4.3 Rejective Module

Definition. A R-module P is projective if

$$\begin{array}{cccc} P \\ h \swarrow & \circlearrowright & \downarrow f \\ M & \xrightarrow{-g} & N & \longrightarrow & O \\ \text{i.e. Given any exact sequence } M \xrightarrow{g} N \longrightarrow O \text{ and } f : P \rightarrow M \text{ s.t. the daigram} \\ & P \\ h \swarrow & \circlearrowright & \downarrow f \\ M & \xrightarrow{-g} & N & \longrightarrow & O \end{array}$$

is commutative.

Note. 1. If P is a free module, then $f : P \to N$ is determined by the map of one basis.

- 2. If P is a free R-module with basis $\{e_i\}$, then we define $h(e_i)$ to be an element $m_i \in M$ s.t. $g(m_i) = f(e_i)$ (g is onto). We have f = gh.
- 3. A free R-module is projective. \Box

Theorem. Let P be a R-module TFAE:

- 1. P is projective.
- 2. Any exact sequence $O \longrightarrow L \longrightarrow M \longrightarrow P \longrightarrow O$ splits.
- 3. $L \oplus P$ is a free *R*-module for some *R*-module *L*.

Example. $R = \mathbb{Z}_6$

 \mathbb{Z}_2 is not a free R-module since 1 is not a basis. \mathbb{Z}_3 is not a free R-module. But $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_6$ is a free R-module with basis {1}. Then $\mathbb{Z}_2, \mathbb{Z}_3$ are projective R-module by Theorem 3.

Proof:

• $(1) \Rightarrow (2)$

$$O \longrightarrow L \longrightarrow M \longrightarrow P \longrightarrow O$$

 $h \swarrow \circlearrowright \downarrow id$
 $M \longrightarrow P \longrightarrow O$

Since P is projective, there exist $h: P \to M$ s.t. the above diagram is commutative. Then we have (2) by previous theorem.

• (3)
$$\Rightarrow$$
 (1)
 $L \oplus P$
 $\downarrow \uparrow$
 $h' \swarrow \circlearrowright P$
 $\downarrow f$
 $M \xrightarrow{g} N \longrightarrow O$
 $\Rightarrow h=hP$ is what we want.

• $(2) \Rightarrow (3)$

Let $X \subseteq P$ be a generating set of P. Then $M = \bigoplus_{x \in X} R$ is a free R-module. Define $g: M \to P$ canonically. Then $O \longrightarrow Ker(g) \xrightarrow{id} M \xrightarrow{g} P \longrightarrow O$. Then by (2), $M \cong Ker(g) \oplus P$ is a free R-module. \Box