Chap 3. P-N junction

- **u** P-N junction Formation
- **u** Step PN Junction
- u Fermi Level Alignment
- u Built-in E-field (cut-in voltage)
- u Linearly Graded PN Junction
- u I-V Characteristics
- **u** Breakdown

Basic Symbol and Structure of the pn Junction Diode

Chap. 3

Charge Distribution across PN junction

MOS Device Physics and Designs Chap. 3 3

Step P-N junction—Band Diagram **N-Semiconductor P-Semiconductor** E_C E_C E_F E_{F} E_{v} E_v Fermi-level alignment E_C E_C E_{Fi} E_{F} E_F ······E_{Fi} · E_v E_V E_C **Band Diagram** E_C E_{Fi} E_{F} E_{F} `.....E_{Fi}..... E_v 5 Instructor: Pei-Wen Li E_{v} MOS Device Physics and Designs Dept. of E. E. NCU Chap. 3

Step Junction Were $r = q (p - n + N_D - N_A)$

u For a pn junction, electrons and holes will <u>diffuse</u> through the junction, which would result in net r in the space charge region.

Chap. 3

Dept. of E. E. NCU

Width of Space Charge Region

u Recall $x_n N_D = x_p N_A$,

$$\Rightarrow x_n = \left[\frac{2k_s e_o}{q} \frac{N_A}{N_D (N_A + N_D)} V_{bi}\right]^{1/2}$$
$$x_p = \left[\frac{2k_s e_o}{q} \frac{N_D}{N_D (N_A + N_D)} V_{bi}\right]^{1/2}$$
$$\Rightarrow W = x_n + x_p = \frac{2k_s e_o}{q} \left[\frac{N_A N_D}{(N_A + N_D)} V_{bi}\right]^{1/2}$$

u W is dependent on the built-in voltage V_{bi} .

MOS Device Physics and Designs Chap. 3 10

MOS Device Physics and Designs Chap. 3

MOS Device Physics and Designs *Chap. 3*

Dept. of E. E. NCU

Bias Effect on the PN Junction Band Diagrams

Linearly Graded PN Junction

MOS Device Physics and Designs Chap. 3 *Instructor*: Pei-Wen Li Dept. of E. E. NCU

15

Continuity Equations

u There will be a change in carrier concentrations within a given small regions of the semiconductor if an imbalance exists between the total currents into and out of the region.

$$q \frac{\partial n}{\partial t} = \nabla \bullet J_{N}$$
$$q \frac{\partial p}{\partial t} = -\nabla \bullet J_{P}$$

u Minority Carrier Diffusion Equation

$$\nabla \bullet J_{N} = \nabla \bullet \left(qD_{N} \frac{\partial n}{\partial x} \right) = qD_{N} \frac{\partial^{2} n}{\partial x^{2}} = qD_{N} \frac{\partial^{2} (\Delta n)}{\partial x^{2}}$$
$$\Rightarrow q \frac{\partial n_{P}}{\partial t} = qD_{N} \frac{\partial^{2} n_{P}}{\partial x^{2}} = qD_{N} \frac{\partial^{2} (\Delta n_{P})}{\partial x^{2}}$$
$$q \frac{\partial p_{N}}{\partial t} = qD_{P} \frac{\partial^{2} p_{N}}{\partial x^{2}} = qD_{P} \frac{\partial^{2} (\Delta p_{N})}{\partial x^{2}}$$

MOS Device Physics and Designs Chap. 3

Continuity Equations

 If thermal R-G is considered, continuity equations would be modified

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \bullet J_N + \frac{\partial n}{\partial t}\Big|_{\substack{\text{thermal} \\ R-G}}$$
$$\frac{\partial p}{\partial t} = \frac{-1}{q} \nabla \bullet J_P + \frac{\partial p}{\partial t}\Big|_{\substack{\text{thermal} \\ R-G}} \qquad \frac{\partial n}{\partial t}\Big|_{\substack{\text{thermal} \\ R-G}} = -\frac{\Delta n}{t_n}, \ t_n : \text{time const.}$$

 $\mathbf{u} \Rightarrow$ Minority carrier Diffusion equations become

$$\frac{\partial n_P}{\partial t} = D_N \frac{\partial^2 (\Delta n_P)}{\partial x^2} - \frac{\Delta n_P}{t_n}$$
$$\frac{\partial p_N}{\partial t} = D_P \frac{\partial^2 (\Delta p_N)}{\partial x^2} - \frac{\Delta p_n}{t_p}$$

MOS Device Physics and Designs Chap. 3 17

Diffusion Length

u The average distance minority carriers can diffuse into a sea of majority carriers before being annihilated.

 $L_p \equiv \sqrt{D_p t_p} - -- \text{ minority carrier holes in an n - type material}$ $L_N \equiv \sqrt{D_N t_n} - -- \text{ minority carrier electrons in a p - type material}$

Quasi-Fermi levels

u Are energy levels used to specify the carrier concentrations inside a semiconductor under nonequilibrium conditions.

