3.6 Factorization in Polynimial Rings

We assume R is commutative UFD.
Def: For $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in R[x], c(f)=\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is called the content of $f(x)$.

Ex: $f(x)=3 x^{2}+6 x+3 \epsilon \mathbb{Z}[x]$, then $c(f)=3$ in $\mathbb{Z}[x]$ and $c(f)=1$ in $\mathbb{R}[x]$.
Note: $(1) 3 x^{2}+6 x+3=3(x+1)(x+1)$ where $3, \mathrm{x}+1$ are irreducible element in $\mathbb{Z}[x]$. (2) $3 x^{2}+6 x+3=(3 x+3)(x+1)$ where $3 \mathrm{x}+3, \mathrm{x}+1$ are irreducible element in $\mathbb{Q}[x]$.

Def: (1) $f(x) \epsilon R[x]$ is primitive if $c(f)=1$. (2) $f(x) \epsilon R[x]$ is monic if the leading coefficient is 1 .

Note:An irreducible polynomial is primitive.
Lemma: (Gauss Lemma) $c(f(x) g(x))=c(f(x)) c(g(x))$ for $f(x), g(x) \epsilon R[x]$.
Prove: Suppose $f(x)=c(f) f_{1}(x)$ and $g(x)=c(g) g_{1}(x)$ where $f_{1}(x), g_{1}(x)$ are primitive, then $c(f g)=c\left(c(f) f_{1} c(g) g_{1}\right)=c(f) c(g) c\left(f_{1} g_{1}\right)$. It remains to show $c\left(f_{1}, g_{1}\right)=1$. Suppose

$$
f_{1}(x)=\sum_{i=0}^{n} a_{i} x^{i} \text { and } g_{1}(x)=\sum_{i=0}^{m} b_{i} x^{i}
$$

Suppose P is an irreducible element in R such that $P \mid c\left(f_{1} g_{1}\right)$. Let s be smallest integer such that $P \mid a_{i}$ for $i<s$ and P can not be divided by a_{s}. Let t be the smallest integer such that $P \mid b_{j}$ for $j<t$ and P can not be divided by b_{t}. Then $P \mid \sum_{i+j=s+t} a_{i} b_{j}$ and

$$
\sum_{i+j=s+t} a_{i} b_{j}=a_{0} b_{s+t}+a_{1} b_{s+t-1}+\ldots+a_{s-1} b_{t+1}+a_{s} b_{t}+a_{s+1} b_{t-1}+\ldots+a_{s+t} b_{0}
$$

Hence $P \mid a_{s} b_{t}$, thus $P \mid a_{s}$ or $P \mid b_{t}$ a contradiction.
Lemma: Let F be the quotient field of R , and $f(x), g(x) \epsilon R[x]$ are primitive, then f, g are associate in $\mathrm{R}[\mathrm{x}]$ if and only if f, g are associate in $\mathrm{F}[\mathrm{x}]$.

Prove:(necessary)clear. (sufficient)Suppose $f=\frac{b}{a} g$ where $a, b \in R$, then $a f=b g$ and $a=c(a f)=c(b g)$. Hence $f=g$.

Lemma: Let R be UFD and F be the quotient field of R . Pick primitive polynomial $f(x) \epsilon R[x]$ with degree ≥ 1, then $f(x)$ is irreducible in $\mathrm{R}[\mathrm{x}]$ if and only if $f(x)$ is irreducible in $\mathrm{F}[\mathrm{x}]$.

Prove:(necessary)Suppose $f(x)=g(x) h(x)$ for some $g(x), h(x) \epsilon F[x]$ with degree ≥ 1, then $f(x)=c g_{1}(x) h_{1}(x)$ for $c \in F$ and $g_{1}(x), h_{1}(x) \epsilon R[x]$ are primitive polynomials with degree ≥ 1. Note $g_{1}(x) h_{1}(x)$ is primitive. Since $f(x)$ and $g_{1}(x) h_{1}(x)$ are associates in $\mathrm{F}[\mathrm{x}]$, they are also associates in $\mathrm{R}[\mathrm{x}]$. Hence $f(x)$ is not irreducible in $\mathrm{R}[\mathrm{x}]$. (sufficient)Suppose $f(x)=g(x) h(x)$ where $g(x), h(x) \epsilon R[x]$ are not units in $\mathbb{R}[x]$. Note $1=c(f) c(g h)=c(g) c(h)$, hence $c(g)=c(h)=1$ in R. Hence the degree of $g(x), h(x)$ are ≥ 1. Thus $g(x), h(x)$ are not unit in $\mathrm{F}[\mathrm{x}]$. Hence $f(x)$ is not irreducible in $\mathrm{F}[\mathrm{x}]$.

