Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda © October 2001 by Prentice Hall

Chapter 10

Oxidation

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda © 2000 by Prentice Hall

Diffusion Area of Wafer Fabrication

Used with permission from Advanced Micro Devices

Figure 10.1

Oxide Film

- Nature of Oxide Film
- Uses of Oxide Film
 - Device Protection and Isolation
 - Surface Passivation
 - Gate Oxide Dielectric
 - Dopant Barrier
 - Dielectric Between Metal Layers

Atomic Structure of Silicon Dioxide

Used with permission from International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.2

Table 10.1 Oxide Applications: <u>Native Oxide</u>

Table 10.1 Oxide Applications: <u>Field Oxide</u>

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda

Table 10.1 Oxide Applications: <u>Gate Oxide</u>

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda

Table 10.1 Oxide Applications: <u>Barrier Oxide</u>

Table 10.1 Oxide Applications: <u>Dopant Barrier</u>

Table 10.1 Oxide Applications: <u>Pad Oxide</u>

Table 10.1 Oxide Applications: Implant Screen Oxide

Table 10.1Oxide Applications: Insulating Barrier betweenMetal Layers

Thermal Oxidation Growth

- Chemical Reaction for Oxidation
 - Dry oxidation
 - Wet oxidation
- Oxidation Growth Model
 - Oxide silicon interface
 - Use of chlorinated agents in oxidation
 - Rate of oxide growth
 - Factors affecting oxide growth
 - Initial growth phase
 - Selective oxidation
 - LOCOS
 - STI

Oxide Thickness Ranges for Various Requirements

Semiconductor Application	Typical Oxide Thickness, Å			
Gate oxide (0.18 µm generation)	20 - 60			
Capacitor dielectrics	5-100			
	400 - 1,200			
Dopant masking oxide	(Varies depending on dopant, implant			
	energy, time & temperature)			
STI Barrier Oxide	150			
LOCOS Pad Oxide	200 - 500			
Field oxide	2,500 - 15,000			

Dry Oxidation Time (Minutes)

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.6

Wet Oxygen Oxidation

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.7

Consumption of Silicon during Oxidation

Before oxidation

After oxidation

Charge Buildup at Si/SiO2 Interface

Used with permission from International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.10

Diffusion of Oxygen Through Oxide Layer

Used with permission from International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.11

by Michael Quirk and Julian Serda

© 2001 by Prentice Hall

LOCOS Process

Selective Oxidation and Bird's Beak Effect

Used with permission from International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.14

STI Oxide Liner

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.15

© 2001 by Prentice Hall

Furnace Equipment

- Horizontal Furnace
- Vertical Furnace
- Rapid Thermal Processor (RTP)

Horizontal and Vertical Furnaces

Performance Factor	Performance Objective	Horizontal Furnace	Vertical Furnace	
Typical wafer loading size	Small, for process flexibility	200 wafers/batch	100 wafers/batch	
Clean room footprint	Small, to use less space	Larger, but has 4 process tubes	Smaller (single process tube)	
Parallel processing	Ideal for process flexibility	Not capable	Capable of loading/unloading wafers during process, which increases throughput	
Gas flow dynamics (GFD)	Optimize for uniformity	Worse due to paddle and boat hardware. Bouyancy and gravity effects cause non-uniform radial gas distribution.	Superior GFD and symmetric/uniform gas distribution	
Boat rotation for improved film uniformity	Ideal condition	Impossible to design	Easy to include	
Temperature gradient across wafer	Ideally small	Large, due to radiant shadow of paddle	Small	
Particle control during loading/unloading	Minimum particles	Relatively poor	Improved particle control from top-down loading scheme	
Quartz change	Easily done in short time	More involved and slow	Easier and quicker, leading to reduced downtime	
Wafer loading technique	Ideally automated	Difficult to automate in a successful fashion	Easily automated with robotics	
Pre-and post- process control of furnace ambient	Control is desirable	Relatively difficult to control	Excellent control, with options of either vacuum or neutral ambient	

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda

Horizontal Diffusion Furnace

Photograph courtesy of International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Photo 10.1

