3. FACTORIZATION IN COMMUTATION RINGS

We always assume that R is commutative.

Definition.

1. $a \mid b$ if $b=a c$ for some $c \in \mathrm{R}$.
2. a, b are associates, if $a \mid b$ and $b \mid a$.
3. a is a unit if $a \mid 1$.
4. a is irreducible if
a. $a \neq 0$, unit;
b. $a=b c \Rightarrow \mathrm{~b}$ is a unit or c is a unit.
5. a is prime if
a. $a \neq 0$, unit;
b. $a|b c \Rightarrow a| b$ or $a \mid c$.

Lemma. Let R be an integral domain and $a \in \mathrm{R}$ is a prime, then a is irreducible.
Proof. Suppose $a \mid b c$, then $a \mid b$ or $a \mid c$, say $a \mid b$. Then $b=a d$ for some $d \in \mathrm{R}$. Thus $a=b c=a d c$, hence $a \cdot(1-d c)=0 \because \mathrm{R}$ is an integral domain $\Rightarrow d c=1(c$ is a unit).

Example. $\mathrm{R}=\mathbb{Z}_{12}, \overline{3}=\overline{3} \times \overline{9}$ is not irreducible(reducible), suppose $\overline{3} \mid \bar{a} \bar{b}$ for $a, b \in \mathbb{Z}$. Then $3 \mid a b+12 k$ hence $3 \mid a b$. So $3 \mid a$ or $3 \mid b$. And we have $\overline{3} \mid \bar{a}$ or $\overline{3} \mid \bar{b}$. Thus $\overline{3}$ is a prime.

Definition. An integral domain R is a unique factorization domain(UFD) if

1. for any nonzero nonunit element $a \in \mathrm{R}, a=c_{1} c_{2} \cdots c_{n}$ for some irreducible elements $c_{i} \in \mathrm{R}$.
2. if $c_{1} c_{2} \cdots c_{n}=d_{1} d_{2} \cdots d_{m}$ for c_{i}, d_{j} irreducible, then $n=m$ and there exists a bijection σ such that $d_{i}, c_{\sigma(i)}$ are associates.

Example. $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$. We have $4=2 \times 2=(\sqrt{5}+1)(\sqrt{5}-1)$. Since $2, \sqrt{5}+1, \sqrt{5}-1$ are irreducible $\Rightarrow \mathbb{Z}[\sqrt{5}]$ is not UFD. Note $2, \sqrt{5}+1, \sqrt{5}-1$ are not primes in $\mathbb{Z}[\sqrt{5}]$.

Lemma. Let R be UFD. Then an irreducible element is a prime.
Proof. Let $a \in \mathrm{R}$ be irreducible. Suppose that $a \mid b c$ and $a \nmid b$. Then $a d=b c$ for some d. Since a is not associated any irreducible factors of $b \Rightarrow a \mid c$.

