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Definition 4.2.1. Let R be a ring and M be a R-module.
(1) x1, x2, · · · , xn ∈ M are linear independent if for any c1, c2, · · · , cn ∈ R,

c1x1 + c2x2 + · · · + cnxn = 0 ⇒ c1 = c2 = · · · = cn = 0

(2) x1, x2, · · · , xn ∈ M span M if (x1, x2, · · · , xn) = M (i.e. for any m ∈ M , there exists
c1, c2, · · · , cn ∈ R such that m = c1x1 + c2x2 + · · · + cnxn).

(3) The set {x1, x2, · · · , xn} ⊆ M is a basis if its elements are linear independent and
span M .

(4) M is free if M has a basis.

Example 4.2.2. M = R = Z6 = {0, 1, 2, 3, 4, 5}.
Since 1 is a basis, Z6 is free. In fact, if M = R and M has 1, then 1 is a basis.

Example 4.2.3. R = Z6. M = {0, 2, 4}.
3 · 2 = 0 ⇒ 2 is not linear independent.
3 · 4 = 0 ⇒ 4 is not linear independent.
Hence, there is no basis in M and M is not free.

Theorem 4.2.4. Let M be a free R-module, where R is a division ring. Suppose M has 2
bases of cardinalities n, m, respectively. Then, n = m.

Proof. Let {ei}n
i=1 and {fi}m

i=1 be two bases of M . Suppose n 6= m. W.L.O.G, we assume
m < n.

Since f1 ∈ spanR(e1, e2, · · · , en), we have f1 = c1e1 + c2e2 + · · ·+ cnen for some ci ∈ R but
not all 0. Say ck 6= 0. Then, ek = c−1

k (f1− c1e1− c2e2−· · ·− ck−1ek−1− ck+1ek+1−· · ·− cnen)
(c−1

k exists for R is a division ring).
It is routine to check {ei}n

i=1 \ {ek} ∪ {f1} is a basis.
Similarly, {ei}n

i=1 \ {ek, ek′} ∪ {f1, f2} is a basis, where k 6= k′ (the coefficient of f1 is not
the only one nonzero element; otherwise, f2 = c′f1, c′ ∈ R and this contradicts to the fact
that {fi}m

i=1 is a basis).
After m steps, we have a basis containing f1, f2, · · · , fm and some ei. Since f1, f2, · · · , fm, ei

are not linear independent for {fj}m
j=1, we have a contradiction.

Definition 4.2.5. If all the bases of a free module M have the same cardinality n, n is
called the rand or dimension of M .

Theorem 4.2.6. Let M be a free module over a commutative ring R. Suppose M has 2
bases of cardinalities n, m, respectively. Then, n = m.
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Proof. Suppose m ≤ n and let {ei}n
i=1 and {fi}m

i=1 be two bases. Then

fi =
n∑

j=1

aijej

ek =
m∑

j=1

bkjfj

where 1 ≤ i ≤ m, 1 ≤ k ≤ n, and aij, bkj ∈ R. In matrix form,
f1

f2
...

fm

 = A


e1

e2
...
en




e1

e2
...
en

 = B


f1

f2
...

fm


for some m × n matrix A and n × m matrix B over R. Since {ei}n

i=1 is a basis, BA =

In. Set B′ = B 0
n×n

and A′ =
A
0

n×n

. Then, B′A” = In. Note: det(B′A′) =

det(B′) det(A′) = 0 × 0 = 0, a contradiction to det(In) = 1.

Question: why det(B′A′) = det(B′) det(A′) over any commutative ring?

Example 4.2.7. Z2 = {0, 1}. R = M = Z2[x]. Hence, M = R is a R-module and 1 is a
basis.

Let f1, f2 ∈ M such that f1(x
2i) = xi, f1(x

2i−1) = 0, f2(x
2i) = 0, and f2(x

2i−1) = xi, for
i ∈ N

∪
{0}.

Claim: f1, f2 ∈ M are linear independent.
Suppose g1f1 + g2f2 = 0, for g1, g2 ∈ R. Then

0 = (g1f1 + g2f2)(x
2i) = g1f1(x

2i) = g1(x
i)

0 = (g1f1 + g2f2)(x
2i−1) = g2f2(x

2i−1) = g2(x
i)

for i ∈ N
∪
{0}. Hence, g1 = g2 = 0.

Claim: f1, f2 span M .
Pick any g ∈ M and g1, g2 ∈ R such that g1(x

i) = g(x2i) and g2(x
i) = g(x2i−1) for

i ∈ N
∪
{0}. Then,

(g1f1 + g2f2)(x
2i) = g1f1(x

2i) = g1(x
i) = g(x2i)

(g1f1 + g2f2)(x
2i−1) = g2f2(x

2i−1) = g2(x
i) = g(x2i−1)

Hence, g = g1f1 + g2f2.
We have shown that M ∼= R ∼= R2 ∼= R3 · · · .

Definition 4.2.8. Let M , N be R-modules.
Let M ⊕ N = {(m,n)|m ∈ M,n ∈ N} and + and scalar multiplication are defined

componentwise. Then M ⊕ N is a R-module, called the direct sum of M and N .

Note 4.2.9. M ⊕ N ⊕ T can be defined similarly for R-modules M,N, T .
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