3. FACTORIZATION IN COMMUTATION RINGS

We always assume that R is commutative.

Definition.

- 1. a|b if b = ac for some $c \in \mathbb{R}$.
- 2. a, b are associates, if a|b and b|a.
- 3. a is a unit if a|1.
- 4. a is irreducible if
 - a. $a \neq 0$, unit;
 - b. $a = bc \Rightarrow b$ is a unit or c is a unit.
- 5. a is prime if

a. $a \neq 0$, unit;

b. $a|bc \Rightarrow a|b \text{ or } a|c$.

Lemma. Let R be an integral domain and $a \in \mathbb{R}$ is a prime, then a is irreducible.

Proof. Suppose a|bc, then a|b or a|c, say a|b. Then b = ad for some $d \in \mathbb{R}$. Thus a = bc = adc, hence $a \cdot (1 - dc) = 0$ \therefore R is an integral domain $\Rightarrow dc = 1$ (c is a unit).

Example. $R=\mathbb{Z}_{12}, \bar{3}=\bar{3}\times\bar{9}$ is not irreducible(reducible), suppose $\bar{3}|\bar{a}\bar{b}$ for $a, b \in \mathbb{Z}$. Then 3|ab+12k hence 3|ab. So 3|a or 3|b. And we have $\bar{3}|\bar{a}$ or $\bar{3}|\bar{b}$. Thus $\bar{3}$ is a prime.

Definition. An integral domain R is a unique factorization domain(UFD) if

- 1. for any nonzero nonunit element $a \in \mathbb{R}, a = c_1 c_2 \cdots c_n$ for some irreducible elements $c_i \in \mathbb{R}$.
- 2. if $c_1c_2\cdots c_n = d_1d_2\cdots d_m$ for c_i, d_j irreducible, then n = m and there exists a bijection σ such that $d_i, c_{\sigma(i)}$ are associates.

Example. $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} | a, b \in \mathbb{Z}\}$. We have $4 = 2 \times 2 = (\sqrt{5} + 1)(\sqrt{5} - 1)$. Since $2, \sqrt{5} + 1, \sqrt{5} - 1$ are irreducible $\Rightarrow \mathbb{Z}[\sqrt{5}]$ is not UFD. Note $2, \sqrt{5} + 1, \sqrt{5} - 1$ are not primes in $\mathbb{Z}[\sqrt{5}]$.

Lemma. Let R be UFD. Then an irreducible element is a prime.

Proof. Let $a \in \mathbb{R}$ be irreducible. Suppose that a|bc and $a \nmid b$. Then ad = bc for some d. Since a is not associated any irreducible factors of $b \Rightarrow a|c$.