We assume $R=\mathbb{R}$.
Fact:If $e_{1}, e_{2}, \ldots, e_{s}$ are linear independent in the R-module M and $n_{1}, n_{2}, \ldots, n_{s}$ $\epsilon \mathrm{N}$ such that $e_{1} \otimes n_{1}+e_{2} \bigotimes n_{2}+\ldots+e_{s} \bigotimes n_{s}=0$, then $n_{1}=n_{2}=\ldots n_{s}=0$ (Theorem 5.11).
(If write element in $\mathrm{M} \times N$ as a sum of $e_{i} \otimes n_{i}$, there is no way to reduce the length of the sum.)

Theorem: $\left\{e_{i}\right\}_{i=1}^{a}$ is a basis of M and $\left\{f_{j}\right\}_{i=1}^{b}$ is a basis of $\mathrm{N} \Rightarrow\left\{e_{i} \otimes f_{j}\right\}$ is a basis of $M \bigotimes_{\mathbb{R}} N$.

Proof: Span: Pick any $m \times n \epsilon M \bigotimes_{\mathbb{R}} N$,
suppose

$$
m=\sum_{i=0}^{a} c_{i} e_{i} \text { and } n=\sum_{j=1}^{b} d_{j} f_{j}
$$

then

$$
m \bigotimes n=\left(\sum c_{i} e_{i}\right) \bigotimes\left(\sum d_{j} f_{j}\right)=\sum_{i} \sum_{j} c_{i} d_{j}\left(e_{i} \bigotimes f_{j}\right)
$$

linear independent:
Suppose

$$
\sum_{i, j} c_{i} d_{j}\left(e_{i} \bigotimes f_{j}\right)=0
$$

then

$$
\sum_{j}\left(\sum_{i} c_{i j} e_{i}\right) \bigotimes f_{j}=0
$$

Hence

$$
\sum_{i} c_{i j} e_{i}=0
$$

for all j , thus $c_{i j}=0$ for i and j .
\mathbb{R}^{a} has a basis

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right) \\
& e_{2}=\left(\begin{array}{l}
0 \\
1 \\
\cdot \\
\cdot \\
0
\end{array}\right)
\end{aligned}
$$

\mathbb{R}^{b} has a basis

$$
\begin{aligned}
& f_{1}=\left(\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right) \\
& f_{2}=\left(\begin{array}{l}
0 \\
1 \\
\cdot \\
\cdot \\
0
\end{array}\right)
\end{aligned}
$$

$\mathbb{R}^{a} \otimes \mathbb{R}^{b}$ has dimension $a b$ with basis $e_{i} \otimes f_{j}$.
List the vectors in the basis as

$$
\begin{aligned}
& e_{1} \bigotimes f_{1}=\left(\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right) \\
& e_{1} \bigotimes f_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
\end{aligned}
$$

$$
e_{1} \bigotimes f_{b}=\left(\begin{array}{c}
0 \\
. \\
. \\
0 \\
1 \\
0 \\
. \\
.
\end{array}\right)
$$

, where 1 is in b's row,

$$
e_{2} \bigotimes f_{1}=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0 \\
1 \\
0 \\
\cdot \\
.
\end{array}\right)
$$

, where 1 is in ($b+1$)'s row,
(8, (
, where f_{j} is in i's block.

In general,

