
A Brief User's Guide to Hspice

by
Sameer Sonkusale

sameers@ee.upenn.edu

Introduction

Hspice is a spice simulation software, available on Sun/Unix platforms on
eniac/pender machines (for e.g. DSL 100 Moore Bldg.). The syntax for writing
the hspice files is same as for the most commonly used PSpice, except that you
would be manually writing the spice netlist file for simulation. You don't have
the schematic editor and the probe as in Pspice. The basic tutorial on spice can be
found at Prof. Jan Van der Spiegels Spice tutorial webpage. In this tutorial we
will cover some of the extra features provided by hspice, which are most
commonly used.

 A complete manual can be found at /pkg/hspice/98.2/docs/hspice.pdf on seas/ee
machines. (Warning: Please don't print this reference manual on any of the
ee/seas printers, since it is a very very huge file). You can also follow this link at
an external site for a complete reference manual.

Selected Features:

This section will only talk about some of the advanced features provided by
hspice. The basic spice tutorial should be your first visit before continuing with
this section. Some of these advanced features may also be available in Pspice.
Please consult the manual for more information about each of the following
features.

1. Node names
Instead of using numbers to represent nodes, character strings can now be used.
This will enable labeling the nodes with a name which is more appropriate for
that node (e.g. input, output) rather than using numbers, making it easier to read.
Also, it will enable you to locate the signals in your circuit with a name when
viewing your output using awaves.

2. .PRINT Statement
The syntax is same as before, but now you could have mathematical expressions
involving signals to be printed as well.

第 1 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

Example 1: .PRINT TRAN V(3) I(VIN) PAR('V(OUT)/V(IN) ')
This example prints out the results of a transient analysis for the nodal voltage
named 3 and the current through the voltage source named VIN. The ratio of the
nodal voltage at node "OUT" and node "IN" is also printed. Note that the nodes
have been represented by names "OUT" and "IN" instead of numbers.

Example 2: .print varname=PAR('sqrt(v3)')
This instructs HSPICE to print the square root of the voltage "v3" and assign it
the variable name varname. The results can be found in the output file as well as
in the awaves graphical interface options. Apart from square root, other useful
functions such as log(), sin() and tan() are supported. Consult the HSPICE
manual (/pkg/hspice/98.2/docs/hspice.pdf) for a complete listing. Awaves can
directly be used to compute the mathematical expressions as well.

3. .INCLUDEStatement
Syntax : .INCLUDE '<filepath> filename' or
 .INC '<filepath> filename'
where,
filename: is the name of the file to be included in the present file which makes
use of the above statement.
filepath : (is optional) provides a tree structure representation of the directory in
which the file exists.

Example: .inc '/home4/sameers/Spice/Models/mos.lib'

4. .LIB Statement
Syntax: .lib '<filepath> filename' entryname
where,
filename: is the name of the library file to be included
filepath: is the path to the file
entryname: is the entry name for the section of the library file to included. The
first name of the entryname cannot be an integer.

Every .lib statement should be followed by a .ENDL statement

Example: Say you have a file named mos.lib in /home4/sameers/Spice/Models/
directory which look ssomething like this

.LIB NMOS

.MODEL CMOSN NMOS LEVEL=3 PHI=0.700000 TOX=3.0400E-08
XJ=0.200000U TPG=1
+ VTO=0.6081 DELTA=1.3700E+00 LD=9.0910E-10 KP=7.4209E-05
+ UO=653.3 THETA=9.5780E-02 RSH=5.1480E+01 GAMMA=0.6166
+ NSUB=1.4780E+16 NFS=5.9090E+11 VMAX=1.8150E+05 ETA=7.7500E-
02

第 2 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

+ KAPPA=2.4680E-01 CGDO=5.0000E-11 CGSO=5.0000E-11
+ CGBO=3.4138E-10 CJ=2.8065E-04 MJ=5.3057E-01 CJSW=1.4649E-10
+ MJSW=1.0000E-01 PB=9.7858E-01
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 8.9440E-07
.ENDL NMOS

.LIB PMOS

.MODEL CMOSP PMOS LEVEL=3 PHI=0.700000 TOX=3.0400E-08
XJ=0.200000U TPG=-1
+ VTO=-0.8311 DELTA=3.1900E+00 LD=9.0910E-10 KP=1.9344E-05
+ UO=170.3 THETA=1.0050E-01 RSH=3.3060E+01 GAMMA=0.3046
+ NSUB=3.6060E+15 NFS=5.9090E+11 VMAX=1.6930E+05 ETA=8.5870E-
02
+ KAPPA=9.9940E+00 CGDO=5.0000E-11 CGSO=5.0000E-11
+ CGBO=3.2737E-10 CJ=2.9597E-04 MJ=4.4146E-01 CJSW=1.4645E-10
+ MJSW=1.0000E-01 PB=7.4913E-01
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 8.2900E-07
.ENDL PMOS

Then if you needed to include a PMOS model file in your spice netlist, you could
say
.lib '/home4/sameers/Spice/Models/mos.lib' PMOS
or if you needed just the NMOS models you could say
.lib '/home4/sameers/Spice/Models/mos.lib' NMOS

The difference between .INC and .LIB is that .inc includes everything from a file,
whereas .LIB can include only a section of the file defined by the entryname.

