4.2 Free Modules
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Definition 4.2.1. Let R be a ring and M be a R-module.
(1) &y, 29, -+ ,x, € M are linear independent if for any ¢y, ca, - , ¢, € R,

(2) x1, 9, ,x, € M span M if (x1, 29, -+ ,z,) = M (i.e. for any m € M, there exists
C1,Coy ¢ 5 Cy € R such that m = cywy + coxe + -+ - + cuy).

(3) The set {x1, 29, -+ ,x,} C M is a basis if its elements are linear independent and
span M.

(4) M is free if M has a basis.

Since 1 is a basis, Zg is free. In fact, if M = R and M has 1, then 1 is a basis.

Example 4.2.3. R=Zs. M ={0,2,4}.
3.2 =0= 2 is not linear independent.
3-4=0= 4is not linear independent.
Hence, there is no basis in M and M is not free.

Theorem 4.2.4. Let M be a free R-module, where R is a division ring. Suppose M has 2
bases of cardinalities n, m, respectively. Then, n = m.

Proof. Let {e;}?_, and {f;}™, be two bases of M. Suppose n # m. W.L.O.G, we assume
m < n.

Since fi € spang(eq, e, -+ ,€,), we have f; = cie; +caea+ - - -+ e, for some ¢; € R but
not all 0. Say ¢, # 0. Then, e = ¢ ' (fi —c1e1 —Caeg—++* — Ch_1€k_1 — Chy1€ht1 =+ — CnCy)
(c;! exists for R is a division ring).

It is routine to check {e;}" ; \ {ex} U {f1} is a basis.

Similarly, {e;}?; \ {ex, ex } U{f1, f2} is a basis, where k # k" (the coefficient of f; is not
the only one nonzero element; otherwise, fo = ¢ f1, ¢ € R and this contradicts to the fact
that {f;}/", is a basis).

After m steps, we have a basis containing fi, fa, -, f,, and some e;. Since fi, fo, -, fim, €
are not linear independent for {f;}72,, we have a contradiction. ]

Definition 4.2.5. If all the bases of a free module M have the same cardinality n, n is
called the rand or dimension of M.

Theorem 4.2.6. Let M be a free module over a commutative ring R. Suppose M has 2
bases of cardinalities n, m, respectively. Then, n = m.



Proof. Suppose m < n and let {e;} ; and {f;}7, be two bases. Then

n

fi = Z Qij€;

j=1

€k = Z bi; f;
j=1

where 1 <¢<m, 1<k <n, and a;5, by; € R. In matrix form,
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for some m x n matrix A and n X m matrix B over R. Since {e;}, is a basis, BA =

A

I,. Set B' = an and A’ = 0] Then, B'A” = I,. Note: det(B'A") =
det(B’) det(A’) =0 x 0 = 0, a contradiction to det(/,) = 1. O

Question: why det(B'A’) = det(B’) det(A’) over any commutative ring?

Example 4.2.7. Zy = {0,1}. R = M = Zs[z|. Hence, M = R is a R-module and 1 is a
basis.

Let fi, fo € M such that fi(z*) = 2%, fi(z%71) =0, fo(2?) =0, and fo(z¥ 1) = 27, for
i € N|J{0}.

Claim: f1, fo € M are linear independent.

Suppose g1 f1 + g2fo =0, for ¢1,92 € R. Then

0 = (gfi+ 92f2)(@*) = g1 fi(z) = g1 (2")
0 = (g +92f2) (@) = g2 fo(a® ™) = ga(a)
for i € N|J{0}. Hence, g = g2 = 0.
Claim: fy, fy span M.

Pick any g € M and g;,g9» € R such that g;(z') = g(2*) and g»(2") = g(x
i € NJ{0}. Then,

2-1) for
(gifr + 92f2)(372i) = 91f1<952i) = gl(xi) = Q(I%)
(91 +g2f2>(l’21_1) = 92f2($21_1 = go(a" :g(xm_l)
Hence, g = g1 f1 + g2.f2.
We have shown that M @ R R~ R3....

Definition 4.2.8. Let M, N be R-modules.
Let M @ N = {(m,n)lm € M,n € N} and + and scalar multiplication are defined
componentwise. Then M & N is a R-module, called the direct sum of M and N.

Note 4.2.9. M & N @& T can be defined similarly for R-modules M, N, T.



