## § 3.5 Rings of Polynomials and Formal Power Series

Theorem 1 Let $R$ be a ring, not necessary commutative. Set
$R[x]:=\left\{\sum a_{i} x^{i} \mid a_{i} \in R, a_{i}=0\right.$ for all but a finite number of $\left.i, i=0,1, \ldots\right\}$. $R[[x]]:=\left\{\sum a_{i} x^{i} \mid a_{i} \in R, i=0,1, \ldots\right\}$.
For $\sum a_{i} x^{i}, \sum b_{i} x^{i} \in R[[x]]$, define: 1. $\sum a_{i} x^{i}+\sum b_{i} x^{i}=\sum\left(a_{i}+b_{i}\right) x^{i}$, and 2. $\left(\sum a_{i} x^{i}\right) \cdot\left(\sum b_{i} x^{i}\right)=\sum\left(\sum_{k+l=i} a_{k} b_{l}\right) x^{i}$.
Then (1) $R[x] \subseteq R[[x]]$ are rings,
(2) If $R$ has no zero divisor, then $R[[x]]$ has no zero divisor, and
(3) The map $R \rightarrow R[[x]]$ by $r \mapsto r+0 x+0 x^{2}+\cdots$ is an injective homomorphism.

Proof. Clearly.

## Notation.

1. For $r \in R$, we write $r$ for $r+0 x+0 x^{2}+\cdots$ in $R[[x]]$.
2. We use $x^{i}$ for $0+0 x+\cdots+0 x^{i-1}+x+0 x^{i+1}+\cdots$ in $R[[x]]$.
3. For each $f(x) \in R[x], f(x) \neq 0$, there exists $n \in \mathbb{N} \bigcup\{0\}$ s.t. $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. The integer $n$ is called the degree of $f(x)$ and $a_{n}$ is the leading coefficient.

Note. (1) $r x=x r$, for $r \in R, x \in R[[x]]$.
(2) If $R$ is a field, then $R[x]$ is an Euclideandomain with $\mu(f)=\operatorname{deg}(f)$, for $0 \neq f \in R[x]$.

Theorem 2 Let $F$ be a field. Then $F[[x]]$ is a local ring.
Proof. We claim $(x)$ is the unique maximal ideal.
(1) Clearly, $(x) \neq F[[x]]$ since $1 \notin(x)$. And it's easy to check that $(x)$ is a maximal ideal.
(2) It suffices to show that $(x)$ contains all nonunits. Pick $\sum a_{i} x^{i} \in$ $F[[x]]-(x)$, note that $x_{0} \neq 0$. Set $b_{0}=a_{0}^{-1}$ and $b_{i}=-a_{0}^{-1} \cdot\left(a_{1} b_{i-1}+\right.$ $\left.a_{2} b_{i-2}+\ldots+a_{i} b_{0}\right)$ for $i \geq 1$. Hence $\left(\sum a_{i} x^{i}\right) \cdot\left(\sum b_{i} x^{i}\right)=1$. Thus all elements not in $(x)$ are units. Then by previous theorem, $(x)$ is the unique maximal ideal. And hence we are done.

Note. (1) The set of units in $F[x]$ is $F-\{0\}$.
(2) $F[x]$ is $E D$, and hence $P I D$ and $U F D$.

Definition. $R[x, y]:=R[x][y]$, where $R$ is a commutative ring.
Note. (1) $R[x, y]=\left\{\sum a_{i j} x^{i} y^{j} \mid a_{i j} \in R\right\}$.
(2) $F[x, y]$ is not PID. Since $(x, y)$ is not generated by a single element.
(3) $(x)$ is a prime ideal in $F[x, y]$, but not a maximal ideal. Since $(x) \subset(x, y)$.

