Algebra

11.6,11.13

4.1 Modules and Homomorphism

Definition. Let R be a ring. M is a R-module if there exists a binary operation + on M, and a map $R \times M \rightarrow M$ (denoted by $(r, m)=r m$) such that for any $a, b, c \in M, r, s \in R$, we have
(1a) $a+b=b+a$
(1b) $(a+b)+c=a+(b+c)$
(1c) $a+0=a$
(1d) there exists $-a \in M$ s.t $a+(-a)=0$
(2) $r(a+b)=r a+r b$
(3) $(r+s) a=r a+r b$
(4) $(r s) a=r(s a)$
(5) If $1 \in R$ then $1 a=a$

Note:

1. Right R-module can be defined similarly,
2. we always assume a module is a left module.

We always assume M is a R -module.
ex. $M=\mathbb{R}^{n}, R=\mathbb{R}$ with + on M, and $R \times M \rightarrow M$ defined as in high school. Hence \mathbb{R}^{n} is \mathbb{R} - module
ex. Let $R \subseteq M$ be two rings. Then M is R-module.
ex. Fix an $n \times n$ matrix A over \mathbb{R}. Set $R=\mathbb{R}[x]$ and $M=\mathbb{R}^{n}$. Then + on M is natural. For $f(x) \in \mathbb{R}[x]$ and $u \in \mathbb{R}^{n}$ define $f(x) u=f(A) u$. Then \mathbb{R}^{n} is a $\mathbb{R}[x]$-module.
proof. Check (4)
$(f(x) g(x)) u=f(x)(g(x) u)$ for $f(x), g(x) \in \mathbb{R}[x]$ and $u \in \mathbb{R}^{n}$;
$(f(x) g(x)) u=(f(A) g(A)) u=f(A)(g(A) u)=f(x) g(A) u=f(x)(g(x) u)$
Note: In previous example, we can set $R=\{f(A) \mid f(x) \in \mathbb{R}[x]\}$ and then \mathbb{R}^{n} is a R-module, but we do not prefer to this setting.

Lemma. (1) $r 0_{M}=0_{M}$,
(2) $0_{R}=0_{M}$,
(3) $(-r) a=r(-a)=-(r a)$
for all $r \in R, a \in M$
proof. (1) $r 0_{M}+r 0_{M}=r\left(0_{M}+0_{M}\right)=r 0_{M}$, we have $r 0_{M}=0$.
(2),(3) can be done similarly.

Definition. $N \subseteq M$ is a R-submodule of M if N is a R-module with the same,+ inherited from M.
ex. $M=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i} \in \mathbb{R}\right\}$
$N=\left\{\left(a_{1}, a_{2}, 0\right) \mid a_{i} \in \mathbb{R}\right\}$
$\Rightarrow N$ is a \mathbb{R}-submodule of M.
(Check closed $a_{1}+a_{2} \in N$ and $r a_{1} \in N$)
Definition. Let N be a R-submodule of M. Set $M / N:=\{a+N \mid a \in M\}$ and $(a+N)+(b+N)=(a+b)+N$ and $r(a+N)=(r a)+N$. Then M / N is a R-module called the quotient module of M by N.
ex. $M=\mathbb{Q}, N=\mathbb{Z}, R=\mathbb{Z}, \Rightarrow \mathbb{Q} / \mathbb{Z}$ is a \mathbb{Z}-module.
Note: $\mathbb{Q} / \mathbb{Z}=\{a+\mathbb{Z} \mid a \in[0,1) \cap \mathbb{Q}\}$

Definition. For $S \subseteq M$, let (s) denote the intersection of all R-submodules containing S.
(The intersection of R-submodules is a R-submodule.)
Note: 1. If H, K are R-submodules of M , then $(H \cup K)=H+K$.
2. (S) is finite generated if $|S|<\infty$
3. (S) is cyclic if $|S|=1$.

Definition. Let M, N be R-module. A map $f: M \mapsto N$ is a R-module homomorphism if
(1) $f(a+b)=f(a)+f(b)$
(2) $f(r a)=r f(a)$

Note:
(1) If R is a field, a R-module homomorphism is also called a linear transformation.
(2) A R-module isomorphism is a bijective R-module homomorphism.

Three theorem for homomorphisms.
Theorem. Let $f: M \mapsto N$ be R-module homomorphism and kerf $:=\{a \in$ $M \mid f(a)=0\}$. Then kerf is a R-submodule of M and $M / \operatorname{ker} f$ is isomorphic to $f(M)$

Theorem. Let K, N be R-submodule of M. Then $(K+N) / N$ is isomorphic to $K / K \cap N$.

Theorem. Let $K \subseteq N$ be R-submodules of M. Then N / K is a R-submodule of M / K and $(M / K) /(N / K)$ is isomorphic to M / N.
proof. "mutatis mutandis" $=$ "with those things having been changed which need to be changed."

Definition. For $m \in M, 0_{m}:=\{r \in R \mid r m=0\}$ is called the order ideal of m, or the amihilator of m.

Note: 0_{m} is an ideal of R.

Prop. For $m \in M$, the R-submodule (m) is isomorphic to the R-module R / O_{m}.
proof. Let $f:=R \mapsto(m)$ by $f(r)=r m$. Hence f is surjective R-module homomorphism with $\operatorname{ker} f=0_{m}$.
By homomorphism theorem, $R / 0_{m} \cong \operatorname{rang} f=(m)$
ex. $R=\mathbb{Z},(M=\mathbb{Z} \times \mathbb{Z}) /((2,2) \times(4,-2))$. Find $0_{\overline{(1,1)}}$ and $0_{\overline{(1,0)}}$
Sol: $0_{\overline{(1,1)}}=2 \mathbb{Z}, 0_{\overline{(1,0)}}=6 \mathbb{Z}$
Definition. $M_{t}:=\left\{m \in M \mid 0_{m} \neq 0\right\}$ is called the torsion R-submodule of M, where R is commutative.

If $M_{t}=M$, then M is called a torsion module.
If $M_{t}=0$, then M is called torsion-free.

