3.2 Ideals

Definition: $I \subseteq R$ is called a left ideal (resp. a right ideal) if

- $a-b \in I$
- $ra \in I$ (resp. $ar \in I$)

for $a, b \in I$ and $r \in R$. An ideal is a left ideal and a right ideal.

Example: $\{ \begin{pmatrix} 0 & \dots & 0 & a_{1k} & 0 & \dots & 0 \\ 0 & \dots & 0 & a_{2k} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nk} & 0 & \dots & 0 \end{pmatrix} \mid a_{ik} \in R \} \subseteq M_n(R) \text{ is a left ideal,}$ but not a right ideal.

Theorem Let L be an ideal of P

Theorem: Let I be an ideal of R. Set $R/I := \{a + I \mid a \in R\}$, where $a + I := \{a + b \mid b \in I\}$. Define $+, \cdot$ on R/I by (a + I) + (b + I) = a + b + I and $(a + I) \cdot (b + I) = ab + I$ for $a, b \in R$. Then R/I is a ring. (The quotient ring of R by I)

Proof. It is straight forward to check every axiom of ring eacept that $+, \cdot$ are well-defined. Suppose a + I = a' + I and b + I = b' + I for $a, b, a', b' \in R$. Then $(a + b) - (a' + b') = (a - a') + (b - b') \in I$ and $ab - a'b' = ab - ab' + ab' - a'b' = a(b - b') + (a - a')b \in I$. Hence a + b + I = a' + b' + I and ab + I = a'b' + I. \Box