5. .PARAM statement

The .Param statement lets you create a parameter and assign algebraic
mathematical expressions to it.

Syntax: .PARAM <parametername> = '<Expression>'

Example:
.PARAM width = 20u
.PARAM length = 'sqrt(width)*1.65'

This is useful , if you want to say, make the length and the width of the transistor
related to each other in a certain fashion.

You would then make a MOS statement call as
M1 3 2 0 0 NMOS width length

第 3 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

instead of fixed numbers for W and L . This makes the W and the L of the
transistors as parameters.

Another example of a frequency dependent resistor would be
.PARAM HERTZ = 100
.PARAM R = '1K/log(HERTZ)'
r1 3 2 R

The above declaration creates a resistor r1 whose value is a parameter R which
depends on the parameter HERTZ. The ability to sweep through the different
parameters is discussed in the following section on .DATA statement.

6. .DATA statement

Data-driven analysis allows the user to modify any number of parameters, then
perform an operating , DC, AC, or transient analysis using the new parameter
values.

The .DATA statement specifies the parameters for which values are to be
changed and gives the sets of values that are to be assigned during each
simulation. Lets look at an example:

Example: Say you want to perform a transient analysis and an AC analysis of
your circuit for different set of values for width, length and load resitance RL.
Then your spice netlist may look something like this:
.
.
.PARAM width = 10u
.PARAM length = 6u
.
M1 3 2 0 0 NMOS width length
Rload 3 5 RL
.
.
.TRAN 1n 1000n SWEEP DATA=D1
.AC DEC 10 1hz 1GHz SWEEP DATA=D1
.DATA D1 width length RL
+ 50u 20u 1K
+ 60u 10u 10K
+ 100u 25u 1K
.ENDDATA
.
.
The simulation program would then run the transient analyis and the AC analysis
first for the values of width=50u, length=20u and RL=1Kohms. Then during the

第 4 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

next run it would perform the transient and AC analyis for the values of
width=60u, length=10u and RL=10K..and finally it would do the analyses for the
3rd set of data values. Note that width, length and RL have been declared using
a .PARAM statement.

7. .OPTIONS statement
This helps in specifying simulation input and output control options for the
hspice. There are lots of different keywords associated with the .options
statement. Please visit the reference manual for complete entries.
Example

.options post -> to store the simulation results. This option is needed to view the
results using awaves.
.options probe -> to save the output variables only.

8. .PROBE statement
The .PROBE statement saves output variables into the interface and graph data
files. Hspice usually saves all voltages and supply currents in addition to the
output variables. Set the .OPTION PROBE to save the output variables only. Use
the .PROBE statement to specify which quantities are to be printed in the output
listing. This is very useful when simulating huge circuits where hspice
simulations may run for hours if we didn't use the .PROBE statement. Using such
a statement would save time and memory since it outputs only a few signals of
interest in the whole circuit.

Syntax: .PROBE <analysis type> var1 <var32>

analysis type the type of analysis for the specified plots. Analysis types are
DC, AC, TRAN, NOISE and DISTO
var1 output variables to be plotted/stored. These cane be voltages.
currents or element variables from a
 DC, AC, TRAN, NOISE or DISTO analysis. The limit for
the number of output variables in a single
 .PROBE statements is 32. Additional .PROBE statements
may be used to deal with more output
 variables.

Example:
.PROBE DC V(4) V(5) I(Vin) beta = PAR('I1(Q1)/I2(Q2) ')

9. .MEASURE statement
The .MEASURE statement has several different formats, depending on the
application. You can use it for either DC, AC or transient analysis.

Fundamental measurement modes are:

第 5 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

Rise, Fall, Delay
syntax: .MEASURE <DC | AC | TRAN> result TRIG ... TARG ...
where result is the name given to the measured output
 trig .. targ ... identifies the beginning of the trigger and target specs.
There are few other options that come with .MEASURE which not have
been discussed.

