Algebra

2008.10.2 to 2008.10.9

3.4 RINGS OF QUOTIENTS AND LOCALIZATION

We still assume R is commutative.

Definition 1. A nonempty subset S of a ring R is multiplicative closed if
(1) $1 \in S$
(2) $a, b \in S \quad \Rightarrow \quad a b \in S$

Example.

Let $P \neq R$ be prime ideal of R . Then $S=R-P$ is muliplicative closed.

Example.

Let $\left\{P_{i} \mid i \in Z_{+}\right\}$be a set of proper prime ideals of R. Then $S=R-\bigcup_{i \in Z_{+}} P_{i}$ is multiplicative closed.

Proof. Pick $a, b \in S$. Then $a, b \notin P_{i}$ for each i. Hence $a b \notin P_{i}$ for each i. Thus $a b \notin S$.

Example.

$$
S=\{a \in R \mid a b \neq 0 \text { for all } b \neq 0 \text { in } R\} \text { is multiplicative closed. }
$$

Note. If $a \in R-P$ is a zero divisor, then $a b=0$ for some $b \in P$.

Definition 2. Let $S \subseteq R$ be multiplicative closed. Let \sim be a relation on $R \times S$ by

$$
(a, b) \sim(c, d) \Leftrightarrow(a d-b c) \rho=0 \text { for some } \rho \in S
$$

Lemma 1. \sim is an equivalence relation.
Proof. check
(1) $(a, b) \sim(a, b)$ (reflexive)
$(2)(a, b) \sim(c, d) \Leftrightarrow(c, d) \sim(a, b)$ (symmetric)
$(3)(a, b) \sim(c, d)$ and $(c, d) \sim(e, f) \Rightarrow(a, b) \sim(e, f)$ (transitive)
We prove "transitive" for example.
Suppose $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.
Then $(a d-b c) \rho=0$ and $(c f-d e) t=0$ for some $\rho, \mathrm{t} \in \mathrm{S}$.
Hence $a d \rho=b c \rho$ and $c f t=d e t$.
Thus $a d \rho f t=b c \rho f t=b \rho d e t$.
Then $(a f-b e) d \rho t=0$ where $d, \rho, t \in S$ and hence $d \rho t \in S$.
Thus $(a, b) \sim(e, f)$.
Definition 3. For $(a, b) \in R \times S$. Let

$$
\overline{(a, b)}:=\{(c, d) \in R \times S \mid(c, d) \sim(a, b)\}
$$

Notation.

(1)We use $\frac{a}{b}$ for $\overline{(a, b)}$.
(2) $S^{-1} R:=\{\overline{(a, b)} \mid a \in R, b \in S\}$

Lemma 2. Define + and \cdot on $s^{-1} R$ by

$$
\overline{(a, b)}+\overline{(c, d)}=\overline{(a d+b c, b d)} \text { and } \overline{(a, b)} \cdot \overline{(c, d)}=\overline{(a c, b d)} .
$$

Then $S^{-1} R$ is a ring with identity $1=\overline{(a, a)}$ and $0=\overline{(0, a)}$ for $a \in S$
Proof. This is straight forward.
(Don't forget to check well-defined)
Lemma 3. Suppose $S \subseteq\{a \in R \mid a$ is not a zero divisor $\}$. Then the map $i_{s}: R \rightarrow S^{-1} R$ defined by $i_{s}(a)=\overline{(a, 1)}$ is an injective homomorphism.

Proof. It is easy to check i_{s} is homomorphism. To check injective, it suffices to check $\operatorname{ker}\left(i_{s}\right)=\{0\}$. Pick $a \in \operatorname{ker}\left(i_{s}\right)$. Then $i_{s}(a)=\overline{(a, 1)}=\overline{(0,1)}$. Hence $(a \cdot 1-1 \cdot 0) \rho=0$ for some $\rho \in S$. Thus $a=0$ by definition of S.

Lemma 4. Let R be an integral domain and $S=R-\{0\}$. Then $S^{-1} R$ is a field, called the quotient field of R.

Proof. Pick $\overline{(a, b)} \in S^{-1} R$ with $\overline{(a, b)} \neq 0$. In particular, $0 \neq a \in S$. Then $\overline{(b, a)} \in S^{-1} R$ and $\overline{(a, b)} \cdot \overline{(b, a)}=\overline{(a b, a b)}=1$

Definition 4. If $S=\{a \mid a$ is not a zero divisor $\}$, then $S^{-1} R$ is called the complete ring of quotient.

Theorem 1. (Universal Theorem) Let $f: R \rightarrow R^{\prime}$ be a homomorphism of rings and $S \subseteq R$ be multiplicative closed such that $f(a)$ is a unit for $a \in S$. Then there exists a unique map $\hat{f}: S^{-1} R \rightarrow R^{\prime}$ such that $\hat{f}(\overline{(a, 1)})=f(a)$ for $a \in R$. i.e. $\hat{f} \circ i_{s}=f$.

Proof. Define $\hat{f}: S^{-1} R \rightarrow R^{\prime}$ by $\hat{f}(\overline{(a, b)})=f(a) f(b)^{-1}$. It is straight forward to check that \hat{f} is well-defined, homomorphism and $\hat{f} \circ i_{s}=f$. To prove uniqueness, suppose $\hat{f}^{\prime}: S^{-1} R \rightarrow R^{\prime}$ such that $\hat{f}^{\prime} \circ i_{s}=f$. Note $\hat{f}^{\prime}(\overline{(1, b)}) \cdot \hat{f}^{\prime}(\overline{(b, 1)})=\hat{f}^{\prime}(\overline{(b, b)})=1$. Hence $\hat{f}^{\prime}(\overline{(1, b)})=(\hat{f}(\overline{(b, 1)}))^{-1}=f(b)^{-1}$. Then $\hat{f}^{\prime}(\overline{(a, b)})=\hat{f}^{\prime}(\overline{(a, 1)}, \overline{(1, b)})=f(a) \cdot f(b)^{-1}=\hat{f}(\overline{(a, b)})$

