Algebra

11.6,11.13

4.1 Modules and Homomorphism

Definition. Let R be a ring. M is a R-module if there exists a binary operation + on M, and a map $R \times M \to M$ (denoted by (r, m) = rm) such that for any $a, b, c \in M, r, s \in R$, we have (1a) a + b = b + a(1b) (a + b) + c = a + (b + c)(1c) a + 0 = a(1d) there exists $-a \in M$ s.t a + (-a) = 0(2) r(a + b) = ra + rb(3) (r + s)a = ra + rb(4) (rs)a = r(sa) $(5) If 1 \in R$ then 1a = aNote:

1. Right R-module can be defined similarly,

2. we always assume a module is a left module.

We always assume M is a R-module.

ex. $M = \mathbb{R}^n, R = \mathbb{R}$ with + on M, and $R \times M \to M$ defined as in high school. Hence \mathbb{R}^n is \mathbb{R} – module

ex. Let $R \subseteq M$ be two rings. Then M is R-module.

ex. Fix an $n \times n$ matrix A over \mathbb{R} . Set $R = \mathbb{R}[x]$ and $M = \mathbb{R}^n$. Then + on M is natural. For $f(x) \in \mathbb{R}[x]$ and $u \in \mathbb{R}^n$ define f(x)u = f(A)u. Then \mathbb{R}^n is a $\mathbb{R}[x]$ -module.

proof. Check (4) (f(x)g(x))u = f(x)(g(x)u) for $f(x), g(x) \in \mathbb{R}[x]$ and $u \in \mathbb{R}^n$; (f(x)g(x))u = (f(A)g(A))u = f(A)(g(A)u) = f(x)g(A)u = f(x)(g(x)u)

Note: In previous example, we can set $R = \{f(A) | f(x) \in \mathbb{R}[x]\}$ and then \mathbb{R}^n is a R-module, but we do not prefer to this setting.

Lemma. (1) $r0_M = 0_M$, (2) $0_R = 0_M$, (3) (-r)a=r(-a)=-(ra)for all $r \in R$, $a \in M$

proof. (1) $r0_M + r0_M = r(0_M + 0_M) = r0_M$, we have $r0_M = 0$. (2),(3) can be done similarly.

Definition. $N \subseteq M$ is a *R*-submodule of *M* if *N* is a *R*-module with the same $+, \cdot$ inherited from *M*.

ex. $M = \{(a_1, a_2, a_3) | a_i \in \mathbb{R}\}$ $N = \{(a_1, a_2, 0) | a_i \in \mathbb{R}\}$ $\Rightarrow N \text{ is a } \mathbb{R}\text{-submodule of } M.$ (Check closed $a_1 + a_2 \in N \text{ and } ra_1 \in N$)

Definition. Let N be a R-submodule of M. Set $M/N := \{a + N | a \in M\}$ and (a + N) + (b + N) = (a + b) + N and r(a + N) = (ra) + N. Then M/N is a R-module called the quotient module of M by N.

ex. $M = \mathbb{Q}, N = \mathbb{Z}, R = \mathbb{Z}, \Rightarrow \mathbb{Q}/\mathbb{Z}$ is a \mathbb{Z} -module. Note: $\mathbb{Q}/\mathbb{Z} = \{a + \mathbb{Z} | a \in [0, 1) \cap \mathbb{Q}\}$ **Definition.** For $S \subseteq M$, let (s) denote the intersection of all R-submodules containing S.

(The intersection of R-submodules is a R-submodule.)

Note: 1. If H,K are R-submodules of M, then $(H \cup K) = H + K$.

2. (S) is finite generated if $|S| < \infty$

3. (S) is cyclic if |S| = 1.

Definition. Let M,N be R-module. A map $f: M \mapsto N$ is a R-module homomorphism if

(1) f(a+b) = f(a) + f(b)

(2)
$$f(ra) = rf(a)$$

(1) If R is a field, a R-module homomorphism is also called a linear transformation.

(2) A R-module isomorphism is a bijective R-module homomorphism.

Three theorem for homomorphisms.

Theorem. Let $f : M \mapsto N$ be *R*-module homomorphism and ker $f := \{a \in M | f(a) = 0\}$. Then ker f is a *R*-submodule of M and M/ker f is isomorphic to f(M)

Theorem. Let K,N be R-submodule of M. Then (K + N)/N is isomorphic to $K/K \cap N$.

Theorem. Let $K \subseteq N$ be *R*-submodules of *M*. Then N/K is a *R*-submodule of M/K and (M/K)/(N/K) is isomorphic to M/N.

proof. "mutatis mutandis"="with those things having been changed which need to be changed." $\hfill \Box$

Definition. For $m \in M$, $0_m := \{r \in R | rm = 0\}$ is called the order ideal of m, or the amihilator of m.

Note: 0_m is an ideal of R.

Prop. For $m \in M$, the *R*-submodule (m) is isomorphic to the *R*-module R/O_m .

proof. Let $f := R \mapsto (m)$ by f(r) = rm. Hence f is surjective R-module homomorphism with $kerf = 0_m$.

By homomorphism theorem, $R/0_m \cong rangf = (m)$

ex. $R = \mathbb{Z}, (M = \mathbb{Z} \times \mathbb{Z})/((2,2) \times (4,-2))$. Find $0_{\overline{(1,1)}}$ and $0_{\overline{(1,0)}}$

Sol: $0_{\overline{(1,1)}} = 2\mathbb{Z}, 0_{\overline{(1,0)}} = 6\mathbb{Z}$

Definition. $M_t := \{m \in M | 0_m \neq 0\}$ is called the torsion *R*-submodule of *M*, where *R* is commutative. If $M_t = M$, then *M* is called a torsion module. If $M_t = 0$, then *M* is called torsion-free.