Algebra

10.30,11.6

Theorem. R is U.F.D. $\Rightarrow R[x]$ is U.F.D..
Corollary. $R[x][y]=R[x, y]$ is UFD.
proof. Let F be the field of quotient of R .
Note $F[x]$ is U.F.D.
Pick $f(x) \in R[x]$. We can assume $\operatorname{deg} f(x) \geq 1$. Then $f(x)=c(f) f_{1}(x)$ where $f_{1}(x) \in R[x]$ is primitive.
Note $f_{1}(x)=\frac{b}{a} h_{1}(x) h_{2}(x) \ldots h_{k}(x)$ where $h_{i}(x) \in R[x]$ are irreducible primitive, by the UFD of $F[x]$.
Then $a=c\left(a f_{1}(x)\right)=c\left(b h_{1}(x) \ldots h_{2}(x)\right)=b$.
Hence we assume $f(x)=c(f) h_{1}(x) h_{2}(x) \ldots h_{k}(x)$.
Since $C(f) \in R$, suppose $C(f)=c_{1} c_{2} \ldots c_{n}$, for some irreducible elements $c_{i} \in R$.
Then $f(x)=c_{1} c_{2} \ldots c_{n} h_{1}(x) h_{2}(x) \ldots h_{k}(x)$ is a product of irreducible elements in $R[x]$.
(Uniqueness)
Suppose $c_{1} c_{2} \ldots c_{n} h_{1}(x) h_{2}(x) \ldots h_{k}(x)=d_{1} d_{2} \ldots d_{m} h_{1}^{\prime}(x) h_{2}^{\prime}(x) \ldots h_{s}^{\prime}(x)$
where $c_{i}, d_{i} \in R$ and $h_{i}(x), h_{i}^{\prime}(x) \in R[x]$ have degree ≥ 1,all of them irreducible in $R[x]$.
we assume $h_{i}(x), h_{i}^{\prime}(x)$ are primitive, then
$c_{1} c_{2} \ldots c_{n}=C\left(c_{1} c_{2} \ldots c_{n} h_{1}(x) h_{2}(x) \ldots h_{k}(x)\right)=C\left(d_{1} d_{2} \ldots d_{m} h_{1}^{\prime}(x) h_{2}^{\prime}(x) \ldots h_{k}^{\prime}(x)\right)=$ $d_{1} d_{2} \ldots d_{m}$

Hence $n=m$ and there exists a bijection σ on $1,2, \ldots, k$, s.t $c_{i}=d_{\sigma(i)}$.
Also we have $h_{1}(x) h_{2}(x) \ldots h_{k}(x)=h_{1}^{\prime}(x) h_{2}^{\prime}(x) \ldots h_{k}^{\prime}(x)$ viewing they are in $F[x]$ and by UFD of $F[x]$, we have $k=s$ and there exists a bijection on $1,2, \ldots, k$ such that $h_{i}(x), h_{i}^{\prime}(x)$ are associates in $F[x]$, and then are associates in $R[x]$.

Theorem. (Eisenstein's Criterion)
Let R be a UFD and F its quotient field.
Let $f(x)=\sum_{i=1}^{n} a_{i} x^{i} \in R[x]$ have degree ≥ 1.
Let $P \in R$ be an irreducible element s.t $p \mid a_{i}$ for all $i \leq n-1, p \nmid a_{n}$ and $p^{2} \nmid a_{0}$.
Then $f(x)$ is irreducible in $F[x]$
ex. $R=\mathbb{Z}$ and $F=\mathbb{Q}$,
$f(x)=2 x^{2}+6 x+6 \in Z[x]$
Pick $p=3$, then $3 \mid 6=a_{0}=a_{1}, 3 \nmid 2=a_{2}$ and $3^{2} \nmid 6=a_{0}$
Hence $2 x^{2}+6 x+6$ is irreducible in $Q[x]$.
Note: $2 x^{2}+6 x+6=2\left(x^{2}+3 x+3\right)$ and 2 is not unit.
proof. Since the content $c(f)$ is a unit in F , we can assume f is primitive in $R[x]$. It suffices to show f is irreducible in $R[x]$ by previous lemma. Suppose $\sum_{i=0}^{n} a_{i} x^{i}=\sum_{i=1}^{m} b_{i} x^{i} \sum_{i=1}^{k} c_{i} x^{i}$. Since $p \mid a_{0}=b_{0} c_{0}$ and $p^{2} \nmid a_{0}=b_{0} c_{0}$. we can assume $p \mid b_{0}$ and $p \nmid c_{0}$. (The other case $p \mid c_{0}, p \nmid b_{0}$ is similar.) Since $p \nmid a_{n}, p \nmid b_{i}$ for some i. Let s be the integer s.t $p \mid b_{i}$ for $i<s$ and $p \nmid b_{s}$. Note $s \leqq m<n$. Then $p \mid a_{s}=b_{0} c_{s}+b_{1} c_{s-1}+\ldots+b_{s-1} c_{1}+b_{s} c_{0}$, and hence $p \mid b_{s} c_{0}$, a contradiction.

