Theorem 1 Let R be a ring, not necessary commutative. Set

\[R[x] := \left\{ \sum a_i x^i \mid a_i \in R, a_i = 0 \text{ for all but a finite number of } i, i = 0, 1, \ldots \right\}. \]

\[R[[x]] := \left\{ \sum a_i x^i \mid a_i \in R, i = 0, 1, \ldots \right\}. \]

For $\sum a_ix^i, \sum b_ix^i \in R[[x]]$, define: 1. $\sum a_ix^i + \sum b_ix^i = \sum (a_i + b_i)x^i$,

and 2. $\left(\sum a_ix^i \right) \cdot \left(\sum b_ix^i \right) = \sum \left(\sum a_kb_l \right) x^i$.

Then (1) $R[x] \subseteq R[[x]]$ are rings,

(2) If R has no zero divisor, then $R[[x]]$ has no zero divisor, and

(3) The map $R \to R[[x]]$ by $r \mapsto r + 0x + 0x^2 + \cdots$ is an injective homomorphism.

Proof. Clearly. \(\square\)

Notation.

1. For $r \in R$, we write r for $r + 0x + 0x^2 + \cdots$ in $R[[x]]$.

2. We use x^i for $0 + 0x + \cdots + 0x^{i-1} + x + 0x^{i+1} + \cdots$ in $R[[x]]$.

3. For each $f(x) \in R[x], f(x) \neq 0$, there exists $n \in \mathbb{N} \cup \{0\}$ s.t. $f(x) = a_0 + a_1x + \cdots + a_nx^n$. The integer n is called the degree of $f(x)$ and a_n is the leading coefficient.

Note. (1) $rx = xr$, for $r \in R, x \in R[[x]]$.

(2) If R is a field, then $R[x]$ is an Euclidean domain with $\mu(f) = \text{deg}(f)$, for $0 \neq f \in R[x]$.

Theorem 2 Let F be a field. Then $F[[x]]$ is a local ring.

Proof. We claim (x) is the unique maximal ideal.

(1) Clearly, $(x) \neq F[[x]]$ since $1 \notin (x)$. And it’s easy to check that (x) is a maximal ideal.

(2) It suffices to show that (x) contains all nonunits. Pick $\sum a_ix^i \in F[[x]] - (x)$, note that $x_0 \neq 0$. Set $b_0 = a_0^{-1}$ and $b_i = -a_0^{-1} \cdot (a_1b_{i-1} + a_2b_{i-2} + \cdots + a_ib_0)$ for $i \geq 1$. Hence $\left(\sum a_ix^i \right) \cdot \left(\sum b_ix^i \right) = 1$. Thus all elements not in (x) are units. Then by previous theorem, (x) is the unique maximal ideal. And hence we are done. \(\square\)
Note. (1) The set of units in $F[x]$ is $F - \{0\}$.
 (2) $F[x]$ is ED, and hence PID and UFD.

Definition. $R[x, y] := R[x][y]$, where R is a commutative ring.

Note. (1) $R[x, y] = \left\{ \sum a_{ij}x^iy^j \mid a_{ij} \in R \right\}$.
 (2) $F[x, y]$ is not PID. Since (x, y) is not generated by a single element.
 (3) (x) is a prime ideal in $F[x, y]$, but not a maximal ideal. Since $(x) \subset (x, y)$.