4.2 Free Modules

Nov. 13, 2008

Definition 4.2.1. Let R be a ring and M be a R-module.
(1) $x_{1}, x_{2}, \cdots, x_{n} \in M$ are linear independent if for any $c_{1}, c_{2}, \cdots, c_{n} \in R$,

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0 \Rightarrow c_{1}=c_{2}=\cdots=c_{n}=0
$$

(2) $x_{1}, x_{2}, \cdots, x_{n} \in M$ span M if $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=M$ (i.e. for any $m \in M$, there exists $c_{1}, c_{2}, \cdots, c_{n} \in R$ such that $\left.m=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}\right)$.
(3) The set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subseteq M$ is a basis if its elements are linear independent and span M.
(4) M is free if M has a basis.

Example 4.2.2. $M=R=\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$.
Since $\overline{1}$ is a basis, \mathbb{Z}_{6} is free. In fact, if $M=R$ and M has 1 , then 1 is a basis.
Example 4.2.3. $R=\mathbb{Z}_{6} . M=\{\overline{0}, \overline{2}, \overline{4}\}$.
$\overline{3} \cdot \overline{2}=\overline{0} \Rightarrow \overline{2}$ is not linear independent.
$\overline{3} \cdot \overline{4}=\overline{0} \Rightarrow \overline{4}$ is not linear independent.
Hence, there is no basis in M and M is not free.
Theorem 4.2.4. Let M be a free R-module, where R is a division ring. Suppose M has 2 bases of cardinalities n, m, respectively. Then, $n=m$.

Proof. Let $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{f_{i}\right\}_{i=1}^{m}$ be two bases of M. Suppose $n \neq m$. W.L.O.G, we assume $m<n$.

Since $f_{1} \in \operatorname{span}_{R}\left(e_{1}, e_{2}, \cdots, e_{n}\right)$, we have $f_{1}=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}$ for some $c_{i} \in R$ but not all 0 . Say $c_{k} \neq 0$. Then, $e_{k}=c_{k}^{-1}\left(f_{1}-c_{1} e_{1}-c_{2} e_{2}-\cdots-c_{k-1} e_{k-1}-c_{k+1} e_{k+1}-\cdots-c_{n} e_{n}\right)$ (c_{k}^{-1} exists for R is a division ring).

It is routine to check $\left\{e_{i}\right\}_{i=1}^{n} \backslash\left\{e_{k}\right\} \cup\left\{f_{1}\right\}$ is a basis.
Similarly, $\left\{e_{i}\right\}_{i=1}^{n} \backslash\left\{e_{k}, e_{k^{\prime}}\right\} \cup\left\{f_{1}, f_{2}\right\}$ is a basis, where $k \neq k^{\prime}$ (the coefficient of f_{1} is not the only one nonzero element; otherwise, $f_{2}=c^{\prime} f_{1}, c^{\prime} \in R$ and this contradicts to the fact that $\left\{f_{i}\right\}_{i=1}^{m}$ is a basis).

After m steps, we have a basis containing $f_{1}, f_{2}, \cdots, f_{m}$ and some e_{i}. Since $f_{1}, f_{2}, \cdots, f_{m}, e_{i}$ are not linear independent for $\left\{f_{j}\right\}_{j=1}^{m}$, we have a contradiction.

Definition 4.2.5. If all the bases of a free module M have the same cardinality n, n is called the rand or dimension of M.

Theorem 4.2.6. Let M be a free module over a commutative ring R. Suppose M has 2 bases of cardinalities n, m, respectively. Then, $n=m$.

