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Oxide Film

• Nature of Oxide Film
• Uses of Oxide Film

– Device Protection and Isolation
– Surface Passivation
– Gate Oxide Dielectric
– Dopant Barrier
– Dielectric Between Metal Layers
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Atomic Structure of Silicon Dioxide

Silicon Oxygen

Used with permission from International SEMATECH

Figure 10.2
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Table 10.1
Oxide Applications:  Native Oxide

Purpose:  This oxide is a contaminant and generally 
undesirable. Sometimes used in memory storage or 
film passivation.

Comments: Growth rate at room temperature is 15  per hour up 
to about 40 Å.

p+ Silicon substrate

Silicon dioxide (oxide)

Table 10.1A
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Table 10.1
Oxide Applications:  Field Oxide

Purpose:  Serves as an isolation barrier between individual 
transistors to isolate them from each other.

Comments: Common field oxide thickness range from 2,500 Å
to 15,000 Å. Wet oxidation is the preferred method.

Field oxide

Transistor site

p+ Silicon substrate

Table 10.1B
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Table 10.1
Oxide Applications:  Gate Oxide

Purpose:  Serves as a dielectric between the gate and source-
drain parts of MOS transistor.

Comments: Growth rate at room temperature is 15 Å per hour 
up to about 40 Å.  Common gate oxide film 
thickness range from about 30 Å to 500 Å. Dry 
oxidation is the preferred method.

Gate oxide

Transistor site

p+ Silicon substrate

Source Drain

Gate

Table 10.1C
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Table 10.1
Oxide Applications:  Barrier Oxide

Purpose:  Protect active devices and silicon from follow-on 
processing.

Comments: Thermally grown to several hundred Angstroms 
thickness.

Barrier oxide

Diffused resistors

Metal

p+ Silicon substrate

Table 10.1D



© 2001 by Prentice HallSemiconductor Manufacturing Technology
by Michael Quirk and Julian Serda

Table 10.1
Oxide Applications: Dopant Barrier

Purpose:  Masking material when implanting dopant into 
wafer.  Example:  Spacer oxide used during the 
implant of dopant into the source and drain regions.

Comments: Dopants diffuse into unmasked areas of silicon by 
selective diffusion.

Dopant barrier
spacer oxide Ion implantation

Gate

Spacer oxide protects narrow 
channel from high-energy implant

Table 10.1E
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Table 10.1
Oxide Applications:  Pad Oxide

Purpose:  Provides stress reduction for Si3N4

Comments: Thermally grown and very thin.

Passivation Layer

ILD-4       

ILD-5    

M-3 

M-4

Pad oxide

Bonding pad metal

Nitride

Table 10.1F
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Table 10.1
Oxide Applications:  Implant Screen Oxide

Purpose:  Sometimes referred to as “sacrificial oxide”, screen 
oxide, is used to reduce implant channeling and 
damage. Assists creation of shallow junctions.

Comments: Thermally grown

Ion implantation Screen 
oxide

High damage to upper Si
surface + more channeling

Low damage to upper Si
surface + less channeling

p+ Silicon substrate

Table 10.1G
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Passivation layer

ILD-4

ILD-5

M-3 

M-4

Interlayer oxide

Bonding pad metal

Table 10.1
Oxide Applications:  Insulating Barrier between 

Metal Layers

Purpose:  Serves as protective layer between metal lines.

Comments: This oxide is not thermally grown, but is deposited.