Chap. 3

PN Diodes: I-V Characteristics

Composite energy-band/circuit diagram of a reversebiased pn diode

Figure 6.2 Composite energy-band/circuit diagram providing an overall view of carrier activity inside a reverse-biased *pn* junction diode. The capacitor-like plates at the outer ends of the energy band diagram schematically represent the ohmic contacts to the diode.

22

• As a general rule, this suggests that the heavily doped side of an asymmetrical junction can be ignored in determining the electrical characteristics of the junction.

Derivation of I-V Characteristics

u In quasi-neutral regions, E = 0, so consider diffusion and thermal R-G currents only.

$$J_{N} = qD_{N} \frac{d\Delta n_{p}}{dx} \text{ for } x \leq -x_{p}, \frac{\partial n}{\partial t} = D_{N} \frac{d^{2}\Delta n_{p}}{dx^{2}} - \frac{\Delta n_{p}}{t_{n}} = 0$$
$$J_{P} = -qD_{P} \frac{d\Delta p_{n}}{dx} \text{ for } x \geq x_{n}, \frac{\partial p}{\partial t} = D_{P} \frac{d^{2}\Delta p_{n}}{dx^{2}} - \frac{\Delta p_{n}}{t_{n}} = 0$$

u In Depletion Region:

$$0 = \frac{\partial n}{\partial t} = \frac{1}{q} \nabla \bullet J_N + \frac{\Delta n_p}{t_n} \bigg|_{\text{thermal}} \Rightarrow \frac{dJ_N}{dx} = 0 \Rightarrow J_N = \text{const.} = J_N (-x_p)$$

similarly, $J_P = \text{const.} = J_P (x_n)$
 $J = J_N + J_P$

MOS Device Physics and Designs Chap. 3

Boundary conditions and quasi fermi level inside a forward-biased diode

Carrier and total current densities versus position inside a forward-biased pn junction

MOS Device Physics and Designs Chap. 3

Carrier Concentration inside a pn diode under forward and reverse biasing.

Experimental I-V Characteristics

Reverse-Bias Breakdown

- Large reverse current flows when the reverse voltage exceeds a certain value, V_{BR} . The current must be limited to avoid excessive "heating".
- **u** Practical V_{BR} measurements typically quote the voltage where the reverse current exceeds 1 μ A.
- **u** Factors to affect V_{BR} :
 - 1. Bandgap of the semiconductor.
 - 2. doping on the lightly doped side of the pn junction, $N_{B_{c}}$
- **u** Breakdown Mechanism:
 - Avalanche process
 - Zener process

MOS Device Physics and Designs Chap. 3

$$V_{BR} \propto \frac{1}{N_B^{0.75}}$$

29

Avalanching

•As $V_A \ll V_{BR}$, the reverse current is due to minority carriers randomly entering the depletion region and being accelerated by the E-field.

•The acceleration is not continuous but is interrupted by energy-losing collisions with the semiconductor lattice.

•Since the mean free path between the collisions is ~10-6 cm, and a median depletion width is ~10-4 cm, a carrier can undergo 10-1000 collisions in crossing the depletion region.

•The energy lost by the carrier per collision is small.

•The energy transferred to the lattice simply causes lattice vibration --- local heating.

MOS Device Physics and Designs Chap. 3

Avalanching

- **u** As $V_A \otimes V_{BR}$, the amount of energy transfer to the lattice per collision increases dramatically, and becomes sufficient to ionize a semiconductor atom. That is to causes an electron from the valence band to jump to conduction band. **P** "*impact ionization*"
- ❑ The electrons created by impact ioization are immediately accelerated by the large E-field in the depletion region, and consequently, they make additional collisions and create even more energetic electrons. ▷ "<u>Avalanching</u>"

MOS Device Physics and Designs Chap. 3 31

Zener Process

u The occurrence of "tunneling" in a reverse-biased diode.

- **u** Two major requirements for tunneling to occur and be significant:
 - There must be filled states on one side of the barrier and empty states on the other side of the barrier at the same energy.
 - The width of the potential energy barrier must be very thin (< 10 nm).
 - That is the doping on the "lightly" doped Si is in excess of 10¹⁷ cm⁻³.
 - Zener process is only important in diodes that are heavily doped on both sides.

32

R-G Current

- When diode is reverse biased, the carrier concentrations in the depletion region are reduced below their equilibrium values, leading to the thermal generation of electrons and holes throughout the region.
- The large E-field in the depletion region rapidly sweeps the generated carriers onto the quasi-neutral regions, thereby adding to the reverse current.

Type I Alignment

MOS Device Physics and Designs Chap. 3

34

Type II Alignment

Chap. 3