Algebra

2008.12.11

4.1 EXACT SEQUENCES

Lemma 1. (Short Five Lemma) Suppose

.

Then

(i) α, γ monomorphisms $\Rightarrow \beta$ is a monomorphism;

(ii) α, γ epimorphisms $\Rightarrow \beta$ is a epimorphism;

Proof. We prove (i) here, (ii) is left as homework. Pick $n_2 \in N_2$ and pick $m_3 \in M_3$ such that $\gamma(m_3) = g'(n_2)$. Since γ is onto, such element m_3 exists. Pick $m_2 \in M_2$ such that $g(m_2) = m_3$, because g is onto, m_2 exists. We have m_2, n_2 , then we can derive something from here, that is

$$g'(\beta(m_2) - n_2)$$

= $\gamma \circ g(m_2) - g'(n_2)$
= $\gamma \circ g(m_2) - \gamma(m_3)$
= $\gamma(m_3) - \gamma(m_3)$
= 0.

From above, we know that $\beta(m_2) - n_2 \in \ker g' = \operatorname{Im} f'$. Hence we can choose $n_1 \in N_1$ such that $f'(n_1) = \beta(m_2) - n_2$. Pick $m_1 \in M_1$ such that $\alpha(m_1) = n_1$ (α is onto). Then $\beta(m_2) - n_2 = f'(n_1) = f' \circ \alpha(m_1) = \beta \circ f(m_1)$. Hence $\beta(m_2 - f(m_1)) = n_2$. This shows that for each element y of N_2 , there is an element x of M_2 such that $y = \beta(x)$.