4.6 Smith Normal Form

Definition: Two $m \times n$ matrices A, B are *equivalent* if there exist $m \times m$ invertible matrix P and $n \times n$ invertible matrix Q such that B = PAQ, where matrices are over D.

Four ways to obtain equivalent matrices.

Type 1:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & a \\ d & c \end{bmatrix}$$
and
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = I.$$

Type 2:

$$\begin{bmatrix} \alpha & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha b\\ c & d \end{bmatrix}$$
$$\begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} \alpha & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a\alpha & b\\ c\alpha & d \end{bmatrix}$$
$$\begin{bmatrix} \alpha & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha^{-1} & 0\\ 0 & 1 \end{bmatrix} = I, \text{ where } \alpha \in D \text{ is a unit.}$$

Type 3:

$$\begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha + \beta c & b + \beta d \\ c & d \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & a\beta + b \\ c & c\beta + d \end{bmatrix}$$
$$\begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\beta \\ 0 & 1 \end{bmatrix} = I, \text{ where } \beta \in D.$$

Extra type :

Suppose g.c.d(a, b) = e. Then ax + by = e for some $x, y \in D$. Note g.c.d(x, y) = 1. Then ux + vy = 1 for $u, v \in D$. Hence $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & v \\ y & -u \end{bmatrix} = \begin{bmatrix} e & av - bu \\ cx + dy & cv - du \end{bmatrix}$ and $\begin{bmatrix} x & v \\ y & -u \end{bmatrix} \begin{bmatrix} u & v \\ y & -x \end{bmatrix} = I$. Similar for left multiplication.

Theorem (Smith Normal Form):

where $d_i \mid d_i + 1$ for $1 \leq i \leq r - 1$.

Proof. Let $A = (a_{ij})$ be a matrix. Let $l(a_{ij})$ be the number of primes (count repeatedly) in the unique factorization of a_{ij}

- (a) By type 1 operation, we can assume $l(a_{11}) \leq l(a_{ij})$.
- (b) By extra type repeatedly, we can assume $a_{11} \mid a_{1i}$ and $a_{11} \mid a_{k1}$.
- (c) By type 2, we can assume $a_{1i} = 0 = a_{k1}$ for $i, k \neq 1$.
- (d) For each a_{ij} , we can use type 2 and extra type to have $a_{11} \mid a_{ij}$.
- (e) Go back to step (a) until $a_{1i} = 0 = a_{k1}$ for $i, k \neq 1$ and $a_{11} \mid a_{ij}$.
- (f) Go to step (a) doing the submatrix without lst row and 1st column.

Comments about the proof of SNF Theorem.

- 1. D is ED \Rightarrow there exists $\delta: D \{0\} \longrightarrow \mathbb{N}$ such that for any $a, 0 \neq b$ in D, there exists $x \in D$ with a = bx + r, where r = 0 or $\delta(r) \leq \delta(b)$.
- 2. If we assume D is ED, we can use $l = \delta$ in the proof and find that the extra type is not necessary.