Algebra

2008.10.2 to 2008.10.9

3.4 RINGS OF QUOTIENTS AND LOCALIZATION

We still assume R is commutative.

Definition 1. A nonempty subset S of a ring R is **multiplicative closed** if

 $(1)1 \in S$ $(2)a, b \in S \quad \Rightarrow \quad ab \in S$

Example.

Let $P \neq R$ be prime ideal of R. Then S = R - P is multiplicative closed.

Example.

Let $\{P_i | i \in Z_+\}$ be a set of proper prime ideals of R. Then $S = R - \bigcup_{i \in Z_+} P_i$ is multiplicative closed.

Proof. Pick $a, b \in S$. Then $a, b \notin P_i$ for each i. Hence $ab \notin P_i$ for each i. Thus $ab \notin S$.

Example.

 $S = \{a \in R | ab \neq 0 \text{ for all } b \neq 0 \text{ in } R\}$ is multiplicative closed. Note. If $a \in R - P$ is a zero divisor, then ab = 0 for some $b \in P$.

Definition 2. Let $S \subseteq R$ be multiplicative closed. Let \sim be a relation on $R \times S$ by

$$(a,b) \sim (c,d) \Leftrightarrow (ad-bc)\rho = 0 \text{ for some } \rho \in S$$

Lemma 1. \sim is an equivalence relation.

Proof. check (1)(a, b) ~ (a, b) (reflexive) (2)(a, b) ~ (c, d) \Leftrightarrow (c, d) ~ (a, b) (symmetric) (3)(a, b) ~ (c, d) and (c, d) ~ (e, f) \Rightarrow (a, b) ~ (e, f) (transitive) We prove "transitive" for example. Suppose (a, b) ~ (c, d) and (c, d) ~ (e, f). Then $(ad - bc)\rho = 0$ and (cf - de)t = 0 for some $\rho, t \in S$. Hence $ad\rho = bc\rho$ and cft = det. Thus $ad\rho ft = bc\rho ft = b\rho det$. Then $(af - be)d\rho t = 0$ where $d, \rho, t \in S$ and hence $d\rho t \in S$. Thus $(a, b) \sim (e, f)$.

Definition 3. For $(a, b) \in R \times S$. Let $\overline{(a, b)} := \{(c, d) \in R \times S \mid (c, d) \sim (a, b)\}$

Notation.

(1)We use $\frac{a}{b}$ for $\overline{(a,b)}$. (2) $S^{-1}R := \{\overline{(a,b)} \mid a \in R, b \in S\}$

Lemma 2. Define + and \cdot on $s^{-1}R$ by

 $\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)} \text{ and } \overline{(a,b)} \cdot \overline{(c,d)} = \overline{(ac,bd)}.$ Then $S^{-1}R$ is a ring with identity $1 = \overline{(a,a)}$ and $0 = \overline{(0,a)}$ for $a \in S$

Proof. This is straight forward.

(Don't forget to check well-defined)

Lemma 3. Suppose $S \subseteq \{a \in R \mid a \text{ is not a zero divisor }\}$. Then the map $i_s : R \to S^{-1}R$ defined by $i_s(a) = \overline{(a, 1)}$ is an injective homomorphism.

Proof. It is easy to check i_s is homomorphism. To check injective, it suffices to check $ker(i_s) = \{0\}$. Pick $a \in ker(i_s)$. Then $i_s(a) = \overline{(a, 1)} = \overline{(0, 1)}$. Hence $(a \cdot 1 - 1 \cdot 0)\rho = 0$ for some $\rho \in S$. Thus a = 0 by definition of S. \Box

Lemma 4. Let R be an integral domain and $S = R - \{0\}$. Then $S^{-1}R$ is a field, called the quotient field of R.

Proof. Pick $\overline{(a,b)} \in S^{-1}R$ with $\overline{(a,b)} \neq 0$. In particular, $0 \neq a \in S$. Then $\overline{(b,a)} \in S^{-1}R$ and $\overline{(a,b)} \cdot \overline{(b,a)} = \overline{(ab,ab)} = 1$

Definition 4. If $S = \{a \mid a \text{ is not a zero divisor }\}$, then $S^{-1}R$ is called the complete ring of quotient.

Theorem 1. (Universal Theorem) Let $f : R \to R'$ be a homomorphism of rings and $S \subseteq R$ be multiplicative closed such that f(a) is a unit for $a \in S$. Then there exists a unique map $\hat{f} : S^{-1}R \to R'$ such that $\hat{f}(\overline{(a,1)}) = f(a)$ for $a \in R$. i.e. $\hat{f} \circ i_s = f$.

Proof. Define $\hat{f} : S^{-1}R \to R'$ by $\hat{f}(\overline{(a,b)}) = f(a)f(b)^{-1}$. It is straight forward to check that \hat{f} is well-defined, homomorphism and $\hat{f} \circ i_s = f$. To prove uniqueness, suppose $\hat{f}' : S^{-1}R \to R'$ such that $\hat{f}' \circ i_s = f$. Note $\hat{f}'(\overline{(1,b)}) \cdot \hat{f}'(\overline{(b,1)}) = \hat{f}'(\overline{(b,b)}) = 1$. Hence $\hat{f}'(\overline{(1,b)}) = (\hat{f}(\overline{(b,1)}))^{-1} = f(b)^{-1}$. Then $\hat{f}'(\overline{(a,b)}) = \hat{f}'(\overline{(a,1)},\overline{(1,b)}) = f(a) \cdot f(b)^{-1} = \hat{f}(\overline{(a,b)})$