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Oxide Film

e Nature of Oxide Film

« Usesof Oxide Film
— Device Protection and |solation
— Surface Passivation
— Gate Oxide Di€lectric
— Dopant Barrier
— Dielectric Between Metal Layers
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Atomic Structure of Silicon Dioxide

Silicon Oxygen

Used with permission from International SEMATECH
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Table 10.1
Oxide Applications: Native Oxide

Purpose:  Thisoxideisacontaminant and generally
undesirable. Sometimes used in memory storage or
film passivation.

Silicon dioxide (oxide)

p* Silicon substrate

Comments. Growth rate at room temperature is 15 per hour up
to about 40 A.
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Table 10.1
Oxide Applications: Field Oxide

Purpose:  Servesasan isolation barrier between individual
transistors to isolate them from each other.

\<F|€Id oxide

p* Silicon substrate

Transistor site

Comments: Common field oxide thickness range from 2,500 A
to 15,000 A. Wet oxidation is the preferred method.
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Table 10.1
Oxide Applications: Gate Oxide

Purpose:  Servesas adieectric between the gate and source-
drain parts of MOS transistor.

Gate oxide\ G
| Gate |
A Source ) k Drain )\

Transistor site

p* Silicon substrate

Comments. Growth rate at room temperatureis 15 A per hour
up to about 40 A. Common gate oxide film
thickness range from about 30 A to 500 A. Dry
oxidation is the preferred method.
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Table 10.1
Oxide Applications: Barrier Oxide

Purpose:  Protect active devices and silicon from follow-on
processing.

Barrier oxide

rrrrrrrr

e ‘_ ‘_T‘_T‘_T‘_T‘_T*T*T*T‘_‘i
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L Diffused resistorsA

p* Silicon substrate

Comments. Thermally grown to several hundred Angstroms
thickness.
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Table 10.1
Oxide Applications: Dopant Barrier

Purpose:  Masking material when implanting dopant into
wafer. Example: Spacer oxide used during the
Implant of dopant into the source and drain regions.

Dopant barrier
spacer oxide\ lon implantation
—
—\___J rvvrey ——

Spacer oxide protects narrow
channel from high-energy implant

Comments. Dopants diffuse into unmasked areas of silicon by
selective diffusion.
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Table 10.1
Oxide Applications: Pad Oxide

Purpose: Provides stress reduction for Si;N,

Nitride

/ \Passivation Layey~ /

Pad oxide

Bonding pad metal

V%

\sr
b

Comments. Thermally grown and very thin.
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Table 10.1
Oxide Applications: Implant Screen Oxide

Purpose:  Sometimes referred to as “sacrificial oxide”, screen
oxide, is used to reduce implant channeling and
damage. Assists creation of shallow junctions.
I
lon implantation Screen
oxide
High damage to upper Si Low damage to upper Si
surface + more channeling surface + less channeling
Comments. Thermally grown
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Table 10.1

Oxide Applications: Insulating Barrier between

Metal Layers

Purpose: Serves as protective layer between metal lines.

| Interlayer oxide
/-

Passivation layey”™
\/ / Bonding pad metal
ILD-5 4
L | M-4 d 4
SFj ILD-4 Exfzzj/ \Effj \f\pj/ Xf#
TS SN k)] b2 keI
| M-3 | b !

Comments. Thisoxideis not thermally grown, but is deposited.
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Thermal Oxidation Growth

 Chemica Reaction for Oxidation
— Dry oxidation
— Wet oxidation

 Oxidation Growth Mode

— Oxide silicon interface
» Use of chlorinated agents in oxidation

— Rate of oxide growth

— Factors affecting oxide growth
— Initial growth phase

— Selective oxidation

« LOCOS
« STI
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Oxide Thickness Ranges for Various
Requirements

