§ 3.5 Rings of Polynomials and Formal Power Series

Theorem 1 Let R be a ring, not necessary commutative. Set $R[x] := \left\{ \sum a_i x^i \mid a_i \in R, a_i = 0 \text{ for all but a finite number of } i, i = 0, 1, \ldots \right\}.$ $R[[x]] := \left\{ \sum a_i x^i \mid a_i \in R, i = 0, 1, \ldots \right\}.$ For $\sum a_i x^i, \sum b_i x^i \in R[[x]], \text{ define: } 1. \sum a_i x^i + \sum b_i x^i = \sum (a_i + b_i) x^i,$ and 2. $\left(\sum a_i x^i \right) \cdot \left(\sum b_i x^i \right) = \sum \left(\sum_{k+l=i} a_k b_l \right) x^i.$

Then (1) $R[x] \subseteq R[[x]]$ are rings,

(2) If R has no zero divisor, then R[[x]] has no zero divisor, and

(3) The map $R \to R[[x]]$ by $r \mapsto r + 0x + 0x^2 + \cdots$ is an injective homomorphism.

Proof. Clearly. \Box

Notation.

- 1. For $r \in R$, we write r for $r + 0x + 0x^2 + \cdots$ in R[[x]].
- 2. We use x^i for $0 + 0x + \dots + 0x^{i-1} + x + 0x^{i+1} + \dots$ in R[[x]].
- 3. For each $f(x) \in R[x]$, $f(x) \neq 0$, there exists $n \in \mathbb{N} \bigcup \{0\}$ s.t. $f(x) = a_0 + a_1 x + \cdots + a_n x^n$. The integer n is called the degree of f(x) and a_n is the leading coefficient.
- Note. (1) rx = xr, for $r \in R$, $x \in R[[x]]$. (2) If R is a field, then R[x] is an Euclideandomain with $\mu(f) = deg(f)$, for $0 \neq f \in R[x]$.

Theorem 2 Let F be a field. Then F[[x]] is a local ring.

Proof. We claim (x) is the unique maximal ideal. (1) Clearly, $(x) \neq F[[x]]$ since $1 \notin (x)$. And it's easy to check that (x) is a maximal ideal. (2) It suffices to show that (x) contains all nonunits. Pick $\sum a_i x^i \in F[[x]] - (x)$, note that $x_0 \neq 0$. Set $b_0 = a_0^{-1}$ and $b_i = -a_0^{-1} \cdot (a_1 b_{i-1} + a_2 b_{i-2} + \ldots + a_i b_0)$ for $i \geq 1$. Hence $\left(\sum a_i x^i\right) \cdot \left(\sum b_i x^i\right) = 1$. Thus all elements not in (x) are units. Then by previous theorem, (x) is the unique maximal ideal. And hence we are done. \Box Note. (1) The set of units in F[x] is $F - \{0\}$. (2) F[x] is ED, and hence PID and UFD.

Definition. R[x, y] := R[x][y], where R is a commutative ring.

- Note. (1) $R[x, y] = \left\{ \sum_{i \neq j} a_{ij} x^i y^j \mid a_{ij} \in R \right\}.$ (2) F[x, y] is not *PID*. Since (x, y) is not generated by a single
 - element.
 - (3) (x) is a prime ideal in F[x, y], but not a maximal ideal. Since $(x) \subset (x, y).$