Table 10.1H
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Thermal Oxidation Growth

• Chemical Reaction for Oxidation
– Dry oxidation
– Wet oxidation

• Oxidation Growth Model
– Oxide silicon interface

• Use of chlorinated agents in oxidation
– Rate of oxide growth
– Factors affecting oxide growth
– Initial growth phase
– Selective oxidation

• LOCOS
• STI
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Oxide Thickness Ranges for Various 
Requirements

Semiconductor Application Typical Oxide Thickness, Å
Gate oxide (0.18 µm generation) 20 – 60

Capacitor dielectrics 5 – 100

Dopant masking oxide
400 – 1,200

(Varies depending on dopant, implant
energy, time & temperature)

STI Barrier Oxide 150
LOCOS Pad Oxide 200 – 500

Field oxide 2,500 – 15,000

Table 10.2
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Wet Oxygen Oxidation

HCl N2 O2 H2
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Figure 10.7
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Consumption of Silicon during Oxidation
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Figure 10.8
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Charge Buildup at Si/SiO2 Interface
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Used with permission from  International SEMATECH

Figure 10.10
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Diffusion of Oxygen Through Oxide Layer

Figure 10.11
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Linear & Parabolic Stages for Dry 
Oxidation Growth at 1100ºC

Used with permission from International SEMATECH
Figure 10.12
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LOCOS Process

3.  Local oxidation of silicon

Cross section of LOCOS field oxide
(Actual growth of oxide is omnidirectional)

1.  Nitride deposition

Pad oxide
(initial oxide)

Silic
on

2.  Nitride mask & etch
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Figure 10.13
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Selective Oxidation and Bird’s Beak Effect
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Silicon substrate

Silicon dioxideSilicon dioxide

Used with permission from International SEMATECH

Figure 10.14
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STI Oxide Liner
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Figure 10.15
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Furnace Equipment

• Horizontal Furnace
• Vertical Furnace
• Rapid Thermal Processor (RTP)
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Horizontal and Vertical Furnaces

Table 10.3

Performance
Factor

Performance
Objective Horizontal Furnace Vertical Furnace

Typical wafer
loading size

Small, for process
flexibility

200 wafers/batch 100 wafers/batch

Clean room
footprint

Small, to use less
space

Larger, but has 4 process
tubes

Smaller (single process
tube)

Parallel processing

Ideal for process
flexibility

Not capable Capable of
loading/unloading wafers
during process, which
increases throughput

Gas flow
dynamics (GFD)

Optimize for
uniformity

Worse due to paddle and
boat hardware. Bouyancy
and gravity effects cause
non-uniform radial gas
distribution.

Superior GFD and
symmetric/uniform gas
distribution

Boat rotation for
improved film
uniformity

Ideal condition Impossible to design Easy to include

Temperature
gradient across
wafer

Ideally small Large, due to radiant
shadow of paddle

Small

Particle control
during
loading/unloading

Minimum particles Relatively poor Improved particle control
from top-down loading
scheme

Quartz change Easily done in short
time

More involved and slow Easier and quicker, leading
to reduced downtime

Wafer loading
technique

Ideally automated Difficult to automate in a
successful fashion

Easily automated with
robotics

Pre-and post-
process control of
furnace ambient

Control is desirable Relatively difficult to
control

Excellent control, with
options of either vacuum or
neutral ambient
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Horizontal Diffusion Furnace

Photograph courtesy of International SEMATECH

Photo 10.1
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Vertical Diffusion Furnace

Photograph courtesy of International SEMATECH

Photo 10.2



© 2001 by Prentice HallSemiconductor Manufacturing Technology
by Michael Quirk and Julian Serda

Block Diagram of Vertical Furnace System
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Wafer handler
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cylinder
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Figure 10.16
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Common Gases used in Furnace Processes

Gases Classifications Examples

Inert gas Argon (Ar), Nitrogen (N2)

Reducing gas Hydrogen (H2)Bulk

Oxidizing gas Oxygen (O2)

Silicon-precursor gas Silane (SiH4), dichlorosilane (DCS) or (H2SiCl2)

Dopant gas Arsine (AsH3), phosphine (PH3) Diborane (B2H6)

Reactant gas Ammonia (NH3), hydrogen chloride (HCl)

Atmospheric/purge gas Nitrogen (N2), helium (He)

Specialty

Other specialty gases Tungsten hexafluoride (WF6)

Table 10.4
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Burn Box to Combust Exhaust
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Used with permission from  International SEMATECH

Figure 10.20
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Thermal Profile of Conventional Versus 
Fast Ramp Vertical Furnace

Reprinted from the June 1996 edition of Solid State Technology, 
copyright 1996 by PennWell Publishing Company. 