Semiconductor Application Typical Oxide Thickness, A

Gate oxide (0.18 nm generation) 20— 60

Capacitor dielectrics 5-100

400 - 1,200
Dopant masking oxide (Varies depending on dopant, implant
energy, time & temperature)
STI Barrier Oxide 150
LOCOS Pad Oxide 200 — 500
Field oxide 2,500 — 15,000
Semiconductor Manufacturing Technology Table10.2 © 2001 by Prentice Hall

by Michael Quirk and Julian Serda



Dry Oxidation Time (Minutes)
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Wet Oxygen Oxidation
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Consumption of Silicon during Oxidation
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Charge Buildup at Si/S102 Interface
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Diffusion of Oxygen Through Oxide Layer
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Linear & Parabolic Stages for Dry
Oxidation Growth at 1100°C
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LOCOS Process

Ro

etch 3. Local oxidation of silicon

1. Nitride deposition 2. Nitride mask

Pad oxide S0,
(initial oxide)
4. Nitride strip @
Silicon
) 00(\ _ . .
S\ Cross section of LOCOS field oxide
(Actual growth of oxide is omnidirectional)
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Selective Oxidation and Bird’'s Beak Effect

Silicon oxynitride

L . Bird’s beak region
Nitride oxidation mask /
o/ Selective oxidation

|

Silicon dioxide

Pad oxide

Silicon substrate

Used with permission from International SEMATECH
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STI Oxide Liner

1. Nitride deposition 2. Trenchmask and etch 3. Sidewall oxidation and trench fill
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Furnace Equipment

 Horizontal Furnace
e Vertica Furnace
» Rapid Thermal Processor (RTP)
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lorizontal ano

Vertical Furnaces

Performance Performance : :
Eactor Objective Horizontal Furnace Vertical Furnace
Typical wafer Small, for process 200 waferg/batch 100 wafers/batch
loading size flexibility
Clean room Small, to useless Larger, but has4 process Smaller (single process
footprint space tubes tube)
Ideal for process Not capable Capable of
. flexibility loading/unl oading wafers
Parallel processing during process, which
increases throughput
Gasflow Optimizefor Worse dueto paddie and Superior GFD and
dynamics (GFD) | uniformity boat hardware. Bouyancy symmetric/uniform gas
and gravity effects cause distribution
non-uniform radial gas
distribution.
Boat rotation for Ideal condition Impossible to design Easy to include
improved film
uniformity
Temperature Ideally small Large, dueto radiant Small
gradient across shadow of paddle
wafer
Particle control Minimum particles | Relatively poor Improved particle control
during from top-down loading
loading/unloading scheme
Quartz change Easily donein short | Moreinvolved and Slow Easier and quicker, leading
time to reduced downtime
Wafer loading Ideally automated Difficult to automatein a Easily automated with
technique successful fashion robotics
Pre-and post- Control isdesrable | Relatively difficult to Excellent control, with
process control of control options of either vacuum or
furnace ambient neutral ambient
Semiconductor Manufacturing Technology Table 10.3
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Horlzontal lefu3|on Furnace

Photograph courtesy of International SEMATECH
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Vertical Diffusion Furnace

Photograph courtesy of International SEMATECH
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Block Diagram of Vertical Furnace System

Microcontroller
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Wafer handler Temperature i Gasflow Boat Exhaust
controller controller controller loader controller
Quartz process chamber 'y 'y
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Process gas
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Wafer load/unload system T
Boat motor drive system
| =) Exhaust
controller
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Common Gases used In Furnace Processes

Gases Classifications Examples
Inert gas Argon (Ar), Nitrogen (N,)

Bulk Reducing gas Hydrogen (H,)
Oxidizing gas Oxygen (O,)
Silicon-precursor gas Silane (SiH), dichlorosilane (DCS) or (H,SICl,)
Dopant gas Arsine (AsHj3), phosphine (PH3) Diborane (BoHsg)

Specialty | Reactant gas Ammonia (NHs), hydrogen chloride (HCI)