© 2001 by Prentice Hall

Vertical Diffusion Furnace

Photograph courtesy of International SEMATECH

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Photo 10.2

Block Diagram of Vertical Furnace System

Common Gases used in Furnace Processes

Gases	Classifications	Examples			
	Inert gas	Argon (Ar), Nitrogen (N ₂)			
Bulk	Reducing gas	Hydrogen (H ₂)			
	Oxidizing gas	Oxygen (O ₂)			
Specialty	Silicon-precursor gas	Silane (SiH ₄), dichlorosilane (DCS) or (H ₂ SiCl ₂)			
	Dopant gas	Arsine (AsH ₃), phosphine (PH ₃) Diborane (B_2H_6)			
	Reactant gas	Ammonia (NH ₃), hydrogen chloride (HCl)			
	Atmospheric/purge gas	Nitrogen (N_2), helium (He)			
	Other specialty gases	Tungsten hexafluoride (WF ₆)			

Burn Box to Combust Exhaust

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.20

© 2001 by Prentice Hall

Thermal Profile of Conventional Versus Fast Ramp Vertical Furnace

Reprinted from the June 1996 edition of Solid State Technology, copyright 1996 by PennWell Publishing Company.

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda

Figure 10.21

© 2001 by Prentice Hall

The Main Advantages of a Rapid Thermal Processor

- Reduced thermal budget
- Minimized dopant movement in the silicon
- Ease of clustering multiple tools
- Reduced contamination due to cold wall heating
- Cleaner ambient because of the smaller chamber volume
- Shorter time to process a wafer (referred to as cycle time)

Comparison of Conventional Vertical Furnace and RTP

Vertical Furnace	RTP		
Batch	Single-wafer		
Hot wall	Cold wall		
Long time to heat and cool batch	Short time to heat and cool wafer		
Small thermal gradient across wafer	Large thermal gradient across wafer		
Long cycle time	Short cycle time		
Ambient temperature measurement	Wafer temperature measurement		
Issues:	Issues:		
Large thermal budget	Temperature uniformity		
Particles	Minimize dopant movement		
Ambient control	Repeatability from wafer to wafer		
	Throughput		
	Wafer stress due to rapid heating		
	Absolute temperature measurement		

Rapid Thermal Processor

RTP Applications

- Anneal of implants to remove defects and activate and diffuse dopants
- Densification of deposited films, such as deposited oxide layers
- Borophosphosilicate glass (BPSG) reflow
- Anneal of barrier layers, such as titanium nitride (TiN)
- Silicide formation, such as titanium silicide $(TiSi_2)$
- Contact alloying

Oxidation Process

- Pre Oxidation Cleaning
 Oxidation process recipe
- Quality Measurements
- Oxidation Troubleshooting

Critical Issues for Minimizing Contamination

- Maintenance of the furnace and associated equipment (especially quartz components) for cleanliness
- Purity of processing chemicals
- Purity of oxidizing ambient (the source of oxygen in the furnace)
- Wafer cleaning and handling practices

Thermal Oxidation Process Flow Chart

by Michael Quirk and Julian Serda

© 2001 by Prentice Hall

Process Recipe for Dry Oxidation Process

				Process Gas			
Step	Time (min)	Temp (°C)	N2 Purge Gas (slm)	N ₂ (slm)	O ₂ (slm)	HCl (sccm)	Comments
0		850	8.0	0	0	0	Idle condition
1	5	850		8.0	0	0	Load furnace tube
2	7.5	Ramp 20°C/min		8.0	0	0	Ramp temperature up
3	5	1000		8.0	0	0	Temperature stabilization
4	30	1000		0	2.5	67	Dry oxidation
5	30	1000		8.0	0	0	Anneal
6	30	Ramp -5°C/min		8.0	0	0	Ramp temperature down
7	5	850		8.0	0	0	Unload furnace tube
8		850	8.0	0	0	0	Idle

Note: gas flow units are slm (standard liters per minute) and sccm (standard cubic centimeters per minute)

Wafer Loading Pattern in Vertical Furnace

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Figure 10.24

© 2001 by Prentice Hall