Algebra

10.30,11.6

Theorem. R is U.F.D. \Rightarrow R[x] is U.F.D..

Corollary. R[x][y]=R[x,y] is UFD.

proof. Let F be the field of quotient of R.

Note F[x] is U.F.D.

Pick $f(x) \in R[x]$. We can assume $degf(x) \ge 1$. Then $f(x) = c(f)f_1(x)$ where $f_1(x) \in R[x]$ is primitive.

Note $f_1(x) = \frac{b}{a}h_1(x)h_2(x)...h_k(x)$ where $h_i(x) \in R[x]$ are irreducible primitive, by the UFD of F[x].

Then $a = c(af_1(x)) = c(bh_1(x)...h_2(x)) = b.$

Hence we assume $f(x) = c(f)h_1(x)h_2(x)...h_k(x)$.

Since $C(f) \in R$, suppose $C(f) = c_1 c_2 \dots c_n$, for some irreducible elements $c_i \in R$.

Then $f(x) = c_1 c_2 \dots c_n h_1(x) h_2(x) \dots h_k(x)$ is a product of irreducible elements in R[x].

(Uniqueness)

Suppose $c_1c_2...c_nh_1(x)h_2(x)...h_k(x) = d_1d_2...d_mh'_1(x)h'_2(x)...h'_s(x)$

where $c_i, d_i \in R$ and $h_i(x), h'_i(x) \in R[x]$ have degree ≥ 1 , all of them irreducible in R[x].

we assume $h_i(x), h'_i(x)$ are primitive, then $c_1c_2...c_n = C(c_1c_2...c_nh_1(x)h_2(x)...h_k(x)) = C(d_1d_2...d_mh'_1(x)h'_2(x)...h'_k(x)) = d_1d_2...d_m$ Hence n = m and there exists a bijection σ on 1, 2, ..., k, s.t $c_i = d_{\sigma(i)}$.

Also we have $h_1(x)h_2(x)...h_k(x) = h'_1(x)h'_2(x)...h'_k(x)$ viewing they are in F[x] and by UFD of F[x], we have k = s and there exists a bijection on 1, 2, ..., k such that $h_i(x), h'_i(x)$ are associates in F[x], and then are associates in R[x].

Theorem. (Eisenstein's Criterion) Let R be a UFD and F its quotient field. Let $f(x) = \sum_{i=1}^{n} a_i x^i \in R[x]$ have degree ≥ 1 . Let $P \in R$ be an irreducible element s.t $p|a_i$ for all $i \leq n-1$, $p \nmid a_n$ and $p^2 \nmid a_0$. Then f(x) is irreducible in F[x]

ex. $R = \mathbb{Z}$ and $F = \mathbb{Q}$, $f(x) = 2x^2 + 6x + 6 \in \mathbb{Z}[x]$ Pick p = 3, then $3|6 = a_0 = a_{1,3} \nmid 2 = a_2$ and $3^2 \nmid 6 = a_0$ Hence $2x^2 + 6x + 6$ is irreducible in $\mathbb{Q}[x]$. Note: $2x^2 + 6x + 6 = 2(x^2 + 3x + 3)$ and 2 is not unit.

proof. Since the content c(f) is a unit in F, we can assume f is primitive in R[x]. It suffices to show f is irreducible in R[x] by previous lemma. Suppose $\sum_{i=0}^{n} a_i x^i = \sum_{i=1}^{m} b_i x^i \sum_{i=1}^{k} c_i x^i$. Since $p|a_0 = b_0 c_0$ and $p^2 \nmid a_0 = b_0 c_0$. we can assume $p|b_0$ and $p \nmid c_0$. (The other case $p|c_0$, $p \nmid b_0$ is similar.) Since $p \nmid a_n, p \nmid b_i$ for some i. Let s be the integer $s.t \ p|b_i$ for i < s and $p \nmid b_s$. Note $s \leq m < n$. Then $p|a_s = b_0 c_s + b_1 c_{s-1} + \dots + b_{s-1} c_1 + b_s c_0$, and hence $p|b_s c_0$, a contradiction.