Advanced Algebra 1 Class Note 3.4 Ring of Quotients and Localization (cont.)

We study the ideals in R and ideals in $S^{-1}R$.

Example

$$R = \mathbb{Z}.$$

$$S = \{3^{n} \mid n \in \mathbb{N} \cup \{0\}\} \text{ is multiplicative colsed}$$

$$S^{-1}R = \left\{\frac{m}{3^{n}} \mid m \in \mathbb{Z}, n \in \mathbb{N}\right\}.$$

$$2\mathbb{Z}(=(2) \text{ in } \mathbb{Z}) \text{ is an ideal in } \mathbb{Z}.$$

$$2S^{-1}\mathbb{Z}(=(2) \text{ in } S^{-1}\mathbb{Z}) \text{ is an ideal in } S^{-1}\mathbb{Z}.$$
Note $6S^{-1}\mathbb{Z} = 2S^{-1}\mathbb{Z}.$

Theorem

Let R be a ring and $S \subseteq R$ be multiplicative closed.

Set $\mathbb{U} = \{ P \mid P \text{ is a prime ideal in } R \text{ with } P \cap S = \emptyset \}.$

 $\mathbb{V} = \{ P' \mid P' \text{ is a prime ideal in } S^{-1}R \}.$

Then there exists a bijection

 $f:\mathbb{U}\longmapsto\mathbb{V}$

defined by
$$f(P) = PS^{-1}R$$

:= $\{ab \mid a \in P, b \in S^{-1}R\}$ for $P \in \mathbb{U}$.

Proof

We need to check f is well-defined (i.e. $PS^{-1}R \in \mathbb{V}$), 1-1, and onto. We check f is 1-1 only. Suppose f(P) = f(Q) for some $P, Q \in \mathbb{U}$. It suffies to show $P \subseteq Q$. Pick $b \in P$. Then $\frac{b}{1} \in f(P) = f(Q)$. Hence $\frac{b}{1} = \frac{d}{c}$ for some $d \in Q, c \in S$. Thus $(bc - d) \rho = 0$ for some $\rho \in S$. Then $bc\rho = d\rho \in Q$. (Since $d \in Q$) Note $c\rho \in S$. Hence $c\rho \notin Q$. Since Q is a prime, $b \in Q$.

(4) in \mathbb{Z} .

(4) in $\mathbb{S}^{-\not\models}\mathbb{Z}$.

Question

Can you extend both \mathbb{U} and \mathbb{V} in the above theorem?

Definition

Let P be a prime ideal in R. Then $R_P := (R - P)^{-1} R$ is called the localization of R at P.

Example

$$R = \mathbb{Z}.$$

$$3\mathbb{Z} \text{ is a prime ideal in } \mathbb{Z}.$$

$$R_{3\mathbb{Z}} := (R - 3\mathbb{Z})^{-1} R$$

$$= \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, 3 \nmid n \right\} \text{ (localization of } R \text{ at } 3\mathbb{Z}).$$

$$\Rightarrow 3R_{3\mathbb{Z}} = \left\{ \frac{n}{m} \mid m, n \in \mathbb{Z}, 3 \mid m, 3 \nmid n \right\} \text{ is a unique maximal ideal.}$$
Note all proper ideals of R are contained in $\left\{ \frac{3n}{m} \mid m, n \in \mathbb{Z}, 3 \mid m \right\}$

 Proof

(Maximal)

 $3R_{3\mathbb{Z}}$ is clear an ideal and $3R_{3\mathbb{Z}} \neq R_{3\mathbb{Z}}$. Suppose $3R_{3\mathbb{Z}} \subsetneq M$, an ideal. Pick $\frac{m}{n} \in M - 3R_{3\mathbb{Z}}$, where $3 \nmid m$ and $3 \nmid n$. Then $m = \frac{m}{n} \times n \in M$. Hence $1 = am + 3b \uplus \in M$, for some $a, b \in \mathbb{Z}$. (Since $m \in M$ and $3 \in 3R_{3\mathbb{Z}} \subseteq M$.) Thus M = R, and $3R_{3\mathbb{Z}}$ is a maximal ideal. (Unique) Let M_1 be another maximal ideal of R.

If $\frac{m}{n} \in M_1 - 3R_{3\mathbb{Z}}$, then $M_1 = R$ by previous argument. $\rightarrow \leftarrow$ Hence $M_1 \subseteq 3R_{3\mathbb{Z}}$. Thus $M_1 = 3R_{3\mathbb{Z}}$.

Definition

R is a local ring if R has a unique maximal ideal.

Example

A field is a local ring since (0) is the unique maximal ideal.

Example

 \mathbb{Z}_{p^n} is a local ring since $p\mathbb{Z}_{p^n}$ is the unique maximal ideal.

Theorem (TFAE)

- (1). R is a local ring.
- (2). The set of nonunits is contained in a maximal ideal.
- (3). The set of nonunits is a maximal ideal.

Proof

$$(3) \Rightarrow (2)$$
 is clear.

 $(3) \Rightarrow (1)$

Note every ideal with a unit is R.

Hence the set of nonunits is the unique maximal ideal.

 $(2) \Rightarrow (1)$ is similar to $(3) \Rightarrow (1)$.

 $(1) \Rightarrow (3)$

Let M be the unique maximal ideal.

Then M is contained in the set of nonunits, since $M \neq R$. Pick a nonunit $b \in R$.

Then (b) is an ideal and $(b) \neq R$, since b is nonunit.

Then $(b) \subseteq M$, since M is unique maximal ideal.

Hence $b \in M$.

Thus M is the set of all nonunits.