Figure 10.21
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The Main Advantages 
of a Rapid Thermal Processor

• Reduced thermal budget
• Minimized dopant movement in the silicon
• Ease of clustering multiple tools
• Reduced contamination due to cold wall heating
• Cleaner ambient because of the smaller chamber 

volume
• Shorter time to process a wafer (referred to as 

cycle time)
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Comparison of Conventional Vertical 
Furnace and RTP

Vertical Furnace RTP

Batch Single-wafer
Hot wall Cold wall
Long time to heat and cool batch Short time to heat and cool wafer
Small thermal gradient across wafer Large thermal gradient across wafer
Long cycle time Short cycle time
Ambient temperature measurement Wafer temperature measurement
Issues: Issues:
     Large thermal budget      Temperature uniformity
     Particles      Minimize dopant movement
     Ambient control      Repeatability from wafer to wafer

     Throughput
     Wafer stress due to rapid heating
     Absolute temperature measurement

Table 10.5
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Rapid Thermal Processor

Temperature 
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Figure 10.22
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RTP Applications

• Anneal of implants to remove defects and activate 
and diffuse dopants

• Densification of deposited films, such as 
deposited oxide layers 

• Borophosphosilicate glass (BPSG) reflow 
• Anneal of barrier layers, such as titanium nitride

(TiN)
• Silicide formation, such as titanium silicide

(TiSi2)
• Contact alloying
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Oxidation Process

• Pre Oxidation Cleaning
– Oxidation process recipe

• Quality Measurements
• Oxidation Troubleshooting
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Critical Issues for Minimizing Contamination

• Maintenance of the furnace and associated 
equipment (especially quartz components) 
for cleanliness

• Purity of processing chemicals
• Purity of oxidizing ambient (the source of 

oxygen in the furnace)
• Wafer cleaning and handling practices
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Thermal Oxidation Process Flow Chart

Wet Clean
• Chemicals
• % solution
• Temperature
• Time

Oxidation Furnace
• O2, H2 , N2 , Cl
• Flow rate
• Exhaust
• Temperature
• Temperature profile
• Time

Inspection
• Film thickness
• Uniformity
• Particles
• Defects

Figure 10.23
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Process Recipe for Dry Oxidation Process

Step Time
(min)

Temp
(ºC)

N2
Purge
Gas
(slm)

Process Gas
   N2             O2          HCl
 (slm)     (slm)    (sccm) Comments

0 850 8.0 0 0 0 Idle condition
1 5 850 8.0 0 0 Load furnace tube

2 7.5 Ramp
20ºC/min 8.0 0 0 Ramp temperature up

3 5 1000 8.0 0 0 Temperature
stabilization

4 30 1000 0 2.5 67 Dry oxidation
5 30 1000 8.0 0 0 Anneal

6 30
Ramp

-5ºC/min
8.0 0 0

Ramp temperature
down

7 5 850 8.0 0 0 Unload furnace tube
8 850 8.0 0 0 0 Idle

Note: gas flow units are slm (standard liters per minute) and sccm (standard cubic centimeters per minute)

Table 10.6
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Wafer Loading Pattern in Vertical Furnace

160

1

4 Filler (dummy) wafers

4 Filler (dummy) wafers

1 Test wafer

1 Test wafer

1 Test wafer

75 Production 
wafers

75 Production 
wafers

Calibration parameters:

Boat size:  160 wafers
Boat pitch:  0.14 inch
Wafer size:  8 inches
Elevator speed:  9.29 cm/min
Cool down delay: 20 minutes

Figure 10.24
Used with permission from International SEMATECH


