Advanced Algebra (1) class note

9422001

Tue. 16th Sep.

3.1 Rings and Homomorphism

Def

A set R is a ring if R has two elements 0,1 and two binary operations,$+ \cdot$ on R such that
(1a). $(a+b)+c=a+(b+c)$
(1b). $a+b=b+a$
(1c). $a+0=0+a=a$
(1d). there exists $-a \in R$ with $a+(-a)=0=(-a)+a$
(2a). $(a+\cdot b) \cdot c=a \cdot(b \cdot c)$
(2b). $a \cdot 1=a=1 \cdot a$
(3a). $a \cdot(b+c)=a \cdot b+a \cdot c$
$a \cdot(b+c)=a \cdot b+a \cdot c$
for any $a, b, c \in R$.
ex
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are rings with usual 0,1 and usual,$+ \cdot$
Notation
(1). Write $a b$ for $a \cdot b, n a=a+a+\cdots+a n$ times, and $a-b=a+(-b)$ for $a, b \in R$ and $n \in \mathbb{N}$.
(2). If $a b=b a$ for all $a, b \in R$, then R is said to be commutative.
(3). $C(R):=\{a \in R \mid a b=b a$ for all $b \in R\}$ is called the center of R.
ex

Let $M_{n}(\mathbb{R})$ be a set of $n \times n$ matrices over \mathbb{R}.
Then $M_{n}(\mathbb{R})$ is a ring under usual matrix operations,$+ \cdot$
ex

Let $G L_{n}(\mathbb{R})$ be the set of all $n \times n$ invertible matrices under usual,$+ \cdot$ $G L_{n}(\mathbb{R})$ is not a ring since $O \notin G L_{n}(\mathbb{R})$.
ex
$i=\left(\begin{array}{cl}\sqrt{-1} & 0 \\ 0 & -\sqrt{-1}\end{array}\right), j=\left(\begin{array}{cl}0 & -1 \\ -1 & 0\end{array}\right), k=\left(\begin{array}{cl}0 & \sqrt{-1} \\ -\sqrt{-1} & 0\end{array}\right) \in M_{2}(\mathbb{C})$.
You can check $i^{2}=j^{2}=k^{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, $i j=k=-j i, j k=i=-k j, k i=j=-i k$, and $Q:=\{a I+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$ is a ring (subring of $M_{2}(\mathbb{C})$), called real quarterian.

Note
$\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \subseteq C(Q)$ and Q is not commutative.
ex
$H=\left\{\left.a I+b i+c j+d k+e\left(\frac{I}{2}+\frac{i}{2}+\frac{j}{2}+\frac{k}{2}\right) \right\rvert\, a, b, c, d, e \in \mathbb{Z}\right\}$ is a ring.
Check $\left(\frac{1}{2}+\frac{i}{2}+\frac{j}{2}+\frac{k}{2}\right)\left(\frac{1}{2}-\frac{i}{2}-\frac{j}{2}-\frac{k}{2}\right)$
$=\frac{1}{4}(1+i+j+k)(1-i-j-k)$
$=\frac{1}{4}(1+1+1+1)=1 \in H$.
H is called Herwitz ring.
Def
If for any nonzero $a \in R$, there exists an element $a^{-1} \in R$ s.t. $a a^{-1}=1=a^{-1} a$, then R is said to be a divisionring.
A field is a commutatinve division ring.
ex
Q is a division ring, and \mathbb{Q} is a field.

