Algebra

2008.10.2

3.3 FACTORIZATION IN COMMUTATIVE RINGS

Definition 1. An ideal P in a ring R is said to be prime if $P \neq R$ and for any ideals A, B in R

 $AB \subset P \quad \Rightarrow \quad A \subset P \quad or \quad B \subset P$

Definition 2. An integral domain R is a unique factorization domain *(UFD)* provided that:

(i) every nonzero nounit element a of R can be written $a = c_1 c_2 \dots c_n$, with c_1, \dots, c_n irreducible.

(ii) If $a = c_1 c_2 \dots c_n$ and $a = d_1 d_2 \dots d_m (c_i, d_i \text{ irreducible})$, then n = mand for some perutation σ of $\{1, 2, \dots, n\}$, c_i and $d_{\sigma(i)}$ are associates for every *i*.

EXAMPLE. $\mathbb{Z}[\sqrt{5}] := \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}.$

$$4 = 2 \times 2 = (\sqrt{5} + 1)(\sqrt{5} - 1)$$

 $2, \sqrt{5} + 1, \sqrt{5} - 1$ are irreducible. $\mathbb{Z}[\sqrt{5}]$ is not UFD. Notice that $2, \sqrt{5} + 1, \sqrt{5} - 1$ are not prime in $\mathbb{Z}[\sqrt{5}]$.

Lemma 1. Let R be UFD then an irreducible element is a prime.

Proof. Let $a \in R$ be irreducible, suppose $a \mid bc$ and $a \nmid b$. Hence ad = bc for some $d \in R$. K ad a bc K, D, $a \notin b$, $a \notin b$, a # b, a # b,

Theorem 1. Let R be an Integral domain. Then R is UFD if and only if (i)(Ascending chain condition) for any principal ideals

$$(a_1) \subseteq (a_2) \subseteq (a_2) \subseteq \ldots,$$

there exists $n \in \mathbb{N}$ sit $(a_1) = (a_2)$ for $i \geq n$;

(ii) (*Primeness condition*) every irreducible element is a prime.

Proof. Note that $(a) \subseteq (b) \Leftrightarrow b \mid a \text{ and } (a) = (b) \Leftrightarrow a, b \text{ are associates.}$

(⇒) (i)Suppose $(a_1) \subseteq (a_2) \subseteq (a_2) \subseteq \ldots$, without loss of generality, 將相 同的去掉, 只比較不同的, 即 $(a_1) \subsetneq (a_2) \subsetneq (a_2) \subsetneq \ldots$ By UFD, $a_1 = c_1 c_2 \ldots c_n$ with c_i irreducible. By note, $(a_i) \subsetneq (a_{i+1})$, 由前往後, 一一去掉相同的因子, 最 後會只剩下 c_k 因子, 則 $(a_i) = (a_n)$ for $i \leq n$. (ii)This is an immediate consequence of previous lemma.

 (\Leftarrow) (i)Set $T = \{a \in R \mid a \neq 0, a \text{ is not a unit and } a \text{ is not a product}$ of finite irreducible elements}, if $T = \phi$, then we are done. Suppose $T \neq \phi$, pick $a_1 \in T$, then a_1 must be reducible. Hence $a_1 = a_2c$ where $a_2 \in T, c \in R$ is not a unit. Thus $(a_1) \subsetneq (a_2)$. Following this way, we find $(a_1) \varsubsetneq (a_2) \subsetneq$..., a contradiction to ACC. (ii)Suppose $c_1c_2 \dots c_n = d_1d_2 \dots d_m$ with c_i, d_i irreducible. Since c_1 is prime(primeness), $c_1 \mid d_i$ for some i, say $i = 1, d_i \mid c_1$ then c_1, d_1 are associates, say $c_1 = d_1$. Then $c_1(c_2c_3 \dots c_n - d_2d_3 \dots d_m) = 0$, $c_1 \neq 0$ (R is an integral domain). Thus $c_2c_3 \dots c_n = d_2d_3 \dots d_m$. (ii) follows by induction on n.

Theorem 2. Every principal ideal domain(PID) R is a unique factorization domain(UFD).

Proof. (i)(Ascending chain condition) Suppose $(a_1) \subsetneq (a_2) \varsubsetneq (a_2) \subsetneq$ are ideals. Then $\bigcup_{i\geq 1} (a_i)$ is an ideal. By PID, $\bigcup_{i\geq 1} (a_i) = (b)$ for some $b \in R$, say $b \in (a_n)$ for some n, thus $(b) \subseteq (a_n)$. Hence $(a_i) = (b)$ for i = n. (ii)(**Primeness**) Pick an irreducible element $\in R$. We prove (a) is a "maximal ideal". Suppose $(a) \subsetneq (b) \subsetneq (R)$ for some $b \in R$. Then $b \mid a$ and a, b are not associates. b is not a unit. Hence a = bc for c not a unit. This is a contradiction, thus a is irredicible. Hence (a) is a prime ideal, and we know a is prime in R.