4.6 Smith Normal Form

Definition: Two $m \times n$ matrices A, B are equivalent if there exist $m \times m$ invertible matrix P and $n \times n$ invertible matrix Q such that $B=P A Q$, where matrices are over D.

Four ways to obtain equivalent matrices.
Type 1:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]} \\
& \text { and }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=I .
\end{aligned}
$$

Type 2:
$\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\alpha a & \alpha b \\ c & d\end{array}\right]$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a \alpha & b \\ c \alpha & d\end{array}\right]$
$\left[\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & 1\end{array}\right]=I$, where $\alpha \in D$ is a unit.

Type 3:
$\left[\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\alpha+\beta c & b+\beta d \\ c & d\end{array}\right]$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a & a \beta+b \\ c & c \beta+d\end{array}\right]$
$\left[\begin{array}{cc}1 & \beta \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -\beta \\ 0 & 1\end{array}\right]=I$, where $\beta \in D$.

Extra type
Suppose g.c.d(a,b) $=e$. Then $a x+b y=e$ for some $x, y \in D$.
Note g.c.d $(x, y)=1$. Then $u x+v y=1$ for $u, v \in D$.
Hence $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}x & v \\ y & -u\end{array}\right]=\left[\begin{array}{cc}e & a v-b u \\ c x+d y & c v-d u\end{array}\right]$ and $\left[\begin{array}{cc}x & v \\ y & -u\end{array}\right]\left[\begin{array}{cc}u & v \\ y & -x\end{array}\right]=I$.
Similar for left multiplication.

Theorem (Smith Normal Form):

Any matrix over D is equivalent to $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}, 0, \ldots, 0\right)=\left(\begin{array}{lllllll}d_{1} & & & & & & \\ & d_{2} & & & & & \\ & & \ddots & & & & \\ & & & d_{r} & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ 0 & & & & & 0\end{array}\right)$,
where $d_{i} \mid d_{i}+1$ for $1 \leq i \leq r-1$.

Proof. Let $A=\left(a_{i j}\right)$ be a matrix. Let $l\left(a_{i j}\right)$ be the number of primes (count repeatedly) in the unique factorization of $a_{i j}$.
(a) By type 1 operation, we can assume $l\left(a_{11}\right) \leq l\left(a_{i j}\right)$.
(b) By extra type repeatedly, we can assume $a_{11} \mid a_{1 i}$ and $a_{11} \mid a_{k 1}$.
(c) By type 2, we can assume $a_{1 i}=0=a_{k 1}$ for $i, k \neq 1$.
(d) For each $a_{i j}$, we can use type 2 and extra type to have $a_{11} \mid a_{i j}$.
(e) Go back to step (a) until $a_{1 i}=0=a_{k 1}$ for $i, k \neq 1$ and $a_{11} \mid a_{i j}$.
(f) Go to step (a) doing the submatrix without lst row and 1st column.

Comments about the proof of SNF Theorem.

1. D is $\mathrm{ED} \Rightarrow$ there exists $\delta: D-\{0\} \longrightarrow \mathbb{N}$ such that for any $a, 0 \neq b$ in D, there exists $x \in D$ with $a=b x+r$, where $r=0$ or $\delta(r) \leq \delta(b)$.
2. If we assume D is ED, we can use $l=\delta$ in the proof and find that the extra type is not necessary.