TRIG (trigger) syntax: TRIG trig_var VAL=trig_val <TD=time delay>
<CROSS=c> <RISE=r><FALL=f>
 or
 TRIG AT=val
TARG (target) syntax: TARG targ_var VAL=targ_val <TD=time delay>
<CROSS = c | LAST> <RISE = r | LAST>
 + <FALL=f | LAST>
where TRIG and TARG specifies the beginning of the trigger and of the
target signal specs.
 trig_var is the name of the output variable which determines the
beginning of the measurement
 trig_val is the value of the trig_var at which the counter for
crossing, rises or falls is incremented by one
 targ_var is the name of the output variable whose propagation
delay is determined with respect to trig_var
 targ_val specifies the value of the targ_var at which the counter for
crossing, rise or falls is incremented by one
 time_delay amount of delay before the measurement should start
 cross=c, rise=r, fall=f indicates which occurences of CROSS,
FALL or RISE event causes a measurement to be performed
 last indicates that the measurement is performed when the last
CROSS, FALL or RISE event occurs
 at=val is a case where val indicates the time for TRAN, frequency
for AC and parameter for DC, when measurement should start
example:
.MEASURE TRAN tdlay TRIG V(1) VAL=2.5 TD = 10n RISE=2
+ TARG V(2) VAL=2.5 FALL=2
This example specifies that a propagation delay measurement is taken
between nodes 1 and 2 for transient analysis.
The measurement is done between the second rising edge of the voltage at
node 1 and the second falling edge of the voltage
at node 2. The VAL = 2.5 specifies the exact voltage when the
measurement should begin and end.

Average, RMS, min, max, peak-to=peak and integral
syntax: .MEASURE <DC | AC | TRAN> result func out_var <FROM=val>
<TO=val>
where result is the name given to the meaurement

第 6 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

 from specifies the initial value for the 'func' calculation. For
transient it is in units of time.
 to specifies the end of the func calculation
 func indicates the type of measurement
 like, avg -> average, max -> maximum, min-> minimum, pp ->
peak to peak, rms-> root mean square, integ->integral
 out_var is the name of the output variable whose function is to be
measureed in the simulation.
example:
.MEAS TRAN avgval AVG V(10) FROM=10ns TO=55ns

Find-when
This allows any indep. variables (time,freq,parameter), any dependent
variables (voltage or current)
or the derivative of any dependant variables to be measured when specific
event occurs. These measure
statements are useful in the unity gain frequency or phase measurements.

syntax:
.MEASURE <DC|TRAN| AC> result WHEN out_var = val <TD = val>
+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c | LAST >
or
.MEASURE <DC|TRAN|AC> result WHEN out_var1=out_var2 < TD=val
>
+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c| LAST >
or
.MEASURE <DC|TRAN|AC> result FIND out_var1 WHEN out_var2=val
< TD=val >
+ < RISE=r | LAST > < FALL=f | LAST >
or
.MEASURE <DC|TRAN|AC> result FIND out_var1 WHEN out_var2 =
out_var3
+ <TD=val > < RISE=r | LAST > < FALL=f | LAST >
+ <CROSS=c | LAST>
or
.MEASURE <DC|TRAN|AC> result FIND out_var1 AT=val
Parameter Definitions
cross=c,rise=r, fall=fThe numbers indicate which occurrence of a CROSS,
FALL,
or RISE event causes a measurement to be performed.
find selects the FIND function
last Measurement is performed when the last CROSS, FALL, or
RISE event occurs.
result is the name of the measurement
out_var is the name of the variable that is measured

第 7 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

td identifies the time at which measurement is to start
when selects the WHEN function

Equation evaluation
Use this statement to evaluate an equation that is a function of the results of
the previous .MEASURE statements
syntax: .MEASURE <DC |AC | TRAN> result PARAM='equation'
Derivative evaluation
The DERIVATIVE function provides the derivative of an output variable at
a
given time or frequency or for any sweep variable, depending on the type of

analysis. It also provides the derivative of a specified output variable when
some
specific event occurs.
syntax:
.MEASURE <DC|AC|TRAN> result DERIVATIVE out_var AT=val
or
.MEASURE <DC|AC|TRAN> result DERIVATIVE out_var WHEN
var2=val
+ <RISE=r | LAST> <FALL=f | LAST> <CROSS=c | LAST>
+ <TD=tdval>
or
.MEASURE <DC|AC|TRAN> result DERIVATIVE out_var WHEN
var2=var3
+ <RISE=r | LAST> <FALL=f | LAST> <CROSS=c | LAST>
+ <TD=tdval>
where:
at=val the value of out_var at which the derivative is to be found
cross=c,rise=r,fall=f The numbers indicate which occurrence of a CROSS,
FALL,
 or RISE event causes a measurement to be performed.
derivative selects the derivative function.
last Measurement is performed when the last CROSS, FALL, or
RISE event occurs.
out_var is the variable for which the derivative is to be found
result is the name given to the measurement
td identifies the time at which measurement is to start
var(2,3) variables used to establish conditions at which measurement
is to take place
when selects the WHEN function
example: .MEAS TRAN slewrate DERIV V(out) AT=25ns

The output of the .measure statement is stored in the .mt# file where the # can be
any number starting from 0.

第 8 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

Sameer Sonkusale <sameers@ee.upenn.edu>
Last updated 22nd March 2001

第 9 頁，共 9 頁

2005/6/30http://www.seas.upenn.edu/~ee562/hspice.html