Proof. Suppose $m \leq n$ and let $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{f_{i}\right\}_{i=1}^{m}$ be two bases. Then

$$
\begin{aligned}
f_{i} & =\sum_{j=1}^{n} a_{i j} e_{j} \\
e_{k} & =\sum_{j=1}^{m} b_{k j} f_{j}
\end{aligned}
$$

where $1 \leq i \leq m, 1 \leq k \leq n$, and $a_{i j}, b_{k j} \in R$. In matrix form,

$$
\begin{aligned}
& \left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)=A\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right) \\
& \left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)=B\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)
\end{aligned}
$$

for some $m \times n$ matrix A and $n \times m$ matrix B over R. Since $\left\{e_{i}\right\}_{i=1}^{n}$ is a basis, $B A=$ I_{n}. Set $B^{\prime}=\mathrm{B}_{\mathrm{B}} 0_{n \times n}$ and $A^{\prime}=$| A |
| :---: |
| 0 |
| $n \times n$ | . Then, $B^{\prime} A^{\prime \prime}=I_{n}$. Note: $\operatorname{det}\left(B^{\prime} A^{\prime}\right)=$ $\operatorname{det}\left(B^{\prime}\right) \operatorname{det}\left(A^{\prime}\right)=0 \times 0=0$, a contradiction to $\operatorname{det}\left(I_{n}\right)=1$.

Question: why $\operatorname{det}\left(B^{\prime} A^{\prime}\right)=\operatorname{det}\left(B^{\prime}\right) \operatorname{det}\left(A^{\prime}\right)$ over any commutative ring?
Example 4.2.7. $\mathbb{Z}_{2}=\{0,1\} . R=M=\mathbb{Z}_{2}[x]$. Hence, $M=R$ is a R-module and 1 is a basis.

Let $f_{1}, f_{2} \in M$ such that $f_{1}\left(x^{2 i}\right)=x^{i}, f_{1}\left(x^{2 i-1}\right)=0, f_{2}\left(x^{2 i}\right)=0$, and $f_{2}\left(x^{2 i-1}\right)=x^{i}$, for $i \in \mathbb{N} \bigcup\{0\}$.

Claim: $f_{1}, f_{2} \in M$ are linear independent.
Suppose $g_{1} f_{1}+g_{2} f_{2}=0$, for $g_{1}, g_{2} \in R$. Then

$$
\begin{aligned}
& 0=\left(g_{1} f_{1}+g_{2} f_{2}\right)\left(x^{2 i}\right)=g_{1} f_{1}\left(x^{2 i}\right)=g_{1}\left(x^{i}\right) \\
& 0=\left(g_{1} f_{1}+g_{2} f_{2}\right)\left(x^{2 i-1}\right)=g_{2} f_{2}\left(x^{2 i-1}\right)=g_{2}\left(x^{i}\right)
\end{aligned}
$$

for $i \in \mathbb{N} \bigcup\{0\}$. Hence, $g_{1}=g_{2}=0$.
Claim: f_{1}, f_{2} span M.
Pick any $g \in M$ and $g_{1}, g_{2} \in R$ such that $g_{1}\left(x^{i}\right)=g\left(x^{2 i}\right)$ and $g_{2}\left(x^{i}\right)=g\left(x^{2 i-1}\right)$ for $i \in \mathbb{N} \bigcup\{0\}$. Then,

$$
\begin{aligned}
\left(g_{1} f_{1}+g_{2} f_{2}\right)\left(x^{2 i}\right) & =g_{1} f_{1}\left(x^{2 i}\right)=g_{1}\left(x^{i}\right)=g\left(x^{2 i}\right) \\
\left(g_{1} f_{1}+g_{2} f_{2}\right)\left(x^{2 i-1}\right) & =g_{2} f_{2}\left(x^{2 i-1}\right)=g_{2}\left(x^{i}\right)=g\left(x^{2 i-1}\right)
\end{aligned}
$$

Hence, $g=g_{1} f_{1}+g_{2} f_{2}$.
We have shown that $M \cong R \cong R^{2} \cong R^{3} \cdots$.
Definition 4.2.8. Let M, N be R-modules.
Let $M \oplus N=\{(m, n) \mid m \in M, n \in N\}$ and + and scalar multiplication are defined componentwise. Then $M \oplus N$ is a R-module, called the direct sum of M and N.
Note 4.2.9. $M \oplus N \oplus T$ can be defined similarly for R-modules M, N, T.

