4.5. Tensor Product (conti.)

We assume $R = \mathbb{R}$

Fact:If e_1, e_2, \ldots, e_s are linear independent in the \mathbb{R} -module M and $n_1, n_2, \ldots, n_s \in N$ s.t. $e_1 \otimes n_1 + e_2 \otimes n_2 + \cdots + e_s \otimes n_s = 0$, then $n_1 = n_2 = \cdots = n_s = 0$ (Theorem 5.11) (If write element in $M \times N$ as a sum of $e_i \otimes n_i$, there is no way to reduce the length of the sum.)

Theorem. $\{e_i\}_{i=1}^a$ is a basis of M and $\{f_i\}_{i=1}^b$ is a basis of N $\Rightarrow \{e_i \otimes f_i\}$ is a basis of $M \otimes N$

Proof. Span:

Pick any $m \times n \in M \otimes_R N$. Suppose

$$m = \sum_{i=1}^{a} c_i e_i$$
 and $n = \sum_{i=1}^{b} d_i f_i$

Then

$$M \otimes N = (\sum c_i e_i) \otimes (\sum d_j f_j) = \sum_i \sum_j c_i d_j e_i \otimes f_j$$

Linear independent:

Suppose

$$\sum_{i,j} c_{ij} e_i \otimes f_j = 0$$

Then

$$\sum_{i} (\sum_{i} C_{ij} e_i) \otimes f_j = 0$$

Hence

$$\sum_{i} c_{ij} e_i = 0 \ for \ all \ j$$

Thus $c_{ij} = 0$ for all j for all $i \square$

 $\mathbb{R}_a \otimes \mathbb{R}_b$ has dimension ab with basis $e_i \otimes f_j$. List the vertices in the basis as