4.5 Tensor product

R is a commutative ring in this section.
Definition 4.1. Let M, N, O be R-modules. A function $f: M \times N \rightarrow O$ is bilinear if the maps $f(*, n): M \rightarrow O$ and $f(m, *): N \rightarrow O$ are R-module homomorphisms for each $n \in N$ and $m \in M$.
Note 4.2. 1. $M \times N$ is not a R-module
2. $M \oplus N$ is a R-module with underline set $M \times N$
3. If $f: M \oplus N \rightarrow O$ is a R-module homomorphism, then $f((c m, c n))=f(c(m, n))=$ $c f((m, n))$ for $c \in R, m \in M$, and $n \in N$
4. If $f: M \times N \rightarrow O$ is bilinear then $f(c m, c n)=c f(m, c n)=c^{2} f(m, n)$ for $c \in R, m \in$ M, and $n \in N$

Definition 4.3. Let M, N be R-modules. The tensor product $M \otimes_{R} N$ of M and N is a module toghther with a bilinear map $f: M \times N \rightarrow M \otimes_{R} N$ such that for any bilinear map $g: M \times N \rightarrow O$ for some R-module O, there exists a R-module homomorphism $h: M \otimes_{R} N \rightarrow O$ with the following diagram commutes:

Theorem 4.4. $M \otimes_{R} N$ exists.
Proof. Set F to be the free module with basis $M \times N$ (i.e., $F=\oplus_{x \in M \times N} R=\sum_{x \in M \times N} r x$. Let K be a R-submodule of F generated by $\left(m+m^{\prime}, n\right)-(m, n)-\left(m^{\prime}, n\right),\left(m, n+n^{\prime}\right)-$ $(m, n)-\left(m, n^{\prime}\right),(c m, n)-c(m, n)$, and $(m, c n)-c(m, n)$ for any $m, m^{\prime} \in M, n, n^{\prime} \in N$, and $c \in R$. We shall prove $M \otimes_{R} N=F / K$. Define a map $f: M \times N \rightarrow F / K$ by $f(m, n)=(m, n)+K$. Check f is bilinear. $f\left(m+m^{\prime}, n\right)=\left(m+m^{\prime}, n\right)+K=\left(m+m^{\prime}, n\right)-$ $\left(\left(m+m^{\prime}, n\right)-(m, n)-\left(m^{\prime}, n\right)\right)+K=(m, n)+\left(m^{\prime}, n\right)+K=f(m, n)+f\left(m^{\prime}, n\right)$. Similar for others. Suppose we have

Define $h: F / K \rightarrow O$ by extending the definition $h(f(m, n)+K)=g(m, n)$, clearly $h f=g$. It is routine to check h is a well-define homomorphism.

Theorem 4.5. $M \otimes_{R} N$ is unique.
Proof. Suppose A, B are 2 modules satisfying the definition of tensor product. Then we have

i.e., $g=h f$ and $f=k g$. Then $g=h f=h k g$ and $f=k g=k h f$. Hence $h k=1_{i m g(g)}, k h=$ $1_{i m g(f)}$. Thus, $h: A \rightarrow B$ is a module isomorphism.

Note 4.6. We will write $m \otimes n$ for $f(m, n)$ with $m \in M, n \in N$.
Example 4.7. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Q}=$?
$1 \otimes \frac{b}{a}=1 \otimes \frac{2 b}{2 a}=2\left(1 \otimes \frac{b}{2 a}\right)=2 \otimes \frac{b}{2 a}=0 \cdot 0 \otimes \frac{b}{2 a}=0 \otimes 0$. Hence $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Q}=\{0 \otimes 0\}$.

