1. Recall: (The Short Five Lemma) Suppose we have the following commutative diagram of R-module homomorphisms with exact rows.

- (a) f_1 surjection and f_2 , f_4 injection $\implies f_3$ injection.
- (b) f_5 injection and f_2 , f_4 surjection $\implies f_3$ surjection.
- 2. Definition : We say the two exact sequence in the above diagram are isomorphic if f_1 , f_2 and f_3 are isomorphism
- 3. Theorem : suppose

$$0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$$

Then the following are equivalent

- (a) There exist $h: M_2 \longrightarrow M$ s.t. $gh = \iota_{M_2}$
- (b) There exist $k: M \longrightarrow M_1$ s.t. $kf = \iota_{M_1}$
- (c) $0 \longrightarrow M_1 \longrightarrow M \longrightarrow M_2 \longrightarrow 0$ and $0 \longrightarrow M_1 \longrightarrow M_1 \oplus M_2 \longrightarrow M_2 \longrightarrow 0$ are isomorphic In particular $M \cong M_1 \oplus M_2$

 $Proof:(b) \Longrightarrow (c) consider$

Define $\phi: M \to M_1 \oplus M_2$ by $\phi(m) = (k(m), g(m))$ for $m \in M$

It is clear that the diagram is commutative. (c) \Rightarrow (b) and (a) \Leftrightarrow (c) are Exercise.