a reverse-
biased pn diode
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I-V Characteristics

u From deviation:

u So for p+/n diode,

u For n+/p diode,

u As a general rule, this suggests that the heavily doped side of 
an asymmetrical junction can be ignored in determining the 
electrical characteristics of the junction.
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Derivation of I-V Characteristics
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Derivation of I-V Characteristics

u In quasi-neutral regions, E = 0, so consider diffusion and 
thermal R-G currents only.

u In Depletion Region:
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Boundary conditions and quasi fermi level inside a 
forward-biased diode 



MOS Device Physics and Designs 
Chap. 3

Instructor: Pei-Wen Li
Dept. of E. E. NCU

27

Carrier Concentration inside a pn diode under forward 
and reverse biasing.
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Experimental I-V Characteristics
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Reverse-Bias Breakdown

u Large reverse current flows 
when the reverse voltage 
exceeds a certain value, VBR. 
The current must be limited to 
avoid excessive “heating”.

u Practical VBR measurements 
typically quote the voltage where 
the reverse current exceeds 1 µA.

u Factors to affect VBR:
– 1. Bandgap of the 

semiconductor.
– 2. doping on the lightly doped 

side of the pn junction, NB.

u Breakdown Mechanism:
– Avalanche process
– Zener process
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Avalanching

•As VA << VBR, the reverse current is due to 
minority carriers randomly entering the depletion 
region and being accelerated by the E-field.

•The acceleration is not continuous but is 
interrupted by energy-losing collisions with the 
semiconductor lattice.

•Since the mean free path between the collisions is 
~10-6 cm, and a median depletion width is ~10-4 
cm, a carrier can undergo 10-1000 collisions in 
crossing the depletion region.

•The energy lost by the carrier per collision is small.

•The energy transferred to the lattice simply causes 
lattice vibration --- local heating.
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Avalanching

u As VA → VBR, the amount of energy 
transfer to the lattice per collision 
increases dramatically, and 
becomes sufficient to ionize a 
semiconductor atom. That is to 
causes an electron from the valence 
band to jump to conduction band. 
⇒“impact ionization”

u The electrons created by impact 
ioization are immediately 
accelerated by the large E-field in 
the depletion region, and 
consequently, they make additional 
collisions and create even more 
energetic electrons. ⇒“Avalanching”

Impact 
ionization
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Zener Process

u The occurrence of “tunneling” in a 
reverse-biased diode.

u Two major requirements for 
tunneling to occur and be significant:

– There must be filled states on one 
side of the barrier and empty states 
on the other side of the barrier at 
the same energy.

– The width of the potential energy 
barrier must be very thin (< 10 nm).

– That is the doping on the “lightly”
doped Si is in excess of 1017 cm-3.

– Zener process is only important in 
diodes that are heavily doped on 
both sides.
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R-G Current

u When  diode is reverse biased, 
the carrier concentrations in the 
depletion region are reduced 
below their equilibrium values, 
leading to the thermal generation 
of electrons and holes 
throughout the region. 

u The large E-field in the depletion 
region rapidly sweeps the 
generated carriers onto the 
quasi-neutral regions, thereby 
adding to the reverse current.

Reverse-biased 
generation

Forward-biased 
recombination
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Hetero-Junction
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Quantum Well

Hole 
Confinement

∆EC ~ 0.02 eV

relaxed Si0.7Ge0.3

Eg = 1.08 eV

Strained Si0.3Ge0.7

Eg ~ 0.72 eV

∆EV ~ 0.48 eV

Strained Si 

Eg = 0.88 eV

∆EC ~0.18 eV

∆EV ~0.34 eV

Electron 
Confinement