Atmospheric/purge gas | Nitrogen (N), helium (He)
Other specialty gases Tungsten hexafluoride (WF)
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Burn Box to Combust Exhaust
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Used with permission from International SEMATECH
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Thermal Profile of Conventional Versus
Fast Ramp Vertical Furnace
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Reprinted from the June 1996 edition of Solid State Technology,
copyright 1996 by PennWell Publishing Company.
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he Main Advantages
of a Rapid Thermal Processor

» Reduced thermal budget

« Minimized dopant movement in the silicon

» Ease of clustering multiple tools

 Reduced contamination due to cold wall heating

e Cleaner ambient because of the smaller chamber
volume

« Shorter timeto process awafer (referred to as
cycletime)
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Comparison of Conventional Vertical
Furnace and RTP

Vertical Furnace RTP
Batch Single-wafer
Hot wall Cold wall
Long time to heat and cool batch Short time to heat and cool wafer
Small thermal gradient across wafer Large thermal gradient across wafer
Long cycletime Short cycle time
Ambient temperature measurement Wafer temperature measurement
| ssues: | ssues.
Large thermal budget Temperature uniformity
Particles Minimize dopant movement
Ambient control Repeatability from wafer to wafer
Throughput
Wafer stress due to rapid heating
Absolute temperature measurement
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Rapid Thermal Processor

Setpoint voltages i}

Axisymmetric lamp array
Temperature
controller Reflector plate
- Optical fibers
Feedback voltages
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RTP Applications

* Annea of implants to remove defects and activate
and diffuse dopants

« Dengification of deposited films, such as
deposited oxide layers

» Borophosphosilicate glass (BPSG) reflow

* Annea of barrier layers, such astitanium nitride
(TIN)

 Slicideformation, such astitanium silicide
(TISI,)
« Contact alloying
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Oxidation Process

* Pre Oxidation Cleaning
— Oxidation process recipe

« Quality Measurements
 Oxidation Troubleshooting

Semiconductor Manufacturing Technol ogy © 2001 by Prentice Hall
by Michael Quirk and Julian Serda



Critical Issues for Minimizing Contamination

 Maintenance of the furnace and associated
equipment (especially quartz components)
for cleanliness

 Purity of processing chemicals

 Purity of oxidizing ambient (the source of
oxygen in the furnace)

« Wafer cleaning and handling practices
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Thermal Oxidation Process Flow Chart

Wet Clean

» Chemicals

* % solution

» Temperature
* Time
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Oxidation Furnace
« O, H,,N,,Cl

* Flow rate

» Exhaust

» Temperature

» Temperature profile
* Time

I nspection
 Film thickness
« Uniformity

* Particles

* Defects
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Process Recipe for Dry Oxidation Process

N Process Gas
Time Temp 2 N, 0, HCI
. P
I (min) C) | Tuee | (gm) (sIm) (sccm) | Comments
(sm)
0 850 8.0 0 0 0 |dle condition
1 5 850 8.0 0 0 Load furnace tube
Ramp Ramp temperature up
2 7.5 20°C/min 8.0 0 0
Temperature
3 5 1000 8.0 0 0 <tabilization
4 30 1000 0 2.5 67 Dry oxidation
5 30 1000 8.0 0 0 Anneal
5 30 Ramp 8.0 0 0 Ramp temperature
-5°C/min ' down
7 5 850 8.0 0 0 Unload furnace tube
8 850 8.0 0 0 0 ldle

Note: gas flow unitsare im (standard liters per minute) and sccm (standard cubic centimeters per minute)
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Wafer Loading Pattern in Vertical Furnace

Calibration parameters:

160
A

v
1

Boat size: 160 wafers
Boat pitch: 0.14 inch
Wafer size: 8 inches
Elevator speed: 9.29 cm/min

_Cool down delay: 20 minutes

_| 4 Filler (dummy) wafers
=} 1 Test wafer

75 Production
wafers

1 Test wafer

[ L1

75 Production
wafers

1 Test wafer
] 4 Filler (dummy) wafers

Used with permission from International SEMATECH
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